Abstract

This paper reports the dynamic characteristics of sequential energy transfer up-conversion processes in Yb3+/Er3+:SrMoO4 crystal. A general method based on the emission intensity has been developed to calculate the nonradiative decay rate. A new macroscopic theory has been developed to calculate the energy transfer parameters based on the crystal structure. According to both new calculating methods, the spectral parameters of Yb3+/Er3+:SrMoO4 crystal were calculated, such as up-conversion luminescent quantum efficiencies and threshold pump powers. Both calculating methods may be applied to calculate the spectral parameters of the laser crystal materials.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ho3+/Er3+ doped fluoride glass sensitized by Ce3+ pumped by 1550 nm LD for efficient 2.0 μm laser applications

Feifei Huang, Jimeng Cheng, Xueqiang Liu, Lili Hu, and Danping Chen
Opt. Express 22(17) 20924-20935 (2014)

Infrared and upconversion spectroscopic studies of high Er3+content transparent YAG ceramic

M. Pokhrel, G. A. Kumar, P. Samuel, K. I. Ueda, T. Yanagitani, H. Yagi, and D. K. Sardar
Opt. Mater. Express 1(7) 1272-1285 (2011)

On the origin of bichromatic laser emission in Nd3+-doped fluoride glasses

J. Azkargorta, I. Iparraguirre, R. Balda, and J. Fernández
Opt. Express 16(16) 11894-11906 (2008)

References

  • View by:
  • |
  • |
  • |

  1. F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–174 (2004).
    [Crossref] [PubMed]
  2. E. Gürmen, E. Danils, and J. S. King, “Crystal structure refinement of SrMoO4, SrWO4, CaMoO4, and BaWO4 by neutron diffraction,” J. Chem. Phys. 55(3), 1093–1097 (1971).
    [Crossref]
  3. A. A. Kaminskii, “Modern developments in the physics of crystalline laser materials,” Phys. Stat. Solidi A 200(2), 215–296 (2003).
    [Crossref]
  4. H. Yu, Z. Li, A. J. Lee, J. Li, H. Zhang, J. Wang, H. M. Pask, J. A. Piper, and M. Jiang, “A continuous wave SrMoO4 Raman laser,” Opt. Lett. 36(4), 579–581 (2011).
    [Crossref] [PubMed]
  5. B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127(3), 750–761 (1962).
    [Crossref]
  6. G. S. Ofelt, “Intensities of crystal spectra of rare‐earth ions,” J. Chem. Phys. 37(3), 511–520 (1962).
    [Crossref]
  7. T. Förster, “Zwischenmolekulare energiewanderung und fluoreszenz,” Ann. Phys. 437(2), 55–75 (1948).
    [Crossref]
  8. D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21(5), 836–850 (1953).
    [Crossref]
  9. M. Inokuti and F. Hirayama, “Influence of energy transfer by the exchange mechanism on donor luminescence,” J. Chem. Phys. 43(6), 1978–1989 (1965).
    [Crossref]
  10. M. Yokota and O. Tanimoto, “Effects of diffusion on energy transfer by resonance,” J. Phys. Soc. Jpn. 22(3), 779–784 (1967).
    [Crossref]
  11. A. I. Burshtein, “Hopping Mechanism of Energy Transfer,” Sov. Phys. JETP 35(5), 882–885 (1972).
  12. R. Z. Zhuang, L. Z. Zhang, Z. B. Lin, and G. F. Wang, “Growth and spectral properties Yb3+/Na+: CaMoO4 crystal,” Mater. Res. Innov. 12(2), 62–65 (2008).
    [Crossref]
  13. G. F. Wang, W. Z. Chen, Z. B. Lin, and Z. S. Hu, “Optical transition probability of Nd3+ ions in a α− Nd3+: LaSc3(BO3)4 crystal,” Phys. Rev. B 60(23), 15469–15471 (1999).
    [Crossref]
  14. A. A. Kaminskii, V. S. Mironov, A. Kornienko, S. N. Bagaev, G. Boulon, A. Brenier, and B. D. Bartolo, “New laser properties and spectroscopy of orthorhombic crystals YAlO3:Er3+. Intensity luminescence characteristics, stimulated emission, and full set of squared reduced-matrix elements |〈α[SL] J| |U(t)||α′[S′ L′] J′〉|2 for Er3+ Ions,” Phys. Status Solidi, A Appl. Res. 151(1), 231–255 (1995).
    [Crossref]
  15. F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, “Laser Demonstration of Yb3Al5O12 (YbAG) and Materials Properties of Highly Doped Yb:YAG,” IEEE J. Quantum Electron. 37(1), 135–144 (2001).
    [Crossref]
  16. L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb doped crystals for laser applications,” IEEE J. Quantum Electron. 29(4), 1179–1191 (1993).
    [Crossref]
  17. P. F. Moulton, “Spectroscopic and laser characteristics of Ti:Al2O3,” J. Opt. Soc. Am. B 3(1), 125–133 (1986).
    [Crossref]
  18. W. L. Bond, “Measurement of the refractive indices of several crystals,” J. Appl. Phys. 36(5), 1674–1677 (1965).
    [Crossref]
  19. T. Miyakawa and D. L. Dexter, “Phonon sidebands, multiphonon relaxation of excited states, and phonon-assisted energy transfer between ions in solids,” Phys. Rev. B 1(7), 2961–2969 (1970).
    [Crossref]
  20. M. J. Weber, “Luminescence decay by energy migration and transfer: observation of diffusion-limited relaxation,” Phys. Rev. B 4(9), 2932–2939 (1971).
    [Crossref]
  21. M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61(5), 3337–3346 (2000).
    [Crossref]

2011 (1)

2008 (1)

R. Z. Zhuang, L. Z. Zhang, Z. B. Lin, and G. F. Wang, “Growth and spectral properties Yb3+/Na+: CaMoO4 crystal,” Mater. Res. Innov. 12(2), 62–65 (2008).
[Crossref]

2004 (1)

F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–174 (2004).
[Crossref] [PubMed]

2003 (1)

A. A. Kaminskii, “Modern developments in the physics of crystalline laser materials,” Phys. Stat. Solidi A 200(2), 215–296 (2003).
[Crossref]

2001 (1)

F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, “Laser Demonstration of Yb3Al5O12 (YbAG) and Materials Properties of Highly Doped Yb:YAG,” IEEE J. Quantum Electron. 37(1), 135–144 (2001).
[Crossref]

2000 (1)

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61(5), 3337–3346 (2000).
[Crossref]

1999 (1)

G. F. Wang, W. Z. Chen, Z. B. Lin, and Z. S. Hu, “Optical transition probability of Nd3+ ions in a α− Nd3+: LaSc3(BO3)4 crystal,” Phys. Rev. B 60(23), 15469–15471 (1999).
[Crossref]

1995 (1)

A. A. Kaminskii, V. S. Mironov, A. Kornienko, S. N. Bagaev, G. Boulon, A. Brenier, and B. D. Bartolo, “New laser properties and spectroscopy of orthorhombic crystals YAlO3:Er3+. Intensity luminescence characteristics, stimulated emission, and full set of squared reduced-matrix elements |〈α[SL] J| |U(t)||α′[S′ L′] J′〉|2 for Er3+ Ions,” Phys. Status Solidi, A Appl. Res. 151(1), 231–255 (1995).
[Crossref]

1993 (1)

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb doped crystals for laser applications,” IEEE J. Quantum Electron. 29(4), 1179–1191 (1993).
[Crossref]

1986 (1)

1972 (1)

A. I. Burshtein, “Hopping Mechanism of Energy Transfer,” Sov. Phys. JETP 35(5), 882–885 (1972).

1971 (2)

M. J. Weber, “Luminescence decay by energy migration and transfer: observation of diffusion-limited relaxation,” Phys. Rev. B 4(9), 2932–2939 (1971).
[Crossref]

E. Gürmen, E. Danils, and J. S. King, “Crystal structure refinement of SrMoO4, SrWO4, CaMoO4, and BaWO4 by neutron diffraction,” J. Chem. Phys. 55(3), 1093–1097 (1971).
[Crossref]

1970 (1)

T. Miyakawa and D. L. Dexter, “Phonon sidebands, multiphonon relaxation of excited states, and phonon-assisted energy transfer between ions in solids,” Phys. Rev. B 1(7), 2961–2969 (1970).
[Crossref]

1967 (1)

M. Yokota and O. Tanimoto, “Effects of diffusion on energy transfer by resonance,” J. Phys. Soc. Jpn. 22(3), 779–784 (1967).
[Crossref]

1965 (2)

M. Inokuti and F. Hirayama, “Influence of energy transfer by the exchange mechanism on donor luminescence,” J. Chem. Phys. 43(6), 1978–1989 (1965).
[Crossref]

W. L. Bond, “Measurement of the refractive indices of several crystals,” J. Appl. Phys. 36(5), 1674–1677 (1965).
[Crossref]

1962 (2)

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127(3), 750–761 (1962).
[Crossref]

G. S. Ofelt, “Intensities of crystal spectra of rare‐earth ions,” J. Chem. Phys. 37(3), 511–520 (1962).
[Crossref]

1953 (1)

D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21(5), 836–850 (1953).
[Crossref]

1948 (1)

T. Förster, “Zwischenmolekulare energiewanderung und fluoreszenz,” Ann. Phys. 437(2), 55–75 (1948).
[Crossref]

Auzel, F.

F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–174 (2004).
[Crossref] [PubMed]

Bagaev, S. N.

A. A. Kaminskii, V. S. Mironov, A. Kornienko, S. N. Bagaev, G. Boulon, A. Brenier, and B. D. Bartolo, “New laser properties and spectroscopy of orthorhombic crystals YAlO3:Er3+. Intensity luminescence characteristics, stimulated emission, and full set of squared reduced-matrix elements |〈α[SL] J| |U(t)||α′[S′ L′] J′〉|2 for Er3+ Ions,” Phys. Status Solidi, A Appl. Res. 151(1), 231–255 (1995).
[Crossref]

Bartolo, B. D.

A. A. Kaminskii, V. S. Mironov, A. Kornienko, S. N. Bagaev, G. Boulon, A. Brenier, and B. D. Bartolo, “New laser properties and spectroscopy of orthorhombic crystals YAlO3:Er3+. Intensity luminescence characteristics, stimulated emission, and full set of squared reduced-matrix elements |〈α[SL] J| |U(t)||α′[S′ L′] J′〉|2 for Er3+ Ions,” Phys. Status Solidi, A Appl. Res. 151(1), 231–255 (1995).
[Crossref]

Bond, W. L.

W. L. Bond, “Measurement of the refractive indices of several crystals,” J. Appl. Phys. 36(5), 1674–1677 (1965).
[Crossref]

Boulon, G.

A. A. Kaminskii, V. S. Mironov, A. Kornienko, S. N. Bagaev, G. Boulon, A. Brenier, and B. D. Bartolo, “New laser properties and spectroscopy of orthorhombic crystals YAlO3:Er3+. Intensity luminescence characteristics, stimulated emission, and full set of squared reduced-matrix elements |〈α[SL] J| |U(t)||α′[S′ L′] J′〉|2 for Er3+ Ions,” Phys. Status Solidi, A Appl. Res. 151(1), 231–255 (1995).
[Crossref]

Brenier, A.

A. A. Kaminskii, V. S. Mironov, A. Kornienko, S. N. Bagaev, G. Boulon, A. Brenier, and B. D. Bartolo, “New laser properties and spectroscopy of orthorhombic crystals YAlO3:Er3+. Intensity luminescence characteristics, stimulated emission, and full set of squared reduced-matrix elements |〈α[SL] J| |U(t)||α′[S′ L′] J′〉|2 for Er3+ Ions,” Phys. Status Solidi, A Appl. Res. 151(1), 231–255 (1995).
[Crossref]

Burshtein, A. I.

A. I. Burshtein, “Hopping Mechanism of Energy Transfer,” Sov. Phys. JETP 35(5), 882–885 (1972).

Chase, L. L.

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb doped crystals for laser applications,” IEEE J. Quantum Electron. 29(4), 1179–1191 (1993).
[Crossref]

Chen, W. Z.

G. F. Wang, W. Z. Chen, Z. B. Lin, and Z. S. Hu, “Optical transition probability of Nd3+ ions in a α− Nd3+: LaSc3(BO3)4 crystal,” Phys. Rev. B 60(23), 15469–15471 (1999).
[Crossref]

Danils, E.

E. Gürmen, E. Danils, and J. S. King, “Crystal structure refinement of SrMoO4, SrWO4, CaMoO4, and BaWO4 by neutron diffraction,” J. Chem. Phys. 55(3), 1093–1097 (1971).
[Crossref]

DeLoach, L. D.

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb doped crystals for laser applications,” IEEE J. Quantum Electron. 29(4), 1179–1191 (1993).
[Crossref]

Dexter, D. L.

T. Miyakawa and D. L. Dexter, “Phonon sidebands, multiphonon relaxation of excited states, and phonon-assisted energy transfer between ions in solids,” Phys. Rev. B 1(7), 2961–2969 (1970).
[Crossref]

D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21(5), 836–850 (1953).
[Crossref]

Equall, R.

F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, “Laser Demonstration of Yb3Al5O12 (YbAG) and Materials Properties of Highly Doped Yb:YAG,” IEEE J. Quantum Electron. 37(1), 135–144 (2001).
[Crossref]

Förster, T.

T. Förster, “Zwischenmolekulare energiewanderung und fluoreszenz,” Ann. Phys. 437(2), 55–75 (1948).
[Crossref]

Gamelin, D. R.

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61(5), 3337–3346 (2000).
[Crossref]

Güdel, H. U.

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61(5), 3337–3346 (2000).
[Crossref]

Gürmen, E.

E. Gürmen, E. Danils, and J. S. King, “Crystal structure refinement of SrMoO4, SrWO4, CaMoO4, and BaWO4 by neutron diffraction,” J. Chem. Phys. 55(3), 1093–1097 (1971).
[Crossref]

Hehlen, M. P.

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61(5), 3337–3346 (2000).
[Crossref]

Hirayama, F.

M. Inokuti and F. Hirayama, “Influence of energy transfer by the exchange mechanism on donor luminescence,” J. Chem. Phys. 43(6), 1978–1989 (1965).
[Crossref]

Honea, E. C.

F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, “Laser Demonstration of Yb3Al5O12 (YbAG) and Materials Properties of Highly Doped Yb:YAG,” IEEE J. Quantum Electron. 37(1), 135–144 (2001).
[Crossref]

Hu, Z. S.

G. F. Wang, W. Z. Chen, Z. B. Lin, and Z. S. Hu, “Optical transition probability of Nd3+ ions in a α− Nd3+: LaSc3(BO3)4 crystal,” Phys. Rev. B 60(23), 15469–15471 (1999).
[Crossref]

Hutcheson, R.

F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, “Laser Demonstration of Yb3Al5O12 (YbAG) and Materials Properties of Highly Doped Yb:YAG,” IEEE J. Quantum Electron. 37(1), 135–144 (2001).
[Crossref]

Inokuti, M.

M. Inokuti and F. Hirayama, “Influence of energy transfer by the exchange mechanism on donor luminescence,” J. Chem. Phys. 43(6), 1978–1989 (1965).
[Crossref]

Jiang, M.

Judd, B. R.

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127(3), 750–761 (1962).
[Crossref]

Kaminskii, A. A.

A. A. Kaminskii, “Modern developments in the physics of crystalline laser materials,” Phys. Stat. Solidi A 200(2), 215–296 (2003).
[Crossref]

A. A. Kaminskii, V. S. Mironov, A. Kornienko, S. N. Bagaev, G. Boulon, A. Brenier, and B. D. Bartolo, “New laser properties and spectroscopy of orthorhombic crystals YAlO3:Er3+. Intensity luminescence characteristics, stimulated emission, and full set of squared reduced-matrix elements |〈α[SL] J| |U(t)||α′[S′ L′] J′〉|2 for Er3+ Ions,” Phys. Status Solidi, A Appl. Res. 151(1), 231–255 (1995).
[Crossref]

King, J. S.

E. Gürmen, E. Danils, and J. S. King, “Crystal structure refinement of SrMoO4, SrWO4, CaMoO4, and BaWO4 by neutron diffraction,” J. Chem. Phys. 55(3), 1093–1097 (1971).
[Crossref]

Kornienko, A.

A. A. Kaminskii, V. S. Mironov, A. Kornienko, S. N. Bagaev, G. Boulon, A. Brenier, and B. D. Bartolo, “New laser properties and spectroscopy of orthorhombic crystals YAlO3:Er3+. Intensity luminescence characteristics, stimulated emission, and full set of squared reduced-matrix elements |〈α[SL] J| |U(t)||α′[S′ L′] J′〉|2 for Er3+ Ions,” Phys. Status Solidi, A Appl. Res. 151(1), 231–255 (1995).
[Crossref]

Krupke, W. F.

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb doped crystals for laser applications,” IEEE J. Quantum Electron. 29(4), 1179–1191 (1993).
[Crossref]

Kway, W. L.

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb doped crystals for laser applications,” IEEE J. Quantum Electron. 29(4), 1179–1191 (1993).
[Crossref]

Lee, A. J.

Li, J.

Li, Z.

Lin, Z. B.

R. Z. Zhuang, L. Z. Zhang, Z. B. Lin, and G. F. Wang, “Growth and spectral properties Yb3+/Na+: CaMoO4 crystal,” Mater. Res. Innov. 12(2), 62–65 (2008).
[Crossref]

G. F. Wang, W. Z. Chen, Z. B. Lin, and Z. S. Hu, “Optical transition probability of Nd3+ ions in a α− Nd3+: LaSc3(BO3)4 crystal,” Phys. Rev. B 60(23), 15469–15471 (1999).
[Crossref]

Lüthi, S. R.

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61(5), 3337–3346 (2000).
[Crossref]

Mironov, V. S.

A. A. Kaminskii, V. S. Mironov, A. Kornienko, S. N. Bagaev, G. Boulon, A. Brenier, and B. D. Bartolo, “New laser properties and spectroscopy of orthorhombic crystals YAlO3:Er3+. Intensity luminescence characteristics, stimulated emission, and full set of squared reduced-matrix elements |〈α[SL] J| |U(t)||α′[S′ L′] J′〉|2 for Er3+ Ions,” Phys. Status Solidi, A Appl. Res. 151(1), 231–255 (1995).
[Crossref]

Miyakawa, T.

T. Miyakawa and D. L. Dexter, “Phonon sidebands, multiphonon relaxation of excited states, and phonon-assisted energy transfer between ions in solids,” Phys. Rev. B 1(7), 2961–2969 (1970).
[Crossref]

Moulton, P. F.

Ofelt, G. S.

G. S. Ofelt, “Intensities of crystal spectra of rare‐earth ions,” J. Chem. Phys. 37(3), 511–520 (1962).
[Crossref]

Pask, H. M.

Patel, F. D.

F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, “Laser Demonstration of Yb3Al5O12 (YbAG) and Materials Properties of Highly Doped Yb:YAG,” IEEE J. Quantum Electron. 37(1), 135–144 (2001).
[Crossref]

Payne, S. A.

F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, “Laser Demonstration of Yb3Al5O12 (YbAG) and Materials Properties of Highly Doped Yb:YAG,” IEEE J. Quantum Electron. 37(1), 135–144 (2001).
[Crossref]

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb doped crystals for laser applications,” IEEE J. Quantum Electron. 29(4), 1179–1191 (1993).
[Crossref]

Piper, J. A.

Pollnau, M.

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61(5), 3337–3346 (2000).
[Crossref]

Smith, L. K.

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb doped crystals for laser applications,” IEEE J. Quantum Electron. 29(4), 1179–1191 (1993).
[Crossref]

Speth, J.

F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, “Laser Demonstration of Yb3Al5O12 (YbAG) and Materials Properties of Highly Doped Yb:YAG,” IEEE J. Quantum Electron. 37(1), 135–144 (2001).
[Crossref]

Tanimoto, O.

M. Yokota and O. Tanimoto, “Effects of diffusion on energy transfer by resonance,” J. Phys. Soc. Jpn. 22(3), 779–784 (1967).
[Crossref]

Wang, G. F.

R. Z. Zhuang, L. Z. Zhang, Z. B. Lin, and G. F. Wang, “Growth and spectral properties Yb3+/Na+: CaMoO4 crystal,” Mater. Res. Innov. 12(2), 62–65 (2008).
[Crossref]

G. F. Wang, W. Z. Chen, Z. B. Lin, and Z. S. Hu, “Optical transition probability of Nd3+ ions in a α− Nd3+: LaSc3(BO3)4 crystal,” Phys. Rev. B 60(23), 15469–15471 (1999).
[Crossref]

Wang, J.

Weber, M. J.

M. J. Weber, “Luminescence decay by energy migration and transfer: observation of diffusion-limited relaxation,” Phys. Rev. B 4(9), 2932–2939 (1971).
[Crossref]

Yokota, M.

M. Yokota and O. Tanimoto, “Effects of diffusion on energy transfer by resonance,” J. Phys. Soc. Jpn. 22(3), 779–784 (1967).
[Crossref]

Yu, H.

Zhang, H.

Zhang, L. Z.

R. Z. Zhuang, L. Z. Zhang, Z. B. Lin, and G. F. Wang, “Growth and spectral properties Yb3+/Na+: CaMoO4 crystal,” Mater. Res. Innov. 12(2), 62–65 (2008).
[Crossref]

Zhuang, R. Z.

R. Z. Zhuang, L. Z. Zhang, Z. B. Lin, and G. F. Wang, “Growth and spectral properties Yb3+/Na+: CaMoO4 crystal,” Mater. Res. Innov. 12(2), 62–65 (2008).
[Crossref]

Ann. Phys. (1)

T. Förster, “Zwischenmolekulare energiewanderung und fluoreszenz,” Ann. Phys. 437(2), 55–75 (1948).
[Crossref]

Chem. Rev. (1)

F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–174 (2004).
[Crossref] [PubMed]

IEEE J. Quantum Electron. (2)

F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, “Laser Demonstration of Yb3Al5O12 (YbAG) and Materials Properties of Highly Doped Yb:YAG,” IEEE J. Quantum Electron. 37(1), 135–144 (2001).
[Crossref]

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb doped crystals for laser applications,” IEEE J. Quantum Electron. 29(4), 1179–1191 (1993).
[Crossref]

J. Appl. Phys. (1)

W. L. Bond, “Measurement of the refractive indices of several crystals,” J. Appl. Phys. 36(5), 1674–1677 (1965).
[Crossref]

J. Chem. Phys. (4)

E. Gürmen, E. Danils, and J. S. King, “Crystal structure refinement of SrMoO4, SrWO4, CaMoO4, and BaWO4 by neutron diffraction,” J. Chem. Phys. 55(3), 1093–1097 (1971).
[Crossref]

D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21(5), 836–850 (1953).
[Crossref]

M. Inokuti and F. Hirayama, “Influence of energy transfer by the exchange mechanism on donor luminescence,” J. Chem. Phys. 43(6), 1978–1989 (1965).
[Crossref]

G. S. Ofelt, “Intensities of crystal spectra of rare‐earth ions,” J. Chem. Phys. 37(3), 511–520 (1962).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Soc. Jpn. (1)

M. Yokota and O. Tanimoto, “Effects of diffusion on energy transfer by resonance,” J. Phys. Soc. Jpn. 22(3), 779–784 (1967).
[Crossref]

Mater. Res. Innov. (1)

R. Z. Zhuang, L. Z. Zhang, Z. B. Lin, and G. F. Wang, “Growth and spectral properties Yb3+/Na+: CaMoO4 crystal,” Mater. Res. Innov. 12(2), 62–65 (2008).
[Crossref]

Opt. Lett. (1)

Phys. Rev. (1)

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127(3), 750–761 (1962).
[Crossref]

Phys. Rev. B (4)

G. F. Wang, W. Z. Chen, Z. B. Lin, and Z. S. Hu, “Optical transition probability of Nd3+ ions in a α− Nd3+: LaSc3(BO3)4 crystal,” Phys. Rev. B 60(23), 15469–15471 (1999).
[Crossref]

T. Miyakawa and D. L. Dexter, “Phonon sidebands, multiphonon relaxation of excited states, and phonon-assisted energy transfer between ions in solids,” Phys. Rev. B 1(7), 2961–2969 (1970).
[Crossref]

M. J. Weber, “Luminescence decay by energy migration and transfer: observation of diffusion-limited relaxation,” Phys. Rev. B 4(9), 2932–2939 (1971).
[Crossref]

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61(5), 3337–3346 (2000).
[Crossref]

Phys. Stat. Solidi A (1)

A. A. Kaminskii, “Modern developments in the physics of crystalline laser materials,” Phys. Stat. Solidi A 200(2), 215–296 (2003).
[Crossref]

Phys. Status Solidi, A Appl. Res. (1)

A. A. Kaminskii, V. S. Mironov, A. Kornienko, S. N. Bagaev, G. Boulon, A. Brenier, and B. D. Bartolo, “New laser properties and spectroscopy of orthorhombic crystals YAlO3:Er3+. Intensity luminescence characteristics, stimulated emission, and full set of squared reduced-matrix elements |〈α[SL] J| |U(t)||α′[S′ L′] J′〉|2 for Er3+ Ions,” Phys. Status Solidi, A Appl. Res. 151(1), 231–255 (1995).
[Crossref]

Sov. Phys. JETP (1)

A. I. Burshtein, “Hopping Mechanism of Energy Transfer,” Sov. Phys. JETP 35(5), 882–885 (1972).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Yb3+/Er3+:SrMoO4 crystal grown by Czochralski method from a flux of Na2MoO4.

Fig. 2
Fig. 2

Absorption spectra of (a) Yb3+/Er3+:SrMoO4 crystal, (b) Yb3+/Er3+:SrMoO4 crystal and Er3+:SrMoO4 crystal at 300 K.

Fig. 3
Fig. 3

Luminescence spectrum of Yb3+/Er3+:SrMoO4 crystal excited with 379 nm wavelength radiation in range of 375 - 700 nm at 300 K.

Fig. 4
Fig. 4

Part schematic diagram of luminescence processes in Yb3+/Er3+:SrMoO4 crystal excited with 379 nm wavelength radiation.

Fig. 5
Fig. 5

Up-conversion luminescence spectrum of Yb3+/Er3+:SrMoO4 crystal excited with 976 nm wavelength radiation in range of 480 - 700 nm at 300 K.

Fig. 6
Fig. 6

Schematic diagram of ETU process in Yb3+/Er3+:SrMoO4 crystal.

Fig. 7
Fig. 7

Relationship of k versus n corresponding to transition process 2F7/22F5/2 (Yb3+): 4I15/24I11/2 (Er3+) under different critical decay distance.

Fig. 8
Fig. 8

Numeric and experiment results of green and red up-conversion intensity versus pump power at 300 K. Critical decay distances for forward and backward energy transfer are 13th and 4th close distance respectively. Numbers denote the slope at low and high pump power respectively.

Fig. 9
Fig. 9

Fluorescence decay curve of Yb3+ ions in Yb3+:SrMoO4 (11.59 at.% Yb3+) and Yb3+/Er3+:SrMoO4 crystal at 300 K.

Fig. 10
Fig. 10

Numeric results of up-conversion luminescent quantum efficiency of Yb3+/Er3+:SrMoO4 crystal obtained by rate equation model.

Fig. 11
Fig. 11

Gain cross section of (a) green up-conversion emission, (b)red up-conversion emission in Yb3+/Er3+:SrMoO4 crystal from population inversion β = 0 to β = 1.

Fig. 12
Fig. 12

Numeric results of population inversions versus pump power in Yb3+/Er3+:SrMoO4 crystal.

Tables (2)

Tables Icon

Table 1 Radiative decay rates, radiative lifetimes and fluorescent branching ratios in Yb3+/Er3+:SrMoO4 crystal

Tables Icon

Table 2 Non-radiative decay rates in Yb3+/Er3+:SrMoO4 crystal

Equations (26)

Equations on this page are rendered with MathJax. Learn more.

2 K 87 N 8 K 76 N 7 =0
K 76 N 7 K 65 N 6 ( A 61 + A 62 + A 63 + A 64 ) N 6 =0
K 65 N 6 K 54 N 5 ( A 51 + A 52 + A 53 ) N 5 =0
K=βexp[αΔE]
K 87 = K 54 exp[α(Δ E 54 Δ E 87 )]
K 76 = K 54 exp[α(Δ E 54 Δ E 76 )]
K 65 = K 54 exp[α(Δ E 54 Δ E 65 )]
A 81 N 8 A 61 N 6 = I( λ 81 )dλ I( λ 61 )dλ I( λ 82 )dλ
A 61 N 6 A 51 N 5 = I( λ 61 )dλ I( λ 82 )dλ I( λ 51 )dλ
A 81 N 8 A 82 N 8 = I( λ 81 )dλ I( λ 82 )dλ
A 61 N 6 =A( H 2 11/2 I 4 15/2 )N( H 2 11/2 )+A( S 4 3/2 I 4 15/2 )N( S 4 3/2 )
A( H 2 11/2 I 4 15/2 )N( H 2 11/2 ) A( S 4 3/2 I 4 15/2 )N( S 4 3/2 ) = I[ λ( H 2 11/2 I 4 15/2 ) ] dλ I[ λ( S 4 3/2 I 4 15/2 ) ] dλ
N( H 2 11/2 )+N( S 4 3/2 )= N 6
d N a dt = A ba N b + W b1 N b N 1 + W b2 N b N 2 + W b3 N b N 3 W 3a N 3 N a ρ P σ Yb N a d N b dt = ρ P σ Yb N a + W 3a N 3 N a W b1 N b N 1 W b2 N b N 2 W b3 N b N 3 A ba N b d N 1 dt = A 61 N 6 + A 51 N 5 + A 41 N 4 + A 31 N 3 + A 21 N 2 + W 3a N 3 N a W b1 N b N 1 ρ P σ Er N 1 d N 2 dt = A 62 N 6 + A 52 N 5 + A 42 N 4 + A 32 N 3 + K 32 N 3 W b2 N b N 2 A 21 N 2 d N 3 dt = A 63 N 6 + A 53 N 5 + K 43 N 4 + W b1 N b N 1 + ρ P σ Er N 1 A 31 N 3 A 32 N 3 K 32 N 3 W b3 N b N 3 W 3a N 3 N a d N 4 dt = A 64 N 6 + K 54 N 5 A 41 N 4 A 42 N 4 K 43 N 4 d N 5 dt = K 65 N 6 + W b2 N b N 2 K 54 N 5 A 51 N 5 A 52 N 5 A 53 N 5 d N 6 dt = W b3 N b N 3 A 61 N 6 A 62 N 6 A 63 N 6 A 64 N 6 K 65 N 6
ρ p = λ p hcπ ω p 2 P
f= N S V R N A V R P ¯ V V R 1 V = P ¯ V R N S N A
W= P ¯ V R
P ¯ = C R ¯ m
C dd = 3 4 c 4 A S Q a 4π n 4 f s (E) F a (E) E 4 dE
C dq = 135πα 9 c 8 A S A aq g a 4 n 6 g a f s (E) F a (E) E 8 dE
Q a = g j g i h A ji λ ¯ ji 2 16 π 2
W(ΔE)=W(0) e α ΔE
1 R ¯ m = i l i 1 R i m
W n = W 1 i=2 n (1+ k i1 / 2 i1 ) (n= 2,3,)
k n = k n1 + k n2 +2( k n1 k n2 ) 2 (n= 5, 6,)
η= A i1 N i ρ P ( σ Yb N a + σ Er N 1 )

Metrics