Abstract

This work presents a detailed analysis of the morphology of femtosecond laser-induced changes in bulk lithium niobate (LiNbO3) – one of the most common host materials in photonics – using second-harmonic generation microscopy and scanning electron microscopy. It is shown that focused linearly polarized near-infrared pulses can produce two or three distinct axially separated regions of modified material, depending on whether the pulse propagation is along or perpendicular to the optical axis. When laser writing in LiNbO3 is conducted in multi-shot irradiation mode and the focused light intensity is kept near the bulk damage threshold, periodic planar nanostructures aligned perpendicular to the laser polarization are produced inside the focal volume. These results provide a new perspective to laser writing in crystalline materials, including the fabrication of passive and active waveguides, photonic crystals, and optical data storage devices.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Modifications in lithium niobium silicate glass by femtosecond laser direct writing: morphology, crystallization, and nanostructure

Jing Cao, Léo Mazerolles, Matthieu Lancry, François Brisset, and Bertrand Poumellec
J. Opt. Soc. Am. B 34(1) 160-168 (2017)

Ultraviolet laser induced domain inversion on chromium coated lithium niobate crystals

Andreas Boes, Didit Yudistira, Tristan Crasto, Hendrik Steigerwald, Vijay Sivan, Thorsten Limboeck, James Friend, Sakellaris Mailis, Elisabeth Soergel, and Arnan Mitchell
Opt. Mater. Express 4(2) 241-254 (2014)

Axial birefringence induced focus splitting in lithium niobate

Guangyong Zhou, Alexander Jesacher, Martin Booth, Tony Wilson, Airán Ródenas, Daniel Jaque, and Min Gu
Opt. Express 17(20) 17970-17975 (2009)

References

  • View by:
  • |
  • |
  • |

  1. L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Status Solidi 201(2), 253–283 (2004).
    [Crossref]
  2. R. S. Weis and T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys., A Mater. Sci. Process. 37(4), 191–203 (1985).
    [Crossref]
  3. K. K. Wong, Properties of Lithium Niobate (INSPEC, 2002).
  4. T. Volk and M. Wöhlecke, (2008). Lithium Niobate: Defects, Photorefraction and Ferroelectric Switching (Springer-Verlag, 2008).
  5. R. V. Schmidt and I. P. Kaminow, “Metal-diffused optical waveguides in LiNbO3,” Appl. Phys. Lett. 25(8), 458–460 (1974).
    [Crossref]
  6. J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high‐index waveguides in LiNbO3,” Appl. Phys. Lett. 41(7), 607–608 (1982).
    [Crossref]
  7. F. Chen, “Photonic guiding structures in lithium niobate crystals produced by energetic ion beams,” J. Appl. Phys. 106(8), 081101 (2009).
    [Crossref]
  8. G. Si, A. J. Danner, S. L. Teo, E. J. Teo, J. Teng, and A. A. Bettiol, “Photonic crystal structures with ultrahigh aspect ratio in lithium niobate fabricated by focused ion beam milling,” J. Vac. Sci. Technol. B 29(2), 021205 (2011).
    [Crossref]
  9. Z. Ren, P. J. Heard, J. M. Marshall, P. A. Thomas, and S. Yu, “Etching characteristics of LiNbO3 in reactive ion etching and inductively coupled plasma,” J. Appl. Phys. 103(3), 034109 (2008).
    [Crossref]
  10. H. Hu, R. Ricken, W. Sohler, and R. B. Wehrspohn, “Lithium niobate ridge waveguides fabricated by wet etching,” IEEE Photonics Technol. Lett. 19(6), 417–419 (2007).
    [Crossref]
  11. N. Courjal, B. Guichardaz, G. Ulliac, J. Y. Rauch, B. Sadani, H. H. Lu, and M. P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D Appl. Phys. 44(30), 305101 (2011).
    [Crossref]
  12. C. Y. J. Ying, A. C. Muir, C. E. Valdivia, H. Steigerwald, C. L. Sones, R. W. Eason, E. Soergel, and S. Mailis, “Light-mediated ferroelectric domain engineering and micro-structuring of lithium niobate crystals,” Laser Photonics Rev. 6(4), 526–548 (2012).
    [Crossref]
  13. F. Généreux, G. Baldenberger, B. Bourliaguet, and R. Vallée, “Deep periodic domain inversions in x-cut LiNbO3 and its use for second harmonic generation near 1.5 μm,” Appl. Phys. Lett. 91(23), 231112 (2007).
    [Crossref]
  14. O. Beyer, D. Maxein, K. Buse, B. Sturman, H. T. Hsieh, and D. Psaltis, “Investigation of nonlinear absorption processes with femtosecond light pulses in lithium niobate crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(5), 056603 (2005).
    [Crossref] [PubMed]
  15. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
    [Crossref]
  16. L. Gui, B. Xu, and T. C. Chong, “Microstructure in lithium niobate by use of focused femtosecond laser pulses,” IEEE Photonics Technol. Lett. 16(5), 1337–1339 (2004).
    [Crossref]
  17. D. Grobnic, S. Mihailov, C. Smelser, F. Généreux, G. Baldenberger, and R. Vallée, “Bragg gratings made in reverse proton exchange lithium niobate waveguides with a femtosecond IR laser and a phase mask,” IEEE Photonics Technol. Lett. 17(7), 1453–1455 (2005).
    [Crossref]
  18. W. Horn, S. Kroesen, J. Herrmann, J. Imbrock, and C. Denz, “Electro-optical tunable waveguide Bragg gratings in lithium niobate induced by femtosecond laser writing,” Opt. Express 20(24), 26922–26928 (2012).
    [Crossref] [PubMed]
  19. R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett. 88(11), 111109 (2006).
    [Crossref]
  20. J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate,” Appl. Phys. Lett. 89(8), 081108 (2006).
    [Crossref]
  21. A. H. Nejadmalayeri and P. R. Herman, “Ultrafast laser waveguide writing: lithium niobate and the role of circular polarization and picosecond pulse width,” Opt. Lett. 31(20), 2987–2989 (2006).
    [Crossref] [PubMed]
  22. J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys., A Mater. Sci. Process. 89(1), 127–132 (2007).
    [Crossref]
  23. A. H. Nejadmalayeri and P. R. Herman, “Rapid thermal annealing in high repetition rate ultrafast laser waveguide writing in lithium niobate,” Opt. Express 15(17), 10842–10854 (2007).
    [Crossref] [PubMed]
  24. J. Burghoff, H. Hartung, S. Nolte, and A. Tünnermann, “Structural properties of femtosecond laser-induced modifications in LiNbO3,” Appl. Phys., A Mater. Sci. Process. 86(2), 165–170 (2006).
    [Crossref]
  25. R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90(24), 241107 (2007).
    [Crossref]
  26. Y. Liao, J. Xu, Y. Cheng, Z. Zhou, F. He, H. Sun, J. Song, X. Wang, Z. Xu, K. Sugioka, and K. Midorikawa, “Electro-optic integration of embedded electrodes and waveguides in LiNbO3 using a femtosecond laser,” Opt. Lett. 33(19), 2281–2283 (2008).
    [Crossref] [PubMed]
  27. S. Juodkazis, M. Sudzius, V. Mizeikis, H. Misawa, E. G. Gamaly, Y. Liu, O. A. Louchev, and K. Kitamura, “Three-dimensional recording by tightly focused femtosecond pulses in LiNbO3,” Appl. Phys. Lett. 89(6), 062903 (2006).
    [Crossref]
  28. E. G. Gamaly, S. Juodkazis, V. Mizeikis, H. Misawa, A. V. Rode, and W. Krolikowski, “Modification of refractive index by a single femtosecond pulse confined inside a bulk of a photorefractive crystal,” Phys. Rev. B 81(5), 054113 (2010).
    [Crossref]
  29. A. Ródenas, G. Zhou, D. Jaque, and M. Gu, “Rare-earth spontaneous emission control in three-dimensional lithium niobate photonic crystals,” Adv. Mater. 21(34), 3526–3530 (2009).
    [Crossref]
  30. B. P. Cumming, A. Jesacher, M. J. Booth, T. Wilson, and M. Gu, “Adaptive aberration compensation for three-dimensional micro-fabrication of photonic crystals in lithium niobate,” Opt. Express 19(10), 9419–9425 (2011).
    [Crossref] [PubMed]
  31. J. Thomas, V. Hilbert, R. Geiss, T. Pertsch, A. Tünnermann, and S. Nolte, “Quasi phase matching in femtosecond pulse volume structured x-cut lithium niobate,” Laser Photonics Rev. 7(3), L17–L20 (2013).
    [Crossref]
  32. X. Chen, P. Karpinski, V. Shvedov, K. Koynov, B. Wang, J. Trull, C. Cojocaru, W. Krolikowski, and Y. Sheng, “Ferroelectric domain engineering by focused infrared femtosecond pulses,” Appl. Phys. Lett. 107(14), 141102 (2015).
    [Crossref]
  33. E. A. Stach, V. Radmilovic, D. Deshpande, A. Malshe, D. Alexander, and D. Doerr, “Nanoscale surface and subsurface defects induced in lithium niobate by a femtosecond laser,” Appl. Phys. Lett. 83(21), 4420–4422 (2003).
    [Crossref]
  34. D. C. Deshpande, A. P. Malshe, E. A. Stach, V. Radmilovic, D. Alexander, D. Doerr, and D. Hirt, “Investigation of femtosecond laser assisted nano and microscale modifications in lithium niobate,” J. Appl. Phys. 97(7), 074316 (2005).
    [Crossref]
  35. M. R. Tejerina, D. Jaque, and G. A. Torchia, “μ-Raman spectroscopy characterization of LiNbO3 femtosecond laser written waveguides,” J. Appl. Phys. 112(12), 123108 (2012).
    [Crossref]
  36. G. Zhou, A. Jesacher, M. Booth, T. Wilson, A. Ródenas, D. Jaque, and M. Gu, “Axial birefringence induced focus splitting in lithium niobate,” Opt. Express 17(20), 17970–17975 (2009).
    [Crossref] [PubMed]
  37. J. A. Fleck and M. D. Feit, “Beam propagation in uniaxial anisotropic media,” J. Opt. Soc. Am. 73(7), 920–926 (1983).
    [Crossref]
  38. A. Ciattoni, B. Crosignani, and P. Di Porto, “Vectorial theory of propagation in uniaxially anisotropic media,” J. Opt. Soc. Am. A 18(7), 1656–1661 (2001).
    [Crossref] [PubMed]
  39. A. Ciattoni, G. Cincotti, and C. Palma, “Propagation of cylindrically symmetric fields in uniaxial crystals,” J. Opt. Soc. Am. A 19(4), 792–796 (2002).
    [Crossref] [PubMed]
  40. A. Ciattoni, G. Cincotti, and C. Palma, “Circularly polarized beams and vortex generation in uniaxial media,” J. Opt. Soc. Am. A 20(1), 163–171 (2003).
    [Crossref] [PubMed]
  41. G. Cincotti, A. Ciattoni, and C. Sapia, “Radially and azimuthally polarized vortices in uniaxial crystals,” Opt. Commun. 220(1), 33–40 (2003).
    [Crossref]
  42. A. Ciattoni and C. Palma, “Optical propagation in uniaxial crystals orthogonal to the optical axis: paraxial theory and beyond,” J. Opt. Soc. Am. A 20(11), 2163–2171 (2003).
    [Crossref] [PubMed]
  43. J. J. Stamnes and D. Jiang, “Focusing of electromagnetic waves into a uniaxial crystal,” Opt. Commun. 150(1–6), 251–262 (1998).
    [Crossref]
  44. J. Li, H. Jiang, J. Xiao, and Q. Gong, “The mechanism of multi-focusing of lasers into uniaxial crystals,” J. Opt. A, Pure Appl. Opt. 9(7), 664–672 (2007).
    [Crossref]
  45. M. Jain, J. K. Lotsberg, J. J. Stamnes, Ø. Frette, D. Velauthapillai, D. Jiang, and X. Zhao, “Numerical and experimental results for focusing of three-dimensional electromagnetic waves into uniaxial crystals,” J. Opt. Soc. Am. A 26(3), 691–698 (2009).
    [Crossref] [PubMed]
  46. A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441(2-4), 47–189 (2007).
    [Crossref]
  47. N. N. Rozanov, “Propagation of laser radiation in anisotropic media,” Opt. Spectrosc. 93(5), 746–751 (2002).
    [Crossref]
  48. E. Brasselet, Y. Izdebskaya, V. Shvedov, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Dynamics of optical spin-orbit coupling in uniaxial crystals,” Opt. Lett. 34(7), 1021–1023 (2009).
    [Crossref] [PubMed]
  49. V. G. Shvedov, C. Hnatovsky, N. Shostka, and W. Krolikowski, “Generation of vector bottle beams with a uniaxial crystal,” J. Opt. Soc. Am. B 30(1), 1–6 (2013).
    [Crossref]
  50. A. Desyatnikov, T. A. Fadeyeva, V. G. Shvedov, Y. V. Izdebskaya, A. V. Volyar, E. Brasselet, D. N. Neshev, W. Krolikowski, and Y. S. Kivshar, “Spatially engineered polarization states and optical vortices in uniaxial crystals,” Opt. Express 18(10), 10848–10863 (2010).
    [Crossref] [PubMed]
  51. D. E. Zelmon, D. L. Small, and D. Jundt, “Infrared corrected Sellmeier coefficients for congruently grown lithium niobate and 5 mol.% magnesium oxide-doped lithium niobate,” J. Opt. Soc. Am. B 14(12), 3319–3322 (1997).
    [Crossref]
  52. M. Lax, W. H. Louisell, and W. B. McKnight, “From Maxwell to paraxial optics,” Phys. Rev. A 11(4), 1365–1370 (1975).
    [Crossref]
  53. G. P. Agrawal and D. N. Pattanayak, “Gaussian beam propagation beyond the paraxial approximation,” J. Opt. Soc. Am. 69(4), 575–578 (1979).
    [Crossref]
  54. S. F. Gibson and F. Lanni, “Experimental test of an analytical model of aberration in an oil-immersion objective lens used in three-dimensional light microscopy,” J. Opt. Soc. Am. A 8(10), 1601–1613 (1991).
    [Crossref] [PubMed]
  55. S. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer, “Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index,” J. Microsc. 169(3), 391–405 (1993).
    [Crossref]
  56. P. Török, P. Varga, Z. Laczic, and G. R. Booker, “Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: an integral representation,” J. Opt. Soc. Am. A 12(2), 325–332 (1995).
    [Crossref]
  57. P. Török, P. Varga, and G. R. Booker, “Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: structure of the electromagnetic field,” J. Opt. Soc. Am. A 12(10), 2136–2144 (1995).
    [Crossref]
  58. C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations,” J. Appl. Phys. 98(1), 013517 (2005).
    [Crossref]
  59. R. Gauderon, P. B. Lukins, and C. J. R. Sheppard, “Three-dimensional second-harmonic generation imaging with femtosecond laser pulses,” Opt. Lett. 23(15), 1209–1211 (1998).
    [Crossref] [PubMed]
  60. N. Dong, D. Jaque, F. Chen, and Q. Lu, “Second harmonic and Raman imaging of He+ implanted KTiOPO4 waveguides,” Opt. Express 19(15), 13934–13939 (2011).
    [Crossref] [PubMed]
  61. B. McMillen, K. P. Chen, H. An, S. Fleming, V. Hartwell, and D. Snoke, “Waveguiding and nonlinear optical properties of three-dimensional waveguides in LiTaO3 written by high-repetition rate ultrafast laser,” Appl. Phys. Lett. 93(11), 111106 (2008).
    [Crossref]
  62. N. Dong, Y. Tan, A. Benayas, J. Vázquez de Aldana, D. Jaque, C. Romero, F. Chen, and Q. Lu, “Femtosecond laser writing of multifunctional optical waveguides in a Nd:YVO4 + KTP hybrid system,” Opt. Lett. 36(6), 975–977 (2011).
    [Crossref] [PubMed]
  63. H. P. Li, C. H. Kam, Y. L. Lam, and W. Ji, “Femtosecond Z-scan measurements of nonlinear refraction in nonlinear optical crystals,” Opt. Mater. 15(4), 237–242 (2001).
    [Crossref]
  64. V. P. Kandidov and V. Yu. Fedorov, “Specific features of elliptic beam self-focusing,” Quantum Electron. 34(12), 1163–1168 (2004).
    [Crossref]
  65. A. Dubietis, G. Tamošauskas, G. Fibich, and B. Ilan, “Multiple filamentation induced by input-beam ellipticity,” Opt. Lett. 29(10), 1126–1128 (2004).
    [Crossref] [PubMed]
  66. T. Grow and A. Gaeta, “Dependence of multiple filamentation on beam ellipticity,” Opt. Express 13(12), 4594–4599 (2005).
    [Crossref] [PubMed]
  67. J. K. Lotsberg, X. Zhao, M. Jain, V. Dhayalan, G. S. Sithambaranathan, J. J. Stamnes, and D. Jiang, “Focusing of electromagnetic waves into a biaxial crystal, experimental results,” Opt. Commun. 250(4–6), 231–240 (2005).
    [Crossref]
  68. M. Jain, J. K. Lotsberg, J. J. Stamnes, and Ø. Frette, “Effects of aperture size on focusing of electromagnetic waves into a biaxial crystal,” Opt. Commun. 266(2), 438–447 (2006).
    [Crossref]
  69. A. Hildenbrand, F. R. Wagner, H. Akhouayri, J.-Y. Natoli, and M. Commandré, “Accurate metrology for laser damage measurements in nonlinear crystals,” Opt. Eng. 47(8), 083603 (2008).
    [Crossref]
  70. K. Nassau, H. J. Levinstein, and G. M. Loiacono, “Ferroelectric lithium niobate. 1. Growth, domain structure, dislocations and etching,” J. Phys. Chem. Solids 27(6–7), 983–988 (1966).
    [Crossref]
  71. N. Niizeki, T. Yamada, and H. Toyoda, “Growth ridges, etched hillocks, and crystal structure of lithium niobate,” Jpn. J. Appl. Phys. 6(3), 318–327 (1967).
    [Crossref]
  72. C. L. Sones, S. Mailis, W. S. Brocklesby, R. W. Eason, and J. R. Owen, “Differential etch rates in z-cut LiNbO3 for variable HF/HNO3 concentrations,” J. Mater. Chem. 12(2), 295–298 (2002).
    [Crossref]
  73. F. Schrempel, T. Gischkat, H. Hartung, E.-B. Kley, and W. Wesch, “Ion beam enhanced etching of LiNbO3,” Nucl. Instrum. Methods Phys. Res. B 250(1–2), 164–168 (2006).
    [Crossref]
  74. Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
    [Crossref] [PubMed]
  75. V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
    [Crossref] [PubMed]
  76. R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica,” Laser Photonics Rev. 2(1–2), 26–46 (2008).
    [Crossref]
  77. Y. Shimotsuma, K. Hirao, J. Qiu, and P. G. Kazansky, “Nano-modification inside transparent materials by femtosecond laser single beam,” Mod. Phys. Lett. B 19(05), 225–238 (2005).
    [Crossref]
  78. D. Wortmann, J. Gottmann, N. Brandt, and H. Horn-Solle, “Micro- and nanostructures inside sapphire by fs-laser irradiation and selective etching,” Opt. Express 16(3), 1517–1522 (2008).
    [Crossref] [PubMed]
  79. S. Richter, C. Miese, S. Döring, F. Zimmermann, M. J. Withford, A. Tünnermann, and S. Nolte, “Laser induced nanogratings beyond fused silica - periodic nanostructures in borosilicate glasses and ULE™,” Opt. Mater. Express 3(8), 1161–1166 (2013).
    [Crossref]
  80. D. Bäuerle, Laser Processing and Chemistry, 3rd ed. (Springer, 2000).

2015 (1)

X. Chen, P. Karpinski, V. Shvedov, K. Koynov, B. Wang, J. Trull, C. Cojocaru, W. Krolikowski, and Y. Sheng, “Ferroelectric domain engineering by focused infrared femtosecond pulses,” Appl. Phys. Lett. 107(14), 141102 (2015).
[Crossref]

2013 (3)

2012 (3)

W. Horn, S. Kroesen, J. Herrmann, J. Imbrock, and C. Denz, “Electro-optical tunable waveguide Bragg gratings in lithium niobate induced by femtosecond laser writing,” Opt. Express 20(24), 26922–26928 (2012).
[Crossref] [PubMed]

M. R. Tejerina, D. Jaque, and G. A. Torchia, “μ-Raman spectroscopy characterization of LiNbO3 femtosecond laser written waveguides,” J. Appl. Phys. 112(12), 123108 (2012).
[Crossref]

C. Y. J. Ying, A. C. Muir, C. E. Valdivia, H. Steigerwald, C. L. Sones, R. W. Eason, E. Soergel, and S. Mailis, “Light-mediated ferroelectric domain engineering and micro-structuring of lithium niobate crystals,” Laser Photonics Rev. 6(4), 526–548 (2012).
[Crossref]

2011 (5)

G. Si, A. J. Danner, S. L. Teo, E. J. Teo, J. Teng, and A. A. Bettiol, “Photonic crystal structures with ultrahigh aspect ratio in lithium niobate fabricated by focused ion beam milling,” J. Vac. Sci. Technol. B 29(2), 021205 (2011).
[Crossref]

N. Courjal, B. Guichardaz, G. Ulliac, J. Y. Rauch, B. Sadani, H. H. Lu, and M. P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D Appl. Phys. 44(30), 305101 (2011).
[Crossref]

N. Dong, Y. Tan, A. Benayas, J. Vázquez de Aldana, D. Jaque, C. Romero, F. Chen, and Q. Lu, “Femtosecond laser writing of multifunctional optical waveguides in a Nd:YVO4 + KTP hybrid system,” Opt. Lett. 36(6), 975–977 (2011).
[Crossref] [PubMed]

B. P. Cumming, A. Jesacher, M. J. Booth, T. Wilson, and M. Gu, “Adaptive aberration compensation for three-dimensional micro-fabrication of photonic crystals in lithium niobate,” Opt. Express 19(10), 9419–9425 (2011).
[Crossref] [PubMed]

N. Dong, D. Jaque, F. Chen, and Q. Lu, “Second harmonic and Raman imaging of He+ implanted KTiOPO4 waveguides,” Opt. Express 19(15), 13934–13939 (2011).
[Crossref] [PubMed]

2010 (2)

A. Desyatnikov, T. A. Fadeyeva, V. G. Shvedov, Y. V. Izdebskaya, A. V. Volyar, E. Brasselet, D. N. Neshev, W. Krolikowski, and Y. S. Kivshar, “Spatially engineered polarization states and optical vortices in uniaxial crystals,” Opt. Express 18(10), 10848–10863 (2010).
[Crossref] [PubMed]

E. G. Gamaly, S. Juodkazis, V. Mizeikis, H. Misawa, A. V. Rode, and W. Krolikowski, “Modification of refractive index by a single femtosecond pulse confined inside a bulk of a photorefractive crystal,” Phys. Rev. B 81(5), 054113 (2010).
[Crossref]

2009 (5)

2008 (7)

D. Wortmann, J. Gottmann, N. Brandt, and H. Horn-Solle, “Micro- and nanostructures inside sapphire by fs-laser irradiation and selective etching,” Opt. Express 16(3), 1517–1522 (2008).
[Crossref] [PubMed]

Y. Liao, J. Xu, Y. Cheng, Z. Zhou, F. He, H. Sun, J. Song, X. Wang, Z. Xu, K. Sugioka, and K. Midorikawa, “Electro-optic integration of embedded electrodes and waveguides in LiNbO3 using a femtosecond laser,” Opt. Lett. 33(19), 2281–2283 (2008).
[Crossref] [PubMed]

B. McMillen, K. P. Chen, H. An, S. Fleming, V. Hartwell, and D. Snoke, “Waveguiding and nonlinear optical properties of three-dimensional waveguides in LiTaO3 written by high-repetition rate ultrafast laser,” Appl. Phys. Lett. 93(11), 111106 (2008).
[Crossref]

A. Hildenbrand, F. R. Wagner, H. Akhouayri, J.-Y. Natoli, and M. Commandré, “Accurate metrology for laser damage measurements in nonlinear crystals,” Opt. Eng. 47(8), 083603 (2008).
[Crossref]

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica,” Laser Photonics Rev. 2(1–2), 26–46 (2008).
[Crossref]

Z. Ren, P. J. Heard, J. M. Marshall, P. A. Thomas, and S. Yu, “Etching characteristics of LiNbO3 in reactive ion etching and inductively coupled plasma,” J. Appl. Phys. 103(3), 034109 (2008).
[Crossref]

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

2007 (7)

J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys., A Mater. Sci. Process. 89(1), 127–132 (2007).
[Crossref]

H. Hu, R. Ricken, W. Sohler, and R. B. Wehrspohn, “Lithium niobate ridge waveguides fabricated by wet etching,” IEEE Photonics Technol. Lett. 19(6), 417–419 (2007).
[Crossref]

F. Généreux, G. Baldenberger, B. Bourliaguet, and R. Vallée, “Deep periodic domain inversions in x-cut LiNbO3 and its use for second harmonic generation near 1.5 μm,” Appl. Phys. Lett. 91(23), 231112 (2007).
[Crossref]

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90(24), 241107 (2007).
[Crossref]

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441(2-4), 47–189 (2007).
[Crossref]

J. Li, H. Jiang, J. Xiao, and Q. Gong, “The mechanism of multi-focusing of lasers into uniaxial crystals,” J. Opt. A, Pure Appl. Opt. 9(7), 664–672 (2007).
[Crossref]

A. H. Nejadmalayeri and P. R. Herman, “Rapid thermal annealing in high repetition rate ultrafast laser waveguide writing in lithium niobate,” Opt. Express 15(17), 10842–10854 (2007).
[Crossref] [PubMed]

2006 (8)

A. H. Nejadmalayeri and P. R. Herman, “Ultrafast laser waveguide writing: lithium niobate and the role of circular polarization and picosecond pulse width,” Opt. Lett. 31(20), 2987–2989 (2006).
[Crossref] [PubMed]

F. Schrempel, T. Gischkat, H. Hartung, E.-B. Kley, and W. Wesch, “Ion beam enhanced etching of LiNbO3,” Nucl. Instrum. Methods Phys. Res. B 250(1–2), 164–168 (2006).
[Crossref]

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[Crossref] [PubMed]

M. Jain, J. K. Lotsberg, J. J. Stamnes, and Ø. Frette, “Effects of aperture size on focusing of electromagnetic waves into a biaxial crystal,” Opt. Commun. 266(2), 438–447 (2006).
[Crossref]

J. Burghoff, H. Hartung, S. Nolte, and A. Tünnermann, “Structural properties of femtosecond laser-induced modifications in LiNbO3,” Appl. Phys., A Mater. Sci. Process. 86(2), 165–170 (2006).
[Crossref]

S. Juodkazis, M. Sudzius, V. Mizeikis, H. Misawa, E. G. Gamaly, Y. Liu, O. A. Louchev, and K. Kitamura, “Three-dimensional recording by tightly focused femtosecond pulses in LiNbO3,” Appl. Phys. Lett. 89(6), 062903 (2006).
[Crossref]

R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett. 88(11), 111109 (2006).
[Crossref]

J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate,” Appl. Phys. Lett. 89(8), 081108 (2006).
[Crossref]

2005 (7)

D. Grobnic, S. Mihailov, C. Smelser, F. Généreux, G. Baldenberger, and R. Vallée, “Bragg gratings made in reverse proton exchange lithium niobate waveguides with a femtosecond IR laser and a phase mask,” IEEE Photonics Technol. Lett. 17(7), 1453–1455 (2005).
[Crossref]

O. Beyer, D. Maxein, K. Buse, B. Sturman, H. T. Hsieh, and D. Psaltis, “Investigation of nonlinear absorption processes with femtosecond light pulses in lithium niobate crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(5), 056603 (2005).
[Crossref] [PubMed]

D. C. Deshpande, A. P. Malshe, E. A. Stach, V. Radmilovic, D. Alexander, D. Doerr, and D. Hirt, “Investigation of femtosecond laser assisted nano and microscale modifications in lithium niobate,” J. Appl. Phys. 97(7), 074316 (2005).
[Crossref]

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations,” J. Appl. Phys. 98(1), 013517 (2005).
[Crossref]

J. K. Lotsberg, X. Zhao, M. Jain, V. Dhayalan, G. S. Sithambaranathan, J. J. Stamnes, and D. Jiang, “Focusing of electromagnetic waves into a biaxial crystal, experimental results,” Opt. Commun. 250(4–6), 231–240 (2005).
[Crossref]

Y. Shimotsuma, K. Hirao, J. Qiu, and P. G. Kazansky, “Nano-modification inside transparent materials by femtosecond laser single beam,” Mod. Phys. Lett. B 19(05), 225–238 (2005).
[Crossref]

T. Grow and A. Gaeta, “Dependence of multiple filamentation on beam ellipticity,” Opt. Express 13(12), 4594–4599 (2005).
[Crossref] [PubMed]

2004 (4)

A. Dubietis, G. Tamošauskas, G. Fibich, and B. Ilan, “Multiple filamentation induced by input-beam ellipticity,” Opt. Lett. 29(10), 1126–1128 (2004).
[Crossref] [PubMed]

V. P. Kandidov and V. Yu. Fedorov, “Specific features of elliptic beam self-focusing,” Quantum Electron. 34(12), 1163–1168 (2004).
[Crossref]

L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Status Solidi 201(2), 253–283 (2004).
[Crossref]

L. Gui, B. Xu, and T. C. Chong, “Microstructure in lithium niobate by use of focused femtosecond laser pulses,” IEEE Photonics Technol. Lett. 16(5), 1337–1339 (2004).
[Crossref]

2003 (5)

G. Cincotti, A. Ciattoni, and C. Sapia, “Radially and azimuthally polarized vortices in uniaxial crystals,” Opt. Commun. 220(1), 33–40 (2003).
[Crossref]

E. A. Stach, V. Radmilovic, D. Deshpande, A. Malshe, D. Alexander, and D. Doerr, “Nanoscale surface and subsurface defects induced in lithium niobate by a femtosecond laser,” Appl. Phys. Lett. 83(21), 4420–4422 (2003).
[Crossref]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

A. Ciattoni, G. Cincotti, and C. Palma, “Circularly polarized beams and vortex generation in uniaxial media,” J. Opt. Soc. Am. A 20(1), 163–171 (2003).
[Crossref] [PubMed]

A. Ciattoni and C. Palma, “Optical propagation in uniaxial crystals orthogonal to the optical axis: paraxial theory and beyond,” J. Opt. Soc. Am. A 20(11), 2163–2171 (2003).
[Crossref] [PubMed]

2002 (3)

A. Ciattoni, G. Cincotti, and C. Palma, “Propagation of cylindrically symmetric fields in uniaxial crystals,” J. Opt. Soc. Am. A 19(4), 792–796 (2002).
[Crossref] [PubMed]

C. L. Sones, S. Mailis, W. S. Brocklesby, R. W. Eason, and J. R. Owen, “Differential etch rates in z-cut LiNbO3 for variable HF/HNO3 concentrations,” J. Mater. Chem. 12(2), 295–298 (2002).
[Crossref]

N. N. Rozanov, “Propagation of laser radiation in anisotropic media,” Opt. Spectrosc. 93(5), 746–751 (2002).
[Crossref]

2001 (2)

H. P. Li, C. H. Kam, Y. L. Lam, and W. Ji, “Femtosecond Z-scan measurements of nonlinear refraction in nonlinear optical crystals,” Opt. Mater. 15(4), 237–242 (2001).
[Crossref]

A. Ciattoni, B. Crosignani, and P. Di Porto, “Vectorial theory of propagation in uniaxially anisotropic media,” J. Opt. Soc. Am. A 18(7), 1656–1661 (2001).
[Crossref] [PubMed]

1998 (2)

1997 (1)

1995 (2)

1993 (1)

S. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer, “Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index,” J. Microsc. 169(3), 391–405 (1993).
[Crossref]

1991 (1)

1985 (1)

R. S. Weis and T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys., A Mater. Sci. Process. 37(4), 191–203 (1985).
[Crossref]

1983 (1)

1982 (1)

J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high‐index waveguides in LiNbO3,” Appl. Phys. Lett. 41(7), 607–608 (1982).
[Crossref]

1979 (1)

1975 (1)

M. Lax, W. H. Louisell, and W. B. McKnight, “From Maxwell to paraxial optics,” Phys. Rev. A 11(4), 1365–1370 (1975).
[Crossref]

1974 (1)

R. V. Schmidt and I. P. Kaminow, “Metal-diffused optical waveguides in LiNbO3,” Appl. Phys. Lett. 25(8), 458–460 (1974).
[Crossref]

1967 (1)

N. Niizeki, T. Yamada, and H. Toyoda, “Growth ridges, etched hillocks, and crystal structure of lithium niobate,” Jpn. J. Appl. Phys. 6(3), 318–327 (1967).
[Crossref]

1966 (1)

K. Nassau, H. J. Levinstein, and G. M. Loiacono, “Ferroelectric lithium niobate. 1. Growth, domain structure, dislocations and etching,” J. Phys. Chem. Solids 27(6–7), 983–988 (1966).
[Crossref]

Agrawal, G. P.

Akhouayri, H.

A. Hildenbrand, F. R. Wagner, H. Akhouayri, J.-Y. Natoli, and M. Commandré, “Accurate metrology for laser damage measurements in nonlinear crystals,” Opt. Eng. 47(8), 083603 (2008).
[Crossref]

Alexander, D.

D. C. Deshpande, A. P. Malshe, E. A. Stach, V. Radmilovic, D. Alexander, D. Doerr, and D. Hirt, “Investigation of femtosecond laser assisted nano and microscale modifications in lithium niobate,” J. Appl. Phys. 97(7), 074316 (2005).
[Crossref]

E. A. Stach, V. Radmilovic, D. Deshpande, A. Malshe, D. Alexander, and D. Doerr, “Nanoscale surface and subsurface defects induced in lithium niobate by a femtosecond laser,” Appl. Phys. Lett. 83(21), 4420–4422 (2003).
[Crossref]

An, H.

B. McMillen, K. P. Chen, H. An, S. Fleming, V. Hartwell, and D. Snoke, “Waveguiding and nonlinear optical properties of three-dimensional waveguides in LiTaO3 written by high-repetition rate ultrafast laser,” Appl. Phys. Lett. 93(11), 111106 (2008).
[Crossref]

Arizmendi, L.

L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Status Solidi 201(2), 253–283 (2004).
[Crossref]

Baldenberger, G.

F. Généreux, G. Baldenberger, B. Bourliaguet, and R. Vallée, “Deep periodic domain inversions in x-cut LiNbO3 and its use for second harmonic generation near 1.5 μm,” Appl. Phys. Lett. 91(23), 231112 (2007).
[Crossref]

D. Grobnic, S. Mihailov, C. Smelser, F. Généreux, G. Baldenberger, and R. Vallée, “Bragg gratings made in reverse proton exchange lithium niobate waveguides with a femtosecond IR laser and a phase mask,” IEEE Photonics Technol. Lett. 17(7), 1453–1455 (2005).
[Crossref]

Benayas, A.

Bernal, M. P.

N. Courjal, B. Guichardaz, G. Ulliac, J. Y. Rauch, B. Sadani, H. H. Lu, and M. P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D Appl. Phys. 44(30), 305101 (2011).
[Crossref]

Bettiol, A. A.

G. Si, A. J. Danner, S. L. Teo, E. J. Teo, J. Teng, and A. A. Bettiol, “Photonic crystal structures with ultrahigh aspect ratio in lithium niobate fabricated by focused ion beam milling,” J. Vac. Sci. Technol. B 29(2), 021205 (2011).
[Crossref]

Beyer, O.

O. Beyer, D. Maxein, K. Buse, B. Sturman, H. T. Hsieh, and D. Psaltis, “Investigation of nonlinear absorption processes with femtosecond light pulses in lithium niobate crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(5), 056603 (2005).
[Crossref] [PubMed]

Bhardwaj, V. R.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[Crossref] [PubMed]

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations,” J. Appl. Phys. 98(1), 013517 (2005).
[Crossref]

Blewett, I. J.

R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett. 88(11), 111109 (2006).
[Crossref]

Booker, G. R.

Bookey, H. T.

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90(24), 241107 (2007).
[Crossref]

Booth, M.

Booth, M. J.

Bourliaguet, B.

F. Généreux, G. Baldenberger, B. Bourliaguet, and R. Vallée, “Deep periodic domain inversions in x-cut LiNbO3 and its use for second harmonic generation near 1.5 μm,” Appl. Phys. Lett. 91(23), 231112 (2007).
[Crossref]

Brandt, N.

Brasselet, E.

Brocklesby, W. S.

C. L. Sones, S. Mailis, W. S. Brocklesby, R. W. Eason, and J. R. Owen, “Differential etch rates in z-cut LiNbO3 for variable HF/HNO3 concentrations,” J. Mater. Chem. 12(2), 295–298 (2002).
[Crossref]

Burghoff, J.

J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys., A Mater. Sci. Process. 89(1), 127–132 (2007).
[Crossref]

J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate,” Appl. Phys. Lett. 89(8), 081108 (2006).
[Crossref]

J. Burghoff, H. Hartung, S. Nolte, and A. Tünnermann, “Structural properties of femtosecond laser-induced modifications in LiNbO3,” Appl. Phys., A Mater. Sci. Process. 86(2), 165–170 (2006).
[Crossref]

Buse, K.

O. Beyer, D. Maxein, K. Buse, B. Sturman, H. T. Hsieh, and D. Psaltis, “Investigation of nonlinear absorption processes with femtosecond light pulses in lithium niobate crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(5), 056603 (2005).
[Crossref] [PubMed]

Campbell, S.

R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett. 88(11), 111109 (2006).
[Crossref]

Cerullo, G.

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90(24), 241107 (2007).
[Crossref]

Chen, F.

Chen, K. P.

B. McMillen, K. P. Chen, H. An, S. Fleming, V. Hartwell, and D. Snoke, “Waveguiding and nonlinear optical properties of three-dimensional waveguides in LiTaO3 written by high-repetition rate ultrafast laser,” Appl. Phys. Lett. 93(11), 111106 (2008).
[Crossref]

Chen, X.

X. Chen, P. Karpinski, V. Shvedov, K. Koynov, B. Wang, J. Trull, C. Cojocaru, W. Krolikowski, and Y. Sheng, “Ferroelectric domain engineering by focused infrared femtosecond pulses,” Appl. Phys. Lett. 107(14), 141102 (2015).
[Crossref]

Cheng, Y.

Chiodo, N.

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90(24), 241107 (2007).
[Crossref]

Chong, T. C.

L. Gui, B. Xu, and T. C. Chong, “Microstructure in lithium niobate by use of focused femtosecond laser pulses,” IEEE Photonics Technol. Lett. 16(5), 1337–1339 (2004).
[Crossref]

Ciattoni, A.

Cincotti, G.

Cojocaru, C.

X. Chen, P. Karpinski, V. Shvedov, K. Koynov, B. Wang, J. Trull, C. Cojocaru, W. Krolikowski, and Y. Sheng, “Ferroelectric domain engineering by focused infrared femtosecond pulses,” Appl. Phys. Lett. 107(14), 141102 (2015).
[Crossref]

Commandré, M.

A. Hildenbrand, F. R. Wagner, H. Akhouayri, J.-Y. Natoli, and M. Commandré, “Accurate metrology for laser damage measurements in nonlinear crystals,” Opt. Eng. 47(8), 083603 (2008).
[Crossref]

Corkum, P. B.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[Crossref] [PubMed]

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations,” J. Appl. Phys. 98(1), 013517 (2005).
[Crossref]

Couairon, A.

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441(2-4), 47–189 (2007).
[Crossref]

Courjal, N.

N. Courjal, B. Guichardaz, G. Ulliac, J. Y. Rauch, B. Sadani, H. H. Lu, and M. P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D Appl. Phys. 44(30), 305101 (2011).
[Crossref]

Cremer, C.

S. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer, “Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index,” J. Microsc. 169(3), 391–405 (1993).
[Crossref]

Crosignani, B.

Cumming, B. P.

Danner, A. J.

G. Si, A. J. Danner, S. L. Teo, E. J. Teo, J. Teng, and A. A. Bettiol, “Photonic crystal structures with ultrahigh aspect ratio in lithium niobate fabricated by focused ion beam milling,” J. Vac. Sci. Technol. B 29(2), 021205 (2011).
[Crossref]

Denz, C.

Deshpande, D.

E. A. Stach, V. Radmilovic, D. Deshpande, A. Malshe, D. Alexander, and D. Doerr, “Nanoscale surface and subsurface defects induced in lithium niobate by a femtosecond laser,” Appl. Phys. Lett. 83(21), 4420–4422 (2003).
[Crossref]

Deshpande, D. C.

D. C. Deshpande, A. P. Malshe, E. A. Stach, V. Radmilovic, D. Alexander, D. Doerr, and D. Hirt, “Investigation of femtosecond laser assisted nano and microscale modifications in lithium niobate,” J. Appl. Phys. 97(7), 074316 (2005).
[Crossref]

Desyatnikov, A.

Desyatnikov, A. S.

Dhayalan, V.

J. K. Lotsberg, X. Zhao, M. Jain, V. Dhayalan, G. S. Sithambaranathan, J. J. Stamnes, and D. Jiang, “Focusing of electromagnetic waves into a biaxial crystal, experimental results,” Opt. Commun. 250(4–6), 231–240 (2005).
[Crossref]

Di Porto, P.

Doerr, D.

D. C. Deshpande, A. P. Malshe, E. A. Stach, V. Radmilovic, D. Alexander, D. Doerr, and D. Hirt, “Investigation of femtosecond laser assisted nano and microscale modifications in lithium niobate,” J. Appl. Phys. 97(7), 074316 (2005).
[Crossref]

E. A. Stach, V. Radmilovic, D. Deshpande, A. Malshe, D. Alexander, and D. Doerr, “Nanoscale surface and subsurface defects induced in lithium niobate by a femtosecond laser,” Appl. Phys. Lett. 83(21), 4420–4422 (2003).
[Crossref]

Dong, N.

Döring, S.

Dubietis, A.

Eason, R. W.

C. Y. J. Ying, A. C. Muir, C. E. Valdivia, H. Steigerwald, C. L. Sones, R. W. Eason, E. Soergel, and S. Mailis, “Light-mediated ferroelectric domain engineering and micro-structuring of lithium niobate crystals,” Laser Photonics Rev. 6(4), 526–548 (2012).
[Crossref]

C. L. Sones, S. Mailis, W. S. Brocklesby, R. W. Eason, and J. R. Owen, “Differential etch rates in z-cut LiNbO3 for variable HF/HNO3 concentrations,” J. Mater. Chem. 12(2), 295–298 (2002).
[Crossref]

Fadeyeva, T. A.

Fedorov, V. Yu.

V. P. Kandidov and V. Yu. Fedorov, “Specific features of elliptic beam self-focusing,” Quantum Electron. 34(12), 1163–1168 (2004).
[Crossref]

Feit, M. D.

Fibich, G.

Fleck, J. A.

Fleming, S.

B. McMillen, K. P. Chen, H. An, S. Fleming, V. Hartwell, and D. Snoke, “Waveguiding and nonlinear optical properties of three-dimensional waveguides in LiTaO3 written by high-repetition rate ultrafast laser,” Appl. Phys. Lett. 93(11), 111106 (2008).
[Crossref]

Frette, Ø.

Gaeta, A.

Gamaly, E. G.

E. G. Gamaly, S. Juodkazis, V. Mizeikis, H. Misawa, A. V. Rode, and W. Krolikowski, “Modification of refractive index by a single femtosecond pulse confined inside a bulk of a photorefractive crystal,” Phys. Rev. B 81(5), 054113 (2010).
[Crossref]

S. Juodkazis, M. Sudzius, V. Mizeikis, H. Misawa, E. G. Gamaly, Y. Liu, O. A. Louchev, and K. Kitamura, “Three-dimensional recording by tightly focused femtosecond pulses in LiNbO3,” Appl. Phys. Lett. 89(6), 062903 (2006).
[Crossref]

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Gauderon, R.

Gaylord, T. K.

R. S. Weis and T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys., A Mater. Sci. Process. 37(4), 191–203 (1985).
[Crossref]

Geiss, R.

J. Thomas, V. Hilbert, R. Geiss, T. Pertsch, A. Tünnermann, and S. Nolte, “Quasi phase matching in femtosecond pulse volume structured x-cut lithium niobate,” Laser Photonics Rev. 7(3), L17–L20 (2013).
[Crossref]

Généreux, F.

F. Généreux, G. Baldenberger, B. Bourliaguet, and R. Vallée, “Deep periodic domain inversions in x-cut LiNbO3 and its use for second harmonic generation near 1.5 μm,” Appl. Phys. Lett. 91(23), 231112 (2007).
[Crossref]

D. Grobnic, S. Mihailov, C. Smelser, F. Généreux, G. Baldenberger, and R. Vallée, “Bragg gratings made in reverse proton exchange lithium niobate waveguides with a femtosecond IR laser and a phase mask,” IEEE Photonics Technol. Lett. 17(7), 1453–1455 (2005).
[Crossref]

Gibson, S. F.

Gischkat, T.

F. Schrempel, T. Gischkat, H. Hartung, E.-B. Kley, and W. Wesch, “Ion beam enhanced etching of LiNbO3,” Nucl. Instrum. Methods Phys. Res. B 250(1–2), 164–168 (2006).
[Crossref]

Gong, Q.

J. Li, H. Jiang, J. Xiao, and Q. Gong, “The mechanism of multi-focusing of lasers into uniaxial crystals,” J. Opt. A, Pure Appl. Opt. 9(7), 664–672 (2007).
[Crossref]

Gottmann, J.

Grebing, C.

J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate,” Appl. Phys. Lett. 89(8), 081108 (2006).
[Crossref]

Grobnic, D.

D. Grobnic, S. Mihailov, C. Smelser, F. Généreux, G. Baldenberger, and R. Vallée, “Bragg gratings made in reverse proton exchange lithium niobate waveguides with a femtosecond IR laser and a phase mask,” IEEE Photonics Technol. Lett. 17(7), 1453–1455 (2005).
[Crossref]

Grow, T.

Gu, M.

Gui, L.

L. Gui, B. Xu, and T. C. Chong, “Microstructure in lithium niobate by use of focused femtosecond laser pulses,” IEEE Photonics Technol. Lett. 16(5), 1337–1339 (2004).
[Crossref]

Guichardaz, B.

N. Courjal, B. Guichardaz, G. Ulliac, J. Y. Rauch, B. Sadani, H. H. Lu, and M. P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D Appl. Phys. 44(30), 305101 (2011).
[Crossref]

Hartung, H.

F. Schrempel, T. Gischkat, H. Hartung, E.-B. Kley, and W. Wesch, “Ion beam enhanced etching of LiNbO3,” Nucl. Instrum. Methods Phys. Res. B 250(1–2), 164–168 (2006).
[Crossref]

J. Burghoff, H. Hartung, S. Nolte, and A. Tünnermann, “Structural properties of femtosecond laser-induced modifications in LiNbO3,” Appl. Phys., A Mater. Sci. Process. 86(2), 165–170 (2006).
[Crossref]

Hartwell, V.

B. McMillen, K. P. Chen, H. An, S. Fleming, V. Hartwell, and D. Snoke, “Waveguiding and nonlinear optical properties of three-dimensional waveguides in LiTaO3 written by high-repetition rate ultrafast laser,” Appl. Phys. Lett. 93(11), 111106 (2008).
[Crossref]

He, F.

Heard, P. J.

Z. Ren, P. J. Heard, J. M. Marshall, P. A. Thomas, and S. Yu, “Etching characteristics of LiNbO3 in reactive ion etching and inductively coupled plasma,” J. Appl. Phys. 103(3), 034109 (2008).
[Crossref]

Hell, S.

S. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer, “Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index,” J. Microsc. 169(3), 391–405 (1993).
[Crossref]

Herman, P. R.

Herrmann, J.

Hilbert, V.

J. Thomas, V. Hilbert, R. Geiss, T. Pertsch, A. Tünnermann, and S. Nolte, “Quasi phase matching in femtosecond pulse volume structured x-cut lithium niobate,” Laser Photonics Rev. 7(3), L17–L20 (2013).
[Crossref]

Hildenbrand, A.

A. Hildenbrand, F. R. Wagner, H. Akhouayri, J.-Y. Natoli, and M. Commandré, “Accurate metrology for laser damage measurements in nonlinear crystals,” Opt. Eng. 47(8), 083603 (2008).
[Crossref]

Hirao, K.

Y. Shimotsuma, K. Hirao, J. Qiu, and P. G. Kazansky, “Nano-modification inside transparent materials by femtosecond laser single beam,” Mod. Phys. Lett. B 19(05), 225–238 (2005).
[Crossref]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

Hirt, D.

D. C. Deshpande, A. P. Malshe, E. A. Stach, V. Radmilovic, D. Alexander, D. Doerr, and D. Hirt, “Investigation of femtosecond laser assisted nano and microscale modifications in lithium niobate,” J. Appl. Phys. 97(7), 074316 (2005).
[Crossref]

Hnatovsky, C.

V. G. Shvedov, C. Hnatovsky, N. Shostka, and W. Krolikowski, “Generation of vector bottle beams with a uniaxial crystal,” J. Opt. Soc. Am. B 30(1), 1–6 (2013).
[Crossref]

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica,” Laser Photonics Rev. 2(1–2), 26–46 (2008).
[Crossref]

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[Crossref] [PubMed]

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations,” J. Appl. Phys. 98(1), 013517 (2005).
[Crossref]

Horn, W.

Horn-Solle, H.

Hsieh, H. T.

O. Beyer, D. Maxein, K. Buse, B. Sturman, H. T. Hsieh, and D. Psaltis, “Investigation of nonlinear absorption processes with femtosecond light pulses in lithium niobate crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(5), 056603 (2005).
[Crossref] [PubMed]

Hu, H.

H. Hu, R. Ricken, W. Sohler, and R. B. Wehrspohn, “Lithium niobate ridge waveguides fabricated by wet etching,” IEEE Photonics Technol. Lett. 19(6), 417–419 (2007).
[Crossref]

Ilan, B.

Imbrock, J.

Izdebskaya, Y.

Izdebskaya, Y. V.

Jackel, J. L.

J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high‐index waveguides in LiNbO3,” Appl. Phys. Lett. 41(7), 607–608 (1982).
[Crossref]

Jain, M.

M. Jain, J. K. Lotsberg, J. J. Stamnes, Ø. Frette, D. Velauthapillai, D. Jiang, and X. Zhao, “Numerical and experimental results for focusing of three-dimensional electromagnetic waves into uniaxial crystals,” J. Opt. Soc. Am. A 26(3), 691–698 (2009).
[Crossref] [PubMed]

M. Jain, J. K. Lotsberg, J. J. Stamnes, and Ø. Frette, “Effects of aperture size on focusing of electromagnetic waves into a biaxial crystal,” Opt. Commun. 266(2), 438–447 (2006).
[Crossref]

J. K. Lotsberg, X. Zhao, M. Jain, V. Dhayalan, G. S. Sithambaranathan, J. J. Stamnes, and D. Jiang, “Focusing of electromagnetic waves into a biaxial crystal, experimental results,” Opt. Commun. 250(4–6), 231–240 (2005).
[Crossref]

Jaque, D.

Jesacher, A.

Ji, W.

H. P. Li, C. H. Kam, Y. L. Lam, and W. Ji, “Femtosecond Z-scan measurements of nonlinear refraction in nonlinear optical crystals,” Opt. Mater. 15(4), 237–242 (2001).
[Crossref]

Jiang, D.

M. Jain, J. K. Lotsberg, J. J. Stamnes, Ø. Frette, D. Velauthapillai, D. Jiang, and X. Zhao, “Numerical and experimental results for focusing of three-dimensional electromagnetic waves into uniaxial crystals,” J. Opt. Soc. Am. A 26(3), 691–698 (2009).
[Crossref] [PubMed]

J. K. Lotsberg, X. Zhao, M. Jain, V. Dhayalan, G. S. Sithambaranathan, J. J. Stamnes, and D. Jiang, “Focusing of electromagnetic waves into a biaxial crystal, experimental results,” Opt. Commun. 250(4–6), 231–240 (2005).
[Crossref]

J. J. Stamnes and D. Jiang, “Focusing of electromagnetic waves into a uniaxial crystal,” Opt. Commun. 150(1–6), 251–262 (1998).
[Crossref]

Jiang, H.

J. Li, H. Jiang, J. Xiao, and Q. Gong, “The mechanism of multi-focusing of lasers into uniaxial crystals,” J. Opt. A, Pure Appl. Opt. 9(7), 664–672 (2007).
[Crossref]

Jundt, D.

Juodkazis, S.

E. G. Gamaly, S. Juodkazis, V. Mizeikis, H. Misawa, A. V. Rode, and W. Krolikowski, “Modification of refractive index by a single femtosecond pulse confined inside a bulk of a photorefractive crystal,” Phys. Rev. B 81(5), 054113 (2010).
[Crossref]

S. Juodkazis, M. Sudzius, V. Mizeikis, H. Misawa, E. G. Gamaly, Y. Liu, O. A. Louchev, and K. Kitamura, “Three-dimensional recording by tightly focused femtosecond pulses in LiNbO3,” Appl. Phys. Lett. 89(6), 062903 (2006).
[Crossref]

Kam, C. H.

H. P. Li, C. H. Kam, Y. L. Lam, and W. Ji, “Femtosecond Z-scan measurements of nonlinear refraction in nonlinear optical crystals,” Opt. Mater. 15(4), 237–242 (2001).
[Crossref]

Kaminow, I. P.

R. V. Schmidt and I. P. Kaminow, “Metal-diffused optical waveguides in LiNbO3,” Appl. Phys. Lett. 25(8), 458–460 (1974).
[Crossref]

Kandidov, V. P.

V. P. Kandidov and V. Yu. Fedorov, “Specific features of elliptic beam self-focusing,” Quantum Electron. 34(12), 1163–1168 (2004).
[Crossref]

Kar, A. K.

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90(24), 241107 (2007).
[Crossref]

R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett. 88(11), 111109 (2006).
[Crossref]

Karpinski, P.

X. Chen, P. Karpinski, V. Shvedov, K. Koynov, B. Wang, J. Trull, C. Cojocaru, W. Krolikowski, and Y. Sheng, “Ferroelectric domain engineering by focused infrared femtosecond pulses,” Appl. Phys. Lett. 107(14), 141102 (2015).
[Crossref]

Kazansky, P. G.

Y. Shimotsuma, K. Hirao, J. Qiu, and P. G. Kazansky, “Nano-modification inside transparent materials by femtosecond laser single beam,” Mod. Phys. Lett. B 19(05), 225–238 (2005).
[Crossref]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

Kitamura, K.

S. Juodkazis, M. Sudzius, V. Mizeikis, H. Misawa, E. G. Gamaly, Y. Liu, O. A. Louchev, and K. Kitamura, “Three-dimensional recording by tightly focused femtosecond pulses in LiNbO3,” Appl. Phys. Lett. 89(6), 062903 (2006).
[Crossref]

Kivshar, Y. S.

Kley, E.-B.

F. Schrempel, T. Gischkat, H. Hartung, E.-B. Kley, and W. Wesch, “Ion beam enhanced etching of LiNbO3,” Nucl. Instrum. Methods Phys. Res. B 250(1–2), 164–168 (2006).
[Crossref]

Koynov, K.

X. Chen, P. Karpinski, V. Shvedov, K. Koynov, B. Wang, J. Trull, C. Cojocaru, W. Krolikowski, and Y. Sheng, “Ferroelectric domain engineering by focused infrared femtosecond pulses,” Appl. Phys. Lett. 107(14), 141102 (2015).
[Crossref]

Kroesen, S.

Krolikowski, W.

Laczic, Z.

Lam, Y. L.

H. P. Li, C. H. Kam, Y. L. Lam, and W. Ji, “Femtosecond Z-scan measurements of nonlinear refraction in nonlinear optical crystals,” Opt. Mater. 15(4), 237–242 (2001).
[Crossref]

Lanni, F.

Lax, M.

M. Lax, W. H. Louisell, and W. B. McKnight, “From Maxwell to paraxial optics,” Phys. Rev. A 11(4), 1365–1370 (1975).
[Crossref]

Levinstein, H. J.

K. Nassau, H. J. Levinstein, and G. M. Loiacono, “Ferroelectric lithium niobate. 1. Growth, domain structure, dislocations and etching,” J. Phys. Chem. Solids 27(6–7), 983–988 (1966).
[Crossref]

Li, H. P.

H. P. Li, C. H. Kam, Y. L. Lam, and W. Ji, “Femtosecond Z-scan measurements of nonlinear refraction in nonlinear optical crystals,” Opt. Mater. 15(4), 237–242 (2001).
[Crossref]

Li, J.

J. Li, H. Jiang, J. Xiao, and Q. Gong, “The mechanism of multi-focusing of lasers into uniaxial crystals,” J. Opt. A, Pure Appl. Opt. 9(7), 664–672 (2007).
[Crossref]

Liao, Y.

Liu, Y.

S. Juodkazis, M. Sudzius, V. Mizeikis, H. Misawa, E. G. Gamaly, Y. Liu, O. A. Louchev, and K. Kitamura, “Three-dimensional recording by tightly focused femtosecond pulses in LiNbO3,” Appl. Phys. Lett. 89(6), 062903 (2006).
[Crossref]

Lobino, M.

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90(24), 241107 (2007).
[Crossref]

Loiacono, G. M.

K. Nassau, H. J. Levinstein, and G. M. Loiacono, “Ferroelectric lithium niobate. 1. Growth, domain structure, dislocations and etching,” J. Phys. Chem. Solids 27(6–7), 983–988 (1966).
[Crossref]

Lotsberg, J. K.

M. Jain, J. K. Lotsberg, J. J. Stamnes, Ø. Frette, D. Velauthapillai, D. Jiang, and X. Zhao, “Numerical and experimental results for focusing of three-dimensional electromagnetic waves into uniaxial crystals,” J. Opt. Soc. Am. A 26(3), 691–698 (2009).
[Crossref] [PubMed]

M. Jain, J. K. Lotsberg, J. J. Stamnes, and Ø. Frette, “Effects of aperture size on focusing of electromagnetic waves into a biaxial crystal,” Opt. Commun. 266(2), 438–447 (2006).
[Crossref]

J. K. Lotsberg, X. Zhao, M. Jain, V. Dhayalan, G. S. Sithambaranathan, J. J. Stamnes, and D. Jiang, “Focusing of electromagnetic waves into a biaxial crystal, experimental results,” Opt. Commun. 250(4–6), 231–240 (2005).
[Crossref]

Louchev, O. A.

S. Juodkazis, M. Sudzius, V. Mizeikis, H. Misawa, E. G. Gamaly, Y. Liu, O. A. Louchev, and K. Kitamura, “Three-dimensional recording by tightly focused femtosecond pulses in LiNbO3,” Appl. Phys. Lett. 89(6), 062903 (2006).
[Crossref]

Louisell, W. H.

M. Lax, W. H. Louisell, and W. B. McKnight, “From Maxwell to paraxial optics,” Phys. Rev. A 11(4), 1365–1370 (1975).
[Crossref]

Lu, H. H.

N. Courjal, B. Guichardaz, G. Ulliac, J. Y. Rauch, B. Sadani, H. H. Lu, and M. P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D Appl. Phys. 44(30), 305101 (2011).
[Crossref]

Lu, Q.

Lukins, P. B.

Mailis, S.

C. Y. J. Ying, A. C. Muir, C. E. Valdivia, H. Steigerwald, C. L. Sones, R. W. Eason, E. Soergel, and S. Mailis, “Light-mediated ferroelectric domain engineering and micro-structuring of lithium niobate crystals,” Laser Photonics Rev. 6(4), 526–548 (2012).
[Crossref]

C. L. Sones, S. Mailis, W. S. Brocklesby, R. W. Eason, and J. R. Owen, “Differential etch rates in z-cut LiNbO3 for variable HF/HNO3 concentrations,” J. Mater. Chem. 12(2), 295–298 (2002).
[Crossref]

Malshe, A.

E. A. Stach, V. Radmilovic, D. Deshpande, A. Malshe, D. Alexander, and D. Doerr, “Nanoscale surface and subsurface defects induced in lithium niobate by a femtosecond laser,” Appl. Phys. Lett. 83(21), 4420–4422 (2003).
[Crossref]

Malshe, A. P.

D. C. Deshpande, A. P. Malshe, E. A. Stach, V. Radmilovic, D. Alexander, D. Doerr, and D. Hirt, “Investigation of femtosecond laser assisted nano and microscale modifications in lithium niobate,” J. Appl. Phys. 97(7), 074316 (2005).
[Crossref]

Marangoni, M.

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90(24), 241107 (2007).
[Crossref]

Marshall, J. M.

Z. Ren, P. J. Heard, J. M. Marshall, P. A. Thomas, and S. Yu, “Etching characteristics of LiNbO3 in reactive ion etching and inductively coupled plasma,” J. Appl. Phys. 103(3), 034109 (2008).
[Crossref]

Maxein, D.

O. Beyer, D. Maxein, K. Buse, B. Sturman, H. T. Hsieh, and D. Psaltis, “Investigation of nonlinear absorption processes with femtosecond light pulses in lithium niobate crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(5), 056603 (2005).
[Crossref] [PubMed]

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

McKnight, W. B.

M. Lax, W. H. Louisell, and W. B. McKnight, “From Maxwell to paraxial optics,” Phys. Rev. A 11(4), 1365–1370 (1975).
[Crossref]

McMillen, B.

B. McMillen, K. P. Chen, H. An, S. Fleming, V. Hartwell, and D. Snoke, “Waveguiding and nonlinear optical properties of three-dimensional waveguides in LiTaO3 written by high-repetition rate ultrafast laser,” Appl. Phys. Lett. 93(11), 111106 (2008).
[Crossref]

Midorikawa, K.

Miese, C.

Mihailov, S.

D. Grobnic, S. Mihailov, C. Smelser, F. Généreux, G. Baldenberger, and R. Vallée, “Bragg gratings made in reverse proton exchange lithium niobate waveguides with a femtosecond IR laser and a phase mask,” IEEE Photonics Technol. Lett. 17(7), 1453–1455 (2005).
[Crossref]

Misawa, H.

E. G. Gamaly, S. Juodkazis, V. Mizeikis, H. Misawa, A. V. Rode, and W. Krolikowski, “Modification of refractive index by a single femtosecond pulse confined inside a bulk of a photorefractive crystal,” Phys. Rev. B 81(5), 054113 (2010).
[Crossref]

S. Juodkazis, M. Sudzius, V. Mizeikis, H. Misawa, E. G. Gamaly, Y. Liu, O. A. Louchev, and K. Kitamura, “Three-dimensional recording by tightly focused femtosecond pulses in LiNbO3,” Appl. Phys. Lett. 89(6), 062903 (2006).
[Crossref]

Mizeikis, V.

E. G. Gamaly, S. Juodkazis, V. Mizeikis, H. Misawa, A. V. Rode, and W. Krolikowski, “Modification of refractive index by a single femtosecond pulse confined inside a bulk of a photorefractive crystal,” Phys. Rev. B 81(5), 054113 (2010).
[Crossref]

S. Juodkazis, M. Sudzius, V. Mizeikis, H. Misawa, E. G. Gamaly, Y. Liu, O. A. Louchev, and K. Kitamura, “Three-dimensional recording by tightly focused femtosecond pulses in LiNbO3,” Appl. Phys. Lett. 89(6), 062903 (2006).
[Crossref]

Muir, A. C.

C. Y. J. Ying, A. C. Muir, C. E. Valdivia, H. Steigerwald, C. L. Sones, R. W. Eason, E. Soergel, and S. Mailis, “Light-mediated ferroelectric domain engineering and micro-structuring of lithium niobate crystals,” Laser Photonics Rev. 6(4), 526–548 (2012).
[Crossref]

Mysyrowicz, A.

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441(2-4), 47–189 (2007).
[Crossref]

Nassau, K.

K. Nassau, H. J. Levinstein, and G. M. Loiacono, “Ferroelectric lithium niobate. 1. Growth, domain structure, dislocations and etching,” J. Phys. Chem. Solids 27(6–7), 983–988 (1966).
[Crossref]

Natoli, J.-Y.

A. Hildenbrand, F. R. Wagner, H. Akhouayri, J.-Y. Natoli, and M. Commandré, “Accurate metrology for laser damage measurements in nonlinear crystals,” Opt. Eng. 47(8), 083603 (2008).
[Crossref]

Nejadmalayeri, A. H.

Neshev, D. N.

Niizeki, N.

N. Niizeki, T. Yamada, and H. Toyoda, “Growth ridges, etched hillocks, and crystal structure of lithium niobate,” Jpn. J. Appl. Phys. 6(3), 318–327 (1967).
[Crossref]

Nolte, S.

J. Thomas, V. Hilbert, R. Geiss, T. Pertsch, A. Tünnermann, and S. Nolte, “Quasi phase matching in femtosecond pulse volume structured x-cut lithium niobate,” Laser Photonics Rev. 7(3), L17–L20 (2013).
[Crossref]

S. Richter, C. Miese, S. Döring, F. Zimmermann, M. J. Withford, A. Tünnermann, and S. Nolte, “Laser induced nanogratings beyond fused silica - periodic nanostructures in borosilicate glasses and ULE™,” Opt. Mater. Express 3(8), 1161–1166 (2013).
[Crossref]

J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys., A Mater. Sci. Process. 89(1), 127–132 (2007).
[Crossref]

J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate,” Appl. Phys. Lett. 89(8), 081108 (2006).
[Crossref]

J. Burghoff, H. Hartung, S. Nolte, and A. Tünnermann, “Structural properties of femtosecond laser-induced modifications in LiNbO3,” Appl. Phys., A Mater. Sci. Process. 86(2), 165–170 (2006).
[Crossref]

Osellame, R.

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90(24), 241107 (2007).
[Crossref]

Owen, J. R.

C. L. Sones, S. Mailis, W. S. Brocklesby, R. W. Eason, and J. R. Owen, “Differential etch rates in z-cut LiNbO3 for variable HF/HNO3 concentrations,” J. Mater. Chem. 12(2), 295–298 (2002).
[Crossref]

Palma, C.

Pattanayak, D. N.

Pertsch, T.

J. Thomas, V. Hilbert, R. Geiss, T. Pertsch, A. Tünnermann, and S. Nolte, “Quasi phase matching in femtosecond pulse volume structured x-cut lithium niobate,” Laser Photonics Rev. 7(3), L17–L20 (2013).
[Crossref]

Psaila, N. D.

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90(24), 241107 (2007).
[Crossref]

Psaltis, D.

O. Beyer, D. Maxein, K. Buse, B. Sturman, H. T. Hsieh, and D. Psaltis, “Investigation of nonlinear absorption processes with femtosecond light pulses in lithium niobate crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(5), 056603 (2005).
[Crossref] [PubMed]

Qiu, J.

Y. Shimotsuma, K. Hirao, J. Qiu, and P. G. Kazansky, “Nano-modification inside transparent materials by femtosecond laser single beam,” Mod. Phys. Lett. B 19(05), 225–238 (2005).
[Crossref]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

Radmilovic, V.

D. C. Deshpande, A. P. Malshe, E. A. Stach, V. Radmilovic, D. Alexander, D. Doerr, and D. Hirt, “Investigation of femtosecond laser assisted nano and microscale modifications in lithium niobate,” J. Appl. Phys. 97(7), 074316 (2005).
[Crossref]

E. A. Stach, V. Radmilovic, D. Deshpande, A. Malshe, D. Alexander, and D. Doerr, “Nanoscale surface and subsurface defects induced in lithium niobate by a femtosecond laser,” Appl. Phys. Lett. 83(21), 4420–4422 (2003).
[Crossref]

Rajeev, P. P.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[Crossref] [PubMed]

Ramponi, R.

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90(24), 241107 (2007).
[Crossref]

Rauch, J. Y.

N. Courjal, B. Guichardaz, G. Ulliac, J. Y. Rauch, B. Sadani, H. H. Lu, and M. P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D Appl. Phys. 44(30), 305101 (2011).
[Crossref]

Rayner, D. M.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[Crossref] [PubMed]

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations,” J. Appl. Phys. 98(1), 013517 (2005).
[Crossref]

Reid, D. T.

R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett. 88(11), 111109 (2006).
[Crossref]

Reiner, G.

S. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer, “Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index,” J. Microsc. 169(3), 391–405 (1993).
[Crossref]

Ren, Z.

Z. Ren, P. J. Heard, J. M. Marshall, P. A. Thomas, and S. Yu, “Etching characteristics of LiNbO3 in reactive ion etching and inductively coupled plasma,” J. Appl. Phys. 103(3), 034109 (2008).
[Crossref]

Rice, C. E.

J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high‐index waveguides in LiNbO3,” Appl. Phys. Lett. 41(7), 607–608 (1982).
[Crossref]

Richter, S.

Ricken, R.

H. Hu, R. Ricken, W. Sohler, and R. B. Wehrspohn, “Lithium niobate ridge waveguides fabricated by wet etching,” IEEE Photonics Technol. Lett. 19(6), 417–419 (2007).
[Crossref]

Rode, A. V.

E. G. Gamaly, S. Juodkazis, V. Mizeikis, H. Misawa, A. V. Rode, and W. Krolikowski, “Modification of refractive index by a single femtosecond pulse confined inside a bulk of a photorefractive crystal,” Phys. Rev. B 81(5), 054113 (2010).
[Crossref]

Ródenas, A.

A. Ródenas, G. Zhou, D. Jaque, and M. Gu, “Rare-earth spontaneous emission control in three-dimensional lithium niobate photonic crystals,” Adv. Mater. 21(34), 3526–3530 (2009).
[Crossref]

G. Zhou, A. Jesacher, M. Booth, T. Wilson, A. Ródenas, D. Jaque, and M. Gu, “Axial birefringence induced focus splitting in lithium niobate,” Opt. Express 17(20), 17970–17975 (2009).
[Crossref] [PubMed]

Romero, C.

Rozanov, N. N.

N. N. Rozanov, “Propagation of laser radiation in anisotropic media,” Opt. Spectrosc. 93(5), 746–751 (2002).
[Crossref]

Sadani, B.

N. Courjal, B. Guichardaz, G. Ulliac, J. Y. Rauch, B. Sadani, H. H. Lu, and M. P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D Appl. Phys. 44(30), 305101 (2011).
[Crossref]

Sapia, C.

G. Cincotti, A. Ciattoni, and C. Sapia, “Radially and azimuthally polarized vortices in uniaxial crystals,” Opt. Commun. 220(1), 33–40 (2003).
[Crossref]

Schmidt, R. V.

R. V. Schmidt and I. P. Kaminow, “Metal-diffused optical waveguides in LiNbO3,” Appl. Phys. Lett. 25(8), 458–460 (1974).
[Crossref]

Schrempel, F.

F. Schrempel, T. Gischkat, H. Hartung, E.-B. Kley, and W. Wesch, “Ion beam enhanced etching of LiNbO3,” Nucl. Instrum. Methods Phys. Res. B 250(1–2), 164–168 (2006).
[Crossref]

Sheng, Y.

X. Chen, P. Karpinski, V. Shvedov, K. Koynov, B. Wang, J. Trull, C. Cojocaru, W. Krolikowski, and Y. Sheng, “Ferroelectric domain engineering by focused infrared femtosecond pulses,” Appl. Phys. Lett. 107(14), 141102 (2015).
[Crossref]

Sheppard, C. J. R.

Shimotsuma, Y.

Y. Shimotsuma, K. Hirao, J. Qiu, and P. G. Kazansky, “Nano-modification inside transparent materials by femtosecond laser single beam,” Mod. Phys. Lett. B 19(05), 225–238 (2005).
[Crossref]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

Shostka, N.

Shvedov, V.

X. Chen, P. Karpinski, V. Shvedov, K. Koynov, B. Wang, J. Trull, C. Cojocaru, W. Krolikowski, and Y. Sheng, “Ferroelectric domain engineering by focused infrared femtosecond pulses,” Appl. Phys. Lett. 107(14), 141102 (2015).
[Crossref]

E. Brasselet, Y. Izdebskaya, V. Shvedov, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Dynamics of optical spin-orbit coupling in uniaxial crystals,” Opt. Lett. 34(7), 1021–1023 (2009).
[Crossref] [PubMed]

Shvedov, V. G.

Si, G.

G. Si, A. J. Danner, S. L. Teo, E. J. Teo, J. Teng, and A. A. Bettiol, “Photonic crystal structures with ultrahigh aspect ratio in lithium niobate fabricated by focused ion beam milling,” J. Vac. Sci. Technol. B 29(2), 021205 (2011).
[Crossref]

Simova, E.

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica,” Laser Photonics Rev. 2(1–2), 26–46 (2008).
[Crossref]

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[Crossref] [PubMed]

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations,” J. Appl. Phys. 98(1), 013517 (2005).
[Crossref]

Sithambaranathan, G. S.

J. K. Lotsberg, X. Zhao, M. Jain, V. Dhayalan, G. S. Sithambaranathan, J. J. Stamnes, and D. Jiang, “Focusing of electromagnetic waves into a biaxial crystal, experimental results,” Opt. Commun. 250(4–6), 231–240 (2005).
[Crossref]

Small, D. L.

Smelser, C.

D. Grobnic, S. Mihailov, C. Smelser, F. Généreux, G. Baldenberger, and R. Vallée, “Bragg gratings made in reverse proton exchange lithium niobate waveguides with a femtosecond IR laser and a phase mask,” IEEE Photonics Technol. Lett. 17(7), 1453–1455 (2005).
[Crossref]

Snoke, D.

B. McMillen, K. P. Chen, H. An, S. Fleming, V. Hartwell, and D. Snoke, “Waveguiding and nonlinear optical properties of three-dimensional waveguides in LiTaO3 written by high-repetition rate ultrafast laser,” Appl. Phys. Lett. 93(11), 111106 (2008).
[Crossref]

Soergel, E.

C. Y. J. Ying, A. C. Muir, C. E. Valdivia, H. Steigerwald, C. L. Sones, R. W. Eason, E. Soergel, and S. Mailis, “Light-mediated ferroelectric domain engineering and micro-structuring of lithium niobate crystals,” Laser Photonics Rev. 6(4), 526–548 (2012).
[Crossref]

Sohler, W.

H. Hu, R. Ricken, W. Sohler, and R. B. Wehrspohn, “Lithium niobate ridge waveguides fabricated by wet etching,” IEEE Photonics Technol. Lett. 19(6), 417–419 (2007).
[Crossref]

Sones, C. L.

C. Y. J. Ying, A. C. Muir, C. E. Valdivia, H. Steigerwald, C. L. Sones, R. W. Eason, E. Soergel, and S. Mailis, “Light-mediated ferroelectric domain engineering and micro-structuring of lithium niobate crystals,” Laser Photonics Rev. 6(4), 526–548 (2012).
[Crossref]

C. L. Sones, S. Mailis, W. S. Brocklesby, R. W. Eason, and J. R. Owen, “Differential etch rates in z-cut LiNbO3 for variable HF/HNO3 concentrations,” J. Mater. Chem. 12(2), 295–298 (2002).
[Crossref]

Song, J.

Stach, E. A.

D. C. Deshpande, A. P. Malshe, E. A. Stach, V. Radmilovic, D. Alexander, D. Doerr, and D. Hirt, “Investigation of femtosecond laser assisted nano and microscale modifications in lithium niobate,” J. Appl. Phys. 97(7), 074316 (2005).
[Crossref]

E. A. Stach, V. Radmilovic, D. Deshpande, A. Malshe, D. Alexander, and D. Doerr, “Nanoscale surface and subsurface defects induced in lithium niobate by a femtosecond laser,” Appl. Phys. Lett. 83(21), 4420–4422 (2003).
[Crossref]

Stamnes, J. J.

M. Jain, J. K. Lotsberg, J. J. Stamnes, Ø. Frette, D. Velauthapillai, D. Jiang, and X. Zhao, “Numerical and experimental results for focusing of three-dimensional electromagnetic waves into uniaxial crystals,” J. Opt. Soc. Am. A 26(3), 691–698 (2009).
[Crossref] [PubMed]

M. Jain, J. K. Lotsberg, J. J. Stamnes, and Ø. Frette, “Effects of aperture size on focusing of electromagnetic waves into a biaxial crystal,” Opt. Commun. 266(2), 438–447 (2006).
[Crossref]

J. K. Lotsberg, X. Zhao, M. Jain, V. Dhayalan, G. S. Sithambaranathan, J. J. Stamnes, and D. Jiang, “Focusing of electromagnetic waves into a biaxial crystal, experimental results,” Opt. Commun. 250(4–6), 231–240 (2005).
[Crossref]

J. J. Stamnes and D. Jiang, “Focusing of electromagnetic waves into a uniaxial crystal,” Opt. Commun. 150(1–6), 251–262 (1998).
[Crossref]

Steigerwald, H.

C. Y. J. Ying, A. C. Muir, C. E. Valdivia, H. Steigerwald, C. L. Sones, R. W. Eason, E. Soergel, and S. Mailis, “Light-mediated ferroelectric domain engineering and micro-structuring of lithium niobate crystals,” Laser Photonics Rev. 6(4), 526–548 (2012).
[Crossref]

Stelzer, E. H. K.

S. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer, “Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index,” J. Microsc. 169(3), 391–405 (1993).
[Crossref]

Sturman, B.

O. Beyer, D. Maxein, K. Buse, B. Sturman, H. T. Hsieh, and D. Psaltis, “Investigation of nonlinear absorption processes with femtosecond light pulses in lithium niobate crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(5), 056603 (2005).
[Crossref] [PubMed]

Sudzius, M.

S. Juodkazis, M. Sudzius, V. Mizeikis, H. Misawa, E. G. Gamaly, Y. Liu, O. A. Louchev, and K. Kitamura, “Three-dimensional recording by tightly focused femtosecond pulses in LiNbO3,” Appl. Phys. Lett. 89(6), 062903 (2006).
[Crossref]

Sugioka, K.

Sun, H.

Tamošauskas, G.

Tan, Y.

Taylor, R.

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica,” Laser Photonics Rev. 2(1–2), 26–46 (2008).
[Crossref]

Taylor, R. S.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[Crossref] [PubMed]

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations,” J. Appl. Phys. 98(1), 013517 (2005).
[Crossref]

Tejerina, M. R.

M. R. Tejerina, D. Jaque, and G. A. Torchia, “μ-Raman spectroscopy characterization of LiNbO3 femtosecond laser written waveguides,” J. Appl. Phys. 112(12), 123108 (2012).
[Crossref]

Teng, J.

G. Si, A. J. Danner, S. L. Teo, E. J. Teo, J. Teng, and A. A. Bettiol, “Photonic crystal structures with ultrahigh aspect ratio in lithium niobate fabricated by focused ion beam milling,” J. Vac. Sci. Technol. B 29(2), 021205 (2011).
[Crossref]

Teo, E. J.

G. Si, A. J. Danner, S. L. Teo, E. J. Teo, J. Teng, and A. A. Bettiol, “Photonic crystal structures with ultrahigh aspect ratio in lithium niobate fabricated by focused ion beam milling,” J. Vac. Sci. Technol. B 29(2), 021205 (2011).
[Crossref]

Teo, S. L.

G. Si, A. J. Danner, S. L. Teo, E. J. Teo, J. Teng, and A. A. Bettiol, “Photonic crystal structures with ultrahigh aspect ratio in lithium niobate fabricated by focused ion beam milling,” J. Vac. Sci. Technol. B 29(2), 021205 (2011).
[Crossref]

Thomas, J.

J. Thomas, V. Hilbert, R. Geiss, T. Pertsch, A. Tünnermann, and S. Nolte, “Quasi phase matching in femtosecond pulse volume structured x-cut lithium niobate,” Laser Photonics Rev. 7(3), L17–L20 (2013).
[Crossref]

Thomas, P. A.

Z. Ren, P. J. Heard, J. M. Marshall, P. A. Thomas, and S. Yu, “Etching characteristics of LiNbO3 in reactive ion etching and inductively coupled plasma,” J. Appl. Phys. 103(3), 034109 (2008).
[Crossref]

Thomson, R. R.

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90(24), 241107 (2007).
[Crossref]

R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett. 88(11), 111109 (2006).
[Crossref]

Torchia, G. A.

M. R. Tejerina, D. Jaque, and G. A. Torchia, “μ-Raman spectroscopy characterization of LiNbO3 femtosecond laser written waveguides,” J. Appl. Phys. 112(12), 123108 (2012).
[Crossref]

Török, P.

Toyoda, H.

N. Niizeki, T. Yamada, and H. Toyoda, “Growth ridges, etched hillocks, and crystal structure of lithium niobate,” Jpn. J. Appl. Phys. 6(3), 318–327 (1967).
[Crossref]

Trull, J.

X. Chen, P. Karpinski, V. Shvedov, K. Koynov, B. Wang, J. Trull, C. Cojocaru, W. Krolikowski, and Y. Sheng, “Ferroelectric domain engineering by focused infrared femtosecond pulses,” Appl. Phys. Lett. 107(14), 141102 (2015).
[Crossref]

Tünnermann, A.

S. Richter, C. Miese, S. Döring, F. Zimmermann, M. J. Withford, A. Tünnermann, and S. Nolte, “Laser induced nanogratings beyond fused silica - periodic nanostructures in borosilicate glasses and ULE™,” Opt. Mater. Express 3(8), 1161–1166 (2013).
[Crossref]

J. Thomas, V. Hilbert, R. Geiss, T. Pertsch, A. Tünnermann, and S. Nolte, “Quasi phase matching in femtosecond pulse volume structured x-cut lithium niobate,” Laser Photonics Rev. 7(3), L17–L20 (2013).
[Crossref]

J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys., A Mater. Sci. Process. 89(1), 127–132 (2007).
[Crossref]

J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate,” Appl. Phys. Lett. 89(8), 081108 (2006).
[Crossref]

J. Burghoff, H. Hartung, S. Nolte, and A. Tünnermann, “Structural properties of femtosecond laser-induced modifications in LiNbO3,” Appl. Phys., A Mater. Sci. Process. 86(2), 165–170 (2006).
[Crossref]

Ulliac, G.

N. Courjal, B. Guichardaz, G. Ulliac, J. Y. Rauch, B. Sadani, H. H. Lu, and M. P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D Appl. Phys. 44(30), 305101 (2011).
[Crossref]

Valdivia, C. E.

C. Y. J. Ying, A. C. Muir, C. E. Valdivia, H. Steigerwald, C. L. Sones, R. W. Eason, E. Soergel, and S. Mailis, “Light-mediated ferroelectric domain engineering and micro-structuring of lithium niobate crystals,” Laser Photonics Rev. 6(4), 526–548 (2012).
[Crossref]

Vallée, R.

F. Généreux, G. Baldenberger, B. Bourliaguet, and R. Vallée, “Deep periodic domain inversions in x-cut LiNbO3 and its use for second harmonic generation near 1.5 μm,” Appl. Phys. Lett. 91(23), 231112 (2007).
[Crossref]

D. Grobnic, S. Mihailov, C. Smelser, F. Généreux, G. Baldenberger, and R. Vallée, “Bragg gratings made in reverse proton exchange lithium niobate waveguides with a femtosecond IR laser and a phase mask,” IEEE Photonics Technol. Lett. 17(7), 1453–1455 (2005).
[Crossref]

Varga, P.

Vázquez de Aldana, J.

Velauthapillai, D.

Veselka, J. J.

J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high‐index waveguides in LiNbO3,” Appl. Phys. Lett. 41(7), 607–608 (1982).
[Crossref]

Volyar, A. V.

Wagner, F. R.

A. Hildenbrand, F. R. Wagner, H. Akhouayri, J.-Y. Natoli, and M. Commandré, “Accurate metrology for laser damage measurements in nonlinear crystals,” Opt. Eng. 47(8), 083603 (2008).
[Crossref]

Wang, B.

X. Chen, P. Karpinski, V. Shvedov, K. Koynov, B. Wang, J. Trull, C. Cojocaru, W. Krolikowski, and Y. Sheng, “Ferroelectric domain engineering by focused infrared femtosecond pulses,” Appl. Phys. Lett. 107(14), 141102 (2015).
[Crossref]

Wang, X.

Wehrspohn, R. B.

H. Hu, R. Ricken, W. Sohler, and R. B. Wehrspohn, “Lithium niobate ridge waveguides fabricated by wet etching,” IEEE Photonics Technol. Lett. 19(6), 417–419 (2007).
[Crossref]

Weis, R. S.

R. S. Weis and T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys., A Mater. Sci. Process. 37(4), 191–203 (1985).
[Crossref]

Wesch, W.

F. Schrempel, T. Gischkat, H. Hartung, E.-B. Kley, and W. Wesch, “Ion beam enhanced etching of LiNbO3,” Nucl. Instrum. Methods Phys. Res. B 250(1–2), 164–168 (2006).
[Crossref]

Wilson, T.

Withford, M. J.

Wortmann, D.

Xiao, J.

J. Li, H. Jiang, J. Xiao, and Q. Gong, “The mechanism of multi-focusing of lasers into uniaxial crystals,” J. Opt. A, Pure Appl. Opt. 9(7), 664–672 (2007).
[Crossref]

Xu, B.

L. Gui, B. Xu, and T. C. Chong, “Microstructure in lithium niobate by use of focused femtosecond laser pulses,” IEEE Photonics Technol. Lett. 16(5), 1337–1339 (2004).
[Crossref]

Xu, J.

Xu, Z.

Yamada, T.

N. Niizeki, T. Yamada, and H. Toyoda, “Growth ridges, etched hillocks, and crystal structure of lithium niobate,” Jpn. J. Appl. Phys. 6(3), 318–327 (1967).
[Crossref]

Ying, C. Y. J.

C. Y. J. Ying, A. C. Muir, C. E. Valdivia, H. Steigerwald, C. L. Sones, R. W. Eason, E. Soergel, and S. Mailis, “Light-mediated ferroelectric domain engineering and micro-structuring of lithium niobate crystals,” Laser Photonics Rev. 6(4), 526–548 (2012).
[Crossref]

Yu, S.

Z. Ren, P. J. Heard, J. M. Marshall, P. A. Thomas, and S. Yu, “Etching characteristics of LiNbO3 in reactive ion etching and inductively coupled plasma,” J. Appl. Phys. 103(3), 034109 (2008).
[Crossref]

Zelmon, D. E.

Zhao, X.

M. Jain, J. K. Lotsberg, J. J. Stamnes, Ø. Frette, D. Velauthapillai, D. Jiang, and X. Zhao, “Numerical and experimental results for focusing of three-dimensional electromagnetic waves into uniaxial crystals,” J. Opt. Soc. Am. A 26(3), 691–698 (2009).
[Crossref] [PubMed]

J. K. Lotsberg, X. Zhao, M. Jain, V. Dhayalan, G. S. Sithambaranathan, J. J. Stamnes, and D. Jiang, “Focusing of electromagnetic waves into a biaxial crystal, experimental results,” Opt. Commun. 250(4–6), 231–240 (2005).
[Crossref]

Zhou, G.

A. Ródenas, G. Zhou, D. Jaque, and M. Gu, “Rare-earth spontaneous emission control in three-dimensional lithium niobate photonic crystals,” Adv. Mater. 21(34), 3526–3530 (2009).
[Crossref]

G. Zhou, A. Jesacher, M. Booth, T. Wilson, A. Ródenas, D. Jaque, and M. Gu, “Axial birefringence induced focus splitting in lithium niobate,” Opt. Express 17(20), 17970–17975 (2009).
[Crossref] [PubMed]

Zhou, Z.

Zimmermann, F.

Adv. Mater. (1)

A. Ródenas, G. Zhou, D. Jaque, and M. Gu, “Rare-earth spontaneous emission control in three-dimensional lithium niobate photonic crystals,” Adv. Mater. 21(34), 3526–3530 (2009).
[Crossref]

Appl. Phys. Lett. (10)

S. Juodkazis, M. Sudzius, V. Mizeikis, H. Misawa, E. G. Gamaly, Y. Liu, O. A. Louchev, and K. Kitamura, “Three-dimensional recording by tightly focused femtosecond pulses in LiNbO3,” Appl. Phys. Lett. 89(6), 062903 (2006).
[Crossref]

X. Chen, P. Karpinski, V. Shvedov, K. Koynov, B. Wang, J. Trull, C. Cojocaru, W. Krolikowski, and Y. Sheng, “Ferroelectric domain engineering by focused infrared femtosecond pulses,” Appl. Phys. Lett. 107(14), 141102 (2015).
[Crossref]

E. A. Stach, V. Radmilovic, D. Deshpande, A. Malshe, D. Alexander, and D. Doerr, “Nanoscale surface and subsurface defects induced in lithium niobate by a femtosecond laser,” Appl. Phys. Lett. 83(21), 4420–4422 (2003).
[Crossref]

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90(24), 241107 (2007).
[Crossref]

R. V. Schmidt and I. P. Kaminow, “Metal-diffused optical waveguides in LiNbO3,” Appl. Phys. Lett. 25(8), 458–460 (1974).
[Crossref]

J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high‐index waveguides in LiNbO3,” Appl. Phys. Lett. 41(7), 607–608 (1982).
[Crossref]

F. Généreux, G. Baldenberger, B. Bourliaguet, and R. Vallée, “Deep periodic domain inversions in x-cut LiNbO3 and its use for second harmonic generation near 1.5 μm,” Appl. Phys. Lett. 91(23), 231112 (2007).
[Crossref]

R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett. 88(11), 111109 (2006).
[Crossref]

J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate,” Appl. Phys. Lett. 89(8), 081108 (2006).
[Crossref]

B. McMillen, K. P. Chen, H. An, S. Fleming, V. Hartwell, and D. Snoke, “Waveguiding and nonlinear optical properties of three-dimensional waveguides in LiTaO3 written by high-repetition rate ultrafast laser,” Appl. Phys. Lett. 93(11), 111106 (2008).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (3)

J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys., A Mater. Sci. Process. 89(1), 127–132 (2007).
[Crossref]

R. S. Weis and T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys., A Mater. Sci. Process. 37(4), 191–203 (1985).
[Crossref]

J. Burghoff, H. Hartung, S. Nolte, and A. Tünnermann, “Structural properties of femtosecond laser-induced modifications in LiNbO3,” Appl. Phys., A Mater. Sci. Process. 86(2), 165–170 (2006).
[Crossref]

IEEE Photonics Technol. Lett. (3)

L. Gui, B. Xu, and T. C. Chong, “Microstructure in lithium niobate by use of focused femtosecond laser pulses,” IEEE Photonics Technol. Lett. 16(5), 1337–1339 (2004).
[Crossref]

D. Grobnic, S. Mihailov, C. Smelser, F. Généreux, G. Baldenberger, and R. Vallée, “Bragg gratings made in reverse proton exchange lithium niobate waveguides with a femtosecond IR laser and a phase mask,” IEEE Photonics Technol. Lett. 17(7), 1453–1455 (2005).
[Crossref]

H. Hu, R. Ricken, W. Sohler, and R. B. Wehrspohn, “Lithium niobate ridge waveguides fabricated by wet etching,” IEEE Photonics Technol. Lett. 19(6), 417–419 (2007).
[Crossref]

J. Appl. Phys. (5)

Z. Ren, P. J. Heard, J. M. Marshall, P. A. Thomas, and S. Yu, “Etching characteristics of LiNbO3 in reactive ion etching and inductively coupled plasma,” J. Appl. Phys. 103(3), 034109 (2008).
[Crossref]

F. Chen, “Photonic guiding structures in lithium niobate crystals produced by energetic ion beams,” J. Appl. Phys. 106(8), 081101 (2009).
[Crossref]

D. C. Deshpande, A. P. Malshe, E. A. Stach, V. Radmilovic, D. Alexander, D. Doerr, and D. Hirt, “Investigation of femtosecond laser assisted nano and microscale modifications in lithium niobate,” J. Appl. Phys. 97(7), 074316 (2005).
[Crossref]

M. R. Tejerina, D. Jaque, and G. A. Torchia, “μ-Raman spectroscopy characterization of LiNbO3 femtosecond laser written waveguides,” J. Appl. Phys. 112(12), 123108 (2012).
[Crossref]

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations,” J. Appl. Phys. 98(1), 013517 (2005).
[Crossref]

J. Mater. Chem. (1)

C. L. Sones, S. Mailis, W. S. Brocklesby, R. W. Eason, and J. R. Owen, “Differential etch rates in z-cut LiNbO3 for variable HF/HNO3 concentrations,” J. Mater. Chem. 12(2), 295–298 (2002).
[Crossref]

J. Microsc. (1)

S. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer, “Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index,” J. Microsc. 169(3), 391–405 (1993).
[Crossref]

J. Opt. A, Pure Appl. Opt. (1)

J. Li, H. Jiang, J. Xiao, and Q. Gong, “The mechanism of multi-focusing of lasers into uniaxial crystals,” J. Opt. A, Pure Appl. Opt. 9(7), 664–672 (2007).
[Crossref]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (8)

A. Ciattoni and C. Palma, “Optical propagation in uniaxial crystals orthogonal to the optical axis: paraxial theory and beyond,” J. Opt. Soc. Am. A 20(11), 2163–2171 (2003).
[Crossref] [PubMed]

A. Ciattoni, B. Crosignani, and P. Di Porto, “Vectorial theory of propagation in uniaxially anisotropic media,” J. Opt. Soc. Am. A 18(7), 1656–1661 (2001).
[Crossref] [PubMed]

A. Ciattoni, G. Cincotti, and C. Palma, “Propagation of cylindrically symmetric fields in uniaxial crystals,” J. Opt. Soc. Am. A 19(4), 792–796 (2002).
[Crossref] [PubMed]

A. Ciattoni, G. Cincotti, and C. Palma, “Circularly polarized beams and vortex generation in uniaxial media,” J. Opt. Soc. Am. A 20(1), 163–171 (2003).
[Crossref] [PubMed]

M. Jain, J. K. Lotsberg, J. J. Stamnes, Ø. Frette, D. Velauthapillai, D. Jiang, and X. Zhao, “Numerical and experimental results for focusing of three-dimensional electromagnetic waves into uniaxial crystals,” J. Opt. Soc. Am. A 26(3), 691–698 (2009).
[Crossref] [PubMed]

S. F. Gibson and F. Lanni, “Experimental test of an analytical model of aberration in an oil-immersion objective lens used in three-dimensional light microscopy,” J. Opt. Soc. Am. A 8(10), 1601–1613 (1991).
[Crossref] [PubMed]

P. Török, P. Varga, Z. Laczic, and G. R. Booker, “Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: an integral representation,” J. Opt. Soc. Am. A 12(2), 325–332 (1995).
[Crossref]

P. Török, P. Varga, and G. R. Booker, “Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: structure of the electromagnetic field,” J. Opt. Soc. Am. A 12(10), 2136–2144 (1995).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Phys. Chem. Solids (1)

K. Nassau, H. J. Levinstein, and G. M. Loiacono, “Ferroelectric lithium niobate. 1. Growth, domain structure, dislocations and etching,” J. Phys. Chem. Solids 27(6–7), 983–988 (1966).
[Crossref]

J. Phys. D Appl. Phys. (1)

N. Courjal, B. Guichardaz, G. Ulliac, J. Y. Rauch, B. Sadani, H. H. Lu, and M. P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D Appl. Phys. 44(30), 305101 (2011).
[Crossref]

J. Vac. Sci. Technol. B (1)

G. Si, A. J. Danner, S. L. Teo, E. J. Teo, J. Teng, and A. A. Bettiol, “Photonic crystal structures with ultrahigh aspect ratio in lithium niobate fabricated by focused ion beam milling,” J. Vac. Sci. Technol. B 29(2), 021205 (2011).
[Crossref]

Jpn. J. Appl. Phys. (1)

N. Niizeki, T. Yamada, and H. Toyoda, “Growth ridges, etched hillocks, and crystal structure of lithium niobate,” Jpn. J. Appl. Phys. 6(3), 318–327 (1967).
[Crossref]

Laser Photonics Rev. (3)

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica,” Laser Photonics Rev. 2(1–2), 26–46 (2008).
[Crossref]

C. Y. J. Ying, A. C. Muir, C. E. Valdivia, H. Steigerwald, C. L. Sones, R. W. Eason, E. Soergel, and S. Mailis, “Light-mediated ferroelectric domain engineering and micro-structuring of lithium niobate crystals,” Laser Photonics Rev. 6(4), 526–548 (2012).
[Crossref]

J. Thomas, V. Hilbert, R. Geiss, T. Pertsch, A. Tünnermann, and S. Nolte, “Quasi phase matching in femtosecond pulse volume structured x-cut lithium niobate,” Laser Photonics Rev. 7(3), L17–L20 (2013).
[Crossref]

Mod. Phys. Lett. B (1)

Y. Shimotsuma, K. Hirao, J. Qiu, and P. G. Kazansky, “Nano-modification inside transparent materials by femtosecond laser single beam,” Mod. Phys. Lett. B 19(05), 225–238 (2005).
[Crossref]

Nat. Photonics (1)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Nucl. Instrum. Methods Phys. Res. B (1)

F. Schrempel, T. Gischkat, H. Hartung, E.-B. Kley, and W. Wesch, “Ion beam enhanced etching of LiNbO3,” Nucl. Instrum. Methods Phys. Res. B 250(1–2), 164–168 (2006).
[Crossref]

Opt. Commun. (4)

J. K. Lotsberg, X. Zhao, M. Jain, V. Dhayalan, G. S. Sithambaranathan, J. J. Stamnes, and D. Jiang, “Focusing of electromagnetic waves into a biaxial crystal, experimental results,” Opt. Commun. 250(4–6), 231–240 (2005).
[Crossref]

M. Jain, J. K. Lotsberg, J. J. Stamnes, and Ø. Frette, “Effects of aperture size on focusing of electromagnetic waves into a biaxial crystal,” Opt. Commun. 266(2), 438–447 (2006).
[Crossref]

G. Cincotti, A. Ciattoni, and C. Sapia, “Radially and azimuthally polarized vortices in uniaxial crystals,” Opt. Commun. 220(1), 33–40 (2003).
[Crossref]

J. J. Stamnes and D. Jiang, “Focusing of electromagnetic waves into a uniaxial crystal,” Opt. Commun. 150(1–6), 251–262 (1998).
[Crossref]

Opt. Eng. (1)

A. Hildenbrand, F. R. Wagner, H. Akhouayri, J.-Y. Natoli, and M. Commandré, “Accurate metrology for laser damage measurements in nonlinear crystals,” Opt. Eng. 47(8), 083603 (2008).
[Crossref]

Opt. Express (8)

G. Zhou, A. Jesacher, M. Booth, T. Wilson, A. Ródenas, D. Jaque, and M. Gu, “Axial birefringence induced focus splitting in lithium niobate,” Opt. Express 17(20), 17970–17975 (2009).
[Crossref] [PubMed]

A. Desyatnikov, T. A. Fadeyeva, V. G. Shvedov, Y. V. Izdebskaya, A. V. Volyar, E. Brasselet, D. N. Neshev, W. Krolikowski, and Y. S. Kivshar, “Spatially engineered polarization states and optical vortices in uniaxial crystals,” Opt. Express 18(10), 10848–10863 (2010).
[Crossref] [PubMed]

T. Grow and A. Gaeta, “Dependence of multiple filamentation on beam ellipticity,” Opt. Express 13(12), 4594–4599 (2005).
[Crossref] [PubMed]

A. H. Nejadmalayeri and P. R. Herman, “Rapid thermal annealing in high repetition rate ultrafast laser waveguide writing in lithium niobate,” Opt. Express 15(17), 10842–10854 (2007).
[Crossref] [PubMed]

D. Wortmann, J. Gottmann, N. Brandt, and H. Horn-Solle, “Micro- and nanostructures inside sapphire by fs-laser irradiation and selective etching,” Opt. Express 16(3), 1517–1522 (2008).
[Crossref] [PubMed]

B. P. Cumming, A. Jesacher, M. J. Booth, T. Wilson, and M. Gu, “Adaptive aberration compensation for three-dimensional micro-fabrication of photonic crystals in lithium niobate,” Opt. Express 19(10), 9419–9425 (2011).
[Crossref] [PubMed]

N. Dong, D. Jaque, F. Chen, and Q. Lu, “Second harmonic and Raman imaging of He+ implanted KTiOPO4 waveguides,” Opt. Express 19(15), 13934–13939 (2011).
[Crossref] [PubMed]

W. Horn, S. Kroesen, J. Herrmann, J. Imbrock, and C. Denz, “Electro-optical tunable waveguide Bragg gratings in lithium niobate induced by femtosecond laser writing,” Opt. Express 20(24), 26922–26928 (2012).
[Crossref] [PubMed]

Opt. Lett. (6)

Opt. Mater. (1)

H. P. Li, C. H. Kam, Y. L. Lam, and W. Ji, “Femtosecond Z-scan measurements of nonlinear refraction in nonlinear optical crystals,” Opt. Mater. 15(4), 237–242 (2001).
[Crossref]

Opt. Mater. Express (1)

Opt. Spectrosc. (1)

N. N. Rozanov, “Propagation of laser radiation in anisotropic media,” Opt. Spectrosc. 93(5), 746–751 (2002).
[Crossref]

Phys. Rep. (1)

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441(2-4), 47–189 (2007).
[Crossref]

Phys. Rev. A (1)

M. Lax, W. H. Louisell, and W. B. McKnight, “From Maxwell to paraxial optics,” Phys. Rev. A 11(4), 1365–1370 (1975).
[Crossref]

Phys. Rev. B (1)

E. G. Gamaly, S. Juodkazis, V. Mizeikis, H. Misawa, A. V. Rode, and W. Krolikowski, “Modification of refractive index by a single femtosecond pulse confined inside a bulk of a photorefractive crystal,” Phys. Rev. B 81(5), 054113 (2010).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

O. Beyer, D. Maxein, K. Buse, B. Sturman, H. T. Hsieh, and D. Psaltis, “Investigation of nonlinear absorption processes with femtosecond light pulses in lithium niobate crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(5), 056603 (2005).
[Crossref] [PubMed]

Phys. Rev. Lett. (2)

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[Crossref] [PubMed]

Phys. Status Solidi (1)

L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Status Solidi 201(2), 253–283 (2004).
[Crossref]

Quantum Electron. (1)

V. P. Kandidov and V. Yu. Fedorov, “Specific features of elliptic beam self-focusing,” Quantum Electron. 34(12), 1163–1168 (2004).
[Crossref]

Other (3)

D. Bäuerle, Laser Processing and Chemistry, 3rd ed. (Springer, 2000).

K. K. Wong, Properties of Lithium Niobate (INSPEC, 2002).

T. Volk and M. Wöhlecke, (2008). Lithium Niobate: Defects, Photorefraction and Ferroelectric Switching (Springer-Verlag, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Beam splitting inside a negative uniaxial crystal when a focused Gaussian beam impinges on the crystal parallel to its optical axis. The incident beam always splits into two beams denoted by red and blue (Gaussian beams G1 and G2 in the text, respectively). The effective refractive index of the crystal for the red (blue) beam is no (ne2/no < no). As a consequence, the red beam is focused farther from the front face of the crystal than the blue one. (E) denotes the electric field vector.

Fig. 2
Fig. 2

Beam splitting inside a negative uniaxial crystal when a focused Gaussian beam impinges on the crystal perpendicular to its optical axis. Generally, the incident beam splits into three beams denoted by red, blue and green (beams G, g1, and g2 in the text, respectively). The effective refractive index of the crystal is no for the red beam, ne for the blue beam, and no2/ne for the green beam. The effective refractive indices determine the corresponding beam waist positions inside the crystal.

Fig. 3
Fig. 3

Simulations of focus splitting inside a LiNbO3 crystal when a linearly polarized Gaussian beam enters the crystal (a) along and (b) perpendicular to the optical axis (i.e., z-axis). In (a) and (b) the peak light intensity is normalized to unity at each focusing depth. The incident polarization is along the x-axis in (a) and at an angle γ = π/14 with respect to the optical axis in (b). The bottom panels of (a) and (b) show cross sectional intensity distributions of the respective vector beams at d = 300 μm. Intensity profiles after an analyzing polarizer, as indicated by the orientation of (E), are also provided. k denotes the beam propagation direction.

Fig. 4
Fig. 4

Parametric analysis of focus splitting inside a LiNbO3 crystal. A linearly polarized Gaussian beam enters a LiNbO3 crystal along the optical axis in (a) and (d), and perpendicular to the optical axis in (b), (c), (e), and (f). On-axis intensity distributions along the beam propagation direction are shown as a function of the focusing depth d at a fixed beam waist radius w0 = 0.4 μm in (a)–(c) and as a function of w0 at a fixed d = 300 μm in (d)–(f). The incident linear polarization is arbitrary-angle in (a) and (d), parallel to the optical axis in (b) and (e), and at an angle γ = π/14 with respect to the optical axis in (c) and (f). In each panel the peak intensity is normalized to the total power in the beam P, which is kept constant in each case. Under this condition, the electric field amplitude is given by E 0 = 2P/( w 0 2 πc ε 0 ) , where ε0 is the vacuum permittivity.

Fig. 5
Fig. 5

(a) Schematic of the laser-writing setup: G – Glan polarizer, λ/2 – achromatic half-wave plate, O1 – NA = 0.65 microscope objective allowing depth-dependent compensation of spherical aberration. (b) Schematic of the scanning SHG microscopy setup: O2 – NA = 0.85 dry microscope objective to focus the 830 nm excitation beam, O3 – NA = 0.9 objective to collect the 415 nm SHG signal, F – band-pass optical filter to remove the excitation light, PMT – photomultiplier tube to detect the SHG signal. In (a) and (b) CR denotes a MgO-doped LiNbO3 crystal.

Fig. 6
Fig. 6

Comparison between SHG microscopy images of modification produced in z-cut MgO-doped LiNbO3 after irradiation of one spot with five pulses and simulations based on the expressions (2). (a) modification near the front surface: Ep ~20 nJ. (b) modification deep inside the material: Ep ~80 nJ. In (a) and (b) τp = 200 fs.

Fig. 7
Fig. 7

Comparison between SHG microscopy images of modification produced in z-cut MgO-doped LiNbO3 after irradiation of one spot with five pulses and simulations based on the expressions (4). The incident polarization is along the x-axis in (a) and (b), along the z-axis in (c) and (d), and at an angle γ = π/14 with respect to the z-axis in (e) and (f). Ep ~20 nJ in (a), (b), (c), and (e); Ep ~1 μJ in (d) and (f). In (a)-(f) τp = 200 fs.

Fig. 8
Fig. 8

SHG microscopy images of modification produced in y-cut MgO-doped LiNbO3 after irradiation of one spot with 105 300 nJ pulses: the role of peak power P in the beam. The incident polarization is along the z-axis.

Fig. 9
Fig. 9

SHG microscopy images of modification produced in MgO-doped LiNbO3 in continuous writing mode. The writing was performed at a velocity |v| = 100 μm/s, with ~103 pulses being deposited into the sample per micrometer of its travel with respect to the laser focus. (a) z-cut LiNbO3, τp = 250 fs, Ep ~100 nJ, d = 340 μm. (b)-(d) y-cut LiNbO3. τp = 2 ps, Ep ~300 nJ in (b) and (c). τp = 250 fs, Ep ~50 nJ in (d). The incident polarization is along the z-axis in (b), at an angle γ = π/14 with respect to the z-axis in (c), and along the x-axis in (d).

Fig. 10
Fig. 10

SEM microscopy images of nanostructural changes produced in z-cut MgO-doped LiNbO3 in continuous writing mode. Cross section is taken parallel to the yz plane. The writing was performed at a velocity |v| = 100 μm/s, with ~103 pulses being deposited into the sample per micrometer of its travel with respect to the laser focus. In each case Ep ~300 nJ.

Fig. 11
Fig. 11

SEM microscopy images of nanostructural changes produced in LiNbO3 in continuous writing mode. Cross sections are taken parallel to the xy (a)-(c) and zx (d)-(f) planes. The writing was performed at a velocity |v| = 100 μm/s, with ~103 pulses being deposited into the sample per micrometer of its travel with respect to the laser focus. (a)-(c) z-cut pure LiNbO3, τp = 250 fs, Ep ~100 nJ, 300 μm < d < 350 μm. (d)-(f) y-cut MgO-doped LiNbO3, τp = 250 fs, 400 μm < d < 450 μm. Ep ~100 nJ in (d) and (e), and Ep ~300 nJ in (f). The cross-sections of the front (solid line) and back foci (dashed line) are schematically presented for each writing geometry.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

( 2 +2ik n o z) E ˜ =α ( E ˜ )
E x = 1 2 [ ( G 1 + G 2 ){ (1+ r 2 w 0 2 ξ 1 ) G 1 (1+ r 2 w 0 2 ξ 2 ) G 2 }cos2φ ] e i(k n o zωt)
E y = 1 2 { (1+ r 2 w 0 2 ξ 1 ) G 1 (1+ r 2 w 0 2 ξ 2 ) G 2 }sin2φ e i(k n o zωt) ,
( 2 / x 2 + 2 / z 2 +2ik n o y) E ˜ x =0,
( n e 1 2 / x 2 + n e n o 2 2 / z 2 +2iky) E ˜ z =0
E x =( E 0 sinγ /ξ )exp{ ( x 2 + z 2 )/( w 0 2 ξ) } e i(k n o yωt)
E z =( E 0 cosγ / ξ x ξ z )exp{ x 2 /( w 0 2 ξ x ) z 2 /( w 0 2 ξ z ) }exp(ikd( n e n o )/ n o ) e i(k n e yωt) .

Metrics