Abstract

We report an experimental generation of ns pulsed 121.568 nm Lyman-α radiation by the resonant nonlinear four-wave mixing of 212.556 nm and 845.015 nm radiation pulses providing a high conversion efficiency 1.7x10−3 with the output pulse energy 3.6 μJ achieved using a low pressure Kr-Ar mixture. Theoretical analysis shows that this efficiency is achieved due to the advantage of using (i) the high input laser intensities in combination with (ii) the low gas pressure allowing us to avoid the onset of full-scale discharge in the laser focus. In particular, under our experimental conditions the main mechanism of photoionization caused by the resonant 2-photon 212.556 nm radiation excitation of Kr atoms followed by the 1-photon ionization leads to ≈17% loss of Kr atoms and efficiency loss only by the end of the pulse. The energy of free electrons, generated by 212.556 nm radiation via (2 + 1)-photon ionization and accelerated mainly by 845.015 nm radiation, remains during the pulse below the level sufficient for the onset of full-scale discharge by the electron avalanche. Our analysis also suggests that ≈30-fold increase of 845.015 nm pulse energy can allow one to scale up the L-α radiation pulse energy towards the level of ≈100 μJ.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Improved detection of ultraviolet radiation with gas-filled phototubes through photoionization of excited atoms

N. S. Kopeika, R. Gellman, and A. P. Kushelevsky
Appl. Opt. 16(9) 2470-2476 (1977)

High-power molecular lasers pumped by a volume self-sustained discharge

V. V. Apollonov, G. G. Baitsur, A. V. Ermachenko, K. N. Firsov, V. M. Konev, I. G. Kononov, O. B. Koval’chuk, V. V. Kralin, V. R. Minenkov, A. M. Prokhorov, S. K. Semenov, B. G. Shubin, and V. A. Yamshchikov
J. Opt. Soc. Am. B 8(2) 220-229 (1991)

Laser excitation and ionization of dense atomic vapors

T. B. Lucatorto and T. J. McIlrath
Appl. Opt. 19(23) 3948-3956 (1980)

References

  • View by:
  • |
  • |
  • |

  1. J. F. Reintjes, Nonlinear Optical Parametric Processes in Liquids and Gases (Academic, 1984).
  2. K. S. E. Eikema, J. Walz, and T. W. Hänsch, “Continuous wave coherent Lyman-α radiation,” Phys. Rev. Lett. 83(19), 3828–3831 (1999).
    [Crossref]
  3. K. S. E. Eikema, J. Walz, and T. W. Hänsch, “Continuous coherent Lyman- α excitation of atomic hydrogen,” Phys. Rev. Lett. 86(25), 5679–5682 (2001).
    [Crossref] [PubMed]
  4. A. Pahl, P. Fendel, B. R. Henrich, J. Walz, T. W. Hänsch, and K. S. E. Eikema, “Generation of continuous coherent radiation at Lyman-alpha and 1S-2S spectroscopy of atomic hydrogen,” Laser Phys. 15, 46–54 (2005).
  5. D. Kielpinski, “Laser cooling of atoms and molecules with ultrafast pulses,” Phys. Rev. A 73(6), 063407 (2006).
    [Crossref]
  6. M. Scheid, D. Kolbe, F. Markert, T. W. Hänsch, and J. Walz, “Continuous-wave Lyman-alpha generation with solid-state lasers,” Opt. Express 17(14), 11274–11280 (2009).
    [Crossref] [PubMed]
  7. B. D. Patterson, “Muonium states in semiconductors,” Rev. Mod. Phys. 60(1), 69–159 (1988).
    [Crossref]
  8. Y. Miyake, J. P. Marangos, K. Shimomura, P. Birrer, T. Kuga, and K. Nagamine, “Laser system for the resonant ionization of hydrogen-like atoms produced by nuclear reactions,” Nucl. Instrum. Methods Phys. Res. B 95(2), 265–275 (1995).
    [Crossref]
  9. K. Nagamine, “Generation of ultra-slow muons for large-scale future applications,” Hyperfine Interact. 103(1), 123–135 (1996).
    [Crossref]
  10. P. Bakule and E. Morenzoni, “Generation and applications of slow polarized muons,” Contemp. Phys. 45(3), 203–225 (2004).
    [Crossref]
  11. Y. Matsuda, P. Bakule, M. Iwasaki, T. Matsuzaki, Y. Miyake, Y. Ikedo, P. Strasser, K. Shimomura, S. Makimura, and K. Nagamine, “Generation of low-energy muons with laser resonant ionization,” Nucl. Phys. B 155(1), 346–348 (2006).
    [Crossref]
  12. P. Bakule, Y. Matsuda, Y. Miyake, K. Nagamine, M. Iwasaki, Y. Ikedo, K. Shimomura, P. Strasser, and S. Makimura, “Pulsed source of ultra low energy positive muons for near-surface mu SR studies,” Nucl. Instrum. Methods Phys. Res. B 266(2), 335–346 (2008).
    [Crossref]
  13. J. Nakamura, T. Nagamoto, Y. Oishi, Y. Ikedo, P. Strasser, N. Saito, K. Miyazaki, K. Yokoyama, K. Okamura, Y. Miyake, S. Makimura, K. Nishiyama, K. Shimomura, N. Kawamura, A. Koda, W. Higemoto, S. Wada, M. Iwasaki, and E. Torikai, “Ultra slow muon microscope at MUSE/J-PARC,” J. Phys. Conf. Ser. 502, 012042 (2014).
    [Crossref]
  14. R. Mahon, T. J. McIlrath, and D. W. Koopman, “Nonlinear generation of Lyman-alpha radiation,” Appl. Phys. Lett. 33(4), 305–306 (1978).
    [Crossref]
  15. R. Mahon, T. J. McIlrath, V. P. Myerscough, and D. W. Koopman, “Third-harmonic generation in Argon. Krypton and Xenon: bandwidth limitations in the vicinity of Lyman-α,” IEEE J. Quantum Electron. 15(6), 444–451 (1979).
    [Crossref]
  16. J. P. Marangos, N. Shen, H. Ma, M. H. R. Hutchinson, and J. P. Connerade, “Broadly tunable vacuum-ultraviolet radiation source employing resonant enhanced sum-difference frequency mixing in krypton,” J. Opt. Soc. Am. B 7(7), 1254–1259 (1990).
    [Crossref]
  17. R. Mahon and Y. M. Yiu, “Generation of Lyman-α radiation in phase-matched rare-gas mixtures,” Opt. Lett. 5(7), 279–281 (1980).
    [Crossref] [PubMed]
  18. G. W. Faris, S. A. Meyer, M. J. Dyer, and M. J. Banks, “Two-photon-resonant difference-frequency mixing with an ArF excimer laser: vacuum-ultraviolet generation and multiphoton spectroscopy,” J. Opt. Soc. Am. B 17(11), 1856–1866 (2000).
    [Crossref]
  19. G. C. Bjorklund, “Effects of focusing on third-order nonlinear process in isotropic media,” IEEE J. Quantum Electron. 11(6), 287–296 (1975).
    [Crossref]
  20. D. S. Bethune and C. T. Rettner, “Optical harmonic-generation in nonuniform gaseous media with application to frequency tripling in free-jet expansions,” IEEE J. Quantum Electron. 23(8), 1348–1360 (1987).
    [Crossref]
  21. G. Hilber, D. J. Brink, A. Lago, and R. Wallenstein, “Optical-frequency conversion in gases using Gaussian laser beams with different confocal parameters,” Phys. Rev. A 38(12), 6231–6239 (1988).
    [Crossref] [PubMed]
  22. P. Bakule, Y. Matsuda, Y. Miyake, P. Strasser, K. Shimomura, S. Makimura, and K. Nagamine, “Slow muon experiment by laser resonant ionization method at RIKEN-RAL muon facility,” Spectrochim. Acta B At. Spectrosc. 58(6), 1019–1030 (2003).
    [Crossref]
  23. G. Hilber, A. Lago, and R. Wallenstein, “Broadly tunable vacuum-ultraviolet/extreme-ultraviolet radiation generated by resonant third-order frequency conversion in krypton,” J. Opt. Soc. Am. B 4(11), 1753–1764 (1987).
    [Crossref]
  24. L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP-USSR 20, 1307–1314 (1965).
  25. Y. A. Il’insky and L. V. Keldysh, Electromagnetic Response of Materials Media (Plenum, 1994).
  26. Yu. Raizer, Laser Spark and Propagation of Discharges (Consultants Bureau, 1976).
  27. O. A. Louchev, P. Bakule, N. Saito, S. Wada, K. Yokohama, K. Ishida, and M. Iwasaki, “Mechanism and computational model for Lyman-α-radiation generation by high-intensity-laser four-wave mixing in Kr-Ar gas,” Phys. Rev. A 84(3), 033842 (2011).
    [Crossref]
  28. B. M. Walsh, N. P. Barnes, R. L. Hutcheson, R. W. Equall, and B. Di Bartolo, “Spectroscopy and lasing characteristics of Nd-doped Y3Ga𝑥Al(5-𝑥)O12 materials: application toward a compositionally tuned 0.94 μm laser,” J. Opt. Soc. Am. B 15(11), 2794–2801 (1998).
    [Crossref]
  29. Y. Oishi, K. Okamura, K. Miyazaki, N. Saito, M. Iwasaki, and S. Wada, “All-solid-state laser amplifiers for intense Lyman-α generation,” Proc. Int. Symp. Science Explored by Ultra Slow Muon (USM2013) JPS Conf. Proc. 2, 010105 (2014).
    [Crossref]
  30. J. Lu, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Highly efficient 2% Nd:yttrium aluminum garnet ceramic laser,” Appl. Phys. Lett. 77(23), 3707–3709 (2000).
    [Crossref]
  31. J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Misawa, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, and A. Kudryashov, “72 W Nd:Y3Al5O12 ceramic laser,” Appl. Phys. Lett. 78(23), 3586–3588 (2001).
    [Crossref]
  32. R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).
  33. H. A. Hyman, “Photoionization cross sections for excited states of argon and krypton,” Appl. Phys. Lett. 31(1), 14–15 (1977).
    [Crossref]

2014 (1)

J. Nakamura, T. Nagamoto, Y. Oishi, Y. Ikedo, P. Strasser, N. Saito, K. Miyazaki, K. Yokoyama, K. Okamura, Y. Miyake, S. Makimura, K. Nishiyama, K. Shimomura, N. Kawamura, A. Koda, W. Higemoto, S. Wada, M. Iwasaki, and E. Torikai, “Ultra slow muon microscope at MUSE/J-PARC,” J. Phys. Conf. Ser. 502, 012042 (2014).
[Crossref]

2011 (1)

O. A. Louchev, P. Bakule, N. Saito, S. Wada, K. Yokohama, K. Ishida, and M. Iwasaki, “Mechanism and computational model for Lyman-α-radiation generation by high-intensity-laser four-wave mixing in Kr-Ar gas,” Phys. Rev. A 84(3), 033842 (2011).
[Crossref]

2009 (1)

2008 (1)

P. Bakule, Y. Matsuda, Y. Miyake, K. Nagamine, M. Iwasaki, Y. Ikedo, K. Shimomura, P. Strasser, and S. Makimura, “Pulsed source of ultra low energy positive muons for near-surface mu SR studies,” Nucl. Instrum. Methods Phys. Res. B 266(2), 335–346 (2008).
[Crossref]

2006 (2)

Y. Matsuda, P. Bakule, M. Iwasaki, T. Matsuzaki, Y. Miyake, Y. Ikedo, P. Strasser, K. Shimomura, S. Makimura, and K. Nagamine, “Generation of low-energy muons with laser resonant ionization,” Nucl. Phys. B 155(1), 346–348 (2006).
[Crossref]

D. Kielpinski, “Laser cooling of atoms and molecules with ultrafast pulses,” Phys. Rev. A 73(6), 063407 (2006).
[Crossref]

2005 (1)

A. Pahl, P. Fendel, B. R. Henrich, J. Walz, T. W. Hänsch, and K. S. E. Eikema, “Generation of continuous coherent radiation at Lyman-alpha and 1S-2S spectroscopy of atomic hydrogen,” Laser Phys. 15, 46–54 (2005).

2004 (1)

P. Bakule and E. Morenzoni, “Generation and applications of slow polarized muons,” Contemp. Phys. 45(3), 203–225 (2004).
[Crossref]

2003 (1)

P. Bakule, Y. Matsuda, Y. Miyake, P. Strasser, K. Shimomura, S. Makimura, and K. Nagamine, “Slow muon experiment by laser resonant ionization method at RIKEN-RAL muon facility,” Spectrochim. Acta B At. Spectrosc. 58(6), 1019–1030 (2003).
[Crossref]

2001 (2)

J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Misawa, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, and A. Kudryashov, “72 W Nd:Y3Al5O12 ceramic laser,” Appl. Phys. Lett. 78(23), 3586–3588 (2001).
[Crossref]

K. S. E. Eikema, J. Walz, and T. W. Hänsch, “Continuous coherent Lyman- α excitation of atomic hydrogen,” Phys. Rev. Lett. 86(25), 5679–5682 (2001).
[Crossref] [PubMed]

2000 (2)

J. Lu, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Highly efficient 2% Nd:yttrium aluminum garnet ceramic laser,” Appl. Phys. Lett. 77(23), 3707–3709 (2000).
[Crossref]

G. W. Faris, S. A. Meyer, M. J. Dyer, and M. J. Banks, “Two-photon-resonant difference-frequency mixing with an ArF excimer laser: vacuum-ultraviolet generation and multiphoton spectroscopy,” J. Opt. Soc. Am. B 17(11), 1856–1866 (2000).
[Crossref]

1999 (1)

K. S. E. Eikema, J. Walz, and T. W. Hänsch, “Continuous wave coherent Lyman-α radiation,” Phys. Rev. Lett. 83(19), 3828–3831 (1999).
[Crossref]

1998 (1)

1996 (1)

K. Nagamine, “Generation of ultra-slow muons for large-scale future applications,” Hyperfine Interact. 103(1), 123–135 (1996).
[Crossref]

1995 (1)

Y. Miyake, J. P. Marangos, K. Shimomura, P. Birrer, T. Kuga, and K. Nagamine, “Laser system for the resonant ionization of hydrogen-like atoms produced by nuclear reactions,” Nucl. Instrum. Methods Phys. Res. B 95(2), 265–275 (1995).
[Crossref]

1990 (1)

1988 (2)

B. D. Patterson, “Muonium states in semiconductors,” Rev. Mod. Phys. 60(1), 69–159 (1988).
[Crossref]

G. Hilber, D. J. Brink, A. Lago, and R. Wallenstein, “Optical-frequency conversion in gases using Gaussian laser beams with different confocal parameters,” Phys. Rev. A 38(12), 6231–6239 (1988).
[Crossref] [PubMed]

1987 (2)

D. S. Bethune and C. T. Rettner, “Optical harmonic-generation in nonuniform gaseous media with application to frequency tripling in free-jet expansions,” IEEE J. Quantum Electron. 23(8), 1348–1360 (1987).
[Crossref]

G. Hilber, A. Lago, and R. Wallenstein, “Broadly tunable vacuum-ultraviolet/extreme-ultraviolet radiation generated by resonant third-order frequency conversion in krypton,” J. Opt. Soc. Am. B 4(11), 1753–1764 (1987).
[Crossref]

1980 (1)

1979 (1)

R. Mahon, T. J. McIlrath, V. P. Myerscough, and D. W. Koopman, “Third-harmonic generation in Argon. Krypton and Xenon: bandwidth limitations in the vicinity of Lyman-α,” IEEE J. Quantum Electron. 15(6), 444–451 (1979).
[Crossref]

1978 (1)

R. Mahon, T. J. McIlrath, and D. W. Koopman, “Nonlinear generation of Lyman-alpha radiation,” Appl. Phys. Lett. 33(4), 305–306 (1978).
[Crossref]

1977 (1)

H. A. Hyman, “Photoionization cross sections for excited states of argon and krypton,” Appl. Phys. Lett. 31(1), 14–15 (1977).
[Crossref]

1975 (1)

G. C. Bjorklund, “Effects of focusing on third-order nonlinear process in isotropic media,” IEEE J. Quantum Electron. 11(6), 287–296 (1975).
[Crossref]

1965 (1)

L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP-USSR 20, 1307–1314 (1965).

Bakule, P.

O. A. Louchev, P. Bakule, N. Saito, S. Wada, K. Yokohama, K. Ishida, and M. Iwasaki, “Mechanism and computational model for Lyman-α-radiation generation by high-intensity-laser four-wave mixing in Kr-Ar gas,” Phys. Rev. A 84(3), 033842 (2011).
[Crossref]

P. Bakule, Y. Matsuda, Y. Miyake, K. Nagamine, M. Iwasaki, Y. Ikedo, K. Shimomura, P. Strasser, and S. Makimura, “Pulsed source of ultra low energy positive muons for near-surface mu SR studies,” Nucl. Instrum. Methods Phys. Res. B 266(2), 335–346 (2008).
[Crossref]

Y. Matsuda, P. Bakule, M. Iwasaki, T. Matsuzaki, Y. Miyake, Y. Ikedo, P. Strasser, K. Shimomura, S. Makimura, and K. Nagamine, “Generation of low-energy muons with laser resonant ionization,” Nucl. Phys. B 155(1), 346–348 (2006).
[Crossref]

P. Bakule and E. Morenzoni, “Generation and applications of slow polarized muons,” Contemp. Phys. 45(3), 203–225 (2004).
[Crossref]

P. Bakule, Y. Matsuda, Y. Miyake, P. Strasser, K. Shimomura, S. Makimura, and K. Nagamine, “Slow muon experiment by laser resonant ionization method at RIKEN-RAL muon facility,” Spectrochim. Acta B At. Spectrosc. 58(6), 1019–1030 (2003).
[Crossref]

Banks, M. J.

Barnes, N. P.

Bethune, D. S.

D. S. Bethune and C. T. Rettner, “Optical harmonic-generation in nonuniform gaseous media with application to frequency tripling in free-jet expansions,” IEEE J. Quantum Electron. 23(8), 1348–1360 (1987).
[Crossref]

Birrer, P.

Y. Miyake, J. P. Marangos, K. Shimomura, P. Birrer, T. Kuga, and K. Nagamine, “Laser system for the resonant ionization of hydrogen-like atoms produced by nuclear reactions,” Nucl. Instrum. Methods Phys. Res. B 95(2), 265–275 (1995).
[Crossref]

Bjorklund, G. C.

G. C. Bjorklund, “Effects of focusing on third-order nonlinear process in isotropic media,” IEEE J. Quantum Electron. 11(6), 287–296 (1975).
[Crossref]

Brink, D. J.

G. Hilber, D. J. Brink, A. Lago, and R. Wallenstein, “Optical-frequency conversion in gases using Gaussian laser beams with different confocal parameters,” Phys. Rev. A 38(12), 6231–6239 (1988).
[Crossref] [PubMed]

Connerade, J. P.

Di Bartolo, B.

Dyer, M. J.

Eikema, K. S. E.

A. Pahl, P. Fendel, B. R. Henrich, J. Walz, T. W. Hänsch, and K. S. E. Eikema, “Generation of continuous coherent radiation at Lyman-alpha and 1S-2S spectroscopy of atomic hydrogen,” Laser Phys. 15, 46–54 (2005).

K. S. E. Eikema, J. Walz, and T. W. Hänsch, “Continuous coherent Lyman- α excitation of atomic hydrogen,” Phys. Rev. Lett. 86(25), 5679–5682 (2001).
[Crossref] [PubMed]

K. S. E. Eikema, J. Walz, and T. W. Hänsch, “Continuous wave coherent Lyman-α radiation,” Phys. Rev. Lett. 83(19), 3828–3831 (1999).
[Crossref]

Equall, R. W.

Faris, G. W.

Fendel, P.

A. Pahl, P. Fendel, B. R. Henrich, J. Walz, T. W. Hänsch, and K. S. E. Eikema, “Generation of continuous coherent radiation at Lyman-alpha and 1S-2S spectroscopy of atomic hydrogen,” Laser Phys. 15, 46–54 (2005).

Hänsch, T. W.

M. Scheid, D. Kolbe, F. Markert, T. W. Hänsch, and J. Walz, “Continuous-wave Lyman-alpha generation with solid-state lasers,” Opt. Express 17(14), 11274–11280 (2009).
[Crossref] [PubMed]

A. Pahl, P. Fendel, B. R. Henrich, J. Walz, T. W. Hänsch, and K. S. E. Eikema, “Generation of continuous coherent radiation at Lyman-alpha and 1S-2S spectroscopy of atomic hydrogen,” Laser Phys. 15, 46–54 (2005).

K. S. E. Eikema, J. Walz, and T. W. Hänsch, “Continuous coherent Lyman- α excitation of atomic hydrogen,” Phys. Rev. Lett. 86(25), 5679–5682 (2001).
[Crossref] [PubMed]

K. S. E. Eikema, J. Walz, and T. W. Hänsch, “Continuous wave coherent Lyman-α radiation,” Phys. Rev. Lett. 83(19), 3828–3831 (1999).
[Crossref]

Henrich, B. R.

A. Pahl, P. Fendel, B. R. Henrich, J. Walz, T. W. Hänsch, and K. S. E. Eikema, “Generation of continuous coherent radiation at Lyman-alpha and 1S-2S spectroscopy of atomic hydrogen,” Laser Phys. 15, 46–54 (2005).

Higemoto, W.

J. Nakamura, T. Nagamoto, Y. Oishi, Y. Ikedo, P. Strasser, N. Saito, K. Miyazaki, K. Yokoyama, K. Okamura, Y. Miyake, S. Makimura, K. Nishiyama, K. Shimomura, N. Kawamura, A. Koda, W. Higemoto, S. Wada, M. Iwasaki, and E. Torikai, “Ultra slow muon microscope at MUSE/J-PARC,” J. Phys. Conf. Ser. 502, 012042 (2014).
[Crossref]

Hilber, G.

G. Hilber, D. J. Brink, A. Lago, and R. Wallenstein, “Optical-frequency conversion in gases using Gaussian laser beams with different confocal parameters,” Phys. Rev. A 38(12), 6231–6239 (1988).
[Crossref] [PubMed]

G. Hilber, A. Lago, and R. Wallenstein, “Broadly tunable vacuum-ultraviolet/extreme-ultraviolet radiation generated by resonant third-order frequency conversion in krypton,” J. Opt. Soc. Am. B 4(11), 1753–1764 (1987).
[Crossref]

Hutcheson, R. L.

Hutchinson, M. H. R.

Hyman, H. A.

H. A. Hyman, “Photoionization cross sections for excited states of argon and krypton,” Appl. Phys. Lett. 31(1), 14–15 (1977).
[Crossref]

Ikedo, Y.

J. Nakamura, T. Nagamoto, Y. Oishi, Y. Ikedo, P. Strasser, N. Saito, K. Miyazaki, K. Yokoyama, K. Okamura, Y. Miyake, S. Makimura, K. Nishiyama, K. Shimomura, N. Kawamura, A. Koda, W. Higemoto, S. Wada, M. Iwasaki, and E. Torikai, “Ultra slow muon microscope at MUSE/J-PARC,” J. Phys. Conf. Ser. 502, 012042 (2014).
[Crossref]

P. Bakule, Y. Matsuda, Y. Miyake, K. Nagamine, M. Iwasaki, Y. Ikedo, K. Shimomura, P. Strasser, and S. Makimura, “Pulsed source of ultra low energy positive muons for near-surface mu SR studies,” Nucl. Instrum. Methods Phys. Res. B 266(2), 335–346 (2008).
[Crossref]

Y. Matsuda, P. Bakule, M. Iwasaki, T. Matsuzaki, Y. Miyake, Y. Ikedo, P. Strasser, K. Shimomura, S. Makimura, and K. Nagamine, “Generation of low-energy muons with laser resonant ionization,” Nucl. Phys. B 155(1), 346–348 (2006).
[Crossref]

Ishida, K.

O. A. Louchev, P. Bakule, N. Saito, S. Wada, K. Yokohama, K. Ishida, and M. Iwasaki, “Mechanism and computational model for Lyman-α-radiation generation by high-intensity-laser four-wave mixing in Kr-Ar gas,” Phys. Rev. A 84(3), 033842 (2011).
[Crossref]

Iwasaki, M.

J. Nakamura, T. Nagamoto, Y. Oishi, Y. Ikedo, P. Strasser, N. Saito, K. Miyazaki, K. Yokoyama, K. Okamura, Y. Miyake, S. Makimura, K. Nishiyama, K. Shimomura, N. Kawamura, A. Koda, W. Higemoto, S. Wada, M. Iwasaki, and E. Torikai, “Ultra slow muon microscope at MUSE/J-PARC,” J. Phys. Conf. Ser. 502, 012042 (2014).
[Crossref]

O. A. Louchev, P. Bakule, N. Saito, S. Wada, K. Yokohama, K. Ishida, and M. Iwasaki, “Mechanism and computational model for Lyman-α-radiation generation by high-intensity-laser four-wave mixing in Kr-Ar gas,” Phys. Rev. A 84(3), 033842 (2011).
[Crossref]

P. Bakule, Y. Matsuda, Y. Miyake, K. Nagamine, M. Iwasaki, Y. Ikedo, K. Shimomura, P. Strasser, and S. Makimura, “Pulsed source of ultra low energy positive muons for near-surface mu SR studies,” Nucl. Instrum. Methods Phys. Res. B 266(2), 335–346 (2008).
[Crossref]

Y. Matsuda, P. Bakule, M. Iwasaki, T. Matsuzaki, Y. Miyake, Y. Ikedo, P. Strasser, K. Shimomura, S. Makimura, and K. Nagamine, “Generation of low-energy muons with laser resonant ionization,” Nucl. Phys. B 155(1), 346–348 (2006).
[Crossref]

Kaminskii, A. A.

J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Misawa, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, and A. Kudryashov, “72 W Nd:Y3Al5O12 ceramic laser,” Appl. Phys. Lett. 78(23), 3586–3588 (2001).
[Crossref]

J. Lu, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Highly efficient 2% Nd:yttrium aluminum garnet ceramic laser,” Appl. Phys. Lett. 77(23), 3707–3709 (2000).
[Crossref]

Kawamura, N.

J. Nakamura, T. Nagamoto, Y. Oishi, Y. Ikedo, P. Strasser, N. Saito, K. Miyazaki, K. Yokoyama, K. Okamura, Y. Miyake, S. Makimura, K. Nishiyama, K. Shimomura, N. Kawamura, A. Koda, W. Higemoto, S. Wada, M. Iwasaki, and E. Torikai, “Ultra slow muon microscope at MUSE/J-PARC,” J. Phys. Conf. Ser. 502, 012042 (2014).
[Crossref]

Keldysh, L. V.

L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP-USSR 20, 1307–1314 (1965).

Kielpinski, D.

D. Kielpinski, “Laser cooling of atoms and molecules with ultrafast pulses,” Phys. Rev. A 73(6), 063407 (2006).
[Crossref]

Koda, A.

J. Nakamura, T. Nagamoto, Y. Oishi, Y. Ikedo, P. Strasser, N. Saito, K. Miyazaki, K. Yokoyama, K. Okamura, Y. Miyake, S. Makimura, K. Nishiyama, K. Shimomura, N. Kawamura, A. Koda, W. Higemoto, S. Wada, M. Iwasaki, and E. Torikai, “Ultra slow muon microscope at MUSE/J-PARC,” J. Phys. Conf. Ser. 502, 012042 (2014).
[Crossref]

Kolbe, D.

Koopman, D. W.

R. Mahon, T. J. McIlrath, V. P. Myerscough, and D. W. Koopman, “Third-harmonic generation in Argon. Krypton and Xenon: bandwidth limitations in the vicinity of Lyman-α,” IEEE J. Quantum Electron. 15(6), 444–451 (1979).
[Crossref]

R. Mahon, T. J. McIlrath, and D. W. Koopman, “Nonlinear generation of Lyman-alpha radiation,” Appl. Phys. Lett. 33(4), 305–306 (1978).
[Crossref]

Kudryashov, A.

J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Misawa, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, and A. Kudryashov, “72 W Nd:Y3Al5O12 ceramic laser,” Appl. Phys. Lett. 78(23), 3586–3588 (2001).
[Crossref]

Kuga, T.

Y. Miyake, J. P. Marangos, K. Shimomura, P. Birrer, T. Kuga, and K. Nagamine, “Laser system for the resonant ionization of hydrogen-like atoms produced by nuclear reactions,” Nucl. Instrum. Methods Phys. Res. B 95(2), 265–275 (1995).
[Crossref]

Lago, A.

G. Hilber, D. J. Brink, A. Lago, and R. Wallenstein, “Optical-frequency conversion in gases using Gaussian laser beams with different confocal parameters,” Phys. Rev. A 38(12), 6231–6239 (1988).
[Crossref] [PubMed]

G. Hilber, A. Lago, and R. Wallenstein, “Broadly tunable vacuum-ultraviolet/extreme-ultraviolet radiation generated by resonant third-order frequency conversion in krypton,” J. Opt. Soc. Am. B 4(11), 1753–1764 (1987).
[Crossref]

Louchev, O. A.

O. A. Louchev, P. Bakule, N. Saito, S. Wada, K. Yokohama, K. Ishida, and M. Iwasaki, “Mechanism and computational model for Lyman-α-radiation generation by high-intensity-laser four-wave mixing in Kr-Ar gas,” Phys. Rev. A 84(3), 033842 (2011).
[Crossref]

Lu, J.

J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Misawa, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, and A. Kudryashov, “72 W Nd:Y3Al5O12 ceramic laser,” Appl. Phys. Lett. 78(23), 3586–3588 (2001).
[Crossref]

J. Lu, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Highly efficient 2% Nd:yttrium aluminum garnet ceramic laser,” Appl. Phys. Lett. 77(23), 3707–3709 (2000).
[Crossref]

Ma, H.

Mahon, R.

R. Mahon and Y. M. Yiu, “Generation of Lyman-α radiation in phase-matched rare-gas mixtures,” Opt. Lett. 5(7), 279–281 (1980).
[Crossref] [PubMed]

R. Mahon, T. J. McIlrath, V. P. Myerscough, and D. W. Koopman, “Third-harmonic generation in Argon. Krypton and Xenon: bandwidth limitations in the vicinity of Lyman-α,” IEEE J. Quantum Electron. 15(6), 444–451 (1979).
[Crossref]

R. Mahon, T. J. McIlrath, and D. W. Koopman, “Nonlinear generation of Lyman-alpha radiation,” Appl. Phys. Lett. 33(4), 305–306 (1978).
[Crossref]

Makimura, S.

J. Nakamura, T. Nagamoto, Y. Oishi, Y. Ikedo, P. Strasser, N. Saito, K. Miyazaki, K. Yokoyama, K. Okamura, Y. Miyake, S. Makimura, K. Nishiyama, K. Shimomura, N. Kawamura, A. Koda, W. Higemoto, S. Wada, M. Iwasaki, and E. Torikai, “Ultra slow muon microscope at MUSE/J-PARC,” J. Phys. Conf. Ser. 502, 012042 (2014).
[Crossref]

P. Bakule, Y. Matsuda, Y. Miyake, K. Nagamine, M. Iwasaki, Y. Ikedo, K. Shimomura, P. Strasser, and S. Makimura, “Pulsed source of ultra low energy positive muons for near-surface mu SR studies,” Nucl. Instrum. Methods Phys. Res. B 266(2), 335–346 (2008).
[Crossref]

Y. Matsuda, P. Bakule, M. Iwasaki, T. Matsuzaki, Y. Miyake, Y. Ikedo, P. Strasser, K. Shimomura, S. Makimura, and K. Nagamine, “Generation of low-energy muons with laser resonant ionization,” Nucl. Phys. B 155(1), 346–348 (2006).
[Crossref]

P. Bakule, Y. Matsuda, Y. Miyake, P. Strasser, K. Shimomura, S. Makimura, and K. Nagamine, “Slow muon experiment by laser resonant ionization method at RIKEN-RAL muon facility,” Spectrochim. Acta B At. Spectrosc. 58(6), 1019–1030 (2003).
[Crossref]

Marangos, J. P.

Y. Miyake, J. P. Marangos, K. Shimomura, P. Birrer, T. Kuga, and K. Nagamine, “Laser system for the resonant ionization of hydrogen-like atoms produced by nuclear reactions,” Nucl. Instrum. Methods Phys. Res. B 95(2), 265–275 (1995).
[Crossref]

J. P. Marangos, N. Shen, H. Ma, M. H. R. Hutchinson, and J. P. Connerade, “Broadly tunable vacuum-ultraviolet radiation source employing resonant enhanced sum-difference frequency mixing in krypton,” J. Opt. Soc. Am. B 7(7), 1254–1259 (1990).
[Crossref]

Markert, F.

Matsuda, Y.

P. Bakule, Y. Matsuda, Y. Miyake, K. Nagamine, M. Iwasaki, Y. Ikedo, K. Shimomura, P. Strasser, and S. Makimura, “Pulsed source of ultra low energy positive muons for near-surface mu SR studies,” Nucl. Instrum. Methods Phys. Res. B 266(2), 335–346 (2008).
[Crossref]

Y. Matsuda, P. Bakule, M. Iwasaki, T. Matsuzaki, Y. Miyake, Y. Ikedo, P. Strasser, K. Shimomura, S. Makimura, and K. Nagamine, “Generation of low-energy muons with laser resonant ionization,” Nucl. Phys. B 155(1), 346–348 (2006).
[Crossref]

P. Bakule, Y. Matsuda, Y. Miyake, P. Strasser, K. Shimomura, S. Makimura, and K. Nagamine, “Slow muon experiment by laser resonant ionization method at RIKEN-RAL muon facility,” Spectrochim. Acta B At. Spectrosc. 58(6), 1019–1030 (2003).
[Crossref]

Matsuzaki, T.

Y. Matsuda, P. Bakule, M. Iwasaki, T. Matsuzaki, Y. Miyake, Y. Ikedo, P. Strasser, K. Shimomura, S. Makimura, and K. Nagamine, “Generation of low-energy muons with laser resonant ionization,” Nucl. Phys. B 155(1), 346–348 (2006).
[Crossref]

McIlrath, T. J.

R. Mahon, T. J. McIlrath, V. P. Myerscough, and D. W. Koopman, “Third-harmonic generation in Argon. Krypton and Xenon: bandwidth limitations in the vicinity of Lyman-α,” IEEE J. Quantum Electron. 15(6), 444–451 (1979).
[Crossref]

R. Mahon, T. J. McIlrath, and D. W. Koopman, “Nonlinear generation of Lyman-alpha radiation,” Appl. Phys. Lett. 33(4), 305–306 (1978).
[Crossref]

Meyer, S. A.

Misawa, K.

J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Misawa, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, and A. Kudryashov, “72 W Nd:Y3Al5O12 ceramic laser,” Appl. Phys. Lett. 78(23), 3586–3588 (2001).
[Crossref]

Miyake, Y.

J. Nakamura, T. Nagamoto, Y. Oishi, Y. Ikedo, P. Strasser, N. Saito, K. Miyazaki, K. Yokoyama, K. Okamura, Y. Miyake, S. Makimura, K. Nishiyama, K. Shimomura, N. Kawamura, A. Koda, W. Higemoto, S. Wada, M. Iwasaki, and E. Torikai, “Ultra slow muon microscope at MUSE/J-PARC,” J. Phys. Conf. Ser. 502, 012042 (2014).
[Crossref]

P. Bakule, Y. Matsuda, Y. Miyake, K. Nagamine, M. Iwasaki, Y. Ikedo, K. Shimomura, P. Strasser, and S. Makimura, “Pulsed source of ultra low energy positive muons for near-surface mu SR studies,” Nucl. Instrum. Methods Phys. Res. B 266(2), 335–346 (2008).
[Crossref]

Y. Matsuda, P. Bakule, M. Iwasaki, T. Matsuzaki, Y. Miyake, Y. Ikedo, P. Strasser, K. Shimomura, S. Makimura, and K. Nagamine, “Generation of low-energy muons with laser resonant ionization,” Nucl. Phys. B 155(1), 346–348 (2006).
[Crossref]

P. Bakule, Y. Matsuda, Y. Miyake, P. Strasser, K. Shimomura, S. Makimura, and K. Nagamine, “Slow muon experiment by laser resonant ionization method at RIKEN-RAL muon facility,” Spectrochim. Acta B At. Spectrosc. 58(6), 1019–1030 (2003).
[Crossref]

Y. Miyake, J. P. Marangos, K. Shimomura, P. Birrer, T. Kuga, and K. Nagamine, “Laser system for the resonant ionization of hydrogen-like atoms produced by nuclear reactions,” Nucl. Instrum. Methods Phys. Res. B 95(2), 265–275 (1995).
[Crossref]

Miyazaki, K.

J. Nakamura, T. Nagamoto, Y. Oishi, Y. Ikedo, P. Strasser, N. Saito, K. Miyazaki, K. Yokoyama, K. Okamura, Y. Miyake, S. Makimura, K. Nishiyama, K. Shimomura, N. Kawamura, A. Koda, W. Higemoto, S. Wada, M. Iwasaki, and E. Torikai, “Ultra slow muon microscope at MUSE/J-PARC,” J. Phys. Conf. Ser. 502, 012042 (2014).
[Crossref]

Morenzoni, E.

P. Bakule and E. Morenzoni, “Generation and applications of slow polarized muons,” Contemp. Phys. 45(3), 203–225 (2004).
[Crossref]

Murai, T.

J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Misawa, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, and A. Kudryashov, “72 W Nd:Y3Al5O12 ceramic laser,” Appl. Phys. Lett. 78(23), 3586–3588 (2001).
[Crossref]

Myerscough, V. P.

R. Mahon, T. J. McIlrath, V. P. Myerscough, and D. W. Koopman, “Third-harmonic generation in Argon. Krypton and Xenon: bandwidth limitations in the vicinity of Lyman-α,” IEEE J. Quantum Electron. 15(6), 444–451 (1979).
[Crossref]

Nagamine, K.

P. Bakule, Y. Matsuda, Y. Miyake, K. Nagamine, M. Iwasaki, Y. Ikedo, K. Shimomura, P. Strasser, and S. Makimura, “Pulsed source of ultra low energy positive muons for near-surface mu SR studies,” Nucl. Instrum. Methods Phys. Res. B 266(2), 335–346 (2008).
[Crossref]

Y. Matsuda, P. Bakule, M. Iwasaki, T. Matsuzaki, Y. Miyake, Y. Ikedo, P. Strasser, K. Shimomura, S. Makimura, and K. Nagamine, “Generation of low-energy muons with laser resonant ionization,” Nucl. Phys. B 155(1), 346–348 (2006).
[Crossref]

P. Bakule, Y. Matsuda, Y. Miyake, P. Strasser, K. Shimomura, S. Makimura, and K. Nagamine, “Slow muon experiment by laser resonant ionization method at RIKEN-RAL muon facility,” Spectrochim. Acta B At. Spectrosc. 58(6), 1019–1030 (2003).
[Crossref]

K. Nagamine, “Generation of ultra-slow muons for large-scale future applications,” Hyperfine Interact. 103(1), 123–135 (1996).
[Crossref]

Y. Miyake, J. P. Marangos, K. Shimomura, P. Birrer, T. Kuga, and K. Nagamine, “Laser system for the resonant ionization of hydrogen-like atoms produced by nuclear reactions,” Nucl. Instrum. Methods Phys. Res. B 95(2), 265–275 (1995).
[Crossref]

Nagamoto, T.

J. Nakamura, T. Nagamoto, Y. Oishi, Y. Ikedo, P. Strasser, N. Saito, K. Miyazaki, K. Yokoyama, K. Okamura, Y. Miyake, S. Makimura, K. Nishiyama, K. Shimomura, N. Kawamura, A. Koda, W. Higemoto, S. Wada, M. Iwasaki, and E. Torikai, “Ultra slow muon microscope at MUSE/J-PARC,” J. Phys. Conf. Ser. 502, 012042 (2014).
[Crossref]

Nakamura, J.

J. Nakamura, T. Nagamoto, Y. Oishi, Y. Ikedo, P. Strasser, N. Saito, K. Miyazaki, K. Yokoyama, K. Okamura, Y. Miyake, S. Makimura, K. Nishiyama, K. Shimomura, N. Kawamura, A. Koda, W. Higemoto, S. Wada, M. Iwasaki, and E. Torikai, “Ultra slow muon microscope at MUSE/J-PARC,” J. Phys. Conf. Ser. 502, 012042 (2014).
[Crossref]

Nishiyama, K.

J. Nakamura, T. Nagamoto, Y. Oishi, Y. Ikedo, P. Strasser, N. Saito, K. Miyazaki, K. Yokoyama, K. Okamura, Y. Miyake, S. Makimura, K. Nishiyama, K. Shimomura, N. Kawamura, A. Koda, W. Higemoto, S. Wada, M. Iwasaki, and E. Torikai, “Ultra slow muon microscope at MUSE/J-PARC,” J. Phys. Conf. Ser. 502, 012042 (2014).
[Crossref]

Oishi, Y.

J. Nakamura, T. Nagamoto, Y. Oishi, Y. Ikedo, P. Strasser, N. Saito, K. Miyazaki, K. Yokoyama, K. Okamura, Y. Miyake, S. Makimura, K. Nishiyama, K. Shimomura, N. Kawamura, A. Koda, W. Higemoto, S. Wada, M. Iwasaki, and E. Torikai, “Ultra slow muon microscope at MUSE/J-PARC,” J. Phys. Conf. Ser. 502, 012042 (2014).
[Crossref]

Okamura, K.

J. Nakamura, T. Nagamoto, Y. Oishi, Y. Ikedo, P. Strasser, N. Saito, K. Miyazaki, K. Yokoyama, K. Okamura, Y. Miyake, S. Makimura, K. Nishiyama, K. Shimomura, N. Kawamura, A. Koda, W. Higemoto, S. Wada, M. Iwasaki, and E. Torikai, “Ultra slow muon microscope at MUSE/J-PARC,” J. Phys. Conf. Ser. 502, 012042 (2014).
[Crossref]

Pahl, A.

A. Pahl, P. Fendel, B. R. Henrich, J. Walz, T. W. Hänsch, and K. S. E. Eikema, “Generation of continuous coherent radiation at Lyman-alpha and 1S-2S spectroscopy of atomic hydrogen,” Laser Phys. 15, 46–54 (2005).

Patterson, B. D.

B. D. Patterson, “Muonium states in semiconductors,” Rev. Mod. Phys. 60(1), 69–159 (1988).
[Crossref]

Prabhu, M.

J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Misawa, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, and A. Kudryashov, “72 W Nd:Y3Al5O12 ceramic laser,” Appl. Phys. Lett. 78(23), 3586–3588 (2001).
[Crossref]

J. Lu, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Highly efficient 2% Nd:yttrium aluminum garnet ceramic laser,” Appl. Phys. Lett. 77(23), 3707–3709 (2000).
[Crossref]

Rettner, C. T.

D. S. Bethune and C. T. Rettner, “Optical harmonic-generation in nonuniform gaseous media with application to frequency tripling in free-jet expansions,” IEEE J. Quantum Electron. 23(8), 1348–1360 (1987).
[Crossref]

Saito, N.

J. Nakamura, T. Nagamoto, Y. Oishi, Y. Ikedo, P. Strasser, N. Saito, K. Miyazaki, K. Yokoyama, K. Okamura, Y. Miyake, S. Makimura, K. Nishiyama, K. Shimomura, N. Kawamura, A. Koda, W. Higemoto, S. Wada, M. Iwasaki, and E. Torikai, “Ultra slow muon microscope at MUSE/J-PARC,” J. Phys. Conf. Ser. 502, 012042 (2014).
[Crossref]

O. A. Louchev, P. Bakule, N. Saito, S. Wada, K. Yokohama, K. Ishida, and M. Iwasaki, “Mechanism and computational model for Lyman-α-radiation generation by high-intensity-laser four-wave mixing in Kr-Ar gas,” Phys. Rev. A 84(3), 033842 (2011).
[Crossref]

Scheid, M.

Shen, N.

Shimomura, K.

J. Nakamura, T. Nagamoto, Y. Oishi, Y. Ikedo, P. Strasser, N. Saito, K. Miyazaki, K. Yokoyama, K. Okamura, Y. Miyake, S. Makimura, K. Nishiyama, K. Shimomura, N. Kawamura, A. Koda, W. Higemoto, S. Wada, M. Iwasaki, and E. Torikai, “Ultra slow muon microscope at MUSE/J-PARC,” J. Phys. Conf. Ser. 502, 012042 (2014).
[Crossref]

P. Bakule, Y. Matsuda, Y. Miyake, K. Nagamine, M. Iwasaki, Y. Ikedo, K. Shimomura, P. Strasser, and S. Makimura, “Pulsed source of ultra low energy positive muons for near-surface mu SR studies,” Nucl. Instrum. Methods Phys. Res. B 266(2), 335–346 (2008).
[Crossref]

Y. Matsuda, P. Bakule, M. Iwasaki, T. Matsuzaki, Y. Miyake, Y. Ikedo, P. Strasser, K. Shimomura, S. Makimura, and K. Nagamine, “Generation of low-energy muons with laser resonant ionization,” Nucl. Phys. B 155(1), 346–348 (2006).
[Crossref]

P. Bakule, Y. Matsuda, Y. Miyake, P. Strasser, K. Shimomura, S. Makimura, and K. Nagamine, “Slow muon experiment by laser resonant ionization method at RIKEN-RAL muon facility,” Spectrochim. Acta B At. Spectrosc. 58(6), 1019–1030 (2003).
[Crossref]

Y. Miyake, J. P. Marangos, K. Shimomura, P. Birrer, T. Kuga, and K. Nagamine, “Laser system for the resonant ionization of hydrogen-like atoms produced by nuclear reactions,” Nucl. Instrum. Methods Phys. Res. B 95(2), 265–275 (1995).
[Crossref]

Strasser, P.

J. Nakamura, T. Nagamoto, Y. Oishi, Y. Ikedo, P. Strasser, N. Saito, K. Miyazaki, K. Yokoyama, K. Okamura, Y. Miyake, S. Makimura, K. Nishiyama, K. Shimomura, N. Kawamura, A. Koda, W. Higemoto, S. Wada, M. Iwasaki, and E. Torikai, “Ultra slow muon microscope at MUSE/J-PARC,” J. Phys. Conf. Ser. 502, 012042 (2014).
[Crossref]

P. Bakule, Y. Matsuda, Y. Miyake, K. Nagamine, M. Iwasaki, Y. Ikedo, K. Shimomura, P. Strasser, and S. Makimura, “Pulsed source of ultra low energy positive muons for near-surface mu SR studies,” Nucl. Instrum. Methods Phys. Res. B 266(2), 335–346 (2008).
[Crossref]

Y. Matsuda, P. Bakule, M. Iwasaki, T. Matsuzaki, Y. Miyake, Y. Ikedo, P. Strasser, K. Shimomura, S. Makimura, and K. Nagamine, “Generation of low-energy muons with laser resonant ionization,” Nucl. Phys. B 155(1), 346–348 (2006).
[Crossref]

P. Bakule, Y. Matsuda, Y. Miyake, P. Strasser, K. Shimomura, S. Makimura, and K. Nagamine, “Slow muon experiment by laser resonant ionization method at RIKEN-RAL muon facility,” Spectrochim. Acta B At. Spectrosc. 58(6), 1019–1030 (2003).
[Crossref]

Takaichi, K.

J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Misawa, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, and A. Kudryashov, “72 W Nd:Y3Al5O12 ceramic laser,” Appl. Phys. Lett. 78(23), 3586–3588 (2001).
[Crossref]

Torikai, E.

J. Nakamura, T. Nagamoto, Y. Oishi, Y. Ikedo, P. Strasser, N. Saito, K. Miyazaki, K. Yokoyama, K. Okamura, Y. Miyake, S. Makimura, K. Nishiyama, K. Shimomura, N. Kawamura, A. Koda, W. Higemoto, S. Wada, M. Iwasaki, and E. Torikai, “Ultra slow muon microscope at MUSE/J-PARC,” J. Phys. Conf. Ser. 502, 012042 (2014).
[Crossref]

Ueda, K.

J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Misawa, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, and A. Kudryashov, “72 W Nd:Y3Al5O12 ceramic laser,” Appl. Phys. Lett. 78(23), 3586–3588 (2001).
[Crossref]

J. Lu, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Highly efficient 2% Nd:yttrium aluminum garnet ceramic laser,” Appl. Phys. Lett. 77(23), 3707–3709 (2000).
[Crossref]

Uematsu, T.

J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Misawa, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, and A. Kudryashov, “72 W Nd:Y3Al5O12 ceramic laser,” Appl. Phys. Lett. 78(23), 3586–3588 (2001).
[Crossref]

Wada, S.

J. Nakamura, T. Nagamoto, Y. Oishi, Y. Ikedo, P. Strasser, N. Saito, K. Miyazaki, K. Yokoyama, K. Okamura, Y. Miyake, S. Makimura, K. Nishiyama, K. Shimomura, N. Kawamura, A. Koda, W. Higemoto, S. Wada, M. Iwasaki, and E. Torikai, “Ultra slow muon microscope at MUSE/J-PARC,” J. Phys. Conf. Ser. 502, 012042 (2014).
[Crossref]

O. A. Louchev, P. Bakule, N. Saito, S. Wada, K. Yokohama, K. Ishida, and M. Iwasaki, “Mechanism and computational model for Lyman-α-radiation generation by high-intensity-laser four-wave mixing in Kr-Ar gas,” Phys. Rev. A 84(3), 033842 (2011).
[Crossref]

Wallenstein, R.

G. Hilber, D. J. Brink, A. Lago, and R. Wallenstein, “Optical-frequency conversion in gases using Gaussian laser beams with different confocal parameters,” Phys. Rev. A 38(12), 6231–6239 (1988).
[Crossref] [PubMed]

G. Hilber, A. Lago, and R. Wallenstein, “Broadly tunable vacuum-ultraviolet/extreme-ultraviolet radiation generated by resonant third-order frequency conversion in krypton,” J. Opt. Soc. Am. B 4(11), 1753–1764 (1987).
[Crossref]

Walsh, B. M.

Walz, J.

M. Scheid, D. Kolbe, F. Markert, T. W. Hänsch, and J. Walz, “Continuous-wave Lyman-alpha generation with solid-state lasers,” Opt. Express 17(14), 11274–11280 (2009).
[Crossref] [PubMed]

A. Pahl, P. Fendel, B. R. Henrich, J. Walz, T. W. Hänsch, and K. S. E. Eikema, “Generation of continuous coherent radiation at Lyman-alpha and 1S-2S spectroscopy of atomic hydrogen,” Laser Phys. 15, 46–54 (2005).

K. S. E. Eikema, J. Walz, and T. W. Hänsch, “Continuous coherent Lyman- α excitation of atomic hydrogen,” Phys. Rev. Lett. 86(25), 5679–5682 (2001).
[Crossref] [PubMed]

K. S. E. Eikema, J. Walz, and T. W. Hänsch, “Continuous wave coherent Lyman-α radiation,” Phys. Rev. Lett. 83(19), 3828–3831 (1999).
[Crossref]

Xu, J.

J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Misawa, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, and A. Kudryashov, “72 W Nd:Y3Al5O12 ceramic laser,” Appl. Phys. Lett. 78(23), 3586–3588 (2001).
[Crossref]

J. Lu, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Highly efficient 2% Nd:yttrium aluminum garnet ceramic laser,” Appl. Phys. Lett. 77(23), 3707–3709 (2000).
[Crossref]

Yagi, H.

J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Misawa, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, and A. Kudryashov, “72 W Nd:Y3Al5O12 ceramic laser,” Appl. Phys. Lett. 78(23), 3586–3588 (2001).
[Crossref]

J. Lu, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Highly efficient 2% Nd:yttrium aluminum garnet ceramic laser,” Appl. Phys. Lett. 77(23), 3707–3709 (2000).
[Crossref]

Yanagitani, T.

J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Misawa, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, and A. Kudryashov, “72 W Nd:Y3Al5O12 ceramic laser,” Appl. Phys. Lett. 78(23), 3586–3588 (2001).
[Crossref]

J. Lu, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Highly efficient 2% Nd:yttrium aluminum garnet ceramic laser,” Appl. Phys. Lett. 77(23), 3707–3709 (2000).
[Crossref]

Yiu, Y. M.

Yokohama, K.

O. A. Louchev, P. Bakule, N. Saito, S. Wada, K. Yokohama, K. Ishida, and M. Iwasaki, “Mechanism and computational model for Lyman-α-radiation generation by high-intensity-laser four-wave mixing in Kr-Ar gas,” Phys. Rev. A 84(3), 033842 (2011).
[Crossref]

Yokoyama, K.

J. Nakamura, T. Nagamoto, Y. Oishi, Y. Ikedo, P. Strasser, N. Saito, K. Miyazaki, K. Yokoyama, K. Okamura, Y. Miyake, S. Makimura, K. Nishiyama, K. Shimomura, N. Kawamura, A. Koda, W. Higemoto, S. Wada, M. Iwasaki, and E. Torikai, “Ultra slow muon microscope at MUSE/J-PARC,” J. Phys. Conf. Ser. 502, 012042 (2014).
[Crossref]

Appl. Phys. Lett. (4)

R. Mahon, T. J. McIlrath, and D. W. Koopman, “Nonlinear generation of Lyman-alpha radiation,” Appl. Phys. Lett. 33(4), 305–306 (1978).
[Crossref]

H. A. Hyman, “Photoionization cross sections for excited states of argon and krypton,” Appl. Phys. Lett. 31(1), 14–15 (1977).
[Crossref]

J. Lu, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Highly efficient 2% Nd:yttrium aluminum garnet ceramic laser,” Appl. Phys. Lett. 77(23), 3707–3709 (2000).
[Crossref]

J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Misawa, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, and A. Kudryashov, “72 W Nd:Y3Al5O12 ceramic laser,” Appl. Phys. Lett. 78(23), 3586–3588 (2001).
[Crossref]

Contemp. Phys. (1)

P. Bakule and E. Morenzoni, “Generation and applications of slow polarized muons,” Contemp. Phys. 45(3), 203–225 (2004).
[Crossref]

Hyperfine Interact. (1)

K. Nagamine, “Generation of ultra-slow muons for large-scale future applications,” Hyperfine Interact. 103(1), 123–135 (1996).
[Crossref]

IEEE J. Quantum Electron. (3)

R. Mahon, T. J. McIlrath, V. P. Myerscough, and D. W. Koopman, “Third-harmonic generation in Argon. Krypton and Xenon: bandwidth limitations in the vicinity of Lyman-α,” IEEE J. Quantum Electron. 15(6), 444–451 (1979).
[Crossref]

G. C. Bjorklund, “Effects of focusing on third-order nonlinear process in isotropic media,” IEEE J. Quantum Electron. 11(6), 287–296 (1975).
[Crossref]

D. S. Bethune and C. T. Rettner, “Optical harmonic-generation in nonuniform gaseous media with application to frequency tripling in free-jet expansions,” IEEE J. Quantum Electron. 23(8), 1348–1360 (1987).
[Crossref]

J. Opt. Soc. Am. B (4)

J. Phys. Conf. Ser. (1)

J. Nakamura, T. Nagamoto, Y. Oishi, Y. Ikedo, P. Strasser, N. Saito, K. Miyazaki, K. Yokoyama, K. Okamura, Y. Miyake, S. Makimura, K. Nishiyama, K. Shimomura, N. Kawamura, A. Koda, W. Higemoto, S. Wada, M. Iwasaki, and E. Torikai, “Ultra slow muon microscope at MUSE/J-PARC,” J. Phys. Conf. Ser. 502, 012042 (2014).
[Crossref]

Laser Phys. (1)

A. Pahl, P. Fendel, B. R. Henrich, J. Walz, T. W. Hänsch, and K. S. E. Eikema, “Generation of continuous coherent radiation at Lyman-alpha and 1S-2S spectroscopy of atomic hydrogen,” Laser Phys. 15, 46–54 (2005).

Nucl. Instrum. Methods Phys. Res. B (2)

P. Bakule, Y. Matsuda, Y. Miyake, K. Nagamine, M. Iwasaki, Y. Ikedo, K. Shimomura, P. Strasser, and S. Makimura, “Pulsed source of ultra low energy positive muons for near-surface mu SR studies,” Nucl. Instrum. Methods Phys. Res. B 266(2), 335–346 (2008).
[Crossref]

Y. Miyake, J. P. Marangos, K. Shimomura, P. Birrer, T. Kuga, and K. Nagamine, “Laser system for the resonant ionization of hydrogen-like atoms produced by nuclear reactions,” Nucl. Instrum. Methods Phys. Res. B 95(2), 265–275 (1995).
[Crossref]

Nucl. Phys. B (1)

Y. Matsuda, P. Bakule, M. Iwasaki, T. Matsuzaki, Y. Miyake, Y. Ikedo, P. Strasser, K. Shimomura, S. Makimura, and K. Nagamine, “Generation of low-energy muons with laser resonant ionization,” Nucl. Phys. B 155(1), 346–348 (2006).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. A (3)

O. A. Louchev, P. Bakule, N. Saito, S. Wada, K. Yokohama, K. Ishida, and M. Iwasaki, “Mechanism and computational model for Lyman-α-radiation generation by high-intensity-laser four-wave mixing in Kr-Ar gas,” Phys. Rev. A 84(3), 033842 (2011).
[Crossref]

D. Kielpinski, “Laser cooling of atoms and molecules with ultrafast pulses,” Phys. Rev. A 73(6), 063407 (2006).
[Crossref]

G. Hilber, D. J. Brink, A. Lago, and R. Wallenstein, “Optical-frequency conversion in gases using Gaussian laser beams with different confocal parameters,” Phys. Rev. A 38(12), 6231–6239 (1988).
[Crossref] [PubMed]

Phys. Rev. Lett. (2)

K. S. E. Eikema, J. Walz, and T. W. Hänsch, “Continuous wave coherent Lyman-α radiation,” Phys. Rev. Lett. 83(19), 3828–3831 (1999).
[Crossref]

K. S. E. Eikema, J. Walz, and T. W. Hänsch, “Continuous coherent Lyman- α excitation of atomic hydrogen,” Phys. Rev. Lett. 86(25), 5679–5682 (2001).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

B. D. Patterson, “Muonium states in semiconductors,” Rev. Mod. Phys. 60(1), 69–159 (1988).
[Crossref]

Sov. Phys. JETP-USSR (1)

L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP-USSR 20, 1307–1314 (1965).

Spectrochim. Acta B At. Spectrosc. (1)

P. Bakule, Y. Matsuda, Y. Miyake, P. Strasser, K. Shimomura, S. Makimura, and K. Nagamine, “Slow muon experiment by laser resonant ionization method at RIKEN-RAL muon facility,” Spectrochim. Acta B At. Spectrosc. 58(6), 1019–1030 (2003).
[Crossref]

Other (5)

J. F. Reintjes, Nonlinear Optical Parametric Processes in Liquids and Gases (Academic, 1984).

Y. A. Il’insky and L. V. Keldysh, Electromagnetic Response of Materials Media (Plenum, 1994).

Yu. Raizer, Laser Spark and Propagation of Discharges (Consultants Bureau, 1976).

Y. Oishi, K. Okamura, K. Miyazaki, N. Saito, M. Iwasaki, and S. Wada, “All-solid-state laser amplifiers for intense Lyman-α generation,” Proc. Int. Symp. Science Explored by Ultra Slow Muon (USM2013) JPS Conf. Proc. 2, 010105 (2014).
[Crossref]

R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematization of laser four-wave mixing complicated by multi-photon ionization.

Fig. 2
Fig. 2

Schematic of the optical system used for generation of L-α radiation.

Fig. 3
Fig. 3

Generated pulse energy of input radiations vs the operation time.

Fig. 4
Fig. 4

Output energy of hydrogen L-α radiation vs Kr pressure.

Tables (1)

Tables Icon

Table 1 Estimated multi-photon ionization data of Kr.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

W mpi ω i n ph 3/2 ( ε qi /2Δ E ion ) n ph ,
d n dt = σ (2) I 1 2 ( ω 1 ) 2 ( N Kr0 n n e ) σ a I 1 ω 1 n ,
d n e dt = σ a I 1 ω 1 n ,
n (t)= a N Kr0 α 1 α 2 ( e α 1 t e α 2 t ),
n e (t)= ab N Kr0 α 1 α 2 [ 1 α 1 ( e α 1 t 1) 1 α 2 ( e α 2 t 1) ],
d ε e /dt=2 ε qΣ ν c ,

Metrics