Abstract

In this work, based on the use of the concept of spoof surface plasmon polaritons (spoof SPPs), we propose a novel kind of microstrips to suppress the interference between bended parallel microstrips. This novel structure is implemented by introducing subwavelength periodic structures onto the sides of a conventional microstrip. We numerically analyze the transmission characteristics of such new microstrips. We also measure the suppression arising from crosstalk between the bended corrugated microstrip and the conventional microstrip in both frequency and time domains. Experimental results show that such transmission line structure has superb interference restraining properties. Additionally, transmission properties have been investigated using circuit model. It is found that the coupling effect between the corrugated microstrip and the conventional microstrip can be efficiently suppressed in high speed digital signal transmission application.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Differential microstrip lines with reduced crosstalk and common mode effect based on spoof surface plasmon polaritons

Jin Jei Wu, Da Jun Hou, Kexin Liu, Linfang Shen, Chi An Tsai, Chien Jang Wu, Dichi Tsai, and Tzong-Jer Yang
Opt. Express 22(22) 26777-26787 (2014)

Bandwidth tunable microstrip band-stop filters based on localized spoof surface plasmons

Bingzheng Xu, Zhuo Li, Liangliang Liu, Jia Xu, Chen Chen, and Changqing Gu
J. Opt. Soc. Am. B 33(7) 1388-1391 (2016)

High-order modes of spoof surface plasmonic wave transmission on thin metal film structure

Xiaoyong Liu, Yijun Feng, Bo Zhu, Junming Zhao, and Tian Jiang
Opt. Express 21(25) 31155-31165 (2013)

References

  • View by:
  • |
  • |
  • |

  1. F. Xiao, W. Liu, and Y. Kami, “Analysis of crosstalk between finite-length microstrip lines FDTD approach and circuit-concept modeling,” IEEE Trans. Electromagn. Compat. 43(4), 573–578 (2001).
    [Crossref]
  2. D. N. Ladd and G. I. Costache, “Spice simulation used to characterize the cross-talk reduction effect of additional tracks grounded with vias on printed circuit boards,” IEEE Trans. Circ. Syst.: Analog Digital Sig. Process. 39(6), 342–347 (1992).
    [Crossref]
  3. S. Seki and H. Hasegawa, “Analysis of crosstalk in very high-speed LSI/VLSI’s using a coupled multiconductor MIS microstrip line model,” IEEE Trans. Microw. Theory Tech. 32(12), 1715–1720 (1984).
    [Crossref]
  4. A. R. Mallahzadeh, A. H. Ghasemi, S. Akhlaghi, B. Rahmati, and R. Bayderkhani, “Crosstalk reduction using step shaped transmission line,” Prog. Electromagn. Res. 12, 139–148 (2010).
    [Crossref]
  5. W. T. Huang, C. H. Lu, and D. B. Lin, “Suppression of crosstalk using serpentine guard trace vias,” Prog. Electromagnetics Res. 109, 37–61 (2010).
    [Crossref]
  6. S. Dai, A. Z. Elsherbeni, and C. E. Smith, “Nonuniform FDTD formulation for the analysis and reduction of crosstalk on coupled microstrip lines,” J. Electromagn. Waves Appl. 10(12), 1663–1682 (1996).
    [Crossref]
  7. H. Raether, Surface Plasmons (Springer-Verlag, 1988).
  8. A. L. Stepanov, J. R. Krenn, H. Ditlbacher, A. Hohenau, A. Drezet, B. Steinberger, A. Leitner, and F. R. Aussenegg, “Quantitative analysis of surface plasmon interaction with silver nanoparticles,” Opt. Lett. 30(12), 1524–1526 (2005).
    [Crossref] [PubMed]
  9. T. Tamir, Guided-Wave Optoelectronics (Springer Verlag, 1990).
  10. F. K. Schwering and S. T. Peng, “Design of dielectric grating antennas for millimeter-wave applications,” IEEE Trans. Microw. Theory Tech. 31(2), 199–209 (1983).
    [Crossref]
  11. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
    [Crossref] [PubMed]
  12. F. J. García de Abajo and J. J. Sáenz, “Electromagnetic surface modes in structured perfect-conductor surfaces,” Phys. Rev. Lett. 95(23), 233901 (2005).
    [Crossref] [PubMed]
  13. S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(17), 176805 (2006).
    [Crossref] [PubMed]
  14. L. F. Shen, X. D. Chen, Y. Zhong, and K. Agarwal, “Effect of absorption on terahertz surface plasmon polaritons propagating along periodically corrugated metal wires,” Phys. Rev. B 77(7), 075408 (2008).
    [Crossref]
  15. T. Jiang, L. Shen, J. J. Wu, T.-J. Yang, Z. Ruan, and L. Ran, “Realization of tightly confined channel plasmon polaritons at low frequencies,” Appl. Phys. Lett. 99(26), 261103 (2011).
    [Crossref]
  16. J. J. Wu, “Subwavelength microwave guiding by periodically corrugated strip line,” Prog. Electromagnetics Res. 104, 113–123 (2010).
    [Crossref]
  17. J. J. Wu, Y. H. Kao, H. E. Lin, T. J. Yang, D. C. Tsai, H. J. Chang, C. C. Li, I. J. Hsieh, L. F. Shen, and X. F. Zhang, “Crosstalk reduction between metal-strips with subwavelength,” Electron. Lett. 46(18), 1273–1274 (2010).
    [Crossref]
  18. S. K. Koo, H. S. Lee, and Y. B. Park, “Crosstalk reduction effect of asymmetry stub loaded lines,” J. Electromagn. Waves Appl. 25(8-9), 1156–1167 (2011).
    [Crossref]
  19. X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013).
    [Crossref] [PubMed]
  20. X. Liu, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “High-order modes of spoof surface plasmonic wave transmission on thin metal film structure,” Opt. Express 21(25), 31155–31165 (2013).
    [Crossref] [PubMed]
  21. Y. J. Zhou and B. J. Yang, “Planar spoof plasmonic ultra-wideband filter based on low-loss and compact terahertz waveguide corrugated with dumbbell grooves,” Appl. Opt. 54(14), 4529–4533 (2015).
    [Crossref] [PubMed]
  22. Y. Liang, H. Yu, H. C. Zhang, C. Yang, and T. J. Cui, “On-chip sub-terahertz surface plasmon polariton transmission lines in CMOS,” Sci. Rep. 5, 14853 (2015).
    [Crossref] [PubMed]
  23. J. J. Wu, C.-J. Wu, J. Q. Shen, J. Hou, and W. C. Lo, “Properties of transmission and leaky modes in a plasmonic waveguide constructed by periodic subwavelength metallic hollow blocks,” Sci. Rep. 5, 14461 (2015).
    [Crossref] [PubMed]
  24. I. H. Chung, J. J. Wu, J. Q. Shen, and P. J. Huang, “Properties of transmission and leaky modes in a plasmonic waveguide constructed by periodic subwavelength corrugated metallic wire with open hollow rings in THz regime,” Appl. Opt. 54(31), 9120–9126 (2015).
    [Crossref] [PubMed]
  25. O. Q. Teruel, “Controlled radiation from dielectric slabs over spoof surface plasmon waveguides,” Prog. Electromagnetics Res. 140, 169–179 (2013).
    [Crossref]
  26. J. J. Xu, H. C. Zhang, Q. Zhang, and T. J. Cui, “Efficient conversion of surface-plasmon-like modes to spatial radiated modes,” Appl. Phys. Lett. 106(2), 021102 (2015).
    [Crossref]
  27. J. J. Wu, H. E. Lin, T. J. Yang, H. J. Chang, and I. J. Hsieh, “Low-frequency surface plasmon polaritons guided on a corrugated metal striplines with subwavelength periodical inward slits,” Plasmonics 6(1), 59–65 (2011).
    [Crossref]
  28. J. J. Wu, J. Hou, K. Liu, L. Shen, C. A. Tsai, C.-J. Wu, D. Tsai, and T.-J. Yang, “Differential microstrip lines with reduced crosstalk and common mode effect based on spoof surface plasmon polaritons,” Opt. Express 22(22), 26777–26787 (2014).
    [Crossref] [PubMed]

2015 (5)

J. J. Xu, H. C. Zhang, Q. Zhang, and T. J. Cui, “Efficient conversion of surface-plasmon-like modes to spatial radiated modes,” Appl. Phys. Lett. 106(2), 021102 (2015).
[Crossref]

Y. Liang, H. Yu, H. C. Zhang, C. Yang, and T. J. Cui, “On-chip sub-terahertz surface plasmon polariton transmission lines in CMOS,” Sci. Rep. 5, 14853 (2015).
[Crossref] [PubMed]

J. J. Wu, C.-J. Wu, J. Q. Shen, J. Hou, and W. C. Lo, “Properties of transmission and leaky modes in a plasmonic waveguide constructed by periodic subwavelength metallic hollow blocks,” Sci. Rep. 5, 14461 (2015).
[Crossref] [PubMed]

Y. J. Zhou and B. J. Yang, “Planar spoof plasmonic ultra-wideband filter based on low-loss and compact terahertz waveguide corrugated with dumbbell grooves,” Appl. Opt. 54(14), 4529–4533 (2015).
[Crossref] [PubMed]

I. H. Chung, J. J. Wu, J. Q. Shen, and P. J. Huang, “Properties of transmission and leaky modes in a plasmonic waveguide constructed by periodic subwavelength corrugated metallic wire with open hollow rings in THz regime,” Appl. Opt. 54(31), 9120–9126 (2015).
[Crossref] [PubMed]

2014 (1)

2013 (3)

O. Q. Teruel, “Controlled radiation from dielectric slabs over spoof surface plasmon waveguides,” Prog. Electromagnetics Res. 140, 169–179 (2013).
[Crossref]

X. Liu, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “High-order modes of spoof surface plasmonic wave transmission on thin metal film structure,” Opt. Express 21(25), 31155–31165 (2013).
[Crossref] [PubMed]

X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013).
[Crossref] [PubMed]

2011 (3)

J. J. Wu, H. E. Lin, T. J. Yang, H. J. Chang, and I. J. Hsieh, “Low-frequency surface plasmon polaritons guided on a corrugated metal striplines with subwavelength periodical inward slits,” Plasmonics 6(1), 59–65 (2011).
[Crossref]

T. Jiang, L. Shen, J. J. Wu, T.-J. Yang, Z. Ruan, and L. Ran, “Realization of tightly confined channel plasmon polaritons at low frequencies,” Appl. Phys. Lett. 99(26), 261103 (2011).
[Crossref]

S. K. Koo, H. S. Lee, and Y. B. Park, “Crosstalk reduction effect of asymmetry stub loaded lines,” J. Electromagn. Waves Appl. 25(8-9), 1156–1167 (2011).
[Crossref]

2010 (4)

J. J. Wu, “Subwavelength microwave guiding by periodically corrugated strip line,” Prog. Electromagnetics Res. 104, 113–123 (2010).
[Crossref]

J. J. Wu, Y. H. Kao, H. E. Lin, T. J. Yang, D. C. Tsai, H. J. Chang, C. C. Li, I. J. Hsieh, L. F. Shen, and X. F. Zhang, “Crosstalk reduction between metal-strips with subwavelength,” Electron. Lett. 46(18), 1273–1274 (2010).
[Crossref]

A. R. Mallahzadeh, A. H. Ghasemi, S. Akhlaghi, B. Rahmati, and R. Bayderkhani, “Crosstalk reduction using step shaped transmission line,” Prog. Electromagn. Res. 12, 139–148 (2010).
[Crossref]

W. T. Huang, C. H. Lu, and D. B. Lin, “Suppression of crosstalk using serpentine guard trace vias,” Prog. Electromagnetics Res. 109, 37–61 (2010).
[Crossref]

2008 (1)

L. F. Shen, X. D. Chen, Y. Zhong, and K. Agarwal, “Effect of absorption on terahertz surface plasmon polaritons propagating along periodically corrugated metal wires,” Phys. Rev. B 77(7), 075408 (2008).
[Crossref]

2006 (1)

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(17), 176805 (2006).
[Crossref] [PubMed]

2005 (2)

2004 (1)

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

2001 (1)

F. Xiao, W. Liu, and Y. Kami, “Analysis of crosstalk between finite-length microstrip lines FDTD approach and circuit-concept modeling,” IEEE Trans. Electromagn. Compat. 43(4), 573–578 (2001).
[Crossref]

1996 (1)

S. Dai, A. Z. Elsherbeni, and C. E. Smith, “Nonuniform FDTD formulation for the analysis and reduction of crosstalk on coupled microstrip lines,” J. Electromagn. Waves Appl. 10(12), 1663–1682 (1996).
[Crossref]

1992 (1)

D. N. Ladd and G. I. Costache, “Spice simulation used to characterize the cross-talk reduction effect of additional tracks grounded with vias on printed circuit boards,” IEEE Trans. Circ. Syst.: Analog Digital Sig. Process. 39(6), 342–347 (1992).
[Crossref]

1984 (1)

S. Seki and H. Hasegawa, “Analysis of crosstalk in very high-speed LSI/VLSI’s using a coupled multiconductor MIS microstrip line model,” IEEE Trans. Microw. Theory Tech. 32(12), 1715–1720 (1984).
[Crossref]

1983 (1)

F. K. Schwering and S. T. Peng, “Design of dielectric grating antennas for millimeter-wave applications,” IEEE Trans. Microw. Theory Tech. 31(2), 199–209 (1983).
[Crossref]

Agarwal, K.

L. F. Shen, X. D. Chen, Y. Zhong, and K. Agarwal, “Effect of absorption on terahertz surface plasmon polaritons propagating along periodically corrugated metal wires,” Phys. Rev. B 77(7), 075408 (2008).
[Crossref]

Akhlaghi, S.

A. R. Mallahzadeh, A. H. Ghasemi, S. Akhlaghi, B. Rahmati, and R. Bayderkhani, “Crosstalk reduction using step shaped transmission line,” Prog. Electromagn. Res. 12, 139–148 (2010).
[Crossref]

Andrews, S. R.

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(17), 176805 (2006).
[Crossref] [PubMed]

Aussenegg, F. R.

Bayderkhani, R.

A. R. Mallahzadeh, A. H. Ghasemi, S. Akhlaghi, B. Rahmati, and R. Bayderkhani, “Crosstalk reduction using step shaped transmission line,” Prog. Electromagn. Res. 12, 139–148 (2010).
[Crossref]

Chang, H. J.

J. J. Wu, H. E. Lin, T. J. Yang, H. J. Chang, and I. J. Hsieh, “Low-frequency surface plasmon polaritons guided on a corrugated metal striplines with subwavelength periodical inward slits,” Plasmonics 6(1), 59–65 (2011).
[Crossref]

J. J. Wu, Y. H. Kao, H. E. Lin, T. J. Yang, D. C. Tsai, H. J. Chang, C. C. Li, I. J. Hsieh, L. F. Shen, and X. F. Zhang, “Crosstalk reduction between metal-strips with subwavelength,” Electron. Lett. 46(18), 1273–1274 (2010).
[Crossref]

Chen, X. D.

L. F. Shen, X. D. Chen, Y. Zhong, and K. Agarwal, “Effect of absorption on terahertz surface plasmon polaritons propagating along periodically corrugated metal wires,” Phys. Rev. B 77(7), 075408 (2008).
[Crossref]

Chung, I. H.

Costache, G. I.

D. N. Ladd and G. I. Costache, “Spice simulation used to characterize the cross-talk reduction effect of additional tracks grounded with vias on printed circuit boards,” IEEE Trans. Circ. Syst.: Analog Digital Sig. Process. 39(6), 342–347 (1992).
[Crossref]

Cui, T. J.

J. J. Xu, H. C. Zhang, Q. Zhang, and T. J. Cui, “Efficient conversion of surface-plasmon-like modes to spatial radiated modes,” Appl. Phys. Lett. 106(2), 021102 (2015).
[Crossref]

Y. Liang, H. Yu, H. C. Zhang, C. Yang, and T. J. Cui, “On-chip sub-terahertz surface plasmon polariton transmission lines in CMOS,” Sci. Rep. 5, 14853 (2015).
[Crossref] [PubMed]

X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013).
[Crossref] [PubMed]

Dai, S.

S. Dai, A. Z. Elsherbeni, and C. E. Smith, “Nonuniform FDTD formulation for the analysis and reduction of crosstalk on coupled microstrip lines,” J. Electromagn. Waves Appl. 10(12), 1663–1682 (1996).
[Crossref]

Ditlbacher, H.

Drezet, A.

Elsherbeni, A. Z.

S. Dai, A. Z. Elsherbeni, and C. E. Smith, “Nonuniform FDTD formulation for the analysis and reduction of crosstalk on coupled microstrip lines,” J. Electromagn. Waves Appl. 10(12), 1663–1682 (1996).
[Crossref]

Feng, Y.

García de Abajo, F. J.

F. J. García de Abajo and J. J. Sáenz, “Electromagnetic surface modes in structured perfect-conductor surfaces,” Phys. Rev. Lett. 95(23), 233901 (2005).
[Crossref] [PubMed]

Garcia-Vidal, F. J.

X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013).
[Crossref] [PubMed]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

García-Vidal, F. J.

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(17), 176805 (2006).
[Crossref] [PubMed]

Ghasemi, A. H.

A. R. Mallahzadeh, A. H. Ghasemi, S. Akhlaghi, B. Rahmati, and R. Bayderkhani, “Crosstalk reduction using step shaped transmission line,” Prog. Electromagn. Res. 12, 139–148 (2010).
[Crossref]

Hasegawa, H.

S. Seki and H. Hasegawa, “Analysis of crosstalk in very high-speed LSI/VLSI’s using a coupled multiconductor MIS microstrip line model,” IEEE Trans. Microw. Theory Tech. 32(12), 1715–1720 (1984).
[Crossref]

Hohenau, A.

Hou, J.

J. J. Wu, C.-J. Wu, J. Q. Shen, J. Hou, and W. C. Lo, “Properties of transmission and leaky modes in a plasmonic waveguide constructed by periodic subwavelength metallic hollow blocks,” Sci. Rep. 5, 14461 (2015).
[Crossref] [PubMed]

J. J. Wu, J. Hou, K. Liu, L. Shen, C. A. Tsai, C.-J. Wu, D. Tsai, and T.-J. Yang, “Differential microstrip lines with reduced crosstalk and common mode effect based on spoof surface plasmon polaritons,” Opt. Express 22(22), 26777–26787 (2014).
[Crossref] [PubMed]

Hsieh, I. J.

J. J. Wu, H. E. Lin, T. J. Yang, H. J. Chang, and I. J. Hsieh, “Low-frequency surface plasmon polaritons guided on a corrugated metal striplines with subwavelength periodical inward slits,” Plasmonics 6(1), 59–65 (2011).
[Crossref]

J. J. Wu, Y. H. Kao, H. E. Lin, T. J. Yang, D. C. Tsai, H. J. Chang, C. C. Li, I. J. Hsieh, L. F. Shen, and X. F. Zhang, “Crosstalk reduction between metal-strips with subwavelength,” Electron. Lett. 46(18), 1273–1274 (2010).
[Crossref]

Huang, P. J.

Huang, W. T.

W. T. Huang, C. H. Lu, and D. B. Lin, “Suppression of crosstalk using serpentine guard trace vias,” Prog. Electromagnetics Res. 109, 37–61 (2010).
[Crossref]

Jiang, T.

X. Liu, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “High-order modes of spoof surface plasmonic wave transmission on thin metal film structure,” Opt. Express 21(25), 31155–31165 (2013).
[Crossref] [PubMed]

T. Jiang, L. Shen, J. J. Wu, T.-J. Yang, Z. Ruan, and L. Ran, “Realization of tightly confined channel plasmon polaritons at low frequencies,” Appl. Phys. Lett. 99(26), 261103 (2011).
[Crossref]

Kami, Y.

F. Xiao, W. Liu, and Y. Kami, “Analysis of crosstalk between finite-length microstrip lines FDTD approach and circuit-concept modeling,” IEEE Trans. Electromagn. Compat. 43(4), 573–578 (2001).
[Crossref]

Kao, Y. H.

J. J. Wu, Y. H. Kao, H. E. Lin, T. J. Yang, D. C. Tsai, H. J. Chang, C. C. Li, I. J. Hsieh, L. F. Shen, and X. F. Zhang, “Crosstalk reduction between metal-strips with subwavelength,” Electron. Lett. 46(18), 1273–1274 (2010).
[Crossref]

Koo, S. K.

S. K. Koo, H. S. Lee, and Y. B. Park, “Crosstalk reduction effect of asymmetry stub loaded lines,” J. Electromagn. Waves Appl. 25(8-9), 1156–1167 (2011).
[Crossref]

Krenn, J. R.

Ladd, D. N.

D. N. Ladd and G. I. Costache, “Spice simulation used to characterize the cross-talk reduction effect of additional tracks grounded with vias on printed circuit boards,” IEEE Trans. Circ. Syst.: Analog Digital Sig. Process. 39(6), 342–347 (1992).
[Crossref]

Lee, H. S.

S. K. Koo, H. S. Lee, and Y. B. Park, “Crosstalk reduction effect of asymmetry stub loaded lines,” J. Electromagn. Waves Appl. 25(8-9), 1156–1167 (2011).
[Crossref]

Leitner, A.

Li, C. C.

J. J. Wu, Y. H. Kao, H. E. Lin, T. J. Yang, D. C. Tsai, H. J. Chang, C. C. Li, I. J. Hsieh, L. F. Shen, and X. F. Zhang, “Crosstalk reduction between metal-strips with subwavelength,” Electron. Lett. 46(18), 1273–1274 (2010).
[Crossref]

Liang, Y.

Y. Liang, H. Yu, H. C. Zhang, C. Yang, and T. J. Cui, “On-chip sub-terahertz surface plasmon polariton transmission lines in CMOS,” Sci. Rep. 5, 14853 (2015).
[Crossref] [PubMed]

Lin, D. B.

W. T. Huang, C. H. Lu, and D. B. Lin, “Suppression of crosstalk using serpentine guard trace vias,” Prog. Electromagnetics Res. 109, 37–61 (2010).
[Crossref]

Lin, H. E.

J. J. Wu, H. E. Lin, T. J. Yang, H. J. Chang, and I. J. Hsieh, “Low-frequency surface plasmon polaritons guided on a corrugated metal striplines with subwavelength periodical inward slits,” Plasmonics 6(1), 59–65 (2011).
[Crossref]

J. J. Wu, Y. H. Kao, H. E. Lin, T. J. Yang, D. C. Tsai, H. J. Chang, C. C. Li, I. J. Hsieh, L. F. Shen, and X. F. Zhang, “Crosstalk reduction between metal-strips with subwavelength,” Electron. Lett. 46(18), 1273–1274 (2010).
[Crossref]

Liu, K.

Liu, W.

F. Xiao, W. Liu, and Y. Kami, “Analysis of crosstalk between finite-length microstrip lines FDTD approach and circuit-concept modeling,” IEEE Trans. Electromagn. Compat. 43(4), 573–578 (2001).
[Crossref]

Liu, X.

Lo, W. C.

J. J. Wu, C.-J. Wu, J. Q. Shen, J. Hou, and W. C. Lo, “Properties of transmission and leaky modes in a plasmonic waveguide constructed by periodic subwavelength metallic hollow blocks,” Sci. Rep. 5, 14461 (2015).
[Crossref] [PubMed]

Lu, C. H.

W. T. Huang, C. H. Lu, and D. B. Lin, “Suppression of crosstalk using serpentine guard trace vias,” Prog. Electromagnetics Res. 109, 37–61 (2010).
[Crossref]

Maier, S. A.

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(17), 176805 (2006).
[Crossref] [PubMed]

Mallahzadeh, A. R.

A. R. Mallahzadeh, A. H. Ghasemi, S. Akhlaghi, B. Rahmati, and R. Bayderkhani, “Crosstalk reduction using step shaped transmission line,” Prog. Electromagn. Res. 12, 139–148 (2010).
[Crossref]

Martin-Cano, D.

X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013).
[Crossref] [PubMed]

Martín-Moreno, L.

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(17), 176805 (2006).
[Crossref] [PubMed]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

Park, Y. B.

S. K. Koo, H. S. Lee, and Y. B. Park, “Crosstalk reduction effect of asymmetry stub loaded lines,” J. Electromagn. Waves Appl. 25(8-9), 1156–1167 (2011).
[Crossref]

Pendry, J. B.

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

Peng, S. T.

F. K. Schwering and S. T. Peng, “Design of dielectric grating antennas for millimeter-wave applications,” IEEE Trans. Microw. Theory Tech. 31(2), 199–209 (1983).
[Crossref]

Rahmati, B.

A. R. Mallahzadeh, A. H. Ghasemi, S. Akhlaghi, B. Rahmati, and R. Bayderkhani, “Crosstalk reduction using step shaped transmission line,” Prog. Electromagn. Res. 12, 139–148 (2010).
[Crossref]

Ran, L.

T. Jiang, L. Shen, J. J. Wu, T.-J. Yang, Z. Ruan, and L. Ran, “Realization of tightly confined channel plasmon polaritons at low frequencies,” Appl. Phys. Lett. 99(26), 261103 (2011).
[Crossref]

Ruan, Z.

T. Jiang, L. Shen, J. J. Wu, T.-J. Yang, Z. Ruan, and L. Ran, “Realization of tightly confined channel plasmon polaritons at low frequencies,” Appl. Phys. Lett. 99(26), 261103 (2011).
[Crossref]

Sáenz, J. J.

F. J. García de Abajo and J. J. Sáenz, “Electromagnetic surface modes in structured perfect-conductor surfaces,” Phys. Rev. Lett. 95(23), 233901 (2005).
[Crossref] [PubMed]

Schwering, F. K.

F. K. Schwering and S. T. Peng, “Design of dielectric grating antennas for millimeter-wave applications,” IEEE Trans. Microw. Theory Tech. 31(2), 199–209 (1983).
[Crossref]

Seki, S.

S. Seki and H. Hasegawa, “Analysis of crosstalk in very high-speed LSI/VLSI’s using a coupled multiconductor MIS microstrip line model,” IEEE Trans. Microw. Theory Tech. 32(12), 1715–1720 (1984).
[Crossref]

Shen, J. Q.

J. J. Wu, C.-J. Wu, J. Q. Shen, J. Hou, and W. C. Lo, “Properties of transmission and leaky modes in a plasmonic waveguide constructed by periodic subwavelength metallic hollow blocks,” Sci. Rep. 5, 14461 (2015).
[Crossref] [PubMed]

I. H. Chung, J. J. Wu, J. Q. Shen, and P. J. Huang, “Properties of transmission and leaky modes in a plasmonic waveguide constructed by periodic subwavelength corrugated metallic wire with open hollow rings in THz regime,” Appl. Opt. 54(31), 9120–9126 (2015).
[Crossref] [PubMed]

Shen, L.

J. J. Wu, J. Hou, K. Liu, L. Shen, C. A. Tsai, C.-J. Wu, D. Tsai, and T.-J. Yang, “Differential microstrip lines with reduced crosstalk and common mode effect based on spoof surface plasmon polaritons,” Opt. Express 22(22), 26777–26787 (2014).
[Crossref] [PubMed]

T. Jiang, L. Shen, J. J. Wu, T.-J. Yang, Z. Ruan, and L. Ran, “Realization of tightly confined channel plasmon polaritons at low frequencies,” Appl. Phys. Lett. 99(26), 261103 (2011).
[Crossref]

Shen, L. F.

J. J. Wu, Y. H. Kao, H. E. Lin, T. J. Yang, D. C. Tsai, H. J. Chang, C. C. Li, I. J. Hsieh, L. F. Shen, and X. F. Zhang, “Crosstalk reduction between metal-strips with subwavelength,” Electron. Lett. 46(18), 1273–1274 (2010).
[Crossref]

L. F. Shen, X. D. Chen, Y. Zhong, and K. Agarwal, “Effect of absorption on terahertz surface plasmon polaritons propagating along periodically corrugated metal wires,” Phys. Rev. B 77(7), 075408 (2008).
[Crossref]

Shen, X.

X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013).
[Crossref] [PubMed]

Smith, C. E.

S. Dai, A. Z. Elsherbeni, and C. E. Smith, “Nonuniform FDTD formulation for the analysis and reduction of crosstalk on coupled microstrip lines,” J. Electromagn. Waves Appl. 10(12), 1663–1682 (1996).
[Crossref]

Steinberger, B.

Stepanov, A. L.

Teruel, O. Q.

O. Q. Teruel, “Controlled radiation from dielectric slabs over spoof surface plasmon waveguides,” Prog. Electromagnetics Res. 140, 169–179 (2013).
[Crossref]

Tsai, C. A.

Tsai, D.

Tsai, D. C.

J. J. Wu, Y. H. Kao, H. E. Lin, T. J. Yang, D. C. Tsai, H. J. Chang, C. C. Li, I. J. Hsieh, L. F. Shen, and X. F. Zhang, “Crosstalk reduction between metal-strips with subwavelength,” Electron. Lett. 46(18), 1273–1274 (2010).
[Crossref]

Wu, C.-J.

J. J. Wu, C.-J. Wu, J. Q. Shen, J. Hou, and W. C. Lo, “Properties of transmission and leaky modes in a plasmonic waveguide constructed by periodic subwavelength metallic hollow blocks,” Sci. Rep. 5, 14461 (2015).
[Crossref] [PubMed]

J. J. Wu, J. Hou, K. Liu, L. Shen, C. A. Tsai, C.-J. Wu, D. Tsai, and T.-J. Yang, “Differential microstrip lines with reduced crosstalk and common mode effect based on spoof surface plasmon polaritons,” Opt. Express 22(22), 26777–26787 (2014).
[Crossref] [PubMed]

Wu, J. J.

I. H. Chung, J. J. Wu, J. Q. Shen, and P. J. Huang, “Properties of transmission and leaky modes in a plasmonic waveguide constructed by periodic subwavelength corrugated metallic wire with open hollow rings in THz regime,” Appl. Opt. 54(31), 9120–9126 (2015).
[Crossref] [PubMed]

J. J. Wu, C.-J. Wu, J. Q. Shen, J. Hou, and W. C. Lo, “Properties of transmission and leaky modes in a plasmonic waveguide constructed by periodic subwavelength metallic hollow blocks,” Sci. Rep. 5, 14461 (2015).
[Crossref] [PubMed]

J. J. Wu, J. Hou, K. Liu, L. Shen, C. A. Tsai, C.-J. Wu, D. Tsai, and T.-J. Yang, “Differential microstrip lines with reduced crosstalk and common mode effect based on spoof surface plasmon polaritons,” Opt. Express 22(22), 26777–26787 (2014).
[Crossref] [PubMed]

J. J. Wu, H. E. Lin, T. J. Yang, H. J. Chang, and I. J. Hsieh, “Low-frequency surface plasmon polaritons guided on a corrugated metal striplines with subwavelength periodical inward slits,” Plasmonics 6(1), 59–65 (2011).
[Crossref]

T. Jiang, L. Shen, J. J. Wu, T.-J. Yang, Z. Ruan, and L. Ran, “Realization of tightly confined channel plasmon polaritons at low frequencies,” Appl. Phys. Lett. 99(26), 261103 (2011).
[Crossref]

J. J. Wu, “Subwavelength microwave guiding by periodically corrugated strip line,” Prog. Electromagnetics Res. 104, 113–123 (2010).
[Crossref]

J. J. Wu, Y. H. Kao, H. E. Lin, T. J. Yang, D. C. Tsai, H. J. Chang, C. C. Li, I. J. Hsieh, L. F. Shen, and X. F. Zhang, “Crosstalk reduction between metal-strips with subwavelength,” Electron. Lett. 46(18), 1273–1274 (2010).
[Crossref]

Xiao, F.

F. Xiao, W. Liu, and Y. Kami, “Analysis of crosstalk between finite-length microstrip lines FDTD approach and circuit-concept modeling,” IEEE Trans. Electromagn. Compat. 43(4), 573–578 (2001).
[Crossref]

Xu, J. J.

J. J. Xu, H. C. Zhang, Q. Zhang, and T. J. Cui, “Efficient conversion of surface-plasmon-like modes to spatial radiated modes,” Appl. Phys. Lett. 106(2), 021102 (2015).
[Crossref]

Yang, B. J.

Yang, C.

Y. Liang, H. Yu, H. C. Zhang, C. Yang, and T. J. Cui, “On-chip sub-terahertz surface plasmon polariton transmission lines in CMOS,” Sci. Rep. 5, 14853 (2015).
[Crossref] [PubMed]

Yang, T. J.

J. J. Wu, H. E. Lin, T. J. Yang, H. J. Chang, and I. J. Hsieh, “Low-frequency surface plasmon polaritons guided on a corrugated metal striplines with subwavelength periodical inward slits,” Plasmonics 6(1), 59–65 (2011).
[Crossref]

J. J. Wu, Y. H. Kao, H. E. Lin, T. J. Yang, D. C. Tsai, H. J. Chang, C. C. Li, I. J. Hsieh, L. F. Shen, and X. F. Zhang, “Crosstalk reduction between metal-strips with subwavelength,” Electron. Lett. 46(18), 1273–1274 (2010).
[Crossref]

Yang, T.-J.

J. J. Wu, J. Hou, K. Liu, L. Shen, C. A. Tsai, C.-J. Wu, D. Tsai, and T.-J. Yang, “Differential microstrip lines with reduced crosstalk and common mode effect based on spoof surface plasmon polaritons,” Opt. Express 22(22), 26777–26787 (2014).
[Crossref] [PubMed]

T. Jiang, L. Shen, J. J. Wu, T.-J. Yang, Z. Ruan, and L. Ran, “Realization of tightly confined channel plasmon polaritons at low frequencies,” Appl. Phys. Lett. 99(26), 261103 (2011).
[Crossref]

Yu, H.

Y. Liang, H. Yu, H. C. Zhang, C. Yang, and T. J. Cui, “On-chip sub-terahertz surface plasmon polariton transmission lines in CMOS,” Sci. Rep. 5, 14853 (2015).
[Crossref] [PubMed]

Zhang, H. C.

Y. Liang, H. Yu, H. C. Zhang, C. Yang, and T. J. Cui, “On-chip sub-terahertz surface plasmon polariton transmission lines in CMOS,” Sci. Rep. 5, 14853 (2015).
[Crossref] [PubMed]

J. J. Xu, H. C. Zhang, Q. Zhang, and T. J. Cui, “Efficient conversion of surface-plasmon-like modes to spatial radiated modes,” Appl. Phys. Lett. 106(2), 021102 (2015).
[Crossref]

Zhang, Q.

J. J. Xu, H. C. Zhang, Q. Zhang, and T. J. Cui, “Efficient conversion of surface-plasmon-like modes to spatial radiated modes,” Appl. Phys. Lett. 106(2), 021102 (2015).
[Crossref]

Zhang, X. F.

J. J. Wu, Y. H. Kao, H. E. Lin, T. J. Yang, D. C. Tsai, H. J. Chang, C. C. Li, I. J. Hsieh, L. F. Shen, and X. F. Zhang, “Crosstalk reduction between metal-strips with subwavelength,” Electron. Lett. 46(18), 1273–1274 (2010).
[Crossref]

Zhao, J.

Zhong, Y.

L. F. Shen, X. D. Chen, Y. Zhong, and K. Agarwal, “Effect of absorption on terahertz surface plasmon polaritons propagating along periodically corrugated metal wires,” Phys. Rev. B 77(7), 075408 (2008).
[Crossref]

Zhou, Y. J.

Zhu, B.

Appl. Opt. (2)

Appl. Phys. Lett. (2)

J. J. Xu, H. C. Zhang, Q. Zhang, and T. J. Cui, “Efficient conversion of surface-plasmon-like modes to spatial radiated modes,” Appl. Phys. Lett. 106(2), 021102 (2015).
[Crossref]

T. Jiang, L. Shen, J. J. Wu, T.-J. Yang, Z. Ruan, and L. Ran, “Realization of tightly confined channel plasmon polaritons at low frequencies,” Appl. Phys. Lett. 99(26), 261103 (2011).
[Crossref]

Electron. Lett. (1)

J. J. Wu, Y. H. Kao, H. E. Lin, T. J. Yang, D. C. Tsai, H. J. Chang, C. C. Li, I. J. Hsieh, L. F. Shen, and X. F. Zhang, “Crosstalk reduction between metal-strips with subwavelength,” Electron. Lett. 46(18), 1273–1274 (2010).
[Crossref]

IEEE Trans. Circ. Syst.: Analog Digital Sig. Process. (1)

D. N. Ladd and G. I. Costache, “Spice simulation used to characterize the cross-talk reduction effect of additional tracks grounded with vias on printed circuit boards,” IEEE Trans. Circ. Syst.: Analog Digital Sig. Process. 39(6), 342–347 (1992).
[Crossref]

IEEE Trans. Electromagn. Compat. (1)

F. Xiao, W. Liu, and Y. Kami, “Analysis of crosstalk between finite-length microstrip lines FDTD approach and circuit-concept modeling,” IEEE Trans. Electromagn. Compat. 43(4), 573–578 (2001).
[Crossref]

IEEE Trans. Microw. Theory Tech. (2)

F. K. Schwering and S. T. Peng, “Design of dielectric grating antennas for millimeter-wave applications,” IEEE Trans. Microw. Theory Tech. 31(2), 199–209 (1983).
[Crossref]

S. Seki and H. Hasegawa, “Analysis of crosstalk in very high-speed LSI/VLSI’s using a coupled multiconductor MIS microstrip line model,” IEEE Trans. Microw. Theory Tech. 32(12), 1715–1720 (1984).
[Crossref]

J. Electromagn. Waves Appl. (2)

S. Dai, A. Z. Elsherbeni, and C. E. Smith, “Nonuniform FDTD formulation for the analysis and reduction of crosstalk on coupled microstrip lines,” J. Electromagn. Waves Appl. 10(12), 1663–1682 (1996).
[Crossref]

S. K. Koo, H. S. Lee, and Y. B. Park, “Crosstalk reduction effect of asymmetry stub loaded lines,” J. Electromagn. Waves Appl. 25(8-9), 1156–1167 (2011).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. B (1)

L. F. Shen, X. D. Chen, Y. Zhong, and K. Agarwal, “Effect of absorption on terahertz surface plasmon polaritons propagating along periodically corrugated metal wires,” Phys. Rev. B 77(7), 075408 (2008).
[Crossref]

Phys. Rev. Lett. (2)

F. J. García de Abajo and J. J. Sáenz, “Electromagnetic surface modes in structured perfect-conductor surfaces,” Phys. Rev. Lett. 95(23), 233901 (2005).
[Crossref] [PubMed]

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(17), 176805 (2006).
[Crossref] [PubMed]

Plasmonics (1)

J. J. Wu, H. E. Lin, T. J. Yang, H. J. Chang, and I. J. Hsieh, “Low-frequency surface plasmon polaritons guided on a corrugated metal striplines with subwavelength periodical inward slits,” Plasmonics 6(1), 59–65 (2011).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013).
[Crossref] [PubMed]

Prog. Electromagn. Res. (1)

A. R. Mallahzadeh, A. H. Ghasemi, S. Akhlaghi, B. Rahmati, and R. Bayderkhani, “Crosstalk reduction using step shaped transmission line,” Prog. Electromagn. Res. 12, 139–148 (2010).
[Crossref]

Prog. Electromagnetics Res. (3)

W. T. Huang, C. H. Lu, and D. B. Lin, “Suppression of crosstalk using serpentine guard trace vias,” Prog. Electromagnetics Res. 109, 37–61 (2010).
[Crossref]

J. J. Wu, “Subwavelength microwave guiding by periodically corrugated strip line,” Prog. Electromagnetics Res. 104, 113–123 (2010).
[Crossref]

O. Q. Teruel, “Controlled radiation from dielectric slabs over spoof surface plasmon waveguides,” Prog. Electromagnetics Res. 140, 169–179 (2013).
[Crossref]

Sci. Rep. (2)

Y. Liang, H. Yu, H. C. Zhang, C. Yang, and T. J. Cui, “On-chip sub-terahertz surface plasmon polariton transmission lines in CMOS,” Sci. Rep. 5, 14853 (2015).
[Crossref] [PubMed]

J. J. Wu, C.-J. Wu, J. Q. Shen, J. Hou, and W. C. Lo, “Properties of transmission and leaky modes in a plasmonic waveguide constructed by periodic subwavelength metallic hollow blocks,” Sci. Rep. 5, 14461 (2015).
[Crossref] [PubMed]

Science (1)

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

Other (2)

T. Tamir, Guided-Wave Optoelectronics (Springer Verlag, 1990).

H. Raether, Surface Plasmons (Springer-Verlag, 1988).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Periodically groove corrugated metal microstrip structure. (b) Periodically hairpin corrugated metal microstrip structure. (c) Dispersion curves for two kinds of corrugated metal microstrip lines with period of 0.5mm. (d) Dispersion curves for two kinds of corrugated metal microstrip lines with period of 1.0mm. (e) Current distributions at the asymptotic frequency fs for three kinds of microstrips with the period of d = 1.0 mm.

Fig. 2
Fig. 2

The calculated attenuation constants for two metallic stripline (a) Periodically groove corrugated metal microstrip structure. (b) Periodically hairpin corrugated metal microstrip structure.

Fig. 3
Fig. 3

(a) Schematic of coupling between the bended parallel groove corrugated microstrip line and the conventional microstrip line. (b) Schematic of coupling between the bended parallel hairpin corrugated microstrip line and the conventional microstrip line. (c) Simulated S21 and S41 for the groove corrugated microstrip lines and the conventional microstrip line. The geometric parameters are: L1 = L2 = 4.94 cm, w1 = w3 = 1.2 mm, w2 = 1.2 mm, b = 0.3w1, a = 0.5d, C1 = 4.15 mm, C2 = 3.16 mm, C3 = 2.82 mm, C4 = 1.83 mm and the corrugation periods d = 0.5 mm and d = 1.0 mm, respectively. (d) Simulated S21 and S41 for the hairpin corrugated microstrip lines with periods d = 0.5 mm and d = 1.0 mm and the conventional microstrip line. (e) Field distributions for two coupled conventional microstrip lines. (f) Field distributions for the coupled conventional and groove corrugated microstrip lines. (g) Field distributions for the coupled conventional and hairpin corrugated microstrip lines.

Fig. 4
Fig. 4

(a) A coupled line formed by two conventional striplines. (b) A coupled line formed by a conventional line with a subwavelength periodic stripline and a conventional line. (c) Using a stitch guard trace to isolate two parallel stripelines. (d) Simulation results of S21 and S41.

Fig. 5
Fig. 5

(a) Schematic of coupled conventional and groove corrugated microstrip lines for experimental measure. (b) Schematic of coupled conventional and hairpin corrugated microstrip lines for experimental measure. (c) Measured S parameters for the groove corrugated microstrip lines and the conventional microstrip line. The geometric parameters are: L1 = L2 = 4.94 cm, w1 = w3 = 1.2 mm, w2 = 1.2 mm, b = 0.3w1, a = 0.5d, C1 = 4.15mm, C2 = 3.16 mm, C3 = 2.16 mm, C4 = 1.17mm and the corrugation periods and d = 1.0 mm. (d) Measured S parameters for the hairpin corrugated microstrip lines and the conventional microstrip line.

Fig. 6
Fig. 6

(a) Input time domain signal at port 1 with the peak value of 400 mv, and the rising time is 30.75 ps. (b) Output signals at port 2 for conventional microstrip and periodic groove microstrip line with d = 0.5 mm and d = 1.0 mm, respectively. (c) Output signals at port 2 of conventional microstrip and periodic hairpin microstrip line with d = 0.5 mm and d = 1.0 mm, respectively.

Fig. 7
Fig. 7

Measured results of far end crosstalk for (a) periodic groove microstrip lines, and (b) periodic hairpin microstrip lines.

Fig. 8
Fig. 8

(a) Equivalent circuit model of coupled microstrip lines. (b) S parameters of coupled conventional microstrip lines with a total length of 10 cm. (c) S parameters of coupled conventional microstrip line and periodic groove microstrip line with a total length of 10 cm.

Metrics