Abstract

This paper describes a coherent electro-optic circuit architecture that generates a frequency comb consisting of N spatially separated orders using a generalised Mach-Zenhder interferometer (MZI) with its N × 1 combiner replaced by an optical N × N Discrete Fourier Transform (DFT). Advantage may be taken of the tight optical path-length control, component and circuit symmetries and emerging trimming algorithms offered by photonic integration in any platform that offers linear electro-optic phase modulation such as LiNbO3, silicon, III-V or hybrid technology. The circuit architecture subsumes all MZI-based RF photonic circuit architectures in the prior art given an appropriate choice of output port(s) and dimension N although the principal application envisaged is phase correlated subcarrier generation for all optical orthogonal frequency division multiplexing. A transfer matrix approach is used to model the operation of the architecture. The predictions of the model are validated by simulations performed using an industry standard software tool. Implementation is found to be practical.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Design of arrayed-waveguide grating routers for use as optical OFDM demultiplexers

Arthur James Lowery
Opt. Express 18(13) 14129-14143 (2010)

Dual-function photonic integrated circuit for frequency octo-tupling or single-side-band modulation

Mehedi Hasan, Ramón Maldonado-Basilio, and Trevor J. Hall
Opt. Lett. 40(11) 2501-2504 (2015)

References

  • View by:
  • |
  • |
  • |

  1. M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, “Experimental realization of any discrete unitary operator,” Phys. Rev. Lett. 73(1), 58–61 (1994).
    [Crossref] [PubMed]
  2. J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. F. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “QUANTUM OPTICS. Universal linear optics,” Science 349(6249), 711–716 (2015).
    [Crossref] [PubMed]
  3. D. A. B. Miller, “Perfect optics with imperfect components,” Optica 2(8), 747–750 (2015).
    [Crossref]
  4. M. Izutsu, S. Shikama, and T. Sueta, “Integrated optical SSB modulator / frequency shifter,” IEEE J. Quantum Electron. 17(11), 2225–2227 (1981).
    [Crossref]
  5. G. H. Smith, D. Novak, and Z. Ahmed, “Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators,” IEEE Trans. Microw. Theory Tech. 45(8), 1410–1415 (1997).
    [Crossref]
  6. A. Wen, M. Li, L. Shang, and Y. Chen, “A novel optical SSB modulation scheme with interfering harmonics suppressed for ROF transmission link,” Opt. Laser Technol. 43(7), 1061–1064 (2011).
    [Crossref]
  7. C. W. Chow, C. H. Wang, C. H. Yeh, and S. Chi, “Analysis of the carrier-suppressed single-sideband modulators used to mitigate Rayleigh backscattering in carrier-distributed PON,” Opt. Express 19(11), 10973–10978 (2011).
    [Crossref] [PubMed]
  8. M. Hasan, R. Maldonado-Basilio, and T. J. Hall, “Studies in an optical millimeter-wave generation scheme via two parallel dual-parallel Mach-Zehnder modulators,” J. Mod. Opt. 62(7), 581–583 (2015).
    [Crossref]
  9. P.-T. Shih, J. Chen, C.-T. Lin, W.-J. Jiang, H.-S. Huang, P.-C. Peng, and S. Chi, “Optical millimeter-wave signal generation via frequency 12-tupling,” J. Lightwave Technol. 28(1), 71–78 (2010).
    [Crossref]
  10. H. Yamazaki, T. Saida, T. Goh, S. Mino, M. Nagatani, H. Nosaka, and K. Murata, “Dual-carrier dual-polarization IQ modulator using a complementary frequency shifter,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3400208 (2013).
    [Crossref]
  11. R. Maldonado-Basilio, M. Hasan, R. Guemri, F. Lucarz, and T. J. Hall, “Generalized Mach–Zehnder interferometer architectures for radio frequency translation and multiplication: suppression of unwanted harmonics by design,” Opt. Commun. 354, 122–127 (2015).
    [Crossref]
  12. M. Hasan, R. Maldonado-Basilio, and T. J. Hall, “Dual-function photonic integrated circuit for frequency octo-tupling or single-side-band modulation,” Opt. Lett. 40(11), 2501–2504 (2015).
    [Crossref] [PubMed]
  13. R. Maldonado-Basilio, M. Hasan, H. Nikkhah, S. Abdul-Majid, R. Guemri, F. Lucarz, J.-L. de Bougrenet de la Tocnaye, and T. J. Hall, “Electro-optic up-conversion mixer amenable to photonic integration,” J. Mod. Opt. 62(17), 1405–1411 (2015).
    [Crossref]
  14. Y. Ma, Q. Yang, Y. Tang, S. Chen, and W. Shieh, “1-Tb/s single-channel coherent optical OFDM transmission over 600-km SSMF fiber with subwavelength bandwidth access,” Opt. Express 17(11), 9421–9427 (2009).
    [Crossref] [PubMed]
  15. T. Miwa and K. Takiguchi, “Integrated-optic OFDM signal multiplexer composed of optical IFFT circuit,” Electron. Lett. 51(6), 505–506 (2015).
    [Crossref]
  16. K. Takiguchi, M. Oguma, H. Takahashi, and A. Mori, “Integrated-optic eight-channel OFDM demultiplexer and its demonstration with 160 Gbit/s signal reception,” Electron. Lett. 46(8), 575–576 (2010).
    [Crossref]
  17. K. Takiguchi, T. Kitoh, A. Mori, M. Oguma, and H. Takahashi, “Integrated-optic OFDM demultiplexer using slab star coupler based optical DFT circuit,” 36th European Conference and Exhibition on Optical Communication (ECOC), Torino, 2010, pp. 1–3.
    [Crossref]
  18. W. Li, X. Liang, W. Ma, T. Zhou, B. Huang, and D. Liu, “A planar waveguide optical discrete Fourier transformer design for 160 Gb/s all-optical OFDM systems,” Opt. Fiber Technol. 16(1), 5–11 (2010).
    [Crossref]
  19. A. G. Kirk, A. K. Powell, and T. J. Hall, “A Generalisation of the Error Diffusion Method for Binary Computer Generated Hologram Design,” Opt. Commun. 92(1-3), 12–18 (1992).
    [Crossref]
  20. A. E. Siegman, “Fiber Fourier optics,” Opt. Lett. 26(16), 1215–1217 (2001).
    [Crossref] [PubMed]
  21. M. E. Marhic, “Discrete Fourier transforms by single-mode star networks,” Opt. Lett. 12(1), 63–65 (1987).
    [Crossref] [PubMed]
  22. G. Cincotti, “Generalized fiber Fourier optics,” Opt. Lett. 36(12), 2321–2323 (2011).
    [Crossref] [PubMed]
  23. G. Cincotti, “What else can an AWG do?” Opt. Express 20(26), B288–B298 (2012).
    [Crossref] [PubMed]
  24. J. Zhou, “All-optical discrete Fourier transform based on multimode interference couplers,” IEEE Photonics Technol. Lett. 22(15), 1093–1095 (2010).
    [Crossref]
  25. J. Zhou, “Realization of discrete Fourier transform and inverse discrete Fourier transform on one single multimode interference coupler,” IEEE Photonics Technol. Lett. 23(5), 302–304 (2011).
    [Crossref]
  26. D. A. B. Miller, “Perfect optics with imperfect components Perfect optics with imperfect components: supplementary material,” http://dx.doi.org/10.1364/optica.2.000747.s001 .
  27. S. Abdul-Majid, R. Maldonado-Basilio, C. Lei, H. Awad, I. Hasan, W. N. Ye, and T. J. Hall, “Performance analysis of a photonic integrated interferometer circuit based on silicon-on-insulator,” Opt. Quantum Electron. 47(7), 1965–1971 (2015).
    [Crossref]
  28. M. Hasan, R. Guemri, R. Maldonado-Basilio, F. Lucarz, J.-L. de Bougrenet de la Tocnaye, and T. Hall, “Theoretical analysis and modeling of a photonic integrated circuit for frequency 8-tupled and 24-tupled millimeter wave signal generation,” Opt. Lett. 39(24), 6950–6953 (2014).
    [Crossref] [PubMed]
  29. R. Halir, P. J. Bock, P. Cheben, A. Ortega-Monux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D. Xu, J. G. Wanguemert-Perez, I. Molina-Fernandez, and S. Janz, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
    [Crossref]
  30. A. Natarajan, A. Komijani, X. Guan, A. Babakhani, and A. Hajimiri, “A 77-GHz phased-array transceiver with on-chip antennas in silicon: transmitter and local LO-path phase shifting,” IEEE J. Solid-State Circuits 41(12), 2807–2819 (2006).
    [Crossref]
  31. A. Chiba, T. Kawanishi, T. Sakamoto, K. Higuma, K. Takada, and M. Izutsu, “Low-crosstalk balanced bridge interferometric-type optical switch for optical signal routing,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3400307 (2013).
    [Crossref]
  32. D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
    [Crossref]
  33. R. Slavík, S. G. Farwell, M. J. Wale, and D. J. Richardson, “Compact Optical Comb Generator Using InP Tunable Laser and Push-Pull Modulator,” IEEE Photonics Technol. Lett. 27(2), 217–220 (2015).
    [Crossref]
  34. H. Subbaraman, X. Xu, A. Hosseini, X. Zhang, Y. Zhang, D. Kwong, and R. T. Chen, “Recent advances in silicon-based passive and active optical interconnects,” Opt. Express 23(3), 2487–2510 (2015).
    [Crossref] [PubMed]
  35. X. Zhang, B. Lee, C. Lin, A. X. Wang, A. Hosseini, and R. T. Chen, “Highly Linear Broadband Optical Modulator Based on Electro-Optic Polymer,” IEEE Photonics J. 4(6), 2214–2228 (2012).
    [Crossref]
  36. P. Rabiei, J. Ma, S. Khan, J. Chiles, and S. Fathpour, “Heterogeneous lithium niobate photonics on silicon substrates,” Opt. Express 21(21), 25573–25581 (2013).
    [Crossref] [PubMed]
  37. W. H. P. Pernice, C. Xiong, F. J. Walker, and H. X. Tang, “Design of a silicon integrated electro-optic modulator using ferroelectric BaTiO3 films,” IEEE Photonics Technol. Lett. 26(13), 1344–1347 (2014).
    [Crossref]
  38. J. Li, Z. Liu, Y. Tu, S.-T. Ho, I. W. Jung, L. E. Ocola, and B. W. Wessels, “Photonic crystal waveguide electro-optic modulator with a wide bandwidth,” J. Lightwave Technol. 31(10), 1601–1607 (2013).
    [Crossref]
  39. D. Korn, R. Palmer, H. Yu, P. C. Schindler, L. Alloatti, M. Baier, R. Schmogrow, W. Bogaerts, S. K. Selvaraja, G. Lepage, M. Pantouvaki, J. M. D. Wouters, P. Verheyen, J. Van Campenhout, B. Chen, R. Baets, P. Absil, R. Dinu, C. Koos, W. Freude, and J. Leuthold, “Silicon-organic hybrid (SOH) IQ modulator using the linear electro-optic effect for transmitting 16QAM at 112 Gbit/s,” Opt. Express 21(11), 13219–13227 (2013).
    [Crossref] [PubMed]
  40. M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
    [Crossref]
  41. J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts & Company Publishers, 2005).

2015 (11)

R. Maldonado-Basilio, M. Hasan, R. Guemri, F. Lucarz, and T. J. Hall, “Generalized Mach–Zehnder interferometer architectures for radio frequency translation and multiplication: suppression of unwanted harmonics by design,” Opt. Commun. 354, 122–127 (2015).
[Crossref]

R. Maldonado-Basilio, M. Hasan, H. Nikkhah, S. Abdul-Majid, R. Guemri, F. Lucarz, J.-L. de Bougrenet de la Tocnaye, and T. J. Hall, “Electro-optic up-conversion mixer amenable to photonic integration,” J. Mod. Opt. 62(17), 1405–1411 (2015).
[Crossref]

T. Miwa and K. Takiguchi, “Integrated-optic OFDM signal multiplexer composed of optical IFFT circuit,” Electron. Lett. 51(6), 505–506 (2015).
[Crossref]

J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. F. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “QUANTUM OPTICS. Universal linear optics,” Science 349(6249), 711–716 (2015).
[Crossref] [PubMed]

M. Hasan, R. Maldonado-Basilio, and T. J. Hall, “Studies in an optical millimeter-wave generation scheme via two parallel dual-parallel Mach-Zehnder modulators,” J. Mod. Opt. 62(7), 581–583 (2015).
[Crossref]

S. Abdul-Majid, R. Maldonado-Basilio, C. Lei, H. Awad, I. Hasan, W. N. Ye, and T. J. Hall, “Performance analysis of a photonic integrated interferometer circuit based on silicon-on-insulator,” Opt. Quantum Electron. 47(7), 1965–1971 (2015).
[Crossref]

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Monux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D. Xu, J. G. Wanguemert-Perez, I. Molina-Fernandez, and S. Janz, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

R. Slavík, S. G. Farwell, M. J. Wale, and D. J. Richardson, “Compact Optical Comb Generator Using InP Tunable Laser and Push-Pull Modulator,” IEEE Photonics Technol. Lett. 27(2), 217–220 (2015).
[Crossref]

H. Subbaraman, X. Xu, A. Hosseini, X. Zhang, Y. Zhang, D. Kwong, and R. T. Chen, “Recent advances in silicon-based passive and active optical interconnects,” Opt. Express 23(3), 2487–2510 (2015).
[Crossref] [PubMed]

M. Hasan, R. Maldonado-Basilio, and T. J. Hall, “Dual-function photonic integrated circuit for frequency octo-tupling or single-side-band modulation,” Opt. Lett. 40(11), 2501–2504 (2015).
[Crossref] [PubMed]

D. A. B. Miller, “Perfect optics with imperfect components,” Optica 2(8), 747–750 (2015).
[Crossref]

2014 (2)

M. Hasan, R. Guemri, R. Maldonado-Basilio, F. Lucarz, J.-L. de Bougrenet de la Tocnaye, and T. Hall, “Theoretical analysis and modeling of a photonic integrated circuit for frequency 8-tupled and 24-tupled millimeter wave signal generation,” Opt. Lett. 39(24), 6950–6953 (2014).
[Crossref] [PubMed]

W. H. P. Pernice, C. Xiong, F. J. Walker, and H. X. Tang, “Design of a silicon integrated electro-optic modulator using ferroelectric BaTiO3 films,” IEEE Photonics Technol. Lett. 26(13), 1344–1347 (2014).
[Crossref]

2013 (7)

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

J. Li, Z. Liu, Y. Tu, S.-T. Ho, I. W. Jung, L. E. Ocola, and B. W. Wessels, “Photonic crystal waveguide electro-optic modulator with a wide bandwidth,” J. Lightwave Technol. 31(10), 1601–1607 (2013).
[Crossref]

D. Korn, R. Palmer, H. Yu, P. C. Schindler, L. Alloatti, M. Baier, R. Schmogrow, W. Bogaerts, S. K. Selvaraja, G. Lepage, M. Pantouvaki, J. M. D. Wouters, P. Verheyen, J. Van Campenhout, B. Chen, R. Baets, P. Absil, R. Dinu, C. Koos, W. Freude, and J. Leuthold, “Silicon-organic hybrid (SOH) IQ modulator using the linear electro-optic effect for transmitting 16QAM at 112 Gbit/s,” Opt. Express 21(11), 13219–13227 (2013).
[Crossref] [PubMed]

P. Rabiei, J. Ma, S. Khan, J. Chiles, and S. Fathpour, “Heterogeneous lithium niobate photonics on silicon substrates,” Opt. Express 21(21), 25573–25581 (2013).
[Crossref] [PubMed]

A. Chiba, T. Kawanishi, T. Sakamoto, K. Higuma, K. Takada, and M. Izutsu, “Low-crosstalk balanced bridge interferometric-type optical switch for optical signal routing,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3400307 (2013).
[Crossref]

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
[Crossref]

H. Yamazaki, T. Saida, T. Goh, S. Mino, M. Nagatani, H. Nosaka, and K. Murata, “Dual-carrier dual-polarization IQ modulator using a complementary frequency shifter,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3400208 (2013).
[Crossref]

2012 (2)

G. Cincotti, “What else can an AWG do?” Opt. Express 20(26), B288–B298 (2012).
[Crossref] [PubMed]

X. Zhang, B. Lee, C. Lin, A. X. Wang, A. Hosseini, and R. T. Chen, “Highly Linear Broadband Optical Modulator Based on Electro-Optic Polymer,” IEEE Photonics J. 4(6), 2214–2228 (2012).
[Crossref]

2011 (4)

C. W. Chow, C. H. Wang, C. H. Yeh, and S. Chi, “Analysis of the carrier-suppressed single-sideband modulators used to mitigate Rayleigh backscattering in carrier-distributed PON,” Opt. Express 19(11), 10973–10978 (2011).
[Crossref] [PubMed]

G. Cincotti, “Generalized fiber Fourier optics,” Opt. Lett. 36(12), 2321–2323 (2011).
[Crossref] [PubMed]

J. Zhou, “Realization of discrete Fourier transform and inverse discrete Fourier transform on one single multimode interference coupler,” IEEE Photonics Technol. Lett. 23(5), 302–304 (2011).
[Crossref]

A. Wen, M. Li, L. Shang, and Y. Chen, “A novel optical SSB modulation scheme with interfering harmonics suppressed for ROF transmission link,” Opt. Laser Technol. 43(7), 1061–1064 (2011).
[Crossref]

2010 (4)

K. Takiguchi, M. Oguma, H. Takahashi, and A. Mori, “Integrated-optic eight-channel OFDM demultiplexer and its demonstration with 160 Gbit/s signal reception,” Electron. Lett. 46(8), 575–576 (2010).
[Crossref]

W. Li, X. Liang, W. Ma, T. Zhou, B. Huang, and D. Liu, “A planar waveguide optical discrete Fourier transformer design for 160 Gb/s all-optical OFDM systems,” Opt. Fiber Technol. 16(1), 5–11 (2010).
[Crossref]

J. Zhou, “All-optical discrete Fourier transform based on multimode interference couplers,” IEEE Photonics Technol. Lett. 22(15), 1093–1095 (2010).
[Crossref]

P.-T. Shih, J. Chen, C.-T. Lin, W.-J. Jiang, H.-S. Huang, P.-C. Peng, and S. Chi, “Optical millimeter-wave signal generation via frequency 12-tupling,” J. Lightwave Technol. 28(1), 71–78 (2010).
[Crossref]

2009 (1)

2006 (1)

A. Natarajan, A. Komijani, X. Guan, A. Babakhani, and A. Hajimiri, “A 77-GHz phased-array transceiver with on-chip antennas in silicon: transmitter and local LO-path phase shifting,” IEEE J. Solid-State Circuits 41(12), 2807–2819 (2006).
[Crossref]

2001 (1)

1997 (1)

G. H. Smith, D. Novak, and Z. Ahmed, “Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators,” IEEE Trans. Microw. Theory Tech. 45(8), 1410–1415 (1997).
[Crossref]

1994 (1)

M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, “Experimental realization of any discrete unitary operator,” Phys. Rev. Lett. 73(1), 58–61 (1994).
[Crossref] [PubMed]

1992 (1)

A. G. Kirk, A. K. Powell, and T. J. Hall, “A Generalisation of the Error Diffusion Method for Binary Computer Generated Hologram Design,” Opt. Commun. 92(1-3), 12–18 (1992).
[Crossref]

1987 (1)

1981 (1)

M. Izutsu, S. Shikama, and T. Sueta, “Integrated optical SSB modulator / frequency shifter,” IEEE J. Quantum Electron. 17(11), 2225–2227 (1981).
[Crossref]

Abdul-Majid, S.

R. Maldonado-Basilio, M. Hasan, H. Nikkhah, S. Abdul-Majid, R. Guemri, F. Lucarz, J.-L. de Bougrenet de la Tocnaye, and T. J. Hall, “Electro-optic up-conversion mixer amenable to photonic integration,” J. Mod. Opt. 62(17), 1405–1411 (2015).
[Crossref]

S. Abdul-Majid, R. Maldonado-Basilio, C. Lei, H. Awad, I. Hasan, W. N. Ye, and T. J. Hall, “Performance analysis of a photonic integrated interferometer circuit based on silicon-on-insulator,” Opt. Quantum Electron. 47(7), 1965–1971 (2015).
[Crossref]

Absil, P.

Ahmed, Z.

G. H. Smith, D. Novak, and Z. Ahmed, “Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators,” IEEE Trans. Microw. Theory Tech. 45(8), 1410–1415 (1997).
[Crossref]

Alloatti, L.

Alonso-Ramos, C.

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Monux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D. Xu, J. G. Wanguemert-Perez, I. Molina-Fernandez, and S. Janz, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

Awad, H.

S. Abdul-Majid, R. Maldonado-Basilio, C. Lei, H. Awad, I. Hasan, W. N. Ye, and T. J. Hall, “Performance analysis of a photonic integrated interferometer circuit based on silicon-on-insulator,” Opt. Quantum Electron. 47(7), 1965–1971 (2015).
[Crossref]

Babakhani, A.

A. Natarajan, A. Komijani, X. Guan, A. Babakhani, and A. Hajimiri, “A 77-GHz phased-array transceiver with on-chip antennas in silicon: transmitter and local LO-path phase shifting,” IEEE J. Solid-State Circuits 41(12), 2807–2819 (2006).
[Crossref]

Baets, R.

Baier, M.

Bauters, J. F.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

Bernstein, H. J.

M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, “Experimental realization of any discrete unitary operator,” Phys. Rev. Lett. 73(1), 58–61 (1994).
[Crossref] [PubMed]

Bertani, P.

M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, “Experimental realization of any discrete unitary operator,” Phys. Rev. Lett. 73(1), 58–61 (1994).
[Crossref] [PubMed]

Bock, P. J.

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Monux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D. Xu, J. G. Wanguemert-Perez, I. Molina-Fernandez, and S. Janz, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

Bogaerts, W.

Bowers, J. E.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

Capmany, J.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
[Crossref]

Carolan, J.

J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. F. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “QUANTUM OPTICS. Universal linear optics,” Science 349(6249), 711–716 (2015).
[Crossref] [PubMed]

Cheben, P.

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Monux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D. Xu, J. G. Wanguemert-Perez, I. Molina-Fernandez, and S. Janz, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

Chen, B.

Chen, J.

Chen, R. T.

H. Subbaraman, X. Xu, A. Hosseini, X. Zhang, Y. Zhang, D. Kwong, and R. T. Chen, “Recent advances in silicon-based passive and active optical interconnects,” Opt. Express 23(3), 2487–2510 (2015).
[Crossref] [PubMed]

X. Zhang, B. Lee, C. Lin, A. X. Wang, A. Hosseini, and R. T. Chen, “Highly Linear Broadband Optical Modulator Based on Electro-Optic Polymer,” IEEE Photonics J. 4(6), 2214–2228 (2012).
[Crossref]

Chen, S.

Chen, Y.

A. Wen, M. Li, L. Shang, and Y. Chen, “A novel optical SSB modulation scheme with interfering harmonics suppressed for ROF transmission link,” Opt. Laser Technol. 43(7), 1061–1064 (2011).
[Crossref]

Chi, S.

Chiba, A.

A. Chiba, T. Kawanishi, T. Sakamoto, K. Higuma, K. Takada, and M. Izutsu, “Low-crosstalk balanced bridge interferometric-type optical switch for optical signal routing,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3400307 (2013).
[Crossref]

Chiles, J.

Chow, C. W.

Cincotti, G.

Davenport, M. L.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

de Bougrenet de la Tocnaye, J.-L.

R. Maldonado-Basilio, M. Hasan, H. Nikkhah, S. Abdul-Majid, R. Guemri, F. Lucarz, J.-L. de Bougrenet de la Tocnaye, and T. J. Hall, “Electro-optic up-conversion mixer amenable to photonic integration,” J. Mod. Opt. 62(17), 1405–1411 (2015).
[Crossref]

M. Hasan, R. Guemri, R. Maldonado-Basilio, F. Lucarz, J.-L. de Bougrenet de la Tocnaye, and T. Hall, “Theoretical analysis and modeling of a photonic integrated circuit for frequency 8-tupled and 24-tupled millimeter wave signal generation,” Opt. Lett. 39(24), 6950–6953 (2014).
[Crossref] [PubMed]

Dinu, R.

Doylend, J. K.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

Farwell, S. G.

R. Slavík, S. G. Farwell, M. J. Wale, and D. J. Richardson, “Compact Optical Comb Generator Using InP Tunable Laser and Push-Pull Modulator,” IEEE Photonics Technol. Lett. 27(2), 217–220 (2015).
[Crossref]

Fathpour, S.

Freude, W.

Goh, T.

H. Yamazaki, T. Saida, T. Goh, S. Mino, M. Nagatani, H. Nosaka, and K. Murata, “Dual-carrier dual-polarization IQ modulator using a complementary frequency shifter,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3400208 (2013).
[Crossref]

Guan, X.

A. Natarajan, A. Komijani, X. Guan, A. Babakhani, and A. Hajimiri, “A 77-GHz phased-array transceiver with on-chip antennas in silicon: transmitter and local LO-path phase shifting,” IEEE J. Solid-State Circuits 41(12), 2807–2819 (2006).
[Crossref]

Guemri, R.

R. Maldonado-Basilio, M. Hasan, H. Nikkhah, S. Abdul-Majid, R. Guemri, F. Lucarz, J.-L. de Bougrenet de la Tocnaye, and T. J. Hall, “Electro-optic up-conversion mixer amenable to photonic integration,” J. Mod. Opt. 62(17), 1405–1411 (2015).
[Crossref]

R. Maldonado-Basilio, M. Hasan, R. Guemri, F. Lucarz, and T. J. Hall, “Generalized Mach–Zehnder interferometer architectures for radio frequency translation and multiplication: suppression of unwanted harmonics by design,” Opt. Commun. 354, 122–127 (2015).
[Crossref]

M. Hasan, R. Guemri, R. Maldonado-Basilio, F. Lucarz, J.-L. de Bougrenet de la Tocnaye, and T. Hall, “Theoretical analysis and modeling of a photonic integrated circuit for frequency 8-tupled and 24-tupled millimeter wave signal generation,” Opt. Lett. 39(24), 6950–6953 (2014).
[Crossref] [PubMed]

Hajimiri, A.

A. Natarajan, A. Komijani, X. Guan, A. Babakhani, and A. Hajimiri, “A 77-GHz phased-array transceiver with on-chip antennas in silicon: transmitter and local LO-path phase shifting,” IEEE J. Solid-State Circuits 41(12), 2807–2819 (2006).
[Crossref]

Halir, R.

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Monux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D. Xu, J. G. Wanguemert-Perez, I. Molina-Fernandez, and S. Janz, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

Hall, T.

Hall, T. J.

S. Abdul-Majid, R. Maldonado-Basilio, C. Lei, H. Awad, I. Hasan, W. N. Ye, and T. J. Hall, “Performance analysis of a photonic integrated interferometer circuit based on silicon-on-insulator,” Opt. Quantum Electron. 47(7), 1965–1971 (2015).
[Crossref]

R. Maldonado-Basilio, M. Hasan, R. Guemri, F. Lucarz, and T. J. Hall, “Generalized Mach–Zehnder interferometer architectures for radio frequency translation and multiplication: suppression of unwanted harmonics by design,” Opt. Commun. 354, 122–127 (2015).
[Crossref]

M. Hasan, R. Maldonado-Basilio, and T. J. Hall, “Dual-function photonic integrated circuit for frequency octo-tupling or single-side-band modulation,” Opt. Lett. 40(11), 2501–2504 (2015).
[Crossref] [PubMed]

R. Maldonado-Basilio, M. Hasan, H. Nikkhah, S. Abdul-Majid, R. Guemri, F. Lucarz, J.-L. de Bougrenet de la Tocnaye, and T. J. Hall, “Electro-optic up-conversion mixer amenable to photonic integration,” J. Mod. Opt. 62(17), 1405–1411 (2015).
[Crossref]

M. Hasan, R. Maldonado-Basilio, and T. J. Hall, “Studies in an optical millimeter-wave generation scheme via two parallel dual-parallel Mach-Zehnder modulators,” J. Mod. Opt. 62(7), 581–583 (2015).
[Crossref]

A. G. Kirk, A. K. Powell, and T. J. Hall, “A Generalisation of the Error Diffusion Method for Binary Computer Generated Hologram Design,” Opt. Commun. 92(1-3), 12–18 (1992).
[Crossref]

Harrold, C.

J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. F. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “QUANTUM OPTICS. Universal linear optics,” Science 349(6249), 711–716 (2015).
[Crossref] [PubMed]

Hasan, I.

S. Abdul-Majid, R. Maldonado-Basilio, C. Lei, H. Awad, I. Hasan, W. N. Ye, and T. J. Hall, “Performance analysis of a photonic integrated interferometer circuit based on silicon-on-insulator,” Opt. Quantum Electron. 47(7), 1965–1971 (2015).
[Crossref]

Hasan, M.

M. Hasan, R. Maldonado-Basilio, and T. J. Hall, “Studies in an optical millimeter-wave generation scheme via two parallel dual-parallel Mach-Zehnder modulators,” J. Mod. Opt. 62(7), 581–583 (2015).
[Crossref]

R. Maldonado-Basilio, M. Hasan, R. Guemri, F. Lucarz, and T. J. Hall, “Generalized Mach–Zehnder interferometer architectures for radio frequency translation and multiplication: suppression of unwanted harmonics by design,” Opt. Commun. 354, 122–127 (2015).
[Crossref]

R. Maldonado-Basilio, M. Hasan, H. Nikkhah, S. Abdul-Majid, R. Guemri, F. Lucarz, J.-L. de Bougrenet de la Tocnaye, and T. J. Hall, “Electro-optic up-conversion mixer amenable to photonic integration,” J. Mod. Opt. 62(17), 1405–1411 (2015).
[Crossref]

M. Hasan, R. Maldonado-Basilio, and T. J. Hall, “Dual-function photonic integrated circuit for frequency octo-tupling or single-side-band modulation,” Opt. Lett. 40(11), 2501–2504 (2015).
[Crossref] [PubMed]

M. Hasan, R. Guemri, R. Maldonado-Basilio, F. Lucarz, J.-L. de Bougrenet de la Tocnaye, and T. Hall, “Theoretical analysis and modeling of a photonic integrated circuit for frequency 8-tupled and 24-tupled millimeter wave signal generation,” Opt. Lett. 39(24), 6950–6953 (2014).
[Crossref] [PubMed]

Hashimoto, T.

J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. F. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “QUANTUM OPTICS. Universal linear optics,” Science 349(6249), 711–716 (2015).
[Crossref] [PubMed]

Heck, M. J. R.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

Heideman, R.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
[Crossref]

Higuma, K.

A. Chiba, T. Kawanishi, T. Sakamoto, K. Higuma, K. Takada, and M. Izutsu, “Low-crosstalk balanced bridge interferometric-type optical switch for optical signal routing,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3400307 (2013).
[Crossref]

Ho, S.-T.

Hosseini, A.

H. Subbaraman, X. Xu, A. Hosseini, X. Zhang, Y. Zhang, D. Kwong, and R. T. Chen, “Recent advances in silicon-based passive and active optical interconnects,” Opt. Express 23(3), 2487–2510 (2015).
[Crossref] [PubMed]

X. Zhang, B. Lee, C. Lin, A. X. Wang, A. Hosseini, and R. T. Chen, “Highly Linear Broadband Optical Modulator Based on Electro-Optic Polymer,” IEEE Photonics J. 4(6), 2214–2228 (2012).
[Crossref]

Huang, B.

W. Li, X. Liang, W. Ma, T. Zhou, B. Huang, and D. Liu, “A planar waveguide optical discrete Fourier transformer design for 160 Gb/s all-optical OFDM systems,” Opt. Fiber Technol. 16(1), 5–11 (2010).
[Crossref]

Huang, H.-S.

Itoh, M.

J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. F. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “QUANTUM OPTICS. Universal linear optics,” Science 349(6249), 711–716 (2015).
[Crossref] [PubMed]

Izutsu, M.

A. Chiba, T. Kawanishi, T. Sakamoto, K. Higuma, K. Takada, and M. Izutsu, “Low-crosstalk balanced bridge interferometric-type optical switch for optical signal routing,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3400307 (2013).
[Crossref]

M. Izutsu, S. Shikama, and T. Sueta, “Integrated optical SSB modulator / frequency shifter,” IEEE J. Quantum Electron. 17(11), 2225–2227 (1981).
[Crossref]

Jain, S.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

Janz, S.

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Monux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D. Xu, J. G. Wanguemert-Perez, I. Molina-Fernandez, and S. Janz, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

Jiang, W.-J.

Jung, I. W.

Kawanishi, T.

A. Chiba, T. Kawanishi, T. Sakamoto, K. Higuma, K. Takada, and M. Izutsu, “Low-crosstalk balanced bridge interferometric-type optical switch for optical signal routing,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3400307 (2013).
[Crossref]

Khan, S.

Kirk, A. G.

A. G. Kirk, A. K. Powell, and T. J. Hall, “A Generalisation of the Error Diffusion Method for Binary Computer Generated Hologram Design,” Opt. Commun. 92(1-3), 12–18 (1992).
[Crossref]

Kitoh, T.

K. Takiguchi, T. Kitoh, A. Mori, M. Oguma, and H. Takahashi, “Integrated-optic OFDM demultiplexer using slab star coupler based optical DFT circuit,” 36th European Conference and Exhibition on Optical Communication (ECOC), Torino, 2010, pp. 1–3.
[Crossref]

Komijani, A.

A. Natarajan, A. Komijani, X. Guan, A. Babakhani, and A. Hajimiri, “A 77-GHz phased-array transceiver with on-chip antennas in silicon: transmitter and local LO-path phase shifting,” IEEE J. Solid-State Circuits 41(12), 2807–2819 (2006).
[Crossref]

Koos, C.

Korn, D.

Kurczveil, G.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

Kwong, D.

Laing, A.

J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. F. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “QUANTUM OPTICS. Universal linear optics,” Science 349(6249), 711–716 (2015).
[Crossref] [PubMed]

Lapointe, J.

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Monux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D. Xu, J. G. Wanguemert-Perez, I. Molina-Fernandez, and S. Janz, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

Lee, B.

X. Zhang, B. Lee, C. Lin, A. X. Wang, A. Hosseini, and R. T. Chen, “Highly Linear Broadband Optical Modulator Based on Electro-Optic Polymer,” IEEE Photonics J. 4(6), 2214–2228 (2012).
[Crossref]

Lei, C.

S. Abdul-Majid, R. Maldonado-Basilio, C. Lei, H. Awad, I. Hasan, W. N. Ye, and T. J. Hall, “Performance analysis of a photonic integrated interferometer circuit based on silicon-on-insulator,” Opt. Quantum Electron. 47(7), 1965–1971 (2015).
[Crossref]

Leinse, A.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
[Crossref]

Lepage, G.

Leuthold, J.

Li, J.

Li, M.

A. Wen, M. Li, L. Shang, and Y. Chen, “A novel optical SSB modulation scheme with interfering harmonics suppressed for ROF transmission link,” Opt. Laser Technol. 43(7), 1061–1064 (2011).
[Crossref]

Li, W.

W. Li, X. Liang, W. Ma, T. Zhou, B. Huang, and D. Liu, “A planar waveguide optical discrete Fourier transformer design for 160 Gb/s all-optical OFDM systems,” Opt. Fiber Technol. 16(1), 5–11 (2010).
[Crossref]

Liang, X.

W. Li, X. Liang, W. Ma, T. Zhou, B. Huang, and D. Liu, “A planar waveguide optical discrete Fourier transformer design for 160 Gb/s all-optical OFDM systems,” Opt. Fiber Technol. 16(1), 5–11 (2010).
[Crossref]

Lin, C.

X. Zhang, B. Lee, C. Lin, A. X. Wang, A. Hosseini, and R. T. Chen, “Highly Linear Broadband Optical Modulator Based on Electro-Optic Polymer,” IEEE Photonics J. 4(6), 2214–2228 (2012).
[Crossref]

Lin, C.-T.

Liu, D.

W. Li, X. Liang, W. Ma, T. Zhou, B. Huang, and D. Liu, “A planar waveguide optical discrete Fourier transformer design for 160 Gb/s all-optical OFDM systems,” Opt. Fiber Technol. 16(1), 5–11 (2010).
[Crossref]

Liu, Z.

Lucarz, F.

R. Maldonado-Basilio, M. Hasan, R. Guemri, F. Lucarz, and T. J. Hall, “Generalized Mach–Zehnder interferometer architectures for radio frequency translation and multiplication: suppression of unwanted harmonics by design,” Opt. Commun. 354, 122–127 (2015).
[Crossref]

R. Maldonado-Basilio, M. Hasan, H. Nikkhah, S. Abdul-Majid, R. Guemri, F. Lucarz, J.-L. de Bougrenet de la Tocnaye, and T. J. Hall, “Electro-optic up-conversion mixer amenable to photonic integration,” J. Mod. Opt. 62(17), 1405–1411 (2015).
[Crossref]

M. Hasan, R. Guemri, R. Maldonado-Basilio, F. Lucarz, J.-L. de Bougrenet de la Tocnaye, and T. Hall, “Theoretical analysis and modeling of a photonic integrated circuit for frequency 8-tupled and 24-tupled millimeter wave signal generation,” Opt. Lett. 39(24), 6950–6953 (2014).
[Crossref] [PubMed]

Ma, J.

Ma, W.

W. Li, X. Liang, W. Ma, T. Zhou, B. Huang, and D. Liu, “A planar waveguide optical discrete Fourier transformer design for 160 Gb/s all-optical OFDM systems,” Opt. Fiber Technol. 16(1), 5–11 (2010).
[Crossref]

Ma, Y.

Maldonado-Basilio, R.

M. Hasan, R. Maldonado-Basilio, and T. J. Hall, “Dual-function photonic integrated circuit for frequency octo-tupling or single-side-band modulation,” Opt. Lett. 40(11), 2501–2504 (2015).
[Crossref] [PubMed]

R. Maldonado-Basilio, M. Hasan, H. Nikkhah, S. Abdul-Majid, R. Guemri, F. Lucarz, J.-L. de Bougrenet de la Tocnaye, and T. J. Hall, “Electro-optic up-conversion mixer amenable to photonic integration,” J. Mod. Opt. 62(17), 1405–1411 (2015).
[Crossref]

R. Maldonado-Basilio, M. Hasan, R. Guemri, F. Lucarz, and T. J. Hall, “Generalized Mach–Zehnder interferometer architectures for radio frequency translation and multiplication: suppression of unwanted harmonics by design,” Opt. Commun. 354, 122–127 (2015).
[Crossref]

M. Hasan, R. Maldonado-Basilio, and T. J. Hall, “Studies in an optical millimeter-wave generation scheme via two parallel dual-parallel Mach-Zehnder modulators,” J. Mod. Opt. 62(7), 581–583 (2015).
[Crossref]

S. Abdul-Majid, R. Maldonado-Basilio, C. Lei, H. Awad, I. Hasan, W. N. Ye, and T. J. Hall, “Performance analysis of a photonic integrated interferometer circuit based on silicon-on-insulator,” Opt. Quantum Electron. 47(7), 1965–1971 (2015).
[Crossref]

M. Hasan, R. Guemri, R. Maldonado-Basilio, F. Lucarz, J.-L. de Bougrenet de la Tocnaye, and T. Hall, “Theoretical analysis and modeling of a photonic integrated circuit for frequency 8-tupled and 24-tupled millimeter wave signal generation,” Opt. Lett. 39(24), 6950–6953 (2014).
[Crossref] [PubMed]

Marhic, M. E.

Marpaung, D.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
[Crossref]

Marshall, G. D.

J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. F. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “QUANTUM OPTICS. Universal linear optics,” Science 349(6249), 711–716 (2015).
[Crossref] [PubMed]

Martín-López, E.

J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. F. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “QUANTUM OPTICS. Universal linear optics,” Science 349(6249), 711–716 (2015).
[Crossref] [PubMed]

Matsuda, N.

J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. F. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “QUANTUM OPTICS. Universal linear optics,” Science 349(6249), 711–716 (2015).
[Crossref] [PubMed]

Matthews, J. C. F.

J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. F. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “QUANTUM OPTICS. Universal linear optics,” Science 349(6249), 711–716 (2015).
[Crossref] [PubMed]

Miller, D. A. B.

Mino, S.

H. Yamazaki, T. Saida, T. Goh, S. Mino, M. Nagatani, H. Nosaka, and K. Murata, “Dual-carrier dual-polarization IQ modulator using a complementary frequency shifter,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3400208 (2013).
[Crossref]

Miwa, T.

T. Miwa and K. Takiguchi, “Integrated-optic OFDM signal multiplexer composed of optical IFFT circuit,” Electron. Lett. 51(6), 505–506 (2015).
[Crossref]

Molina-Fernandez, I.

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Monux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D. Xu, J. G. Wanguemert-Perez, I. Molina-Fernandez, and S. Janz, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

Mori, A.

K. Takiguchi, M. Oguma, H. Takahashi, and A. Mori, “Integrated-optic eight-channel OFDM demultiplexer and its demonstration with 160 Gbit/s signal reception,” Electron. Lett. 46(8), 575–576 (2010).
[Crossref]

K. Takiguchi, T. Kitoh, A. Mori, M. Oguma, and H. Takahashi, “Integrated-optic OFDM demultiplexer using slab star coupler based optical DFT circuit,” 36th European Conference and Exhibition on Optical Communication (ECOC), Torino, 2010, pp. 1–3.
[Crossref]

Murata, K.

H. Yamazaki, T. Saida, T. Goh, S. Mino, M. Nagatani, H. Nosaka, and K. Murata, “Dual-carrier dual-polarization IQ modulator using a complementary frequency shifter,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3400208 (2013).
[Crossref]

Nagatani, M.

H. Yamazaki, T. Saida, T. Goh, S. Mino, M. Nagatani, H. Nosaka, and K. Murata, “Dual-carrier dual-polarization IQ modulator using a complementary frequency shifter,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3400208 (2013).
[Crossref]

Natarajan, A.

A. Natarajan, A. Komijani, X. Guan, A. Babakhani, and A. Hajimiri, “A 77-GHz phased-array transceiver with on-chip antennas in silicon: transmitter and local LO-path phase shifting,” IEEE J. Solid-State Circuits 41(12), 2807–2819 (2006).
[Crossref]

Nikkhah, H.

R. Maldonado-Basilio, M. Hasan, H. Nikkhah, S. Abdul-Majid, R. Guemri, F. Lucarz, J.-L. de Bougrenet de la Tocnaye, and T. J. Hall, “Electro-optic up-conversion mixer amenable to photonic integration,” J. Mod. Opt. 62(17), 1405–1411 (2015).
[Crossref]

Nosaka, H.

H. Yamazaki, T. Saida, T. Goh, S. Mino, M. Nagatani, H. Nosaka, and K. Murata, “Dual-carrier dual-polarization IQ modulator using a complementary frequency shifter,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3400208 (2013).
[Crossref]

Novak, D.

G. H. Smith, D. Novak, and Z. Ahmed, “Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators,” IEEE Trans. Microw. Theory Tech. 45(8), 1410–1415 (1997).
[Crossref]

O’Brien, J. L.

J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. F. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “QUANTUM OPTICS. Universal linear optics,” Science 349(6249), 711–716 (2015).
[Crossref] [PubMed]

Ocola, L. E.

Oguma, M.

J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. F. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “QUANTUM OPTICS. Universal linear optics,” Science 349(6249), 711–716 (2015).
[Crossref] [PubMed]

K. Takiguchi, M. Oguma, H. Takahashi, and A. Mori, “Integrated-optic eight-channel OFDM demultiplexer and its demonstration with 160 Gbit/s signal reception,” Electron. Lett. 46(8), 575–576 (2010).
[Crossref]

K. Takiguchi, T. Kitoh, A. Mori, M. Oguma, and H. Takahashi, “Integrated-optic OFDM demultiplexer using slab star coupler based optical DFT circuit,” 36th European Conference and Exhibition on Optical Communication (ECOC), Torino, 2010, pp. 1–3.
[Crossref]

Ortega-Monux, A.

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Monux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D. Xu, J. G. Wanguemert-Perez, I. Molina-Fernandez, and S. Janz, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

Palmer, R.

Pantouvaki, M.

Peng, P.-C.

Pernice, W. H. P.

W. H. P. Pernice, C. Xiong, F. J. Walker, and H. X. Tang, “Design of a silicon integrated electro-optic modulator using ferroelectric BaTiO3 films,” IEEE Photonics Technol. Lett. 26(13), 1344–1347 (2014).
[Crossref]

Powell, A. K.

A. G. Kirk, A. K. Powell, and T. J. Hall, “A Generalisation of the Error Diffusion Method for Binary Computer Generated Hologram Design,” Opt. Commun. 92(1-3), 12–18 (1992).
[Crossref]

Rabiei, P.

Reck, M.

M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, “Experimental realization of any discrete unitary operator,” Phys. Rev. Lett. 73(1), 58–61 (1994).
[Crossref] [PubMed]

Richardson, D. J.

R. Slavík, S. G. Farwell, M. J. Wale, and D. J. Richardson, “Compact Optical Comb Generator Using InP Tunable Laser and Push-Pull Modulator,” IEEE Photonics Technol. Lett. 27(2), 217–220 (2015).
[Crossref]

Roeloffzen, C.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
[Crossref]

Russell, N. J.

J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. F. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “QUANTUM OPTICS. Universal linear optics,” Science 349(6249), 711–716 (2015).
[Crossref] [PubMed]

Saida, T.

H. Yamazaki, T. Saida, T. Goh, S. Mino, M. Nagatani, H. Nosaka, and K. Murata, “Dual-carrier dual-polarization IQ modulator using a complementary frequency shifter,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3400208 (2013).
[Crossref]

Sakamoto, T.

A. Chiba, T. Kawanishi, T. Sakamoto, K. Higuma, K. Takada, and M. Izutsu, “Low-crosstalk balanced bridge interferometric-type optical switch for optical signal routing,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3400307 (2013).
[Crossref]

Sales, S.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
[Crossref]

Schindler, P. C.

Schmid, J. H.

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Monux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D. Xu, J. G. Wanguemert-Perez, I. Molina-Fernandez, and S. Janz, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

Schmogrow, R.

Selvaraja, S. K.

Shadbolt, P. J.

J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. F. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “QUANTUM OPTICS. Universal linear optics,” Science 349(6249), 711–716 (2015).
[Crossref] [PubMed]

Shang, L.

A. Wen, M. Li, L. Shang, and Y. Chen, “A novel optical SSB modulation scheme with interfering harmonics suppressed for ROF transmission link,” Opt. Laser Technol. 43(7), 1061–1064 (2011).
[Crossref]

Shieh, W.

Shih, P.-T.

Shikama, S.

M. Izutsu, S. Shikama, and T. Sueta, “Integrated optical SSB modulator / frequency shifter,” IEEE J. Quantum Electron. 17(11), 2225–2227 (1981).
[Crossref]

Siegman, A. E.

Silverstone, J. W.

J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. F. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “QUANTUM OPTICS. Universal linear optics,” Science 349(6249), 711–716 (2015).
[Crossref] [PubMed]

Slavík, R.

R. Slavík, S. G. Farwell, M. J. Wale, and D. J. Richardson, “Compact Optical Comb Generator Using InP Tunable Laser and Push-Pull Modulator,” IEEE Photonics Technol. Lett. 27(2), 217–220 (2015).
[Crossref]

Smith, G. H.

G. H. Smith, D. Novak, and Z. Ahmed, “Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators,” IEEE Trans. Microw. Theory Tech. 45(8), 1410–1415 (1997).
[Crossref]

Sparrow, C.

J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. F. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “QUANTUM OPTICS. Universal linear optics,” Science 349(6249), 711–716 (2015).
[Crossref] [PubMed]

Srinivasan, S.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

Subbaraman, H.

Sueta, T.

M. Izutsu, S. Shikama, and T. Sueta, “Integrated optical SSB modulator / frequency shifter,” IEEE J. Quantum Electron. 17(11), 2225–2227 (1981).
[Crossref]

Takada, K.

A. Chiba, T. Kawanishi, T. Sakamoto, K. Higuma, K. Takada, and M. Izutsu, “Low-crosstalk balanced bridge interferometric-type optical switch for optical signal routing,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3400307 (2013).
[Crossref]

Takahashi, H.

K. Takiguchi, M. Oguma, H. Takahashi, and A. Mori, “Integrated-optic eight-channel OFDM demultiplexer and its demonstration with 160 Gbit/s signal reception,” Electron. Lett. 46(8), 575–576 (2010).
[Crossref]

K. Takiguchi, T. Kitoh, A. Mori, M. Oguma, and H. Takahashi, “Integrated-optic OFDM demultiplexer using slab star coupler based optical DFT circuit,” 36th European Conference and Exhibition on Optical Communication (ECOC), Torino, 2010, pp. 1–3.
[Crossref]

Takiguchi, K.

T. Miwa and K. Takiguchi, “Integrated-optic OFDM signal multiplexer composed of optical IFFT circuit,” Electron. Lett. 51(6), 505–506 (2015).
[Crossref]

K. Takiguchi, M. Oguma, H. Takahashi, and A. Mori, “Integrated-optic eight-channel OFDM demultiplexer and its demonstration with 160 Gbit/s signal reception,” Electron. Lett. 46(8), 575–576 (2010).
[Crossref]

K. Takiguchi, T. Kitoh, A. Mori, M. Oguma, and H. Takahashi, “Integrated-optic OFDM demultiplexer using slab star coupler based optical DFT circuit,” 36th European Conference and Exhibition on Optical Communication (ECOC), Torino, 2010, pp. 1–3.
[Crossref]

Tang, H. X.

W. H. P. Pernice, C. Xiong, F. J. Walker, and H. X. Tang, “Design of a silicon integrated electro-optic modulator using ferroelectric BaTiO3 films,” IEEE Photonics Technol. Lett. 26(13), 1344–1347 (2014).
[Crossref]

Tang, Y.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

Y. Ma, Q. Yang, Y. Tang, S. Chen, and W. Shieh, “1-Tb/s single-channel coherent optical OFDM transmission over 600-km SSMF fiber with subwavelength bandwidth access,” Opt. Express 17(11), 9421–9427 (2009).
[Crossref] [PubMed]

Thompson, M. G.

J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. F. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “QUANTUM OPTICS. Universal linear optics,” Science 349(6249), 711–716 (2015).
[Crossref] [PubMed]

Tu, Y.

Van Campenhout, J.

Verheyen, P.

Wale, M. J.

R. Slavík, S. G. Farwell, M. J. Wale, and D. J. Richardson, “Compact Optical Comb Generator Using InP Tunable Laser and Push-Pull Modulator,” IEEE Photonics Technol. Lett. 27(2), 217–220 (2015).
[Crossref]

Walker, F. J.

W. H. P. Pernice, C. Xiong, F. J. Walker, and H. X. Tang, “Design of a silicon integrated electro-optic modulator using ferroelectric BaTiO3 films,” IEEE Photonics Technol. Lett. 26(13), 1344–1347 (2014).
[Crossref]

Wang, A. X.

X. Zhang, B. Lee, C. Lin, A. X. Wang, A. Hosseini, and R. T. Chen, “Highly Linear Broadband Optical Modulator Based on Electro-Optic Polymer,” IEEE Photonics J. 4(6), 2214–2228 (2012).
[Crossref]

Wang, C. H.

Wanguemert-Perez, J. G.

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Monux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D. Xu, J. G. Wanguemert-Perez, I. Molina-Fernandez, and S. Janz, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

Wen, A.

A. Wen, M. Li, L. Shang, and Y. Chen, “A novel optical SSB modulation scheme with interfering harmonics suppressed for ROF transmission link,” Opt. Laser Technol. 43(7), 1061–1064 (2011).
[Crossref]

Wessels, B. W.

Wouters, J. M. D.

Xiong, C.

W. H. P. Pernice, C. Xiong, F. J. Walker, and H. X. Tang, “Design of a silicon integrated electro-optic modulator using ferroelectric BaTiO3 films,” IEEE Photonics Technol. Lett. 26(13), 1344–1347 (2014).
[Crossref]

Xu, D.

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Monux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D. Xu, J. G. Wanguemert-Perez, I. Molina-Fernandez, and S. Janz, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

Xu, X.

Yamazaki, H.

H. Yamazaki, T. Saida, T. Goh, S. Mino, M. Nagatani, H. Nosaka, and K. Murata, “Dual-carrier dual-polarization IQ modulator using a complementary frequency shifter,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3400208 (2013).
[Crossref]

Yang, Q.

Ye, W. N.

S. Abdul-Majid, R. Maldonado-Basilio, C. Lei, H. Awad, I. Hasan, W. N. Ye, and T. J. Hall, “Performance analysis of a photonic integrated interferometer circuit based on silicon-on-insulator,” Opt. Quantum Electron. 47(7), 1965–1971 (2015).
[Crossref]

Yeh, C. H.

Yu, H.

Zeilinger, A.

M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, “Experimental realization of any discrete unitary operator,” Phys. Rev. Lett. 73(1), 58–61 (1994).
[Crossref] [PubMed]

Zhang, X.

H. Subbaraman, X. Xu, A. Hosseini, X. Zhang, Y. Zhang, D. Kwong, and R. T. Chen, “Recent advances in silicon-based passive and active optical interconnects,” Opt. Express 23(3), 2487–2510 (2015).
[Crossref] [PubMed]

X. Zhang, B. Lee, C. Lin, A. X. Wang, A. Hosseini, and R. T. Chen, “Highly Linear Broadband Optical Modulator Based on Electro-Optic Polymer,” IEEE Photonics J. 4(6), 2214–2228 (2012).
[Crossref]

Zhang, Y.

Zhou, J.

J. Zhou, “Realization of discrete Fourier transform and inverse discrete Fourier transform on one single multimode interference coupler,” IEEE Photonics Technol. Lett. 23(5), 302–304 (2011).
[Crossref]

J. Zhou, “All-optical discrete Fourier transform based on multimode interference couplers,” IEEE Photonics Technol. Lett. 22(15), 1093–1095 (2010).
[Crossref]

Zhou, T.

W. Li, X. Liang, W. Ma, T. Zhou, B. Huang, and D. Liu, “A planar waveguide optical discrete Fourier transformer design for 160 Gb/s all-optical OFDM systems,” Opt. Fiber Technol. 16(1), 5–11 (2010).
[Crossref]

Electron. Lett. (2)

T. Miwa and K. Takiguchi, “Integrated-optic OFDM signal multiplexer composed of optical IFFT circuit,” Electron. Lett. 51(6), 505–506 (2015).
[Crossref]

K. Takiguchi, M. Oguma, H. Takahashi, and A. Mori, “Integrated-optic eight-channel OFDM demultiplexer and its demonstration with 160 Gbit/s signal reception,” Electron. Lett. 46(8), 575–576 (2010).
[Crossref]

IEEE J. Quantum Electron. (1)

M. Izutsu, S. Shikama, and T. Sueta, “Integrated optical SSB modulator / frequency shifter,” IEEE J. Quantum Electron. 17(11), 2225–2227 (1981).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

H. Yamazaki, T. Saida, T. Goh, S. Mino, M. Nagatani, H. Nosaka, and K. Murata, “Dual-carrier dual-polarization IQ modulator using a complementary frequency shifter,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3400208 (2013).
[Crossref]

A. Chiba, T. Kawanishi, T. Sakamoto, K. Higuma, K. Takada, and M. Izutsu, “Low-crosstalk balanced bridge interferometric-type optical switch for optical signal routing,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3400307 (2013).
[Crossref]

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

IEEE J. Solid-State Circuits (1)

A. Natarajan, A. Komijani, X. Guan, A. Babakhani, and A. Hajimiri, “A 77-GHz phased-array transceiver with on-chip antennas in silicon: transmitter and local LO-path phase shifting,” IEEE J. Solid-State Circuits 41(12), 2807–2819 (2006).
[Crossref]

IEEE Photonics J. (1)

X. Zhang, B. Lee, C. Lin, A. X. Wang, A. Hosseini, and R. T. Chen, “Highly Linear Broadband Optical Modulator Based on Electro-Optic Polymer,” IEEE Photonics J. 4(6), 2214–2228 (2012).
[Crossref]

IEEE Photonics Technol. Lett. (4)

R. Slavík, S. G. Farwell, M. J. Wale, and D. J. Richardson, “Compact Optical Comb Generator Using InP Tunable Laser and Push-Pull Modulator,” IEEE Photonics Technol. Lett. 27(2), 217–220 (2015).
[Crossref]

J. Zhou, “All-optical discrete Fourier transform based on multimode interference couplers,” IEEE Photonics Technol. Lett. 22(15), 1093–1095 (2010).
[Crossref]

J. Zhou, “Realization of discrete Fourier transform and inverse discrete Fourier transform on one single multimode interference coupler,” IEEE Photonics Technol. Lett. 23(5), 302–304 (2011).
[Crossref]

W. H. P. Pernice, C. Xiong, F. J. Walker, and H. X. Tang, “Design of a silicon integrated electro-optic modulator using ferroelectric BaTiO3 films,” IEEE Photonics Technol. Lett. 26(13), 1344–1347 (2014).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

G. H. Smith, D. Novak, and Z. Ahmed, “Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators,” IEEE Trans. Microw. Theory Tech. 45(8), 1410–1415 (1997).
[Crossref]

J. Lightwave Technol. (2)

J. Mod. Opt. (2)

M. Hasan, R. Maldonado-Basilio, and T. J. Hall, “Studies in an optical millimeter-wave generation scheme via two parallel dual-parallel Mach-Zehnder modulators,” J. Mod. Opt. 62(7), 581–583 (2015).
[Crossref]

R. Maldonado-Basilio, M. Hasan, H. Nikkhah, S. Abdul-Majid, R. Guemri, F. Lucarz, J.-L. de Bougrenet de la Tocnaye, and T. J. Hall, “Electro-optic up-conversion mixer amenable to photonic integration,” J. Mod. Opt. 62(17), 1405–1411 (2015).
[Crossref]

Laser Photonics Rev. (2)

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Monux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D. Xu, J. G. Wanguemert-Perez, I. Molina-Fernandez, and S. Janz, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
[Crossref]

Opt. Commun. (2)

R. Maldonado-Basilio, M. Hasan, R. Guemri, F. Lucarz, and T. J. Hall, “Generalized Mach–Zehnder interferometer architectures for radio frequency translation and multiplication: suppression of unwanted harmonics by design,” Opt. Commun. 354, 122–127 (2015).
[Crossref]

A. G. Kirk, A. K. Powell, and T. J. Hall, “A Generalisation of the Error Diffusion Method for Binary Computer Generated Hologram Design,” Opt. Commun. 92(1-3), 12–18 (1992).
[Crossref]

Opt. Express (6)

Opt. Fiber Technol. (1)

W. Li, X. Liang, W. Ma, T. Zhou, B. Huang, and D. Liu, “A planar waveguide optical discrete Fourier transformer design for 160 Gb/s all-optical OFDM systems,” Opt. Fiber Technol. 16(1), 5–11 (2010).
[Crossref]

Opt. Laser Technol. (1)

A. Wen, M. Li, L. Shang, and Y. Chen, “A novel optical SSB modulation scheme with interfering harmonics suppressed for ROF transmission link,” Opt. Laser Technol. 43(7), 1061–1064 (2011).
[Crossref]

Opt. Lett. (5)

Opt. Quantum Electron. (1)

S. Abdul-Majid, R. Maldonado-Basilio, C. Lei, H. Awad, I. Hasan, W. N. Ye, and T. J. Hall, “Performance analysis of a photonic integrated interferometer circuit based on silicon-on-insulator,” Opt. Quantum Electron. 47(7), 1965–1971 (2015).
[Crossref]

Optica (1)

Phys. Rev. Lett. (1)

M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, “Experimental realization of any discrete unitary operator,” Phys. Rev. Lett. 73(1), 58–61 (1994).
[Crossref] [PubMed]

Science (1)

J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. F. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “QUANTUM OPTICS. Universal linear optics,” Science 349(6249), 711–716 (2015).
[Crossref] [PubMed]

Other (3)

D. A. B. Miller, “Perfect optics with imperfect components Perfect optics with imperfect components: supplementary material,” http://dx.doi.org/10.1364/optica.2.000747.s001 .

K. Takiguchi, T. Kitoh, A. Mori, M. Oguma, and H. Takahashi, “Integrated-optic OFDM demultiplexer using slab star coupler based optical DFT circuit,” 36th European Conference and Exhibition on Optical Communication (ECOC), Torino, 2010, pp. 1–3.
[Crossref]

J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts & Company Publishers, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

A classical free-space coherent optical system for the observation of continuous Raman-Nath diffraction. Lens L1 provides the acousto-optic modulator with uniform collimated illumination. The acousto-optic modulator (AOM) generates a travelling refractive index wave within its aperture. Lens L2 provides the Fourier transform of the light transmitted by the AOM at the screen where Raman-Nath diffraction orders are observed.

Fig. 2
Fig. 2

Schematic diagram of an array of N phase modulators in parallel between a 1 × N splitter and N × N DFT network. PM: phase modulator; DFT: discrete Fourier transform.

Fig. 3
Fig. 3

(a) Schematic of a 4 × 4 DFT network; (b) realisation of S using a 2 × 2 MMI.

Fig. 4
Fig. 4

(a) Schematic of a 4 × 4 DFT network using 2 × 2 MMI; (b) schematic of the complete circuit. The y-branch at the input represents a 1 × 2 symmetric coupler.

Fig. 5
Fig. 5

Simulated optical spectrum, (a)-(b) without considering MMI errors due to fabrication tolerances; (c)-(d) with fabrication tolerances. A resolution bandwidth of 1 GHz is used for the optical spectrum analyzer. The optical noise floor is determined by the laser line-width, which is considered 200 kHz in this simulation.

Fig. 6
Fig. 6

Optical SHSR as a function of RF drive’s phase errors between the MZMs.

Tables (1)

Tables Icon

Table 1 Circuit Architecture Configurations

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

a(x)=exp[iηcos(ΩtKx)].
exp(iηcosθ)= q= i q Jq(η)exp(iqθ).
a(x)= q= i q Jq(η)exp[iq(ΩtΚx)].
  a ^ = 1 2π a(x)exp(iξx)dx.
a ^ (x)= q= i q Jq(η)exp(iqΩt)δ(ξ+qΚ)].
bq= 1 N p=0 N1 ap exp(ipq 2π /N ).
vp=vRFcos[Ωt+p( 2π /N )].
ap= 1 N exp(iπ vp / vπ ) = 1 N exp(iπ vRF / vπ )cos[Ωt+p( 2π /N )].
η=π vRF vπ .
Κ= 2π Λ ; Λ=Nd.
bq= 1 N p=0 N1 r= i r Jr(η)exp(irΩt)exp[ip(rq) 2π /N ].
bq= r= i r Jr(η)exp(irΩt) 1 N p=0 N1 exp[ip(rq)p 2π /N ].
1 N p=0 N1 exp[i(rq)p 2π /N ] =0 rq mod N 1 N p=0 N1 exp[i(rq)p 2π /N ] =1 r=q mod N.
bq= s= i (q+sN) J(q+sN)(η)exp[i(q+sN)Ωt].
S= 1 2 ( 1 1 1 1 ).
z 1 =exp(iπ/2 ).
SMMI= 1 2 ( 1 i i 1 )= 1 2 ( 1 0 0 i )( 1 1 1 1 )( 1 0 0 i ).
S=( i 0 0 1 )SMMI( i 0 0 1 ).

Metrics