Abstract

We study the propagation of intense, high repetition rate laser pulses of picosecond duration at 1.03 µm central wavelength through air. Evidence of filamentation is obtained from measurements of the beam profile as a function of distance, from photoemission imaging and from spatially resolved sonometric recordings. Good agreement is found with numerical simulations. Simulations reveal an important self shortening of the pulse duration, suggesting that laser pulses with few optical cycles could be obtained via double filamentation. An important lowering of the voltage required to induce guided electric discharges between charged electrodes is measured at high laser pulse repetition rate.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Spectrogram representation of pulse self compression by filamentation

Selcuk Akturk, Arnaud Couairon, Michel Franco, and Andre Mysyrowicz
Opt. Express 16(22) 17626-17636 (2008)

Pulse duration dependent nonlinear propagation of a focused femtosecond laser pulse in fused silica

Quan Sun, Hidenori Asahi, Yoshiaki Nishijima, Naoki Murazawa, Kosei Ueno, and Hiroaki Misawa
Opt. Express 18(24) 24495-24503 (2010)

Filamentation of femtosecond laser pulses governed by variable wavefront distortions via a deformable mirror

A. A. Ionin, N. G. Iroshnikov, O. G. Kosareva, A. V. Larichev, D. V. Mokrousova, N. A. Panov, L. V. Seleznev, D. V. Sinitsyn, and E. S. Sunchugasheva
J. Opt. Soc. Am. B 30(8) 2257-2262 (2013)

References

  • View by:
  • |
  • |
  • |

  1. A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13(3), 598–609 (2007).
    [Crossref]
  2. T. Metzger, A. Schwarz, C. Y. Teisset, D. Sutter, A. Killi, R. Kienberger, and F. Krausz, “High-repetition-rate picosecond pump laser based on a Yb:YAG disk amplifier for optical parametric amplification,” Opt. Lett. 34(14), 2123–2125 (2009).
    [Crossref] [PubMed]
  3. S. Klingebiel, M. Schultze, C. Y. Teisset, R. Bessing, M. Haefner, S. Prinz, M. Gorjan, D. H. Sutter, K. Michel, H. G. Barros, Z. Major, F. Krausz, and T. Metzger, “220 mJ ultrafast thin-disk regenerative amplifier,” in CLEO: 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper STu4O.2.
  4. H. Fattahi, H. G. Barros, M. Gorjan, T. Nubbemeyer, B. Alsaif, C. Y. Teisset, M. Schultze, S. Prinz, M. Haefner, M. Ueffing, A. Alismail, L. Vámos, A. Schwarz, O. Pronin, J. Brons, X. T. Geng, G. Arisholm, M. Ciappina, V. S. Yakovlev, D.-E. Kim, A. M. Azzeer, N. Karpowicz, D. Sutter, Z. Major, T. Metzger, and F. Krausz, “Third-generation femtosecond technology,” Optica 1(1), 45 (2014).
    [Crossref]
  5. A. Couairon and A. Mysyrowicz, “Femtosecond filamention in transparent media,” Phys. Rep. 441(2-4), 47–189 (2007).
    [Crossref]
  6. J. Kasparian and J.-P. Wolf, “Physics and applications of atmospheric nonlinear optics and filamentation,” Opt. Express 16(1), 466–493 (2008).
    [Crossref] [PubMed]
  7. S. L. Chin, Femtosecond Laser Filamentation (Springer, 2010).
  8. H. M. Milchberg, Y.-H. Chen, Y.-H. Cheng, N. Jhajj, J. P. Palastro, E. W. Rosenthal, S. Varma, J. K. Wahlstrand, and S. Zahedpour, “The extreme nonlinear optics of gases and femtosecond filamentation,” Phys. Plasmas 21(10), 100901 (2014).
    [Crossref]
  9. M. Durand, A. Houard, B. Prade, A. Mysyrowicz, A. Durécu, B. Moreau, D. Fleury, O. Vasseur, H. Borchert, K. Diener, R. Schmitt, F. Théberge, M. Chateauneuf, J.-F. Daigle, and J. Dubois, “Kilometer range filamentation,” Opt. Express 21(22), 26836–26845 (2013).
    [Crossref] [PubMed]
  10. Y. R. Shen, The Principle of Nonlinear Optics (Wiley-Interscience, 1984).
  11. G. Point, C. Milián, A. Couairon, A. Mysyrowicz, and A. Houard, “Generation of long-lived underdense channels using femtosecond filamentation in air,” J. Phys. B 48(9), 094009 (2015).
    [Crossref]
  12. E. W. Rosenthal, J. P. Palastro, N. Jhajj, S. Zahedpour, J. K. Wahlstrand, and H. M. Milchberg, “Sensitivity of propagation and energy deposition in femtosecond filamentation to the nonlinear refractive index,” J. Phys. At. Mol. Opt. Phys. 48(9), 094011 (2015).
    [Crossref]
  13. J. H. Marburger, “Self-focusing theory,” Prog. Quantum Electron. 4, 35–110 (1975).
    [Crossref]
  14. A. Talebpour, M. Abdel-Fattah, A. D. Bandrauk, and S. L. Chin, “Spectroscopy of the gases interacting with intense femtosecond laser pulses,” Laser Phys. 11, 68–76 (2001).
  15. S. Mitryukovskiy, Y. Liu, P. Ding, A. Houard, A. Couairon, and A. Mysyrowicz, “Plasma luminescence from femtosecond filaments in air: evidence for impact excitation with circularly polarized light pulses,” Phys. Rev. Lett. 114(6), 063003 (2015).
    [Crossref] [PubMed]
  16. G. Point, “Energy deposition in air from femtosecond laser filamentation for the control of high voltage spark discharges,” Ph.D. Dissertation, Ecole Polytechnique, 2015.
  17. G. Point, E. Thouin, A. Mysyrowicz, and A. Houard, “Energy deposition from focused terawatt laser pulses in air undergoing multifilamentation,” Opt. Express 24(6), 6271 (2016).
    [Crossref]
  18. L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP 20, 1307–1314 (1965).
  19. K. Lim, M. Durand, M. Baudelet, and M. Richardson, “Transition from linear- to nonlinear-focusing regime in filamentation,” Sci. Rep. 4, 7217 (2014).
    [Crossref] [PubMed]
  20. A. Couairon, E. Brambilla, T. Corti, D. Majus, O. D. J. Ramírez-Góngora, and M. Kolesik, “Practitioner’s guide to laser pulse propagation models and simulation,” Eur. Phys. J. Spec. Top. 199, 5–76 (2011).
    [Crossref]
  21. P. Polynkin and M. Kolesik, “Critical power for self-focusing in the case of ultrashort laser pulses,” Phys. Rev. A 87(5), 053829 (2013).
    [Crossref]
  22. D. Mikalauskas, A. Dubietis, and R. Danielius, “Observation of light filaments induced in air by visible picosecond laser pulse,” Appl. Phys. B 75(8), 899–902 (2002).
    [Crossref]
  23. J. Galinis, G. Tamošauskas, I. Gražulevičiūtė, E. Keblytė, V. Jukna, and A. Dubietis, “Filamentation and supercontinuum generation in solid-state dielectric media with picosecond laser pulses,” Phys. Rev. A 92(3), 033857 (2015).
    [Crossref]
  24. C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B 79(6), 673–677 (2004).
    [Crossref]
  25. D. V. Kartashov, A. V. Kirsanov, A. M. Kiselev, A. N. Stepanov, N. N. Bochkarev, Y. N. Ponomarev, and B. A. Tikhomirov, “Nonlinear absorption of intense femtosecond laser radiation in air,” Opt. Express 14(17), 7552–7558 (2006).
    [Crossref] [PubMed]
  26. Y.-H. Cheng, J. K. Wahlstrand, N. Jhajj, and H. M. Milchberg, “The effect of long timescale gas dynamics on femtosecond filamentation,” Opt. Express 21(4), 4740–4751 (2013).
    [Crossref] [PubMed]
  27. L. Arantchouk, A. Houard, Y. Brelet, J. Carbonnel, J. Larour, Y.-B. André, and A. Mysyrowicz, “A simple high-voltage high current spark gap with subnanosecond jitter triggered by femtosecond laser filamentation,” Appl. Phys. Lett. 102(16), 163502 (2013).
    [Crossref]
  28. E. Schubert, D. Mongin, J. Kasparian, and J.-P. Wolf, “Remote electrical arc suppression by laser filamentation,” Opt. Express 23(22), 28640–28648 (2015).
    [Crossref] [PubMed]
  29. A. Schmitt-Sody, D. French, W. White, A. Lucero, W. P. Roach, and V. Hasson, “The importance of corona generation and leader formation during laser filament guided discharges in air,” Appl. Phys. Lett. 106(12), 124101 (2015).
    [Crossref]
  30. T.-J. Wang, Y. Wei, Y. Liu, N. Chen, Y. Liu, J. Ju, H. Sun, C. Wang, H. Lu, J. Liu, S. L. Chin, R. Li, and Z. Xu, “Direct observation of laser guided corona discharges,” Sci. Rep. 5, 18681 (2015).
    [Crossref] [PubMed]
  31. S. Tzortzakis, B. Prade, M. Franco, A. Mysyrowicz, S. Hüller, and P. Mora, “Femtosecond Laser-guided Electric Discharge in Air,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64(5), 057401 (2001).
    [Crossref] [PubMed]
  32. P. Panagiotopoulos, P. Whalen, M. Kolesik, and J. V. Moloney, “Super high power mid-infrared femtosecond light bullet,” Nat. Photonics 9(8), 543–548 (2015).
    [Crossref]

2016 (1)

2015 (8)

G. Point, C. Milián, A. Couairon, A. Mysyrowicz, and A. Houard, “Generation of long-lived underdense channels using femtosecond filamentation in air,” J. Phys. B 48(9), 094009 (2015).
[Crossref]

E. W. Rosenthal, J. P. Palastro, N. Jhajj, S. Zahedpour, J. K. Wahlstrand, and H. M. Milchberg, “Sensitivity of propagation and energy deposition in femtosecond filamentation to the nonlinear refractive index,” J. Phys. At. Mol. Opt. Phys. 48(9), 094011 (2015).
[Crossref]

J. Galinis, G. Tamošauskas, I. Gražulevičiūtė, E. Keblytė, V. Jukna, and A. Dubietis, “Filamentation and supercontinuum generation in solid-state dielectric media with picosecond laser pulses,” Phys. Rev. A 92(3), 033857 (2015).
[Crossref]

S. Mitryukovskiy, Y. Liu, P. Ding, A. Houard, A. Couairon, and A. Mysyrowicz, “Plasma luminescence from femtosecond filaments in air: evidence for impact excitation with circularly polarized light pulses,” Phys. Rev. Lett. 114(6), 063003 (2015).
[Crossref] [PubMed]

E. Schubert, D. Mongin, J. Kasparian, and J.-P. Wolf, “Remote electrical arc suppression by laser filamentation,” Opt. Express 23(22), 28640–28648 (2015).
[Crossref] [PubMed]

A. Schmitt-Sody, D. French, W. White, A. Lucero, W. P. Roach, and V. Hasson, “The importance of corona generation and leader formation during laser filament guided discharges in air,” Appl. Phys. Lett. 106(12), 124101 (2015).
[Crossref]

T.-J. Wang, Y. Wei, Y. Liu, N. Chen, Y. Liu, J. Ju, H. Sun, C. Wang, H. Lu, J. Liu, S. L. Chin, R. Li, and Z. Xu, “Direct observation of laser guided corona discharges,” Sci. Rep. 5, 18681 (2015).
[Crossref] [PubMed]

P. Panagiotopoulos, P. Whalen, M. Kolesik, and J. V. Moloney, “Super high power mid-infrared femtosecond light bullet,” Nat. Photonics 9(8), 543–548 (2015).
[Crossref]

2014 (3)

H. M. Milchberg, Y.-H. Chen, Y.-H. Cheng, N. Jhajj, J. P. Palastro, E. W. Rosenthal, S. Varma, J. K. Wahlstrand, and S. Zahedpour, “The extreme nonlinear optics of gases and femtosecond filamentation,” Phys. Plasmas 21(10), 100901 (2014).
[Crossref]

H. Fattahi, H. G. Barros, M. Gorjan, T. Nubbemeyer, B. Alsaif, C. Y. Teisset, M. Schultze, S. Prinz, M. Haefner, M. Ueffing, A. Alismail, L. Vámos, A. Schwarz, O. Pronin, J. Brons, X. T. Geng, G. Arisholm, M. Ciappina, V. S. Yakovlev, D.-E. Kim, A. M. Azzeer, N. Karpowicz, D. Sutter, Z. Major, T. Metzger, and F. Krausz, “Third-generation femtosecond technology,” Optica 1(1), 45 (2014).
[Crossref]

K. Lim, M. Durand, M. Baudelet, and M. Richardson, “Transition from linear- to nonlinear-focusing regime in filamentation,” Sci. Rep. 4, 7217 (2014).
[Crossref] [PubMed]

2013 (4)

P. Polynkin and M. Kolesik, “Critical power for self-focusing in the case of ultrashort laser pulses,” Phys. Rev. A 87(5), 053829 (2013).
[Crossref]

M. Durand, A. Houard, B. Prade, A. Mysyrowicz, A. Durécu, B. Moreau, D. Fleury, O. Vasseur, H. Borchert, K. Diener, R. Schmitt, F. Théberge, M. Chateauneuf, J.-F. Daigle, and J. Dubois, “Kilometer range filamentation,” Opt. Express 21(22), 26836–26845 (2013).
[Crossref] [PubMed]

Y.-H. Cheng, J. K. Wahlstrand, N. Jhajj, and H. M. Milchberg, “The effect of long timescale gas dynamics on femtosecond filamentation,” Opt. Express 21(4), 4740–4751 (2013).
[Crossref] [PubMed]

L. Arantchouk, A. Houard, Y. Brelet, J. Carbonnel, J. Larour, Y.-B. André, and A. Mysyrowicz, “A simple high-voltage high current spark gap with subnanosecond jitter triggered by femtosecond laser filamentation,” Appl. Phys. Lett. 102(16), 163502 (2013).
[Crossref]

2011 (1)

A. Couairon, E. Brambilla, T. Corti, D. Majus, O. D. J. Ramírez-Góngora, and M. Kolesik, “Practitioner’s guide to laser pulse propagation models and simulation,” Eur. Phys. J. Spec. Top. 199, 5–76 (2011).
[Crossref]

2009 (1)

2008 (1)

2007 (2)

A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13(3), 598–609 (2007).
[Crossref]

A. Couairon and A. Mysyrowicz, “Femtosecond filamention in transparent media,” Phys. Rep. 441(2-4), 47–189 (2007).
[Crossref]

2006 (1)

2004 (1)

C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B 79(6), 673–677 (2004).
[Crossref]

2002 (1)

D. Mikalauskas, A. Dubietis, and R. Danielius, “Observation of light filaments induced in air by visible picosecond laser pulse,” Appl. Phys. B 75(8), 899–902 (2002).
[Crossref]

2001 (2)

A. Talebpour, M. Abdel-Fattah, A. D. Bandrauk, and S. L. Chin, “Spectroscopy of the gases interacting with intense femtosecond laser pulses,” Laser Phys. 11, 68–76 (2001).

S. Tzortzakis, B. Prade, M. Franco, A. Mysyrowicz, S. Hüller, and P. Mora, “Femtosecond Laser-guided Electric Discharge in Air,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64(5), 057401 (2001).
[Crossref] [PubMed]

1975 (1)

J. H. Marburger, “Self-focusing theory,” Prog. Quantum Electron. 4, 35–110 (1975).
[Crossref]

1965 (1)

L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP 20, 1307–1314 (1965).

Abdel-Fattah, M.

A. Talebpour, M. Abdel-Fattah, A. D. Bandrauk, and S. L. Chin, “Spectroscopy of the gases interacting with intense femtosecond laser pulses,” Laser Phys. 11, 68–76 (2001).

Alismail, A.

Alsaif, B.

André, Y.-B.

L. Arantchouk, A. Houard, Y. Brelet, J. Carbonnel, J. Larour, Y.-B. André, and A. Mysyrowicz, “A simple high-voltage high current spark gap with subnanosecond jitter triggered by femtosecond laser filamentation,” Appl. Phys. Lett. 102(16), 163502 (2013).
[Crossref]

Arantchouk, L.

L. Arantchouk, A. Houard, Y. Brelet, J. Carbonnel, J. Larour, Y.-B. André, and A. Mysyrowicz, “A simple high-voltage high current spark gap with subnanosecond jitter triggered by femtosecond laser filamentation,” Appl. Phys. Lett. 102(16), 163502 (2013).
[Crossref]

Arisholm, G.

Azzeer, A. M.

Bandrauk, A. D.

A. Talebpour, M. Abdel-Fattah, A. D. Bandrauk, and S. L. Chin, “Spectroscopy of the gases interacting with intense femtosecond laser pulses,” Laser Phys. 11, 68–76 (2001).

Barros, H. G.

Baudelet, M.

K. Lim, M. Durand, M. Baudelet, and M. Richardson, “Transition from linear- to nonlinear-focusing regime in filamentation,” Sci. Rep. 4, 7217 (2014).
[Crossref] [PubMed]

Biegert, J.

C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B 79(6), 673–677 (2004).
[Crossref]

Bochkarev, N. N.

Borchert, H.

Brambilla, E.

A. Couairon, E. Brambilla, T. Corti, D. Majus, O. D. J. Ramírez-Góngora, and M. Kolesik, “Practitioner’s guide to laser pulse propagation models and simulation,” Eur. Phys. J. Spec. Top. 199, 5–76 (2011).
[Crossref]

Brelet, Y.

L. Arantchouk, A. Houard, Y. Brelet, J. Carbonnel, J. Larour, Y.-B. André, and A. Mysyrowicz, “A simple high-voltage high current spark gap with subnanosecond jitter triggered by femtosecond laser filamentation,” Appl. Phys. Lett. 102(16), 163502 (2013).
[Crossref]

Brons, J.

Carbonnel, J.

L. Arantchouk, A. Houard, Y. Brelet, J. Carbonnel, J. Larour, Y.-B. André, and A. Mysyrowicz, “A simple high-voltage high current spark gap with subnanosecond jitter triggered by femtosecond laser filamentation,” Appl. Phys. Lett. 102(16), 163502 (2013).
[Crossref]

Chateauneuf, M.

Chen, N.

T.-J. Wang, Y. Wei, Y. Liu, N. Chen, Y. Liu, J. Ju, H. Sun, C. Wang, H. Lu, J. Liu, S. L. Chin, R. Li, and Z. Xu, “Direct observation of laser guided corona discharges,” Sci. Rep. 5, 18681 (2015).
[Crossref] [PubMed]

Chen, Y.-H.

H. M. Milchberg, Y.-H. Chen, Y.-H. Cheng, N. Jhajj, J. P. Palastro, E. W. Rosenthal, S. Varma, J. K. Wahlstrand, and S. Zahedpour, “The extreme nonlinear optics of gases and femtosecond filamentation,” Phys. Plasmas 21(10), 100901 (2014).
[Crossref]

Cheng, Y.-H.

H. M. Milchberg, Y.-H. Chen, Y.-H. Cheng, N. Jhajj, J. P. Palastro, E. W. Rosenthal, S. Varma, J. K. Wahlstrand, and S. Zahedpour, “The extreme nonlinear optics of gases and femtosecond filamentation,” Phys. Plasmas 21(10), 100901 (2014).
[Crossref]

Y.-H. Cheng, J. K. Wahlstrand, N. Jhajj, and H. M. Milchberg, “The effect of long timescale gas dynamics on femtosecond filamentation,” Opt. Express 21(4), 4740–4751 (2013).
[Crossref] [PubMed]

Chin, S. L.

T.-J. Wang, Y. Wei, Y. Liu, N. Chen, Y. Liu, J. Ju, H. Sun, C. Wang, H. Lu, J. Liu, S. L. Chin, R. Li, and Z. Xu, “Direct observation of laser guided corona discharges,” Sci. Rep. 5, 18681 (2015).
[Crossref] [PubMed]

A. Talebpour, M. Abdel-Fattah, A. D. Bandrauk, and S. L. Chin, “Spectroscopy of the gases interacting with intense femtosecond laser pulses,” Laser Phys. 11, 68–76 (2001).

Ciappina, M.

Corti, T.

A. Couairon, E. Brambilla, T. Corti, D. Majus, O. D. J. Ramírez-Góngora, and M. Kolesik, “Practitioner’s guide to laser pulse propagation models and simulation,” Eur. Phys. J. Spec. Top. 199, 5–76 (2011).
[Crossref]

Couairon, A.

S. Mitryukovskiy, Y. Liu, P. Ding, A. Houard, A. Couairon, and A. Mysyrowicz, “Plasma luminescence from femtosecond filaments in air: evidence for impact excitation with circularly polarized light pulses,” Phys. Rev. Lett. 114(6), 063003 (2015).
[Crossref] [PubMed]

G. Point, C. Milián, A. Couairon, A. Mysyrowicz, and A. Houard, “Generation of long-lived underdense channels using femtosecond filamentation in air,” J. Phys. B 48(9), 094009 (2015).
[Crossref]

A. Couairon, E. Brambilla, T. Corti, D. Majus, O. D. J. Ramírez-Góngora, and M. Kolesik, “Practitioner’s guide to laser pulse propagation models and simulation,” Eur. Phys. J. Spec. Top. 199, 5–76 (2011).
[Crossref]

A. Couairon and A. Mysyrowicz, “Femtosecond filamention in transparent media,” Phys. Rep. 441(2-4), 47–189 (2007).
[Crossref]

C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B 79(6), 673–677 (2004).
[Crossref]

Daigle, J.-F.

Danielius, R.

D. Mikalauskas, A. Dubietis, and R. Danielius, “Observation of light filaments induced in air by visible picosecond laser pulse,” Appl. Phys. B 75(8), 899–902 (2002).
[Crossref]

Diener, K.

Ding, P.

S. Mitryukovskiy, Y. Liu, P. Ding, A. Houard, A. Couairon, and A. Mysyrowicz, “Plasma luminescence from femtosecond filaments in air: evidence for impact excitation with circularly polarized light pulses,” Phys. Rev. Lett. 114(6), 063003 (2015).
[Crossref] [PubMed]

Dubietis, A.

J. Galinis, G. Tamošauskas, I. Gražulevičiūtė, E. Keblytė, V. Jukna, and A. Dubietis, “Filamentation and supercontinuum generation in solid-state dielectric media with picosecond laser pulses,” Phys. Rev. A 92(3), 033857 (2015).
[Crossref]

D. Mikalauskas, A. Dubietis, and R. Danielius, “Observation of light filaments induced in air by visible picosecond laser pulse,” Appl. Phys. B 75(8), 899–902 (2002).
[Crossref]

Dubois, J.

Durand, M.

Durécu, A.

Fattahi, H.

Fleury, D.

Franco, M.

S. Tzortzakis, B. Prade, M. Franco, A. Mysyrowicz, S. Hüller, and P. Mora, “Femtosecond Laser-guided Electric Discharge in Air,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64(5), 057401 (2001).
[Crossref] [PubMed]

French, D.

A. Schmitt-Sody, D. French, W. White, A. Lucero, W. P. Roach, and V. Hasson, “The importance of corona generation and leader formation during laser filament guided discharges in air,” Appl. Phys. Lett. 106(12), 124101 (2015).
[Crossref]

Galinis, J.

J. Galinis, G. Tamošauskas, I. Gražulevičiūtė, E. Keblytė, V. Jukna, and A. Dubietis, “Filamentation and supercontinuum generation in solid-state dielectric media with picosecond laser pulses,” Phys. Rev. A 92(3), 033857 (2015).
[Crossref]

Geng, X. T.

Giesen, A.

A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13(3), 598–609 (2007).
[Crossref]

Gorjan, M.

Gražuleviciute, I.

J. Galinis, G. Tamošauskas, I. Gražulevičiūtė, E. Keblytė, V. Jukna, and A. Dubietis, “Filamentation and supercontinuum generation in solid-state dielectric media with picosecond laser pulses,” Phys. Rev. A 92(3), 033857 (2015).
[Crossref]

Haefner, M.

Hasson, V.

A. Schmitt-Sody, D. French, W. White, A. Lucero, W. P. Roach, and V. Hasson, “The importance of corona generation and leader formation during laser filament guided discharges in air,” Appl. Phys. Lett. 106(12), 124101 (2015).
[Crossref]

Hauri, C. P.

C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B 79(6), 673–677 (2004).
[Crossref]

Heinrich, A.

C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B 79(6), 673–677 (2004).
[Crossref]

Helbing, F. W.

C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B 79(6), 673–677 (2004).
[Crossref]

Houard, A.

G. Point, E. Thouin, A. Mysyrowicz, and A. Houard, “Energy deposition from focused terawatt laser pulses in air undergoing multifilamentation,” Opt. Express 24(6), 6271 (2016).
[Crossref]

G. Point, C. Milián, A. Couairon, A. Mysyrowicz, and A. Houard, “Generation of long-lived underdense channels using femtosecond filamentation in air,” J. Phys. B 48(9), 094009 (2015).
[Crossref]

S. Mitryukovskiy, Y. Liu, P. Ding, A. Houard, A. Couairon, and A. Mysyrowicz, “Plasma luminescence from femtosecond filaments in air: evidence for impact excitation with circularly polarized light pulses,” Phys. Rev. Lett. 114(6), 063003 (2015).
[Crossref] [PubMed]

L. Arantchouk, A. Houard, Y. Brelet, J. Carbonnel, J. Larour, Y.-B. André, and A. Mysyrowicz, “A simple high-voltage high current spark gap with subnanosecond jitter triggered by femtosecond laser filamentation,” Appl. Phys. Lett. 102(16), 163502 (2013).
[Crossref]

M. Durand, A. Houard, B. Prade, A. Mysyrowicz, A. Durécu, B. Moreau, D. Fleury, O. Vasseur, H. Borchert, K. Diener, R. Schmitt, F. Théberge, M. Chateauneuf, J.-F. Daigle, and J. Dubois, “Kilometer range filamentation,” Opt. Express 21(22), 26836–26845 (2013).
[Crossref] [PubMed]

Hüller, S.

S. Tzortzakis, B. Prade, M. Franco, A. Mysyrowicz, S. Hüller, and P. Mora, “Femtosecond Laser-guided Electric Discharge in Air,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64(5), 057401 (2001).
[Crossref] [PubMed]

Jhajj, N.

E. W. Rosenthal, J. P. Palastro, N. Jhajj, S. Zahedpour, J. K. Wahlstrand, and H. M. Milchberg, “Sensitivity of propagation and energy deposition in femtosecond filamentation to the nonlinear refractive index,” J. Phys. At. Mol. Opt. Phys. 48(9), 094011 (2015).
[Crossref]

H. M. Milchberg, Y.-H. Chen, Y.-H. Cheng, N. Jhajj, J. P. Palastro, E. W. Rosenthal, S. Varma, J. K. Wahlstrand, and S. Zahedpour, “The extreme nonlinear optics of gases and femtosecond filamentation,” Phys. Plasmas 21(10), 100901 (2014).
[Crossref]

Y.-H. Cheng, J. K. Wahlstrand, N. Jhajj, and H. M. Milchberg, “The effect of long timescale gas dynamics on femtosecond filamentation,” Opt. Express 21(4), 4740–4751 (2013).
[Crossref] [PubMed]

Ju, J.

T.-J. Wang, Y. Wei, Y. Liu, N. Chen, Y. Liu, J. Ju, H. Sun, C. Wang, H. Lu, J. Liu, S. L. Chin, R. Li, and Z. Xu, “Direct observation of laser guided corona discharges,” Sci. Rep. 5, 18681 (2015).
[Crossref] [PubMed]

Jukna, V.

J. Galinis, G. Tamošauskas, I. Gražulevičiūtė, E. Keblytė, V. Jukna, and A. Dubietis, “Filamentation and supercontinuum generation in solid-state dielectric media with picosecond laser pulses,” Phys. Rev. A 92(3), 033857 (2015).
[Crossref]

Karpowicz, N.

Kartashov, D. V.

Kasparian, J.

Keblyte, E.

J. Galinis, G. Tamošauskas, I. Gražulevičiūtė, E. Keblytė, V. Jukna, and A. Dubietis, “Filamentation and supercontinuum generation in solid-state dielectric media with picosecond laser pulses,” Phys. Rev. A 92(3), 033857 (2015).
[Crossref]

Keldysh, L. V.

L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP 20, 1307–1314 (1965).

Keller, U.

C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B 79(6), 673–677 (2004).
[Crossref]

Kienberger, R.

Killi, A.

Kim, D.-E.

Kirsanov, A. V.

Kiselev, A. M.

Kolesik, M.

P. Panagiotopoulos, P. Whalen, M. Kolesik, and J. V. Moloney, “Super high power mid-infrared femtosecond light bullet,” Nat. Photonics 9(8), 543–548 (2015).
[Crossref]

P. Polynkin and M. Kolesik, “Critical power for self-focusing in the case of ultrashort laser pulses,” Phys. Rev. A 87(5), 053829 (2013).
[Crossref]

A. Couairon, E. Brambilla, T. Corti, D. Majus, O. D. J. Ramírez-Góngora, and M. Kolesik, “Practitioner’s guide to laser pulse propagation models and simulation,” Eur. Phys. J. Spec. Top. 199, 5–76 (2011).
[Crossref]

Kornelis, W.

C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B 79(6), 673–677 (2004).
[Crossref]

Krausz, F.

Larour, J.

L. Arantchouk, A. Houard, Y. Brelet, J. Carbonnel, J. Larour, Y.-B. André, and A. Mysyrowicz, “A simple high-voltage high current spark gap with subnanosecond jitter triggered by femtosecond laser filamentation,” Appl. Phys. Lett. 102(16), 163502 (2013).
[Crossref]

Li, R.

T.-J. Wang, Y. Wei, Y. Liu, N. Chen, Y. Liu, J. Ju, H. Sun, C. Wang, H. Lu, J. Liu, S. L. Chin, R. Li, and Z. Xu, “Direct observation of laser guided corona discharges,” Sci. Rep. 5, 18681 (2015).
[Crossref] [PubMed]

Lim, K.

K. Lim, M. Durand, M. Baudelet, and M. Richardson, “Transition from linear- to nonlinear-focusing regime in filamentation,” Sci. Rep. 4, 7217 (2014).
[Crossref] [PubMed]

Liu, J.

T.-J. Wang, Y. Wei, Y. Liu, N. Chen, Y. Liu, J. Ju, H. Sun, C. Wang, H. Lu, J. Liu, S. L. Chin, R. Li, and Z. Xu, “Direct observation of laser guided corona discharges,” Sci. Rep. 5, 18681 (2015).
[Crossref] [PubMed]

Liu, Y.

T.-J. Wang, Y. Wei, Y. Liu, N. Chen, Y. Liu, J. Ju, H. Sun, C. Wang, H. Lu, J. Liu, S. L. Chin, R. Li, and Z. Xu, “Direct observation of laser guided corona discharges,” Sci. Rep. 5, 18681 (2015).
[Crossref] [PubMed]

T.-J. Wang, Y. Wei, Y. Liu, N. Chen, Y. Liu, J. Ju, H. Sun, C. Wang, H. Lu, J. Liu, S. L. Chin, R. Li, and Z. Xu, “Direct observation of laser guided corona discharges,” Sci. Rep. 5, 18681 (2015).
[Crossref] [PubMed]

S. Mitryukovskiy, Y. Liu, P. Ding, A. Houard, A. Couairon, and A. Mysyrowicz, “Plasma luminescence from femtosecond filaments in air: evidence for impact excitation with circularly polarized light pulses,” Phys. Rev. Lett. 114(6), 063003 (2015).
[Crossref] [PubMed]

Lu, H.

T.-J. Wang, Y. Wei, Y. Liu, N. Chen, Y. Liu, J. Ju, H. Sun, C. Wang, H. Lu, J. Liu, S. L. Chin, R. Li, and Z. Xu, “Direct observation of laser guided corona discharges,” Sci. Rep. 5, 18681 (2015).
[Crossref] [PubMed]

Lucero, A.

A. Schmitt-Sody, D. French, W. White, A. Lucero, W. P. Roach, and V. Hasson, “The importance of corona generation and leader formation during laser filament guided discharges in air,” Appl. Phys. Lett. 106(12), 124101 (2015).
[Crossref]

Major, Z.

Majus, D.

A. Couairon, E. Brambilla, T. Corti, D. Majus, O. D. J. Ramírez-Góngora, and M. Kolesik, “Practitioner’s guide to laser pulse propagation models and simulation,” Eur. Phys. J. Spec. Top. 199, 5–76 (2011).
[Crossref]

Marburger, J. H.

J. H. Marburger, “Self-focusing theory,” Prog. Quantum Electron. 4, 35–110 (1975).
[Crossref]

Metzger, T.

Mikalauskas, D.

D. Mikalauskas, A. Dubietis, and R. Danielius, “Observation of light filaments induced in air by visible picosecond laser pulse,” Appl. Phys. B 75(8), 899–902 (2002).
[Crossref]

Milchberg, H. M.

E. W. Rosenthal, J. P. Palastro, N. Jhajj, S. Zahedpour, J. K. Wahlstrand, and H. M. Milchberg, “Sensitivity of propagation and energy deposition in femtosecond filamentation to the nonlinear refractive index,” J. Phys. At. Mol. Opt. Phys. 48(9), 094011 (2015).
[Crossref]

H. M. Milchberg, Y.-H. Chen, Y.-H. Cheng, N. Jhajj, J. P. Palastro, E. W. Rosenthal, S. Varma, J. K. Wahlstrand, and S. Zahedpour, “The extreme nonlinear optics of gases and femtosecond filamentation,” Phys. Plasmas 21(10), 100901 (2014).
[Crossref]

Y.-H. Cheng, J. K. Wahlstrand, N. Jhajj, and H. M. Milchberg, “The effect of long timescale gas dynamics on femtosecond filamentation,” Opt. Express 21(4), 4740–4751 (2013).
[Crossref] [PubMed]

Milián, C.

G. Point, C. Milián, A. Couairon, A. Mysyrowicz, and A. Houard, “Generation of long-lived underdense channels using femtosecond filamentation in air,” J. Phys. B 48(9), 094009 (2015).
[Crossref]

Mitryukovskiy, S.

S. Mitryukovskiy, Y. Liu, P. Ding, A. Houard, A. Couairon, and A. Mysyrowicz, “Plasma luminescence from femtosecond filaments in air: evidence for impact excitation with circularly polarized light pulses,” Phys. Rev. Lett. 114(6), 063003 (2015).
[Crossref] [PubMed]

Moloney, J. V.

P. Panagiotopoulos, P. Whalen, M. Kolesik, and J. V. Moloney, “Super high power mid-infrared femtosecond light bullet,” Nat. Photonics 9(8), 543–548 (2015).
[Crossref]

Mongin, D.

Mora, P.

S. Tzortzakis, B. Prade, M. Franco, A. Mysyrowicz, S. Hüller, and P. Mora, “Femtosecond Laser-guided Electric Discharge in Air,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64(5), 057401 (2001).
[Crossref] [PubMed]

Moreau, B.

Mysyrowicz, A.

G. Point, E. Thouin, A. Mysyrowicz, and A. Houard, “Energy deposition from focused terawatt laser pulses in air undergoing multifilamentation,” Opt. Express 24(6), 6271 (2016).
[Crossref]

S. Mitryukovskiy, Y. Liu, P. Ding, A. Houard, A. Couairon, and A. Mysyrowicz, “Plasma luminescence from femtosecond filaments in air: evidence for impact excitation with circularly polarized light pulses,” Phys. Rev. Lett. 114(6), 063003 (2015).
[Crossref] [PubMed]

G. Point, C. Milián, A. Couairon, A. Mysyrowicz, and A. Houard, “Generation of long-lived underdense channels using femtosecond filamentation in air,” J. Phys. B 48(9), 094009 (2015).
[Crossref]

L. Arantchouk, A. Houard, Y. Brelet, J. Carbonnel, J. Larour, Y.-B. André, and A. Mysyrowicz, “A simple high-voltage high current spark gap with subnanosecond jitter triggered by femtosecond laser filamentation,” Appl. Phys. Lett. 102(16), 163502 (2013).
[Crossref]

M. Durand, A. Houard, B. Prade, A. Mysyrowicz, A. Durécu, B. Moreau, D. Fleury, O. Vasseur, H. Borchert, K. Diener, R. Schmitt, F. Théberge, M. Chateauneuf, J.-F. Daigle, and J. Dubois, “Kilometer range filamentation,” Opt. Express 21(22), 26836–26845 (2013).
[Crossref] [PubMed]

A. Couairon and A. Mysyrowicz, “Femtosecond filamention in transparent media,” Phys. Rep. 441(2-4), 47–189 (2007).
[Crossref]

C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B 79(6), 673–677 (2004).
[Crossref]

S. Tzortzakis, B. Prade, M. Franco, A. Mysyrowicz, S. Hüller, and P. Mora, “Femtosecond Laser-guided Electric Discharge in Air,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64(5), 057401 (2001).
[Crossref] [PubMed]

Nubbemeyer, T.

Palastro, J. P.

E. W. Rosenthal, J. P. Palastro, N. Jhajj, S. Zahedpour, J. K. Wahlstrand, and H. M. Milchberg, “Sensitivity of propagation and energy deposition in femtosecond filamentation to the nonlinear refractive index,” J. Phys. At. Mol. Opt. Phys. 48(9), 094011 (2015).
[Crossref]

H. M. Milchberg, Y.-H. Chen, Y.-H. Cheng, N. Jhajj, J. P. Palastro, E. W. Rosenthal, S. Varma, J. K. Wahlstrand, and S. Zahedpour, “The extreme nonlinear optics of gases and femtosecond filamentation,” Phys. Plasmas 21(10), 100901 (2014).
[Crossref]

Panagiotopoulos, P.

P. Panagiotopoulos, P. Whalen, M. Kolesik, and J. V. Moloney, “Super high power mid-infrared femtosecond light bullet,” Nat. Photonics 9(8), 543–548 (2015).
[Crossref]

Point, G.

G. Point, E. Thouin, A. Mysyrowicz, and A. Houard, “Energy deposition from focused terawatt laser pulses in air undergoing multifilamentation,” Opt. Express 24(6), 6271 (2016).
[Crossref]

G. Point, C. Milián, A. Couairon, A. Mysyrowicz, and A. Houard, “Generation of long-lived underdense channels using femtosecond filamentation in air,” J. Phys. B 48(9), 094009 (2015).
[Crossref]

Polynkin, P.

P. Polynkin and M. Kolesik, “Critical power for self-focusing in the case of ultrashort laser pulses,” Phys. Rev. A 87(5), 053829 (2013).
[Crossref]

Ponomarev, Y. N.

Prade, B.

Prinz, S.

Pronin, O.

Ramírez-Góngora, O. D. J.

A. Couairon, E. Brambilla, T. Corti, D. Majus, O. D. J. Ramírez-Góngora, and M. Kolesik, “Practitioner’s guide to laser pulse propagation models and simulation,” Eur. Phys. J. Spec. Top. 199, 5–76 (2011).
[Crossref]

Richardson, M.

K. Lim, M. Durand, M. Baudelet, and M. Richardson, “Transition from linear- to nonlinear-focusing regime in filamentation,” Sci. Rep. 4, 7217 (2014).
[Crossref] [PubMed]

Roach, W. P.

A. Schmitt-Sody, D. French, W. White, A. Lucero, W. P. Roach, and V. Hasson, “The importance of corona generation and leader formation during laser filament guided discharges in air,” Appl. Phys. Lett. 106(12), 124101 (2015).
[Crossref]

Rosenthal, E. W.

E. W. Rosenthal, J. P. Palastro, N. Jhajj, S. Zahedpour, J. K. Wahlstrand, and H. M. Milchberg, “Sensitivity of propagation and energy deposition in femtosecond filamentation to the nonlinear refractive index,” J. Phys. At. Mol. Opt. Phys. 48(9), 094011 (2015).
[Crossref]

H. M. Milchberg, Y.-H. Chen, Y.-H. Cheng, N. Jhajj, J. P. Palastro, E. W. Rosenthal, S. Varma, J. K. Wahlstrand, and S. Zahedpour, “The extreme nonlinear optics of gases and femtosecond filamentation,” Phys. Plasmas 21(10), 100901 (2014).
[Crossref]

Schmitt, R.

Schmitt-Sody, A.

A. Schmitt-Sody, D. French, W. White, A. Lucero, W. P. Roach, and V. Hasson, “The importance of corona generation and leader formation during laser filament guided discharges in air,” Appl. Phys. Lett. 106(12), 124101 (2015).
[Crossref]

Schubert, E.

Schultze, M.

Schwarz, A.

Speiser, J.

A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13(3), 598–609 (2007).
[Crossref]

Stepanov, A. N.

Sun, H.

T.-J. Wang, Y. Wei, Y. Liu, N. Chen, Y. Liu, J. Ju, H. Sun, C. Wang, H. Lu, J. Liu, S. L. Chin, R. Li, and Z. Xu, “Direct observation of laser guided corona discharges,” Sci. Rep. 5, 18681 (2015).
[Crossref] [PubMed]

Sutter, D.

Talebpour, A.

A. Talebpour, M. Abdel-Fattah, A. D. Bandrauk, and S. L. Chin, “Spectroscopy of the gases interacting with intense femtosecond laser pulses,” Laser Phys. 11, 68–76 (2001).

Tamošauskas, G.

J. Galinis, G. Tamošauskas, I. Gražulevičiūtė, E. Keblytė, V. Jukna, and A. Dubietis, “Filamentation and supercontinuum generation in solid-state dielectric media with picosecond laser pulses,” Phys. Rev. A 92(3), 033857 (2015).
[Crossref]

Teisset, C. Y.

Théberge, F.

Thouin, E.

Tikhomirov, B. A.

Tzortzakis, S.

S. Tzortzakis, B. Prade, M. Franco, A. Mysyrowicz, S. Hüller, and P. Mora, “Femtosecond Laser-guided Electric Discharge in Air,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64(5), 057401 (2001).
[Crossref] [PubMed]

Ueffing, M.

Vámos, L.

Varma, S.

H. M. Milchberg, Y.-H. Chen, Y.-H. Cheng, N. Jhajj, J. P. Palastro, E. W. Rosenthal, S. Varma, J. K. Wahlstrand, and S. Zahedpour, “The extreme nonlinear optics of gases and femtosecond filamentation,” Phys. Plasmas 21(10), 100901 (2014).
[Crossref]

Vasseur, O.

Wahlstrand, J. K.

E. W. Rosenthal, J. P. Palastro, N. Jhajj, S. Zahedpour, J. K. Wahlstrand, and H. M. Milchberg, “Sensitivity of propagation and energy deposition in femtosecond filamentation to the nonlinear refractive index,” J. Phys. At. Mol. Opt. Phys. 48(9), 094011 (2015).
[Crossref]

H. M. Milchberg, Y.-H. Chen, Y.-H. Cheng, N. Jhajj, J. P. Palastro, E. W. Rosenthal, S. Varma, J. K. Wahlstrand, and S. Zahedpour, “The extreme nonlinear optics of gases and femtosecond filamentation,” Phys. Plasmas 21(10), 100901 (2014).
[Crossref]

Y.-H. Cheng, J. K. Wahlstrand, N. Jhajj, and H. M. Milchberg, “The effect of long timescale gas dynamics on femtosecond filamentation,” Opt. Express 21(4), 4740–4751 (2013).
[Crossref] [PubMed]

Wang, C.

T.-J. Wang, Y. Wei, Y. Liu, N. Chen, Y. Liu, J. Ju, H. Sun, C. Wang, H. Lu, J. Liu, S. L. Chin, R. Li, and Z. Xu, “Direct observation of laser guided corona discharges,” Sci. Rep. 5, 18681 (2015).
[Crossref] [PubMed]

Wang, T.-J.

T.-J. Wang, Y. Wei, Y. Liu, N. Chen, Y. Liu, J. Ju, H. Sun, C. Wang, H. Lu, J. Liu, S. L. Chin, R. Li, and Z. Xu, “Direct observation of laser guided corona discharges,” Sci. Rep. 5, 18681 (2015).
[Crossref] [PubMed]

Wei, Y.

T.-J. Wang, Y. Wei, Y. Liu, N. Chen, Y. Liu, J. Ju, H. Sun, C. Wang, H. Lu, J. Liu, S. L. Chin, R. Li, and Z. Xu, “Direct observation of laser guided corona discharges,” Sci. Rep. 5, 18681 (2015).
[Crossref] [PubMed]

Whalen, P.

P. Panagiotopoulos, P. Whalen, M. Kolesik, and J. V. Moloney, “Super high power mid-infrared femtosecond light bullet,” Nat. Photonics 9(8), 543–548 (2015).
[Crossref]

White, W.

A. Schmitt-Sody, D. French, W. White, A. Lucero, W. P. Roach, and V. Hasson, “The importance of corona generation and leader formation during laser filament guided discharges in air,” Appl. Phys. Lett. 106(12), 124101 (2015).
[Crossref]

Wolf, J.-P.

Xu, Z.

T.-J. Wang, Y. Wei, Y. Liu, N. Chen, Y. Liu, J. Ju, H. Sun, C. Wang, H. Lu, J. Liu, S. L. Chin, R. Li, and Z. Xu, “Direct observation of laser guided corona discharges,” Sci. Rep. 5, 18681 (2015).
[Crossref] [PubMed]

Yakovlev, V. S.

Zahedpour, S.

E. W. Rosenthal, J. P. Palastro, N. Jhajj, S. Zahedpour, J. K. Wahlstrand, and H. M. Milchberg, “Sensitivity of propagation and energy deposition in femtosecond filamentation to the nonlinear refractive index,” J. Phys. At. Mol. Opt. Phys. 48(9), 094011 (2015).
[Crossref]

H. M. Milchberg, Y.-H. Chen, Y.-H. Cheng, N. Jhajj, J. P. Palastro, E. W. Rosenthal, S. Varma, J. K. Wahlstrand, and S. Zahedpour, “The extreme nonlinear optics of gases and femtosecond filamentation,” Phys. Plasmas 21(10), 100901 (2014).
[Crossref]

Appl. Phys. B (2)

D. Mikalauskas, A. Dubietis, and R. Danielius, “Observation of light filaments induced in air by visible picosecond laser pulse,” Appl. Phys. B 75(8), 899–902 (2002).
[Crossref]

C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B 79(6), 673–677 (2004).
[Crossref]

Appl. Phys. Lett. (2)

L. Arantchouk, A. Houard, Y. Brelet, J. Carbonnel, J. Larour, Y.-B. André, and A. Mysyrowicz, “A simple high-voltage high current spark gap with subnanosecond jitter triggered by femtosecond laser filamentation,” Appl. Phys. Lett. 102(16), 163502 (2013).
[Crossref]

A. Schmitt-Sody, D. French, W. White, A. Lucero, W. P. Roach, and V. Hasson, “The importance of corona generation and leader formation during laser filament guided discharges in air,” Appl. Phys. Lett. 106(12), 124101 (2015).
[Crossref]

Eur. Phys. J. Spec. Top. (1)

A. Couairon, E. Brambilla, T. Corti, D. Majus, O. D. J. Ramírez-Góngora, and M. Kolesik, “Practitioner’s guide to laser pulse propagation models and simulation,” Eur. Phys. J. Spec. Top. 199, 5–76 (2011).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13(3), 598–609 (2007).
[Crossref]

J. Phys. At. Mol. Opt. Phys. (1)

E. W. Rosenthal, J. P. Palastro, N. Jhajj, S. Zahedpour, J. K. Wahlstrand, and H. M. Milchberg, “Sensitivity of propagation and energy deposition in femtosecond filamentation to the nonlinear refractive index,” J. Phys. At. Mol. Opt. Phys. 48(9), 094011 (2015).
[Crossref]

J. Phys. B (1)

G. Point, C. Milián, A. Couairon, A. Mysyrowicz, and A. Houard, “Generation of long-lived underdense channels using femtosecond filamentation in air,” J. Phys. B 48(9), 094009 (2015).
[Crossref]

Laser Phys. (1)

A. Talebpour, M. Abdel-Fattah, A. D. Bandrauk, and S. L. Chin, “Spectroscopy of the gases interacting with intense femtosecond laser pulses,” Laser Phys. 11, 68–76 (2001).

Nat. Photonics (1)

P. Panagiotopoulos, P. Whalen, M. Kolesik, and J. V. Moloney, “Super high power mid-infrared femtosecond light bullet,” Nat. Photonics 9(8), 543–548 (2015).
[Crossref]

Opt. Express (6)

Opt. Lett. (1)

Optica (1)

Phys. Plasmas (1)

H. M. Milchberg, Y.-H. Chen, Y.-H. Cheng, N. Jhajj, J. P. Palastro, E. W. Rosenthal, S. Varma, J. K. Wahlstrand, and S. Zahedpour, “The extreme nonlinear optics of gases and femtosecond filamentation,” Phys. Plasmas 21(10), 100901 (2014).
[Crossref]

Phys. Rep. (1)

A. Couairon and A. Mysyrowicz, “Femtosecond filamention in transparent media,” Phys. Rep. 441(2-4), 47–189 (2007).
[Crossref]

Phys. Rev. A (2)

P. Polynkin and M. Kolesik, “Critical power for self-focusing in the case of ultrashort laser pulses,” Phys. Rev. A 87(5), 053829 (2013).
[Crossref]

J. Galinis, G. Tamošauskas, I. Gražulevičiūtė, E. Keblytė, V. Jukna, and A. Dubietis, “Filamentation and supercontinuum generation in solid-state dielectric media with picosecond laser pulses,” Phys. Rev. A 92(3), 033857 (2015).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

S. Tzortzakis, B. Prade, M. Franco, A. Mysyrowicz, S. Hüller, and P. Mora, “Femtosecond Laser-guided Electric Discharge in Air,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64(5), 057401 (2001).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

S. Mitryukovskiy, Y. Liu, P. Ding, A. Houard, A. Couairon, and A. Mysyrowicz, “Plasma luminescence from femtosecond filaments in air: evidence for impact excitation with circularly polarized light pulses,” Phys. Rev. Lett. 114(6), 063003 (2015).
[Crossref] [PubMed]

Prog. Quantum Electron. (1)

J. H. Marburger, “Self-focusing theory,” Prog. Quantum Electron. 4, 35–110 (1975).
[Crossref]

Sci. Rep. (2)

K. Lim, M. Durand, M. Baudelet, and M. Richardson, “Transition from linear- to nonlinear-focusing regime in filamentation,” Sci. Rep. 4, 7217 (2014).
[Crossref] [PubMed]

T.-J. Wang, Y. Wei, Y. Liu, N. Chen, Y. Liu, J. Ju, H. Sun, C. Wang, H. Lu, J. Liu, S. L. Chin, R. Li, and Z. Xu, “Direct observation of laser guided corona discharges,” Sci. Rep. 5, 18681 (2015).
[Crossref] [PubMed]

Sov. Phys. JETP (1)

L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP 20, 1307–1314 (1965).

Other (4)

G. Point, “Energy deposition in air from femtosecond laser filamentation for the control of high voltage spark discharges,” Ph.D. Dissertation, Ecole Polytechnique, 2015.

S. Klingebiel, M. Schultze, C. Y. Teisset, R. Bessing, M. Haefner, S. Prinz, M. Gorjan, D. H. Sutter, K. Michel, H. G. Barros, Z. Major, F. Krausz, and T. Metzger, “220 mJ ultrafast thin-disk regenerative amplifier,” in CLEO: 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper STu4O.2.

Y. R. Shen, The Principle of Nonlinear Optics (Wiley-Interscience, 1984).

S. L. Chin, Femtosecond Laser Filamentation (Springer, 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Photograph of a filament generated luminescence and a microphone to record sound waves The length of the blue emission track is ~0.2 m.
Fig. 2
Fig. 2 Luminescence power (a) and acoustic signal amplitude (b) recorded for beam focused with 2 m focal length lens. Acoustic signal ampliture was recorded for 100 mJ energy pulse and with a repetition rate of 1 kHz.
Fig. 3
Fig. 3 Deposited energy dependence on input energy measured for two focal lengths (dots) with a repetition rate of 1 kHz. Continuous lines show the calculated deposited energy for similar conditions.
Fig. 4
Fig. 4 Simulation results showing integrated plasma density over the radial coordinate (equivalent to plasma luminescence power) (a) and maximum reached plasma density (b) as a function of propagation distance and for different initial pulse energies. A 2 m focal length lens was used to focus the beam. The thin lines in subfigure (a) give the contribution to the plasma from inverse bremsstrahlung.
Fig. 5
Fig. 5 Beam profile as a function of propagation distance. Shown is the diameter of the beam (FWHM) (red curve) in the nonlinear regime and the corresponding diameter in a linear propagation regime (blue dotted curve).
Fig. 6
Fig. 6 Axial pulse intensity dependence on propagation distance (a). 100 mJ pulse was focused by 2 m lens. Also shown is the pulse time profile at different propagation distances (b and c).
Fig. 7
Fig. 7 Measured laser spectrum before (black curve) and after filamentation (blue curve) and calculated output axial spectrum at a distance of 220 cm (red curve).
Fig. 8
Fig. 8 Beam fluence as a function of propagation distance for a 100 mJ energy pulse focused by 2 m focal length lens.
Fig. 9
Fig. 9 Energy deposition and plasma density dependence on propagation distance for a 100 mJ energy pulse focused by 2 m focal length lens.
Fig. 10
Fig. 10 Calculated absorbed energy (a) and integrated plasma density (b) as a function of propagation distance for a laser pulse focused in air by a 2 m focal length lens with an input diameter of 4.2 mm FWHM. Blue curves correspond to a pulse at 1032 nm, with duration 1.5 ps and 100 mJ of energy. Green curve: 800 nm, 1.5 ps and 100 mJ. Red curve: 800 nm, 100 fs and energy of 6.6 mJ.
Fig. 11
Fig. 11 Breakdown field dependence on laser pulse energy measured for different repetition rates. For each measurement the average number of laser shots necessary to obtain the breakdown is also indicated.

Tables (2)

Tables Icon

Table 1 Measurement and Calculation of the Nonlinear Focus Position for Different Focusing Conditions

Tables Icon

Table 2 Calculated Energy Losses during Filamentation for Different Laser Wavelengths and Pulse Durations for a Constant Laser Peak Power of 66 GW

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

1 z = 1 z c + 1 f ,
z c =0.367 L d ( ( P/ P cr ) 0.5 0.852 ) 2 0.0219 ,
z E k x , k y (ω,z)=i K ω 0 (ω, k x , k y ) E k x , k y (ω,z)+ i 2 ε 0 c 2 κ ω 0 (ω) [ω P k x , k y (ω,z)+i J k x , k y (ω,z)],
K ω 0 (ω, k x , k y )=k(ω) κ ω 0 (ω) k 2 2 κ ω 0 (ω) , and κ ω 0 (ω)= k ω 0 + k ω 0 (ω ω 0 ).
P(τ,r,z)=2 n 0 n 2 ε 0 { ( 1α ) | E | 2 E+α[ t R( t t )| E( t ) |d t ]E },
R( t )= R 0 exp( Γt )sin( ω r t ),
J(τ,r,z)=cσ ε 0 (1+i ω 0 τ c )ρE+c n 0 ε 0 W( I )K ω 0 I ( 1 ρ ρ nt )E.
ρ t =W( I )( ρ nt ρ )+ σ U i ρI,

Metrics