Abstract

Long period gratings (LPGs) are coated with hafnium oxide using plasma-enhanced atomic layer deposition (PEALD) to increase the sensitivity of these devices to the refractive index of the surrounding medium. PEALD allows deposition at low temperatures which reduces thermal degradation of UV-written LPGs. Depositions targeting three different coating thicknesses are investigated: 30 nm, 50 nm and 70 nm. Coating thickness measurements taken by scanning electron microscopy of the optical fibers confirm deposition of uniform coatings. The performance of the coated LPGs shows that deposition of hafnium oxide on LPGs induces two-step transition behavior of the cladding modes.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Label-free sensitivity of long-period gratings enhanced by atomic layer deposited TiO2 nano-overlays

Mateusz Smietana, Marcin Koba, Ewa Brzozowska, Krzysztof Krogulski, Jakub Nakonieczny, Lukasz Wachnicki, Predrag Mikulic, Marek Godlewski, and Wojtek J. Bock
Opt. Express 23(7) 8441-8453 (2015)

Refractive index sensitivity of nano-film coated long-period fiber gratings

Fang Zou, Yunqi Liu, Chuanlu Deng, Yanhua Dong, Shan Zhu, and Tingyun Wang
Opt. Express 23(2) 1114-1124 (2015)

Towards refractive index sensitivity of long-period gratings at level of tens of µm per refractive index unit: fiber cladding etching and nano-coating deposition

Mateusz Śmietana, Marcin Koba, Predrag Mikulic, and Wojtek J. Bock
Opt. Express 24(11) 11897-11904 (2016)

References

  • View by:
  • |
  • |
  • |

  1. C. Caucheteur, T. Guo, and J. Albert, “Review of plasmonic fiber optic biochemical sensors: improving the limit of detection,” Anal. Bioanal. Chem. 407(14), 3883–3897 (2015).
    [Crossref] [PubMed]
  2. X. D. Wang and O. S. Wolfbeis, “Fiber-Optic Chemical Sensors and Biosensors (2008-2012),” Anal. Chem. 85(2), 487–508 (2013).
    [Crossref] [PubMed]
  3. L. Melo, G. Burton, S. Warwick, and P. M. Wild, “Experimental Investigation of Long-Period Grating Transition Modes to Monitor CO2 in High-Pressure Aqueous Solutions,” J. Lightwave Technol. 33(12), 2554–2560 (2015).
    [Crossref]
  4. S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14(5), R49–R61 (2003).
    [Crossref]
  5. P. Biswas, N. Basumallick, S. Bandyopadhyay, K. Dasgupta, A. Ghosh, and S. Bandyopadhyay, “Sensitivity Enhancement of Turn-Around-Point Long Period Gratings By Tuning Initial Coupling Condition,” IEEE Sens. J. 15(2), 1240–1245 (2015).
    [Crossref]
  6. A. Martinez-Rios, D. Monzon-Hernandez, and I. Torres-Gomez, “Highly sensitive cladding-etched arc-induced long-period fiber gratings for refractive index sensing,” Opt. Commun. 283(6), 958–962 (2010).
    [Crossref]
  7. N. D. Rees, S. W. James, R. P. Tatam, and G. J. Ashwell, “Optical fiber long-period gratings with Langmuir-Blodgett thin-film overlays,” Opt. Lett. 27(9), 686–688 (2002).
    [Crossref] [PubMed]
  8. A. Cusano, A. Iadicicco, P. Pilla, L. Contessa, S. Campopiano, A. Cutolo, and M. Giordano, “Mode transition in high refractive index coated long period gratings,” Opt. Express 14(1), 19–34 (2006).
    [Crossref] [PubMed]
  9. I. Del Villar, I. Matías, F. Arregui, and P. Lalanne, “Optimization of sensitivity in Long Period Fiber Gratings with overlay deposition,” Opt. Express 13(1), 56–69 (2005).
    [Crossref] [PubMed]
  10. I. Del Villar, M. Achaerandio, I. R. Matías, and F. J. Arregui, “Deposition of overlays by electrostatic self-assembly in long-period fiber gratings,” Opt. Lett. 30(7), 720–722 (2005).
    [Crossref] [PubMed]
  11. S. Korposh, S. W. Lee, S. W. James, and R. P. Tatam, “Refractive index sensitivity of fibre-optic long period gratings coated with SiO2 nanoparticle mesoporous thin films,” Meas. Sci. Technol. 22(7), 075208 (2011).
    [Crossref]
  12. L. Melo, G. Burton, B. Davies, D. Risk, and P. Wild, “Highly sensitive coated long period grating sensor for CO2 detection at atmospheric pressure,” Sens. Actuators B Chem. 202, 294–300 (2014).
    [Crossref]
  13. M. Smietana, W. J. Bock, and P. Mikulic, “Temperature sensitivity of silicon nitride nanocoated long-period gratings working in various surrounding media,” Meas. Sci. Technol. 22(11), 115203 (2011).
    [Crossref]
  14. M. Smietana, M. L. Korwin-Pawlowski, W. J. Bock, G. R. Pickrell, and J. Szmidt, “Refractive index sensing of fiber optic long-period grating structures coated with a plasma deposited diamond-like carbon thin film,” Meas. Sci. Technol. 19(8), 085301 (2008).
    [Crossref]
  15. L. Coelho, D. Viegas, J. Santos, and J. Almeida, “Enhanced refractive index sensing characteristics of optical fibre long period grating coated with titanium dioxide thin films,” Sens. Actuators B Chem. 202, 929–934 (2014).
    [Crossref]
  16. M. Śmietana, M. Koba, P. Mikulic, R. Bogdanowicz, and W. J. Bock, “Improved diamond-like carbon coating deposition uniformity on cylindrical sample by its suspension in RF PECVD chamber,” Phys. Status Solidi 212(11), 2496–2500 (2015).
    [Crossref]
  17. M. Smietana, M. Koba, E. Brzozowska, K. Krogulski, J. Nakonieczny, L. Wachnicki, P. Mikulic, M. Godlewski, and W. J. Bock, “Label-free sensitivity of long-period gratings enhanced by atomic layer deposited TiO2 nano-overlays,” Opt. Express 23(7), 8441–8453 (2015).
    [Crossref] [PubMed]
  18. M. Smietana, W. J. Bock, and P. Mikulic, “Effect of high-temperature plasma-deposited nano-overlays on the properties of long-period gratings written with UV and electric arc in non-hydrogenated fibers,” Meas. Sci. Technol. 24(9), 094016 (2013).
    [Crossref]
  19. S. M. George, “Atomic layer deposition: an overview,” Chem. Rev. 110(1), 111–131 (2010).
    [Crossref] [PubMed]
  20. H. Kim, H. Lee, and W. Maeng, “Applications of atomic layer deposition to nanofabrication and emerging nanodevices,” Thin Solid Films 517(8), 2563–2580 (2009).
    [Crossref]
  21. J. W. Elam, M. D. Groner, and S. M. George, “Viscous flow reactor with quartz crystal microbalance for thin film growth by atomic layer deposition,” Rev. Sci. Instrum. 73(8), 2981–2987 (2002).
    [Crossref]
  22. O. Sneh, R. B. Clark-Phelps, A. R. Londergan, J. Winkler, and T. E. Seidel, “Thin film atomic layer deposition equipment for semiconductor processing,” Thin Solid Films 402(1–2), 248–261 (2002).
    [Crossref]
  23. M. D. Groner, F. H. Fabreguette, J. W. Elam, and S. M. George, “Low-Temperature Al2O3 Atomic Layer Deposition,” Chem. Mater. 16(4), 639–645 (2004).
    [Crossref]
  24. H. Profijt, S. Potts, M. Van de Sanden, and W. Kessels, “Plasma-Assisted Atomic Layer Deposition: Basics, Opportunities, and Challenges,” J. Vac. Sci. Technol. A 29(5), 050801 (2011).
    [Crossref]
  25. E. M. Dianov, V. I. Karpov, A. S. Kurkov, and M. V. Grekov, “Long-period fiber gratings and mode-field converters fabricated by thermodiffusion in phosphosilicate fibers,” In Proceedings of the IEEE 24th European Conference on Optical Communication, Madrid, Spain, 20–24 September 1998; pp. 395–396.
    [Crossref]
  26. M. Śmietana, M. Myśliwiec, P. Mikulic, B. S. Witkowski, and W. J. Bock, “Capability for fine tuning of the refractive index sensing properties of long-period gratings by atomic layer deposited Al2O3 overlays,” Sensors (Basel Switzerland) 13(12), 16372–16383 (2013).
    [Crossref]
  27. F. Zou, Y. Liu, C. Deng, Y. Dong, S. Zhu, and T. Wang, “Refractive index sensitivity of nano-film coated long-period fiber gratings,” Opt. Express 23(2), 1114–1124 (2015).
    [Crossref] [PubMed]
  28. G. Rego, O. Okhotnikov, E. Dianov, and V. Sulimov, “High-temperature stability of long-period fiber gratings produced using an electric arc,” J. Lightwave Technol. 19(10), 1574–1579 (2001).
    [Crossref]
  29. Y. Widjaja and C. B. Musgrave, “Atomic layer deposition of hafnium oxide: A detailed reaction mechanism from first principles,” J. Chem. Phys. 117(5), 1931–1934 (2002).
    [Crossref]
  30. C. R. Zamarreno, I. R. Matias, and F. J. Arregui, “Nanofabrication Techniques Applied to the Development of Novel Optical Fiber Sensors Based on Nanostructured Coatings,” IEEE Sens. J. 12(8), 2699–2710 (2012).
    [Crossref]
  31. I. Del Villar, I. R. Matias, and F. J. Arregui, “Influence on cladding mode distribution of overlay deposition on long-period fiber gratings,” J. Opt. Soc. Am. A 23(3), 651–658 (2006).
    [Crossref] [PubMed]
  32. L. Melo, G. Burton, P. Wild, Dep. Mech. Eng. Univ. Victoria, P.O. Box 3055, Victoria, B.C., Canada V8W 3P6, and P. Kubik, 4D Labs, Simon Fraser Univ. 8888 Univ. Drive, Burn. B.C., Canada V5A 1S6. are preparing a manuscript to be called “Refractive index sensor based on inline Mach-Zehnder interferometer coated with hafnium oxide by atomic layer deposition,”
  33. O. Buiu, Y. Lu, I. Z. Mitrovic, S. Hall, P. Chalker, and R. J. Potter, “Spectroellipsometric assessment of HfO2 thin films,” Thin Solid Films 515(2), 623–626 (2006).
    [Crossref]
  34. M. Smietana, W. J. Bock, and J. Szmidt, “Evolution of optical properties with deposition time of silicon nitride and diamond-like carbon films deposited by radio-frequency plasma-enhanced chemical vapor deposition method,” Thin Solid Films 519(19), 6339–6343 (2011).
    [Crossref]
  35. P. Pilla, P. F. Manzillo, V. Malachovska, A. Buosciolo, S. Campopiano, A. Cutolo, L. Ambrosio, M. Giordano, and A. Cusano, “Long period grating working in transition mode as promising technological platform for label-free biosensing,” Opt. Express 17(22), 20039–20050 (2009).
    [Crossref] [PubMed]
  36. S. W. James, C. S. Cheung, and R. P. Tatam, “Experimental observations on the response of 1(st) and 2(nd) order fibre optic long period grating coupling bands to the deposition of nanostructured coatings,” Opt. Express 15(20), 13096–13107 (2007).
    [Crossref] [PubMed]
  37. T. Erdogan, “Cladding-mode resonances in short- and long- period fiber grating filters,” J. Opt. Soc. Am. A 14(8), 1760–1773 (1997).
    [Crossref]
  38. A. Cusano, A. Iadicicco, P. Pilla, A. Cutolo, M. Giordano, and S. Campopiano, “Sensitivity characteristics in nanosized coated long period gratings,” Appl. Phys. Lett. 89(20), 201116 (2006).
    [Crossref]
  39. M. A. Alam and M. L. Green, “Mathematical description of atomic layer deposition and its application to the nucleation and growth of HfO2 gate dielectric layers,” J. Appl. Phys. 94(5), 3403–3413 (2003).
    [Crossref]
  40. P. Pilla, C. Trono, F. Baldini, F. Chiavaioli, M. Giordano, and A. Cusano, “Giant sensitivity of long period gratings in transition mode near the dispersion turning point: an integrated design approach,” Opt. Lett. 37(19), 4152–4154 (2012).
    [Crossref] [PubMed]
  41. I. Del Villar, “Ultrahigh-sensitivity sensors based on thin-film coated long period gratings with reduced diameter, in transition mode and near the dispersion turning point,” Opt. Express 23(7), 8389–8398 (2015).
    [Crossref] [PubMed]

2015 (7)

C. Caucheteur, T. Guo, and J. Albert, “Review of plasmonic fiber optic biochemical sensors: improving the limit of detection,” Anal. Bioanal. Chem. 407(14), 3883–3897 (2015).
[Crossref] [PubMed]

L. Melo, G. Burton, S. Warwick, and P. M. Wild, “Experimental Investigation of Long-Period Grating Transition Modes to Monitor CO2 in High-Pressure Aqueous Solutions,” J. Lightwave Technol. 33(12), 2554–2560 (2015).
[Crossref]

P. Biswas, N. Basumallick, S. Bandyopadhyay, K. Dasgupta, A. Ghosh, and S. Bandyopadhyay, “Sensitivity Enhancement of Turn-Around-Point Long Period Gratings By Tuning Initial Coupling Condition,” IEEE Sens. J. 15(2), 1240–1245 (2015).
[Crossref]

M. Śmietana, M. Koba, P. Mikulic, R. Bogdanowicz, and W. J. Bock, “Improved diamond-like carbon coating deposition uniformity on cylindrical sample by its suspension in RF PECVD chamber,” Phys. Status Solidi 212(11), 2496–2500 (2015).
[Crossref]

M. Smietana, M. Koba, E. Brzozowska, K. Krogulski, J. Nakonieczny, L. Wachnicki, P. Mikulic, M. Godlewski, and W. J. Bock, “Label-free sensitivity of long-period gratings enhanced by atomic layer deposited TiO2 nano-overlays,” Opt. Express 23(7), 8441–8453 (2015).
[Crossref] [PubMed]

F. Zou, Y. Liu, C. Deng, Y. Dong, S. Zhu, and T. Wang, “Refractive index sensitivity of nano-film coated long-period fiber gratings,” Opt. Express 23(2), 1114–1124 (2015).
[Crossref] [PubMed]

I. Del Villar, “Ultrahigh-sensitivity sensors based on thin-film coated long period gratings with reduced diameter, in transition mode and near the dispersion turning point,” Opt. Express 23(7), 8389–8398 (2015).
[Crossref] [PubMed]

2014 (2)

L. Melo, G. Burton, B. Davies, D. Risk, and P. Wild, “Highly sensitive coated long period grating sensor for CO2 detection at atmospheric pressure,” Sens. Actuators B Chem. 202, 294–300 (2014).
[Crossref]

L. Coelho, D. Viegas, J. Santos, and J. Almeida, “Enhanced refractive index sensing characteristics of optical fibre long period grating coated with titanium dioxide thin films,” Sens. Actuators B Chem. 202, 929–934 (2014).
[Crossref]

2013 (3)

M. Smietana, W. J. Bock, and P. Mikulic, “Effect of high-temperature plasma-deposited nano-overlays on the properties of long-period gratings written with UV and electric arc in non-hydrogenated fibers,” Meas. Sci. Technol. 24(9), 094016 (2013).
[Crossref]

X. D. Wang and O. S. Wolfbeis, “Fiber-Optic Chemical Sensors and Biosensors (2008-2012),” Anal. Chem. 85(2), 487–508 (2013).
[Crossref] [PubMed]

M. Śmietana, M. Myśliwiec, P. Mikulic, B. S. Witkowski, and W. J. Bock, “Capability for fine tuning of the refractive index sensing properties of long-period gratings by atomic layer deposited Al2O3 overlays,” Sensors (Basel Switzerland) 13(12), 16372–16383 (2013).
[Crossref]

2012 (2)

C. R. Zamarreno, I. R. Matias, and F. J. Arregui, “Nanofabrication Techniques Applied to the Development of Novel Optical Fiber Sensors Based on Nanostructured Coatings,” IEEE Sens. J. 12(8), 2699–2710 (2012).
[Crossref]

P. Pilla, C. Trono, F. Baldini, F. Chiavaioli, M. Giordano, and A. Cusano, “Giant sensitivity of long period gratings in transition mode near the dispersion turning point: an integrated design approach,” Opt. Lett. 37(19), 4152–4154 (2012).
[Crossref] [PubMed]

2011 (4)

M. Smietana, W. J. Bock, and J. Szmidt, “Evolution of optical properties with deposition time of silicon nitride and diamond-like carbon films deposited by radio-frequency plasma-enhanced chemical vapor deposition method,” Thin Solid Films 519(19), 6339–6343 (2011).
[Crossref]

H. Profijt, S. Potts, M. Van de Sanden, and W. Kessels, “Plasma-Assisted Atomic Layer Deposition: Basics, Opportunities, and Challenges,” J. Vac. Sci. Technol. A 29(5), 050801 (2011).
[Crossref]

S. Korposh, S. W. Lee, S. W. James, and R. P. Tatam, “Refractive index sensitivity of fibre-optic long period gratings coated with SiO2 nanoparticle mesoporous thin films,” Meas. Sci. Technol. 22(7), 075208 (2011).
[Crossref]

M. Smietana, W. J. Bock, and P. Mikulic, “Temperature sensitivity of silicon nitride nanocoated long-period gratings working in various surrounding media,” Meas. Sci. Technol. 22(11), 115203 (2011).
[Crossref]

2010 (2)

S. M. George, “Atomic layer deposition: an overview,” Chem. Rev. 110(1), 111–131 (2010).
[Crossref] [PubMed]

A. Martinez-Rios, D. Monzon-Hernandez, and I. Torres-Gomez, “Highly sensitive cladding-etched arc-induced long-period fiber gratings for refractive index sensing,” Opt. Commun. 283(6), 958–962 (2010).
[Crossref]

2009 (2)

2008 (1)

M. Smietana, M. L. Korwin-Pawlowski, W. J. Bock, G. R. Pickrell, and J. Szmidt, “Refractive index sensing of fiber optic long-period grating structures coated with a plasma deposited diamond-like carbon thin film,” Meas. Sci. Technol. 19(8), 085301 (2008).
[Crossref]

2007 (1)

2006 (4)

A. Cusano, A. Iadicicco, P. Pilla, A. Cutolo, M. Giordano, and S. Campopiano, “Sensitivity characteristics in nanosized coated long period gratings,” Appl. Phys. Lett. 89(20), 201116 (2006).
[Crossref]

I. Del Villar, I. R. Matias, and F. J. Arregui, “Influence on cladding mode distribution of overlay deposition on long-period fiber gratings,” J. Opt. Soc. Am. A 23(3), 651–658 (2006).
[Crossref] [PubMed]

O. Buiu, Y. Lu, I. Z. Mitrovic, S. Hall, P. Chalker, and R. J. Potter, “Spectroellipsometric assessment of HfO2 thin films,” Thin Solid Films 515(2), 623–626 (2006).
[Crossref]

A. Cusano, A. Iadicicco, P. Pilla, L. Contessa, S. Campopiano, A. Cutolo, and M. Giordano, “Mode transition in high refractive index coated long period gratings,” Opt. Express 14(1), 19–34 (2006).
[Crossref] [PubMed]

2005 (2)

2004 (1)

M. D. Groner, F. H. Fabreguette, J. W. Elam, and S. M. George, “Low-Temperature Al2O3 Atomic Layer Deposition,” Chem. Mater. 16(4), 639–645 (2004).
[Crossref]

2003 (2)

M. A. Alam and M. L. Green, “Mathematical description of atomic layer deposition and its application to the nucleation and growth of HfO2 gate dielectric layers,” J. Appl. Phys. 94(5), 3403–3413 (2003).
[Crossref]

S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14(5), R49–R61 (2003).
[Crossref]

2002 (4)

N. D. Rees, S. W. James, R. P. Tatam, and G. J. Ashwell, “Optical fiber long-period gratings with Langmuir-Blodgett thin-film overlays,” Opt. Lett. 27(9), 686–688 (2002).
[Crossref] [PubMed]

J. W. Elam, M. D. Groner, and S. M. George, “Viscous flow reactor with quartz crystal microbalance for thin film growth by atomic layer deposition,” Rev. Sci. Instrum. 73(8), 2981–2987 (2002).
[Crossref]

O. Sneh, R. B. Clark-Phelps, A. R. Londergan, J. Winkler, and T. E. Seidel, “Thin film atomic layer deposition equipment for semiconductor processing,” Thin Solid Films 402(1–2), 248–261 (2002).
[Crossref]

Y. Widjaja and C. B. Musgrave, “Atomic layer deposition of hafnium oxide: A detailed reaction mechanism from first principles,” J. Chem. Phys. 117(5), 1931–1934 (2002).
[Crossref]

2001 (1)

1997 (1)

Achaerandio, M.

Alam, M. A.

M. A. Alam and M. L. Green, “Mathematical description of atomic layer deposition and its application to the nucleation and growth of HfO2 gate dielectric layers,” J. Appl. Phys. 94(5), 3403–3413 (2003).
[Crossref]

Albert, J.

C. Caucheteur, T. Guo, and J. Albert, “Review of plasmonic fiber optic biochemical sensors: improving the limit of detection,” Anal. Bioanal. Chem. 407(14), 3883–3897 (2015).
[Crossref] [PubMed]

Almeida, J.

L. Coelho, D. Viegas, J. Santos, and J. Almeida, “Enhanced refractive index sensing characteristics of optical fibre long period grating coated with titanium dioxide thin films,” Sens. Actuators B Chem. 202, 929–934 (2014).
[Crossref]

Ambrosio, L.

Arregui, F.

Arregui, F. J.

Ashwell, G. J.

Baldini, F.

Bandyopadhyay, S.

P. Biswas, N. Basumallick, S. Bandyopadhyay, K. Dasgupta, A. Ghosh, and S. Bandyopadhyay, “Sensitivity Enhancement of Turn-Around-Point Long Period Gratings By Tuning Initial Coupling Condition,” IEEE Sens. J. 15(2), 1240–1245 (2015).
[Crossref]

P. Biswas, N. Basumallick, S. Bandyopadhyay, K. Dasgupta, A. Ghosh, and S. Bandyopadhyay, “Sensitivity Enhancement of Turn-Around-Point Long Period Gratings By Tuning Initial Coupling Condition,” IEEE Sens. J. 15(2), 1240–1245 (2015).
[Crossref]

Basumallick, N.

P. Biswas, N. Basumallick, S. Bandyopadhyay, K. Dasgupta, A. Ghosh, and S. Bandyopadhyay, “Sensitivity Enhancement of Turn-Around-Point Long Period Gratings By Tuning Initial Coupling Condition,” IEEE Sens. J. 15(2), 1240–1245 (2015).
[Crossref]

Biswas, P.

P. Biswas, N. Basumallick, S. Bandyopadhyay, K. Dasgupta, A. Ghosh, and S. Bandyopadhyay, “Sensitivity Enhancement of Turn-Around-Point Long Period Gratings By Tuning Initial Coupling Condition,” IEEE Sens. J. 15(2), 1240–1245 (2015).
[Crossref]

Bock, W. J.

M. Śmietana, M. Koba, P. Mikulic, R. Bogdanowicz, and W. J. Bock, “Improved diamond-like carbon coating deposition uniformity on cylindrical sample by its suspension in RF PECVD chamber,” Phys. Status Solidi 212(11), 2496–2500 (2015).
[Crossref]

M. Smietana, M. Koba, E. Brzozowska, K. Krogulski, J. Nakonieczny, L. Wachnicki, P. Mikulic, M. Godlewski, and W. J. Bock, “Label-free sensitivity of long-period gratings enhanced by atomic layer deposited TiO2 nano-overlays,” Opt. Express 23(7), 8441–8453 (2015).
[Crossref] [PubMed]

M. Smietana, W. J. Bock, and P. Mikulic, “Effect of high-temperature plasma-deposited nano-overlays on the properties of long-period gratings written with UV and electric arc in non-hydrogenated fibers,” Meas. Sci. Technol. 24(9), 094016 (2013).
[Crossref]

M. Śmietana, M. Myśliwiec, P. Mikulic, B. S. Witkowski, and W. J. Bock, “Capability for fine tuning of the refractive index sensing properties of long-period gratings by atomic layer deposited Al2O3 overlays,” Sensors (Basel Switzerland) 13(12), 16372–16383 (2013).
[Crossref]

M. Smietana, W. J. Bock, and P. Mikulic, “Temperature sensitivity of silicon nitride nanocoated long-period gratings working in various surrounding media,” Meas. Sci. Technol. 22(11), 115203 (2011).
[Crossref]

M. Smietana, W. J. Bock, and J. Szmidt, “Evolution of optical properties with deposition time of silicon nitride and diamond-like carbon films deposited by radio-frequency plasma-enhanced chemical vapor deposition method,” Thin Solid Films 519(19), 6339–6343 (2011).
[Crossref]

M. Smietana, M. L. Korwin-Pawlowski, W. J. Bock, G. R. Pickrell, and J. Szmidt, “Refractive index sensing of fiber optic long-period grating structures coated with a plasma deposited diamond-like carbon thin film,” Meas. Sci. Technol. 19(8), 085301 (2008).
[Crossref]

Bogdanowicz, R.

M. Śmietana, M. Koba, P. Mikulic, R. Bogdanowicz, and W. J. Bock, “Improved diamond-like carbon coating deposition uniformity on cylindrical sample by its suspension in RF PECVD chamber,” Phys. Status Solidi 212(11), 2496–2500 (2015).
[Crossref]

Brzozowska, E.

Buiu, O.

O. Buiu, Y. Lu, I. Z. Mitrovic, S. Hall, P. Chalker, and R. J. Potter, “Spectroellipsometric assessment of HfO2 thin films,” Thin Solid Films 515(2), 623–626 (2006).
[Crossref]

Buosciolo, A.

Burton, G.

L. Melo, G. Burton, S. Warwick, and P. M. Wild, “Experimental Investigation of Long-Period Grating Transition Modes to Monitor CO2 in High-Pressure Aqueous Solutions,” J. Lightwave Technol. 33(12), 2554–2560 (2015).
[Crossref]

L. Melo, G. Burton, B. Davies, D. Risk, and P. Wild, “Highly sensitive coated long period grating sensor for CO2 detection at atmospheric pressure,” Sens. Actuators B Chem. 202, 294–300 (2014).
[Crossref]

Campopiano, S.

Caucheteur, C.

C. Caucheteur, T. Guo, and J. Albert, “Review of plasmonic fiber optic biochemical sensors: improving the limit of detection,” Anal. Bioanal. Chem. 407(14), 3883–3897 (2015).
[Crossref] [PubMed]

Chalker, P.

O. Buiu, Y. Lu, I. Z. Mitrovic, S. Hall, P. Chalker, and R. J. Potter, “Spectroellipsometric assessment of HfO2 thin films,” Thin Solid Films 515(2), 623–626 (2006).
[Crossref]

Cheung, C. S.

Chiavaioli, F.

Clark-Phelps, R. B.

O. Sneh, R. B. Clark-Phelps, A. R. Londergan, J. Winkler, and T. E. Seidel, “Thin film atomic layer deposition equipment for semiconductor processing,” Thin Solid Films 402(1–2), 248–261 (2002).
[Crossref]

Coelho, L.

L. Coelho, D. Viegas, J. Santos, and J. Almeida, “Enhanced refractive index sensing characteristics of optical fibre long period grating coated with titanium dioxide thin films,” Sens. Actuators B Chem. 202, 929–934 (2014).
[Crossref]

Contessa, L.

Cusano, A.

Cutolo, A.

Dasgupta, K.

P. Biswas, N. Basumallick, S. Bandyopadhyay, K. Dasgupta, A. Ghosh, and S. Bandyopadhyay, “Sensitivity Enhancement of Turn-Around-Point Long Period Gratings By Tuning Initial Coupling Condition,” IEEE Sens. J. 15(2), 1240–1245 (2015).
[Crossref]

Davies, B.

L. Melo, G. Burton, B. Davies, D. Risk, and P. Wild, “Highly sensitive coated long period grating sensor for CO2 detection at atmospheric pressure,” Sens. Actuators B Chem. 202, 294–300 (2014).
[Crossref]

Del Villar, I.

Deng, C.

Dianov, E.

Dong, Y.

Elam, J. W.

M. D. Groner, F. H. Fabreguette, J. W. Elam, and S. M. George, “Low-Temperature Al2O3 Atomic Layer Deposition,” Chem. Mater. 16(4), 639–645 (2004).
[Crossref]

J. W. Elam, M. D. Groner, and S. M. George, “Viscous flow reactor with quartz crystal microbalance for thin film growth by atomic layer deposition,” Rev. Sci. Instrum. 73(8), 2981–2987 (2002).
[Crossref]

Erdogan, T.

Fabreguette, F. H.

M. D. Groner, F. H. Fabreguette, J. W. Elam, and S. M. George, “Low-Temperature Al2O3 Atomic Layer Deposition,” Chem. Mater. 16(4), 639–645 (2004).
[Crossref]

George, S. M.

S. M. George, “Atomic layer deposition: an overview,” Chem. Rev. 110(1), 111–131 (2010).
[Crossref] [PubMed]

M. D. Groner, F. H. Fabreguette, J. W. Elam, and S. M. George, “Low-Temperature Al2O3 Atomic Layer Deposition,” Chem. Mater. 16(4), 639–645 (2004).
[Crossref]

J. W. Elam, M. D. Groner, and S. M. George, “Viscous flow reactor with quartz crystal microbalance for thin film growth by atomic layer deposition,” Rev. Sci. Instrum. 73(8), 2981–2987 (2002).
[Crossref]

Ghosh, A.

P. Biswas, N. Basumallick, S. Bandyopadhyay, K. Dasgupta, A. Ghosh, and S. Bandyopadhyay, “Sensitivity Enhancement of Turn-Around-Point Long Period Gratings By Tuning Initial Coupling Condition,” IEEE Sens. J. 15(2), 1240–1245 (2015).
[Crossref]

Giordano, M.

Godlewski, M.

Green, M. L.

M. A. Alam and M. L. Green, “Mathematical description of atomic layer deposition and its application to the nucleation and growth of HfO2 gate dielectric layers,” J. Appl. Phys. 94(5), 3403–3413 (2003).
[Crossref]

Groner, M. D.

M. D. Groner, F. H. Fabreguette, J. W. Elam, and S. M. George, “Low-Temperature Al2O3 Atomic Layer Deposition,” Chem. Mater. 16(4), 639–645 (2004).
[Crossref]

J. W. Elam, M. D. Groner, and S. M. George, “Viscous flow reactor with quartz crystal microbalance for thin film growth by atomic layer deposition,” Rev. Sci. Instrum. 73(8), 2981–2987 (2002).
[Crossref]

Guo, T.

C. Caucheteur, T. Guo, and J. Albert, “Review of plasmonic fiber optic biochemical sensors: improving the limit of detection,” Anal. Bioanal. Chem. 407(14), 3883–3897 (2015).
[Crossref] [PubMed]

Hall, S.

O. Buiu, Y. Lu, I. Z. Mitrovic, S. Hall, P. Chalker, and R. J. Potter, “Spectroellipsometric assessment of HfO2 thin films,” Thin Solid Films 515(2), 623–626 (2006).
[Crossref]

Iadicicco, A.

A. Cusano, A. Iadicicco, P. Pilla, A. Cutolo, M. Giordano, and S. Campopiano, “Sensitivity characteristics in nanosized coated long period gratings,” Appl. Phys. Lett. 89(20), 201116 (2006).
[Crossref]

A. Cusano, A. Iadicicco, P. Pilla, L. Contessa, S. Campopiano, A. Cutolo, and M. Giordano, “Mode transition in high refractive index coated long period gratings,” Opt. Express 14(1), 19–34 (2006).
[Crossref] [PubMed]

James, S. W.

S. Korposh, S. W. Lee, S. W. James, and R. P. Tatam, “Refractive index sensitivity of fibre-optic long period gratings coated with SiO2 nanoparticle mesoporous thin films,” Meas. Sci. Technol. 22(7), 075208 (2011).
[Crossref]

S. W. James, C. S. Cheung, and R. P. Tatam, “Experimental observations on the response of 1(st) and 2(nd) order fibre optic long period grating coupling bands to the deposition of nanostructured coatings,” Opt. Express 15(20), 13096–13107 (2007).
[Crossref] [PubMed]

S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14(5), R49–R61 (2003).
[Crossref]

N. D. Rees, S. W. James, R. P. Tatam, and G. J. Ashwell, “Optical fiber long-period gratings with Langmuir-Blodgett thin-film overlays,” Opt. Lett. 27(9), 686–688 (2002).
[Crossref] [PubMed]

Kessels, W.

H. Profijt, S. Potts, M. Van de Sanden, and W. Kessels, “Plasma-Assisted Atomic Layer Deposition: Basics, Opportunities, and Challenges,” J. Vac. Sci. Technol. A 29(5), 050801 (2011).
[Crossref]

Kim, H.

H. Kim, H. Lee, and W. Maeng, “Applications of atomic layer deposition to nanofabrication and emerging nanodevices,” Thin Solid Films 517(8), 2563–2580 (2009).
[Crossref]

Koba, M.

M. Śmietana, M. Koba, P. Mikulic, R. Bogdanowicz, and W. J. Bock, “Improved diamond-like carbon coating deposition uniformity on cylindrical sample by its suspension in RF PECVD chamber,” Phys. Status Solidi 212(11), 2496–2500 (2015).
[Crossref]

M. Smietana, M. Koba, E. Brzozowska, K. Krogulski, J. Nakonieczny, L. Wachnicki, P. Mikulic, M. Godlewski, and W. J. Bock, “Label-free sensitivity of long-period gratings enhanced by atomic layer deposited TiO2 nano-overlays,” Opt. Express 23(7), 8441–8453 (2015).
[Crossref] [PubMed]

Korposh, S.

S. Korposh, S. W. Lee, S. W. James, and R. P. Tatam, “Refractive index sensitivity of fibre-optic long period gratings coated with SiO2 nanoparticle mesoporous thin films,” Meas. Sci. Technol. 22(7), 075208 (2011).
[Crossref]

Korwin-Pawlowski, M. L.

M. Smietana, M. L. Korwin-Pawlowski, W. J. Bock, G. R. Pickrell, and J. Szmidt, “Refractive index sensing of fiber optic long-period grating structures coated with a plasma deposited diamond-like carbon thin film,” Meas. Sci. Technol. 19(8), 085301 (2008).
[Crossref]

Krogulski, K.

Lalanne, P.

Lee, H.

H. Kim, H. Lee, and W. Maeng, “Applications of atomic layer deposition to nanofabrication and emerging nanodevices,” Thin Solid Films 517(8), 2563–2580 (2009).
[Crossref]

Lee, S. W.

S. Korposh, S. W. Lee, S. W. James, and R. P. Tatam, “Refractive index sensitivity of fibre-optic long period gratings coated with SiO2 nanoparticle mesoporous thin films,” Meas. Sci. Technol. 22(7), 075208 (2011).
[Crossref]

Liu, Y.

Londergan, A. R.

O. Sneh, R. B. Clark-Phelps, A. R. Londergan, J. Winkler, and T. E. Seidel, “Thin film atomic layer deposition equipment for semiconductor processing,” Thin Solid Films 402(1–2), 248–261 (2002).
[Crossref]

Lu, Y.

O. Buiu, Y. Lu, I. Z. Mitrovic, S. Hall, P. Chalker, and R. J. Potter, “Spectroellipsometric assessment of HfO2 thin films,” Thin Solid Films 515(2), 623–626 (2006).
[Crossref]

Maeng, W.

H. Kim, H. Lee, and W. Maeng, “Applications of atomic layer deposition to nanofabrication and emerging nanodevices,” Thin Solid Films 517(8), 2563–2580 (2009).
[Crossref]

Malachovska, V.

Manzillo, P. F.

Martinez-Rios, A.

A. Martinez-Rios, D. Monzon-Hernandez, and I. Torres-Gomez, “Highly sensitive cladding-etched arc-induced long-period fiber gratings for refractive index sensing,” Opt. Commun. 283(6), 958–962 (2010).
[Crossref]

Matias, I. R.

C. R. Zamarreno, I. R. Matias, and F. J. Arregui, “Nanofabrication Techniques Applied to the Development of Novel Optical Fiber Sensors Based on Nanostructured Coatings,” IEEE Sens. J. 12(8), 2699–2710 (2012).
[Crossref]

I. Del Villar, I. R. Matias, and F. J. Arregui, “Influence on cladding mode distribution of overlay deposition on long-period fiber gratings,” J. Opt. Soc. Am. A 23(3), 651–658 (2006).
[Crossref] [PubMed]

Matías, I.

Matías, I. R.

Melo, L.

L. Melo, G. Burton, S. Warwick, and P. M. Wild, “Experimental Investigation of Long-Period Grating Transition Modes to Monitor CO2 in High-Pressure Aqueous Solutions,” J. Lightwave Technol. 33(12), 2554–2560 (2015).
[Crossref]

L. Melo, G. Burton, B. Davies, D. Risk, and P. Wild, “Highly sensitive coated long period grating sensor for CO2 detection at atmospheric pressure,” Sens. Actuators B Chem. 202, 294–300 (2014).
[Crossref]

Mikulic, P.

M. Śmietana, M. Koba, P. Mikulic, R. Bogdanowicz, and W. J. Bock, “Improved diamond-like carbon coating deposition uniformity on cylindrical sample by its suspension in RF PECVD chamber,” Phys. Status Solidi 212(11), 2496–2500 (2015).
[Crossref]

M. Smietana, M. Koba, E. Brzozowska, K. Krogulski, J. Nakonieczny, L. Wachnicki, P. Mikulic, M. Godlewski, and W. J. Bock, “Label-free sensitivity of long-period gratings enhanced by atomic layer deposited TiO2 nano-overlays,” Opt. Express 23(7), 8441–8453 (2015).
[Crossref] [PubMed]

M. Smietana, W. J. Bock, and P. Mikulic, “Effect of high-temperature plasma-deposited nano-overlays on the properties of long-period gratings written with UV and electric arc in non-hydrogenated fibers,” Meas. Sci. Technol. 24(9), 094016 (2013).
[Crossref]

M. Śmietana, M. Myśliwiec, P. Mikulic, B. S. Witkowski, and W. J. Bock, “Capability for fine tuning of the refractive index sensing properties of long-period gratings by atomic layer deposited Al2O3 overlays,” Sensors (Basel Switzerland) 13(12), 16372–16383 (2013).
[Crossref]

M. Smietana, W. J. Bock, and P. Mikulic, “Temperature sensitivity of silicon nitride nanocoated long-period gratings working in various surrounding media,” Meas. Sci. Technol. 22(11), 115203 (2011).
[Crossref]

Mitrovic, I. Z.

O. Buiu, Y. Lu, I. Z. Mitrovic, S. Hall, P. Chalker, and R. J. Potter, “Spectroellipsometric assessment of HfO2 thin films,” Thin Solid Films 515(2), 623–626 (2006).
[Crossref]

Monzon-Hernandez, D.

A. Martinez-Rios, D. Monzon-Hernandez, and I. Torres-Gomez, “Highly sensitive cladding-etched arc-induced long-period fiber gratings for refractive index sensing,” Opt. Commun. 283(6), 958–962 (2010).
[Crossref]

Musgrave, C. B.

Y. Widjaja and C. B. Musgrave, “Atomic layer deposition of hafnium oxide: A detailed reaction mechanism from first principles,” J. Chem. Phys. 117(5), 1931–1934 (2002).
[Crossref]

Mysliwiec, M.

M. Śmietana, M. Myśliwiec, P. Mikulic, B. S. Witkowski, and W. J. Bock, “Capability for fine tuning of the refractive index sensing properties of long-period gratings by atomic layer deposited Al2O3 overlays,” Sensors (Basel Switzerland) 13(12), 16372–16383 (2013).
[Crossref]

Nakonieczny, J.

Okhotnikov, O.

Pickrell, G. R.

M. Smietana, M. L. Korwin-Pawlowski, W. J. Bock, G. R. Pickrell, and J. Szmidt, “Refractive index sensing of fiber optic long-period grating structures coated with a plasma deposited diamond-like carbon thin film,” Meas. Sci. Technol. 19(8), 085301 (2008).
[Crossref]

Pilla, P.

Potter, R. J.

O. Buiu, Y. Lu, I. Z. Mitrovic, S. Hall, P. Chalker, and R. J. Potter, “Spectroellipsometric assessment of HfO2 thin films,” Thin Solid Films 515(2), 623–626 (2006).
[Crossref]

Potts, S.

H. Profijt, S. Potts, M. Van de Sanden, and W. Kessels, “Plasma-Assisted Atomic Layer Deposition: Basics, Opportunities, and Challenges,” J. Vac. Sci. Technol. A 29(5), 050801 (2011).
[Crossref]

Profijt, H.

H. Profijt, S. Potts, M. Van de Sanden, and W. Kessels, “Plasma-Assisted Atomic Layer Deposition: Basics, Opportunities, and Challenges,” J. Vac. Sci. Technol. A 29(5), 050801 (2011).
[Crossref]

Rees, N. D.

Rego, G.

Risk, D.

L. Melo, G. Burton, B. Davies, D. Risk, and P. Wild, “Highly sensitive coated long period grating sensor for CO2 detection at atmospheric pressure,” Sens. Actuators B Chem. 202, 294–300 (2014).
[Crossref]

Santos, J.

L. Coelho, D. Viegas, J. Santos, and J. Almeida, “Enhanced refractive index sensing characteristics of optical fibre long period grating coated with titanium dioxide thin films,” Sens. Actuators B Chem. 202, 929–934 (2014).
[Crossref]

Seidel, T. E.

O. Sneh, R. B. Clark-Phelps, A. R. Londergan, J. Winkler, and T. E. Seidel, “Thin film atomic layer deposition equipment for semiconductor processing,” Thin Solid Films 402(1–2), 248–261 (2002).
[Crossref]

Smietana, M.

M. Śmietana, M. Koba, P. Mikulic, R. Bogdanowicz, and W. J. Bock, “Improved diamond-like carbon coating deposition uniformity on cylindrical sample by its suspension in RF PECVD chamber,” Phys. Status Solidi 212(11), 2496–2500 (2015).
[Crossref]

M. Smietana, M. Koba, E. Brzozowska, K. Krogulski, J. Nakonieczny, L. Wachnicki, P. Mikulic, M. Godlewski, and W. J. Bock, “Label-free sensitivity of long-period gratings enhanced by atomic layer deposited TiO2 nano-overlays,” Opt. Express 23(7), 8441–8453 (2015).
[Crossref] [PubMed]

M. Smietana, W. J. Bock, and P. Mikulic, “Effect of high-temperature plasma-deposited nano-overlays on the properties of long-period gratings written with UV and electric arc in non-hydrogenated fibers,” Meas. Sci. Technol. 24(9), 094016 (2013).
[Crossref]

M. Śmietana, M. Myśliwiec, P. Mikulic, B. S. Witkowski, and W. J. Bock, “Capability for fine tuning of the refractive index sensing properties of long-period gratings by atomic layer deposited Al2O3 overlays,” Sensors (Basel Switzerland) 13(12), 16372–16383 (2013).
[Crossref]

M. Smietana, W. J. Bock, and P. Mikulic, “Temperature sensitivity of silicon nitride nanocoated long-period gratings working in various surrounding media,” Meas. Sci. Technol. 22(11), 115203 (2011).
[Crossref]

M. Smietana, W. J. Bock, and J. Szmidt, “Evolution of optical properties with deposition time of silicon nitride and diamond-like carbon films deposited by radio-frequency plasma-enhanced chemical vapor deposition method,” Thin Solid Films 519(19), 6339–6343 (2011).
[Crossref]

M. Smietana, M. L. Korwin-Pawlowski, W. J. Bock, G. R. Pickrell, and J. Szmidt, “Refractive index sensing of fiber optic long-period grating structures coated with a plasma deposited diamond-like carbon thin film,” Meas. Sci. Technol. 19(8), 085301 (2008).
[Crossref]

Sneh, O.

O. Sneh, R. B. Clark-Phelps, A. R. Londergan, J. Winkler, and T. E. Seidel, “Thin film atomic layer deposition equipment for semiconductor processing,” Thin Solid Films 402(1–2), 248–261 (2002).
[Crossref]

Sulimov, V.

Szmidt, J.

M. Smietana, W. J. Bock, and J. Szmidt, “Evolution of optical properties with deposition time of silicon nitride and diamond-like carbon films deposited by radio-frequency plasma-enhanced chemical vapor deposition method,” Thin Solid Films 519(19), 6339–6343 (2011).
[Crossref]

M. Smietana, M. L. Korwin-Pawlowski, W. J. Bock, G. R. Pickrell, and J. Szmidt, “Refractive index sensing of fiber optic long-period grating structures coated with a plasma deposited diamond-like carbon thin film,” Meas. Sci. Technol. 19(8), 085301 (2008).
[Crossref]

Tatam, R. P.

S. Korposh, S. W. Lee, S. W. James, and R. P. Tatam, “Refractive index sensitivity of fibre-optic long period gratings coated with SiO2 nanoparticle mesoporous thin films,” Meas. Sci. Technol. 22(7), 075208 (2011).
[Crossref]

S. W. James, C. S. Cheung, and R. P. Tatam, “Experimental observations on the response of 1(st) and 2(nd) order fibre optic long period grating coupling bands to the deposition of nanostructured coatings,” Opt. Express 15(20), 13096–13107 (2007).
[Crossref] [PubMed]

S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14(5), R49–R61 (2003).
[Crossref]

N. D. Rees, S. W. James, R. P. Tatam, and G. J. Ashwell, “Optical fiber long-period gratings with Langmuir-Blodgett thin-film overlays,” Opt. Lett. 27(9), 686–688 (2002).
[Crossref] [PubMed]

Torres-Gomez, I.

A. Martinez-Rios, D. Monzon-Hernandez, and I. Torres-Gomez, “Highly sensitive cladding-etched arc-induced long-period fiber gratings for refractive index sensing,” Opt. Commun. 283(6), 958–962 (2010).
[Crossref]

Trono, C.

Van de Sanden, M.

H. Profijt, S. Potts, M. Van de Sanden, and W. Kessels, “Plasma-Assisted Atomic Layer Deposition: Basics, Opportunities, and Challenges,” J. Vac. Sci. Technol. A 29(5), 050801 (2011).
[Crossref]

Viegas, D.

L. Coelho, D. Viegas, J. Santos, and J. Almeida, “Enhanced refractive index sensing characteristics of optical fibre long period grating coated with titanium dioxide thin films,” Sens. Actuators B Chem. 202, 929–934 (2014).
[Crossref]

Wachnicki, L.

Wang, T.

Wang, X. D.

X. D. Wang and O. S. Wolfbeis, “Fiber-Optic Chemical Sensors and Biosensors (2008-2012),” Anal. Chem. 85(2), 487–508 (2013).
[Crossref] [PubMed]

Warwick, S.

Widjaja, Y.

Y. Widjaja and C. B. Musgrave, “Atomic layer deposition of hafnium oxide: A detailed reaction mechanism from first principles,” J. Chem. Phys. 117(5), 1931–1934 (2002).
[Crossref]

Wild, P.

L. Melo, G. Burton, B. Davies, D. Risk, and P. Wild, “Highly sensitive coated long period grating sensor for CO2 detection at atmospheric pressure,” Sens. Actuators B Chem. 202, 294–300 (2014).
[Crossref]

Wild, P. M.

Winkler, J.

O. Sneh, R. B. Clark-Phelps, A. R. Londergan, J. Winkler, and T. E. Seidel, “Thin film atomic layer deposition equipment for semiconductor processing,” Thin Solid Films 402(1–2), 248–261 (2002).
[Crossref]

Witkowski, B. S.

M. Śmietana, M. Myśliwiec, P. Mikulic, B. S. Witkowski, and W. J. Bock, “Capability for fine tuning of the refractive index sensing properties of long-period gratings by atomic layer deposited Al2O3 overlays,” Sensors (Basel Switzerland) 13(12), 16372–16383 (2013).
[Crossref]

Wolfbeis, O. S.

X. D. Wang and O. S. Wolfbeis, “Fiber-Optic Chemical Sensors and Biosensors (2008-2012),” Anal. Chem. 85(2), 487–508 (2013).
[Crossref] [PubMed]

Zamarreno, C. R.

C. R. Zamarreno, I. R. Matias, and F. J. Arregui, “Nanofabrication Techniques Applied to the Development of Novel Optical Fiber Sensors Based on Nanostructured Coatings,” IEEE Sens. J. 12(8), 2699–2710 (2012).
[Crossref]

Zhu, S.

Zou, F.

Anal. Bioanal. Chem. (1)

C. Caucheteur, T. Guo, and J. Albert, “Review of plasmonic fiber optic biochemical sensors: improving the limit of detection,” Anal. Bioanal. Chem. 407(14), 3883–3897 (2015).
[Crossref] [PubMed]

Anal. Chem. (1)

X. D. Wang and O. S. Wolfbeis, “Fiber-Optic Chemical Sensors and Biosensors (2008-2012),” Anal. Chem. 85(2), 487–508 (2013).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

A. Cusano, A. Iadicicco, P. Pilla, A. Cutolo, M. Giordano, and S. Campopiano, “Sensitivity characteristics in nanosized coated long period gratings,” Appl. Phys. Lett. 89(20), 201116 (2006).
[Crossref]

Chem. Mater. (1)

M. D. Groner, F. H. Fabreguette, J. W. Elam, and S. M. George, “Low-Temperature Al2O3 Atomic Layer Deposition,” Chem. Mater. 16(4), 639–645 (2004).
[Crossref]

Chem. Rev. (1)

S. M. George, “Atomic layer deposition: an overview,” Chem. Rev. 110(1), 111–131 (2010).
[Crossref] [PubMed]

IEEE Sens. J. (2)

P. Biswas, N. Basumallick, S. Bandyopadhyay, K. Dasgupta, A. Ghosh, and S. Bandyopadhyay, “Sensitivity Enhancement of Turn-Around-Point Long Period Gratings By Tuning Initial Coupling Condition,” IEEE Sens. J. 15(2), 1240–1245 (2015).
[Crossref]

C. R. Zamarreno, I. R. Matias, and F. J. Arregui, “Nanofabrication Techniques Applied to the Development of Novel Optical Fiber Sensors Based on Nanostructured Coatings,” IEEE Sens. J. 12(8), 2699–2710 (2012).
[Crossref]

J. Appl. Phys. (1)

M. A. Alam and M. L. Green, “Mathematical description of atomic layer deposition and its application to the nucleation and growth of HfO2 gate dielectric layers,” J. Appl. Phys. 94(5), 3403–3413 (2003).
[Crossref]

J. Chem. Phys. (1)

Y. Widjaja and C. B. Musgrave, “Atomic layer deposition of hafnium oxide: A detailed reaction mechanism from first principles,” J. Chem. Phys. 117(5), 1931–1934 (2002).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. A (2)

J. Vac. Sci. Technol. A (1)

H. Profijt, S. Potts, M. Van de Sanden, and W. Kessels, “Plasma-Assisted Atomic Layer Deposition: Basics, Opportunities, and Challenges,” J. Vac. Sci. Technol. A 29(5), 050801 (2011).
[Crossref]

Meas. Sci. Technol. (5)

M. Smietana, W. J. Bock, and P. Mikulic, “Effect of high-temperature plasma-deposited nano-overlays on the properties of long-period gratings written with UV and electric arc in non-hydrogenated fibers,” Meas. Sci. Technol. 24(9), 094016 (2013).
[Crossref]

S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14(5), R49–R61 (2003).
[Crossref]

S. Korposh, S. W. Lee, S. W. James, and R. P. Tatam, “Refractive index sensitivity of fibre-optic long period gratings coated with SiO2 nanoparticle mesoporous thin films,” Meas. Sci. Technol. 22(7), 075208 (2011).
[Crossref]

M. Smietana, W. J. Bock, and P. Mikulic, “Temperature sensitivity of silicon nitride nanocoated long-period gratings working in various surrounding media,” Meas. Sci. Technol. 22(11), 115203 (2011).
[Crossref]

M. Smietana, M. L. Korwin-Pawlowski, W. J. Bock, G. R. Pickrell, and J. Szmidt, “Refractive index sensing of fiber optic long-period grating structures coated with a plasma deposited diamond-like carbon thin film,” Meas. Sci. Technol. 19(8), 085301 (2008).
[Crossref]

Opt. Commun. (1)

A. Martinez-Rios, D. Monzon-Hernandez, and I. Torres-Gomez, “Highly sensitive cladding-etched arc-induced long-period fiber gratings for refractive index sensing,” Opt. Commun. 283(6), 958–962 (2010).
[Crossref]

Opt. Express (7)

A. Cusano, A. Iadicicco, P. Pilla, L. Contessa, S. Campopiano, A. Cutolo, and M. Giordano, “Mode transition in high refractive index coated long period gratings,” Opt. Express 14(1), 19–34 (2006).
[Crossref] [PubMed]

I. Del Villar, I. Matías, F. Arregui, and P. Lalanne, “Optimization of sensitivity in Long Period Fiber Gratings with overlay deposition,” Opt. Express 13(1), 56–69 (2005).
[Crossref] [PubMed]

M. Smietana, M. Koba, E. Brzozowska, K. Krogulski, J. Nakonieczny, L. Wachnicki, P. Mikulic, M. Godlewski, and W. J. Bock, “Label-free sensitivity of long-period gratings enhanced by atomic layer deposited TiO2 nano-overlays,” Opt. Express 23(7), 8441–8453 (2015).
[Crossref] [PubMed]

F. Zou, Y. Liu, C. Deng, Y. Dong, S. Zhu, and T. Wang, “Refractive index sensitivity of nano-film coated long-period fiber gratings,” Opt. Express 23(2), 1114–1124 (2015).
[Crossref] [PubMed]

P. Pilla, P. F. Manzillo, V. Malachovska, A. Buosciolo, S. Campopiano, A. Cutolo, L. Ambrosio, M. Giordano, and A. Cusano, “Long period grating working in transition mode as promising technological platform for label-free biosensing,” Opt. Express 17(22), 20039–20050 (2009).
[Crossref] [PubMed]

S. W. James, C. S. Cheung, and R. P. Tatam, “Experimental observations on the response of 1(st) and 2(nd) order fibre optic long period grating coupling bands to the deposition of nanostructured coatings,” Opt. Express 15(20), 13096–13107 (2007).
[Crossref] [PubMed]

I. Del Villar, “Ultrahigh-sensitivity sensors based on thin-film coated long period gratings with reduced diameter, in transition mode and near the dispersion turning point,” Opt. Express 23(7), 8389–8398 (2015).
[Crossref] [PubMed]

Opt. Lett. (3)

Phys. Status Solidi (1)

M. Śmietana, M. Koba, P. Mikulic, R. Bogdanowicz, and W. J. Bock, “Improved diamond-like carbon coating deposition uniformity on cylindrical sample by its suspension in RF PECVD chamber,” Phys. Status Solidi 212(11), 2496–2500 (2015).
[Crossref]

Rev. Sci. Instrum. (1)

J. W. Elam, M. D. Groner, and S. M. George, “Viscous flow reactor with quartz crystal microbalance for thin film growth by atomic layer deposition,” Rev. Sci. Instrum. 73(8), 2981–2987 (2002).
[Crossref]

Sens. Actuators B Chem. (2)

L. Coelho, D. Viegas, J. Santos, and J. Almeida, “Enhanced refractive index sensing characteristics of optical fibre long period grating coated with titanium dioxide thin films,” Sens. Actuators B Chem. 202, 929–934 (2014).
[Crossref]

L. Melo, G. Burton, B. Davies, D. Risk, and P. Wild, “Highly sensitive coated long period grating sensor for CO2 detection at atmospheric pressure,” Sens. Actuators B Chem. 202, 294–300 (2014).
[Crossref]

Sensors (Basel Switzerland) (1)

M. Śmietana, M. Myśliwiec, P. Mikulic, B. S. Witkowski, and W. J. Bock, “Capability for fine tuning of the refractive index sensing properties of long-period gratings by atomic layer deposited Al2O3 overlays,” Sensors (Basel Switzerland) 13(12), 16372–16383 (2013).
[Crossref]

Thin Solid Films (4)

O. Sneh, R. B. Clark-Phelps, A. R. Londergan, J. Winkler, and T. E. Seidel, “Thin film atomic layer deposition equipment for semiconductor processing,” Thin Solid Films 402(1–2), 248–261 (2002).
[Crossref]

O. Buiu, Y. Lu, I. Z. Mitrovic, S. Hall, P. Chalker, and R. J. Potter, “Spectroellipsometric assessment of HfO2 thin films,” Thin Solid Films 515(2), 623–626 (2006).
[Crossref]

M. Smietana, W. J. Bock, and J. Szmidt, “Evolution of optical properties with deposition time of silicon nitride and diamond-like carbon films deposited by radio-frequency plasma-enhanced chemical vapor deposition method,” Thin Solid Films 519(19), 6339–6343 (2011).
[Crossref]

H. Kim, H. Lee, and W. Maeng, “Applications of atomic layer deposition to nanofabrication and emerging nanodevices,” Thin Solid Films 517(8), 2563–2580 (2009).
[Crossref]

Other (2)

L. Melo, G. Burton, P. Wild, Dep. Mech. Eng. Univ. Victoria, P.O. Box 3055, Victoria, B.C., Canada V8W 3P6, and P. Kubik, 4D Labs, Simon Fraser Univ. 8888 Univ. Drive, Burn. B.C., Canada V5A 1S6. are preparing a manuscript to be called “Refractive index sensor based on inline Mach-Zehnder interferometer coated with hafnium oxide by atomic layer deposition,”

E. M. Dianov, V. I. Karpov, A. S. Kurkov, and M. V. Grekov, “Long-period fiber gratings and mode-field converters fabricated by thermodiffusion in phosphosilicate fibers,” In Proceedings of the IEEE 24th European Conference on Optical Communication, Madrid, Spain, 20–24 September 1998; pp. 395–396.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Fixture used to hold LPGs during characterization tests.

Fig. 2
Fig. 2

Spectrum of LPG before and after high-temperature stability test at 150 °C and 200 °C.

Fig. 3
Fig. 3

Coating thickness measured by scanning electron microscopy on fibers coated by Deposition 50.

Fig. 4
Fig. 4

Transmission spectrum of LPG30, LPG50 and LPG70 in air, before and after deposition.

Fig. 5
Fig. 5

Characterization curves of a bare LPG, LPG30, LPG50, and LPG70.

Fig. 6
Fig. 6

Wavelength and intensity as a function of SRI for LPG70.

Fig. 7
Fig. 7

Spectrum of LPG70 at different SRIs. The information is organized by (label, mode, SRI) as following: (A, HE1,6, air), (B, HE1,6, 0%), (B’, EH1,7, 0%), (C’, EH1,7, 4%), (D’, EH1,7, 8%), (E’, EH1,7, 30%), (F’, EH1,7, 50%), (G’, EH1,7, 60%), (G”, HE1,8, 60%), and (H”, HE1,8, 70%).

Fig. 8
Fig. 8

Sensitivity curves of (a) LPG30, (b) LPG50, and (c) LPG70. Peaks correspond to transitions identified in Fig. 5.

Fig. 9
Fig. 9

Characterization curves of LPG50, LPG50*, and modeled LPG.

Fig. 10
Fig. 10

Sensitivity curves of LPG50, LPG50* and LP04 mode.

Tables (1)

Tables Icon

Table 1 Thickness and RI of HfO2 for different depositions measured on silicon wafers by ellipsometry

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

n(λ)=A+ B× 10 4 λ 2 + C× 10 9 λ 4 ,
λ(SRI)= λ 0 + S max ΔSRI 2 ×[ arctan( 2 SR I tp SRI ΔSRI )+ π 2 ].

Metrics