Abstract

Chiral nematic droplets exhibit abundant topological defect structures, which have been intensively studied, both theoretically and experimentally. However, to observe and reconstruct the exact shape of three-dimensional (3D) defect structures has been a challenging task. In this study, we successfully reconstruct the 3D defect structures within a CLC microsphere with long helical pitches by combining polarized optical microscopy (POM) and laser scanning type fluorescence confocal polarizing microscopy (FCPM). The obtained confocal stack images provide us with the vertical location of disclination defects, to allow reconstruction of the full 3D structures. The reconstructed 3D structures can be viewed from different directions, providing a better understanding of the topological structure. Moreover, the defect lines are identified to be + 1 defects, different from the previous prediction. Thus, FCPM provides an excellent tool to study the complex topological configuration in microspheres, and fosters its potential applicability in new devices based on topologically structured soft media.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Three dimensional optical manipulation and structural imaging of soft materials by use of laser tweezers and multimodal nonlinear microscopy

Rahul P. Trivedi, Taewoo Lee, Kris A. Bertness, and Ivan I. Smalyukh
Opt. Express 18(26) 27658-27669 (2010)

References

  • View by:
  • |
  • |
  • |

  1. M. V. Kurik and O. D. Lavrentovich, “Defects in liquid crystals: homotopy theory and experimental studies,” Sov. Phys. Usp. 31(3), 196–224 (1988).
    [Crossref]
  2. Y. Bouligand and F. Livolant, “The organization of cholesteric spherulites,” J. Phys. (Paris) 45(12), 1899–1923 (1984).
    [Crossref]
  3. U. Tkalec, M. Ravnik, S. Čopar, S. Žumer, and I. Muševič, “Reconfigurable knots and links in chiral nematic colloids,” Science 333(6038), 62–65 (2011).
    [Crossref] [PubMed]
  4. W. L. McMillan, “Simple molecular model for the smecticAphase of liquid crystals,” Phys. Rev. A 4(3), 1238–1246 (1971).
    [Crossref]
  5. C. F. Soon, W. I. Omar, R. F. Berends, N. Nayan, H. Basri, K. S. Tee, M. Youseffi, N. Blagden, and M. C. Denyer, “Biophysical characteristics of cells cultured on cholesteryl ester liquid crystals,” Micron 56, 73–79 (2014).
    [Crossref] [PubMed]
  6. B. Senyuk, Q. Liu, S. He, R. D. Kamien, R. B. Kusner, T. C. Lubensky, and I. I. Smalyukh, “Topological colloids,” Nature 493(7431), 200–205 (2012).
    [Crossref] [PubMed]
  7. D. Seč, S. Copar, and S. Zumer, “Topological zoo of free-standing knots in confined chiral nematic fluids,” Nat. Commun. 5, 3057 (2014).
    [Crossref] [PubMed]
  8. T. Orlova, S. J. Aßhoff, T. Yamaguchi, N. Katsonis, and E. Brasselet, “Creation and manipulation of topological states in chiral nematic microspheres,” Nat. Commun. 6, 7603 (2015).
    [Crossref] [PubMed]
  9. D. Seč, T. Porenta, M. Ravnik, and S. Žumer, “Geometrical frustration of chiral ordering in cholesteric droplets,” Soft Matter 8(48), 11982 (2012).
    [Crossref]
  10. V. Borshch, Y. K. Kim, J. Xiang, M. Gao, A. Jákli, V. P. Panov, J. K. Vij, C. T. Imrie, M. G. Tamba, G. H. Mehl, and O. D. Lavrentovich, “Nematic twist-bend phase with nanoscale modulation of molecular orientation,” Nat. Commun. 4, 2635 (2013).
    [Crossref] [PubMed]
  11. N. Schopohl and T. J. Sluckin, “Defect core structure in nematic liquid crystals,” Phys. Rev. Lett. 59(22), 2582–2584 (1987).
    [Crossref] [PubMed]
  12. S. D. Hudson and R. G. Larson, “Monte carlo simulation of a disclination core in nematic solutions of rodlike molecules,” Phys. Rev. Lett. 70(19), 2916–2919 (1993).
    [Crossref] [PubMed]
  13. I. I. Smalyukh, S. V. Shiyanovskii, and O. D. Lavrentovich, “Three-dimensional imaging of orientational order by fluorescence confocal polarizing microscopy,” Chem. Phys. Lett. 336(1-2), 88–96 (2001).
    [Crossref]
  14. J.-K. Kim, S.-H. Joo, and J.-K. Song, “Complementarity between fluorescence and reflection in photoluminescent cholesteric liquid crystal devices,” Opt. Express 21(5), 6243–6248 (2013).
    [Crossref] [PubMed]
  15. S. D. Kim, B. Lee, S. W. Kang, and J. K. Song, “Dielectrophoretic manipulation of the mixture of isotropic and nematic liquid,” Nat. Commun. 6, 7936 (2015).
    [Crossref] [PubMed]
  16. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
    [Crossref] [PubMed]
  17. O. D. Lavrentovich, “6. Defects and textures of liquid crystals,” in Handbook of Liquid Crystals, Vol. 2, J. W. Goodby et al. eds. (Wiley-VCH, 2014), pp. 189–241.
  18. D. Voloschenko and O. D. Lavrentovich, “Optical vortices generated by dislocations in a cholesteric liquid crystal,” Opt. Lett. 25(5), 317–319 (2000).
    [Crossref] [PubMed]

2015 (2)

T. Orlova, S. J. Aßhoff, T. Yamaguchi, N. Katsonis, and E. Brasselet, “Creation and manipulation of topological states in chiral nematic microspheres,” Nat. Commun. 6, 7603 (2015).
[Crossref] [PubMed]

S. D. Kim, B. Lee, S. W. Kang, and J. K. Song, “Dielectrophoretic manipulation of the mixture of isotropic and nematic liquid,” Nat. Commun. 6, 7936 (2015).
[Crossref] [PubMed]

2014 (2)

D. Seč, S. Copar, and S. Zumer, “Topological zoo of free-standing knots in confined chiral nematic fluids,” Nat. Commun. 5, 3057 (2014).
[Crossref] [PubMed]

C. F. Soon, W. I. Omar, R. F. Berends, N. Nayan, H. Basri, K. S. Tee, M. Youseffi, N. Blagden, and M. C. Denyer, “Biophysical characteristics of cells cultured on cholesteryl ester liquid crystals,” Micron 56, 73–79 (2014).
[Crossref] [PubMed]

2013 (2)

V. Borshch, Y. K. Kim, J. Xiang, M. Gao, A. Jákli, V. P. Panov, J. K. Vij, C. T. Imrie, M. G. Tamba, G. H. Mehl, and O. D. Lavrentovich, “Nematic twist-bend phase with nanoscale modulation of molecular orientation,” Nat. Commun. 4, 2635 (2013).
[Crossref] [PubMed]

J.-K. Kim, S.-H. Joo, and J.-K. Song, “Complementarity between fluorescence and reflection in photoluminescent cholesteric liquid crystal devices,” Opt. Express 21(5), 6243–6248 (2013).
[Crossref] [PubMed]

2012 (2)

B. Senyuk, Q. Liu, S. He, R. D. Kamien, R. B. Kusner, T. C. Lubensky, and I. I. Smalyukh, “Topological colloids,” Nature 493(7431), 200–205 (2012).
[Crossref] [PubMed]

D. Seč, T. Porenta, M. Ravnik, and S. Žumer, “Geometrical frustration of chiral ordering in cholesteric droplets,” Soft Matter 8(48), 11982 (2012).
[Crossref]

2011 (1)

U. Tkalec, M. Ravnik, S. Čopar, S. Žumer, and I. Muševič, “Reconfigurable knots and links in chiral nematic colloids,” Science 333(6038), 62–65 (2011).
[Crossref] [PubMed]

2001 (1)

I. I. Smalyukh, S. V. Shiyanovskii, and O. D. Lavrentovich, “Three-dimensional imaging of orientational order by fluorescence confocal polarizing microscopy,” Chem. Phys. Lett. 336(1-2), 88–96 (2001).
[Crossref]

2000 (1)

1993 (1)

S. D. Hudson and R. G. Larson, “Monte carlo simulation of a disclination core in nematic solutions of rodlike molecules,” Phys. Rev. Lett. 70(19), 2916–2919 (1993).
[Crossref] [PubMed]

1990 (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

1988 (1)

M. V. Kurik and O. D. Lavrentovich, “Defects in liquid crystals: homotopy theory and experimental studies,” Sov. Phys. Usp. 31(3), 196–224 (1988).
[Crossref]

1987 (1)

N. Schopohl and T. J. Sluckin, “Defect core structure in nematic liquid crystals,” Phys. Rev. Lett. 59(22), 2582–2584 (1987).
[Crossref] [PubMed]

1984 (1)

Y. Bouligand and F. Livolant, “The organization of cholesteric spherulites,” J. Phys. (Paris) 45(12), 1899–1923 (1984).
[Crossref]

1971 (1)

W. L. McMillan, “Simple molecular model for the smecticAphase of liquid crystals,” Phys. Rev. A 4(3), 1238–1246 (1971).
[Crossref]

Aßhoff, S. J.

T. Orlova, S. J. Aßhoff, T. Yamaguchi, N. Katsonis, and E. Brasselet, “Creation and manipulation of topological states in chiral nematic microspheres,” Nat. Commun. 6, 7603 (2015).
[Crossref] [PubMed]

Basri, H.

C. F. Soon, W. I. Omar, R. F. Berends, N. Nayan, H. Basri, K. S. Tee, M. Youseffi, N. Blagden, and M. C. Denyer, “Biophysical characteristics of cells cultured on cholesteryl ester liquid crystals,” Micron 56, 73–79 (2014).
[Crossref] [PubMed]

Berends, R. F.

C. F. Soon, W. I. Omar, R. F. Berends, N. Nayan, H. Basri, K. S. Tee, M. Youseffi, N. Blagden, and M. C. Denyer, “Biophysical characteristics of cells cultured on cholesteryl ester liquid crystals,” Micron 56, 73–79 (2014).
[Crossref] [PubMed]

Blagden, N.

C. F. Soon, W. I. Omar, R. F. Berends, N. Nayan, H. Basri, K. S. Tee, M. Youseffi, N. Blagden, and M. C. Denyer, “Biophysical characteristics of cells cultured on cholesteryl ester liquid crystals,” Micron 56, 73–79 (2014).
[Crossref] [PubMed]

Borshch, V.

V. Borshch, Y. K. Kim, J. Xiang, M. Gao, A. Jákli, V. P. Panov, J. K. Vij, C. T. Imrie, M. G. Tamba, G. H. Mehl, and O. D. Lavrentovich, “Nematic twist-bend phase with nanoscale modulation of molecular orientation,” Nat. Commun. 4, 2635 (2013).
[Crossref] [PubMed]

Bouligand, Y.

Y. Bouligand and F. Livolant, “The organization of cholesteric spherulites,” J. Phys. (Paris) 45(12), 1899–1923 (1984).
[Crossref]

Brasselet, E.

T. Orlova, S. J. Aßhoff, T. Yamaguchi, N. Katsonis, and E. Brasselet, “Creation and manipulation of topological states in chiral nematic microspheres,” Nat. Commun. 6, 7603 (2015).
[Crossref] [PubMed]

Copar, S.

D. Seč, S. Copar, and S. Zumer, “Topological zoo of free-standing knots in confined chiral nematic fluids,” Nat. Commun. 5, 3057 (2014).
[Crossref] [PubMed]

U. Tkalec, M. Ravnik, S. Čopar, S. Žumer, and I. Muševič, “Reconfigurable knots and links in chiral nematic colloids,” Science 333(6038), 62–65 (2011).
[Crossref] [PubMed]

Denk, W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Denyer, M. C.

C. F. Soon, W. I. Omar, R. F. Berends, N. Nayan, H. Basri, K. S. Tee, M. Youseffi, N. Blagden, and M. C. Denyer, “Biophysical characteristics of cells cultured on cholesteryl ester liquid crystals,” Micron 56, 73–79 (2014).
[Crossref] [PubMed]

Gao, M.

V. Borshch, Y. K. Kim, J. Xiang, M. Gao, A. Jákli, V. P. Panov, J. K. Vij, C. T. Imrie, M. G. Tamba, G. H. Mehl, and O. D. Lavrentovich, “Nematic twist-bend phase with nanoscale modulation of molecular orientation,” Nat. Commun. 4, 2635 (2013).
[Crossref] [PubMed]

He, S.

B. Senyuk, Q. Liu, S. He, R. D. Kamien, R. B. Kusner, T. C. Lubensky, and I. I. Smalyukh, “Topological colloids,” Nature 493(7431), 200–205 (2012).
[Crossref] [PubMed]

Hudson, S. D.

S. D. Hudson and R. G. Larson, “Monte carlo simulation of a disclination core in nematic solutions of rodlike molecules,” Phys. Rev. Lett. 70(19), 2916–2919 (1993).
[Crossref] [PubMed]

Imrie, C. T.

V. Borshch, Y. K. Kim, J. Xiang, M. Gao, A. Jákli, V. P. Panov, J. K. Vij, C. T. Imrie, M. G. Tamba, G. H. Mehl, and O. D. Lavrentovich, “Nematic twist-bend phase with nanoscale modulation of molecular orientation,” Nat. Commun. 4, 2635 (2013).
[Crossref] [PubMed]

Jákli, A.

V. Borshch, Y. K. Kim, J. Xiang, M. Gao, A. Jákli, V. P. Panov, J. K. Vij, C. T. Imrie, M. G. Tamba, G. H. Mehl, and O. D. Lavrentovich, “Nematic twist-bend phase with nanoscale modulation of molecular orientation,” Nat. Commun. 4, 2635 (2013).
[Crossref] [PubMed]

Joo, S.-H.

Kamien, R. D.

B. Senyuk, Q. Liu, S. He, R. D. Kamien, R. B. Kusner, T. C. Lubensky, and I. I. Smalyukh, “Topological colloids,” Nature 493(7431), 200–205 (2012).
[Crossref] [PubMed]

Kang, S. W.

S. D. Kim, B. Lee, S. W. Kang, and J. K. Song, “Dielectrophoretic manipulation of the mixture of isotropic and nematic liquid,” Nat. Commun. 6, 7936 (2015).
[Crossref] [PubMed]

Katsonis, N.

T. Orlova, S. J. Aßhoff, T. Yamaguchi, N. Katsonis, and E. Brasselet, “Creation and manipulation of topological states in chiral nematic microspheres,” Nat. Commun. 6, 7603 (2015).
[Crossref] [PubMed]

Kim, J.-K.

Kim, S. D.

S. D. Kim, B. Lee, S. W. Kang, and J. K. Song, “Dielectrophoretic manipulation of the mixture of isotropic and nematic liquid,” Nat. Commun. 6, 7936 (2015).
[Crossref] [PubMed]

Kim, Y. K.

V. Borshch, Y. K. Kim, J. Xiang, M. Gao, A. Jákli, V. P. Panov, J. K. Vij, C. T. Imrie, M. G. Tamba, G. H. Mehl, and O. D. Lavrentovich, “Nematic twist-bend phase with nanoscale modulation of molecular orientation,” Nat. Commun. 4, 2635 (2013).
[Crossref] [PubMed]

Kurik, M. V.

M. V. Kurik and O. D. Lavrentovich, “Defects in liquid crystals: homotopy theory and experimental studies,” Sov. Phys. Usp. 31(3), 196–224 (1988).
[Crossref]

Kusner, R. B.

B. Senyuk, Q. Liu, S. He, R. D. Kamien, R. B. Kusner, T. C. Lubensky, and I. I. Smalyukh, “Topological colloids,” Nature 493(7431), 200–205 (2012).
[Crossref] [PubMed]

Larson, R. G.

S. D. Hudson and R. G. Larson, “Monte carlo simulation of a disclination core in nematic solutions of rodlike molecules,” Phys. Rev. Lett. 70(19), 2916–2919 (1993).
[Crossref] [PubMed]

Lavrentovich, O. D.

V. Borshch, Y. K. Kim, J. Xiang, M. Gao, A. Jákli, V. P. Panov, J. K. Vij, C. T. Imrie, M. G. Tamba, G. H. Mehl, and O. D. Lavrentovich, “Nematic twist-bend phase with nanoscale modulation of molecular orientation,” Nat. Commun. 4, 2635 (2013).
[Crossref] [PubMed]

I. I. Smalyukh, S. V. Shiyanovskii, and O. D. Lavrentovich, “Three-dimensional imaging of orientational order by fluorescence confocal polarizing microscopy,” Chem. Phys. Lett. 336(1-2), 88–96 (2001).
[Crossref]

D. Voloschenko and O. D. Lavrentovich, “Optical vortices generated by dislocations in a cholesteric liquid crystal,” Opt. Lett. 25(5), 317–319 (2000).
[Crossref] [PubMed]

M. V. Kurik and O. D. Lavrentovich, “Defects in liquid crystals: homotopy theory and experimental studies,” Sov. Phys. Usp. 31(3), 196–224 (1988).
[Crossref]

Lee, B.

S. D. Kim, B. Lee, S. W. Kang, and J. K. Song, “Dielectrophoretic manipulation of the mixture of isotropic and nematic liquid,” Nat. Commun. 6, 7936 (2015).
[Crossref] [PubMed]

Liu, Q.

B. Senyuk, Q. Liu, S. He, R. D. Kamien, R. B. Kusner, T. C. Lubensky, and I. I. Smalyukh, “Topological colloids,” Nature 493(7431), 200–205 (2012).
[Crossref] [PubMed]

Livolant, F.

Y. Bouligand and F. Livolant, “The organization of cholesteric spherulites,” J. Phys. (Paris) 45(12), 1899–1923 (1984).
[Crossref]

Lubensky, T. C.

B. Senyuk, Q. Liu, S. He, R. D. Kamien, R. B. Kusner, T. C. Lubensky, and I. I. Smalyukh, “Topological colloids,” Nature 493(7431), 200–205 (2012).
[Crossref] [PubMed]

McMillan, W. L.

W. L. McMillan, “Simple molecular model for the smecticAphase of liquid crystals,” Phys. Rev. A 4(3), 1238–1246 (1971).
[Crossref]

Mehl, G. H.

V. Borshch, Y. K. Kim, J. Xiang, M. Gao, A. Jákli, V. P. Panov, J. K. Vij, C. T. Imrie, M. G. Tamba, G. H. Mehl, and O. D. Lavrentovich, “Nematic twist-bend phase with nanoscale modulation of molecular orientation,” Nat. Commun. 4, 2635 (2013).
[Crossref] [PubMed]

Muševic, I.

U. Tkalec, M. Ravnik, S. Čopar, S. Žumer, and I. Muševič, “Reconfigurable knots and links in chiral nematic colloids,” Science 333(6038), 62–65 (2011).
[Crossref] [PubMed]

Nayan, N.

C. F. Soon, W. I. Omar, R. F. Berends, N. Nayan, H. Basri, K. S. Tee, M. Youseffi, N. Blagden, and M. C. Denyer, “Biophysical characteristics of cells cultured on cholesteryl ester liquid crystals,” Micron 56, 73–79 (2014).
[Crossref] [PubMed]

Omar, W. I.

C. F. Soon, W. I. Omar, R. F. Berends, N. Nayan, H. Basri, K. S. Tee, M. Youseffi, N. Blagden, and M. C. Denyer, “Biophysical characteristics of cells cultured on cholesteryl ester liquid crystals,” Micron 56, 73–79 (2014).
[Crossref] [PubMed]

Orlova, T.

T. Orlova, S. J. Aßhoff, T. Yamaguchi, N. Katsonis, and E. Brasselet, “Creation and manipulation of topological states in chiral nematic microspheres,” Nat. Commun. 6, 7603 (2015).
[Crossref] [PubMed]

Panov, V. P.

V. Borshch, Y. K. Kim, J. Xiang, M. Gao, A. Jákli, V. P. Panov, J. K. Vij, C. T. Imrie, M. G. Tamba, G. H. Mehl, and O. D. Lavrentovich, “Nematic twist-bend phase with nanoscale modulation of molecular orientation,” Nat. Commun. 4, 2635 (2013).
[Crossref] [PubMed]

Porenta, T.

D. Seč, T. Porenta, M. Ravnik, and S. Žumer, “Geometrical frustration of chiral ordering in cholesteric droplets,” Soft Matter 8(48), 11982 (2012).
[Crossref]

Ravnik, M.

D. Seč, T. Porenta, M. Ravnik, and S. Žumer, “Geometrical frustration of chiral ordering in cholesteric droplets,” Soft Matter 8(48), 11982 (2012).
[Crossref]

U. Tkalec, M. Ravnik, S. Čopar, S. Žumer, and I. Muševič, “Reconfigurable knots and links in chiral nematic colloids,” Science 333(6038), 62–65 (2011).
[Crossref] [PubMed]

Schopohl, N.

N. Schopohl and T. J. Sluckin, “Defect core structure in nematic liquid crystals,” Phys. Rev. Lett. 59(22), 2582–2584 (1987).
[Crossref] [PubMed]

Sec, D.

D. Seč, S. Copar, and S. Zumer, “Topological zoo of free-standing knots in confined chiral nematic fluids,” Nat. Commun. 5, 3057 (2014).
[Crossref] [PubMed]

D. Seč, T. Porenta, M. Ravnik, and S. Žumer, “Geometrical frustration of chiral ordering in cholesteric droplets,” Soft Matter 8(48), 11982 (2012).
[Crossref]

Senyuk, B.

B. Senyuk, Q. Liu, S. He, R. D. Kamien, R. B. Kusner, T. C. Lubensky, and I. I. Smalyukh, “Topological colloids,” Nature 493(7431), 200–205 (2012).
[Crossref] [PubMed]

Shiyanovskii, S. V.

I. I. Smalyukh, S. V. Shiyanovskii, and O. D. Lavrentovich, “Three-dimensional imaging of orientational order by fluorescence confocal polarizing microscopy,” Chem. Phys. Lett. 336(1-2), 88–96 (2001).
[Crossref]

Sluckin, T. J.

N. Schopohl and T. J. Sluckin, “Defect core structure in nematic liquid crystals,” Phys. Rev. Lett. 59(22), 2582–2584 (1987).
[Crossref] [PubMed]

Smalyukh, I. I.

B. Senyuk, Q. Liu, S. He, R. D. Kamien, R. B. Kusner, T. C. Lubensky, and I. I. Smalyukh, “Topological colloids,” Nature 493(7431), 200–205 (2012).
[Crossref] [PubMed]

I. I. Smalyukh, S. V. Shiyanovskii, and O. D. Lavrentovich, “Three-dimensional imaging of orientational order by fluorescence confocal polarizing microscopy,” Chem. Phys. Lett. 336(1-2), 88–96 (2001).
[Crossref]

Song, J. K.

S. D. Kim, B. Lee, S. W. Kang, and J. K. Song, “Dielectrophoretic manipulation of the mixture of isotropic and nematic liquid,” Nat. Commun. 6, 7936 (2015).
[Crossref] [PubMed]

Song, J.-K.

Soon, C. F.

C. F. Soon, W. I. Omar, R. F. Berends, N. Nayan, H. Basri, K. S. Tee, M. Youseffi, N. Blagden, and M. C. Denyer, “Biophysical characteristics of cells cultured on cholesteryl ester liquid crystals,” Micron 56, 73–79 (2014).
[Crossref] [PubMed]

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Tamba, M. G.

V. Borshch, Y. K. Kim, J. Xiang, M. Gao, A. Jákli, V. P. Panov, J. K. Vij, C. T. Imrie, M. G. Tamba, G. H. Mehl, and O. D. Lavrentovich, “Nematic twist-bend phase with nanoscale modulation of molecular orientation,” Nat. Commun. 4, 2635 (2013).
[Crossref] [PubMed]

Tee, K. S.

C. F. Soon, W. I. Omar, R. F. Berends, N. Nayan, H. Basri, K. S. Tee, M. Youseffi, N. Blagden, and M. C. Denyer, “Biophysical characteristics of cells cultured on cholesteryl ester liquid crystals,” Micron 56, 73–79 (2014).
[Crossref] [PubMed]

Tkalec, U.

U. Tkalec, M. Ravnik, S. Čopar, S. Žumer, and I. Muševič, “Reconfigurable knots and links in chiral nematic colloids,” Science 333(6038), 62–65 (2011).
[Crossref] [PubMed]

Vij, J. K.

V. Borshch, Y. K. Kim, J. Xiang, M. Gao, A. Jákli, V. P. Panov, J. K. Vij, C. T. Imrie, M. G. Tamba, G. H. Mehl, and O. D. Lavrentovich, “Nematic twist-bend phase with nanoscale modulation of molecular orientation,” Nat. Commun. 4, 2635 (2013).
[Crossref] [PubMed]

Voloschenko, D.

Webb, W. W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Xiang, J.

V. Borshch, Y. K. Kim, J. Xiang, M. Gao, A. Jákli, V. P. Panov, J. K. Vij, C. T. Imrie, M. G. Tamba, G. H. Mehl, and O. D. Lavrentovich, “Nematic twist-bend phase with nanoscale modulation of molecular orientation,” Nat. Commun. 4, 2635 (2013).
[Crossref] [PubMed]

Yamaguchi, T.

T. Orlova, S. J. Aßhoff, T. Yamaguchi, N. Katsonis, and E. Brasselet, “Creation and manipulation of topological states in chiral nematic microspheres,” Nat. Commun. 6, 7603 (2015).
[Crossref] [PubMed]

Youseffi, M.

C. F. Soon, W. I. Omar, R. F. Berends, N. Nayan, H. Basri, K. S. Tee, M. Youseffi, N. Blagden, and M. C. Denyer, “Biophysical characteristics of cells cultured on cholesteryl ester liquid crystals,” Micron 56, 73–79 (2014).
[Crossref] [PubMed]

Zumer, S.

D. Seč, S. Copar, and S. Zumer, “Topological zoo of free-standing knots in confined chiral nematic fluids,” Nat. Commun. 5, 3057 (2014).
[Crossref] [PubMed]

Žumer, S.

D. Seč, T. Porenta, M. Ravnik, and S. Žumer, “Geometrical frustration of chiral ordering in cholesteric droplets,” Soft Matter 8(48), 11982 (2012).
[Crossref]

U. Tkalec, M. Ravnik, S. Čopar, S. Žumer, and I. Muševič, “Reconfigurable knots and links in chiral nematic colloids,” Science 333(6038), 62–65 (2011).
[Crossref] [PubMed]

Chem. Phys. Lett. (1)

I. I. Smalyukh, S. V. Shiyanovskii, and O. D. Lavrentovich, “Three-dimensional imaging of orientational order by fluorescence confocal polarizing microscopy,” Chem. Phys. Lett. 336(1-2), 88–96 (2001).
[Crossref]

J. Phys. (Paris) (1)

Y. Bouligand and F. Livolant, “The organization of cholesteric spherulites,” J. Phys. (Paris) 45(12), 1899–1923 (1984).
[Crossref]

Micron (1)

C. F. Soon, W. I. Omar, R. F. Berends, N. Nayan, H. Basri, K. S. Tee, M. Youseffi, N. Blagden, and M. C. Denyer, “Biophysical characteristics of cells cultured on cholesteryl ester liquid crystals,” Micron 56, 73–79 (2014).
[Crossref] [PubMed]

Nat. Commun. (4)

D. Seč, S. Copar, and S. Zumer, “Topological zoo of free-standing knots in confined chiral nematic fluids,” Nat. Commun. 5, 3057 (2014).
[Crossref] [PubMed]

T. Orlova, S. J. Aßhoff, T. Yamaguchi, N. Katsonis, and E. Brasselet, “Creation and manipulation of topological states in chiral nematic microspheres,” Nat. Commun. 6, 7603 (2015).
[Crossref] [PubMed]

S. D. Kim, B. Lee, S. W. Kang, and J. K. Song, “Dielectrophoretic manipulation of the mixture of isotropic and nematic liquid,” Nat. Commun. 6, 7936 (2015).
[Crossref] [PubMed]

V. Borshch, Y. K. Kim, J. Xiang, M. Gao, A. Jákli, V. P. Panov, J. K. Vij, C. T. Imrie, M. G. Tamba, G. H. Mehl, and O. D. Lavrentovich, “Nematic twist-bend phase with nanoscale modulation of molecular orientation,” Nat. Commun. 4, 2635 (2013).
[Crossref] [PubMed]

Nature (1)

B. Senyuk, Q. Liu, S. He, R. D. Kamien, R. B. Kusner, T. C. Lubensky, and I. I. Smalyukh, “Topological colloids,” Nature 493(7431), 200–205 (2012).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. A (1)

W. L. McMillan, “Simple molecular model for the smecticAphase of liquid crystals,” Phys. Rev. A 4(3), 1238–1246 (1971).
[Crossref]

Phys. Rev. Lett. (2)

N. Schopohl and T. J. Sluckin, “Defect core structure in nematic liquid crystals,” Phys. Rev. Lett. 59(22), 2582–2584 (1987).
[Crossref] [PubMed]

S. D. Hudson and R. G. Larson, “Monte carlo simulation of a disclination core in nematic solutions of rodlike molecules,” Phys. Rev. Lett. 70(19), 2916–2919 (1993).
[Crossref] [PubMed]

Science (2)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

U. Tkalec, M. Ravnik, S. Čopar, S. Žumer, and I. Muševič, “Reconfigurable knots and links in chiral nematic colloids,” Science 333(6038), 62–65 (2011).
[Crossref] [PubMed]

Soft Matter (1)

D. Seč, T. Porenta, M. Ravnik, and S. Žumer, “Geometrical frustration of chiral ordering in cholesteric droplets,” Soft Matter 8(48), 11982 (2012).
[Crossref]

Sov. Phys. Usp. (1)

M. V. Kurik and O. D. Lavrentovich, “Defects in liquid crystals: homotopy theory and experimental studies,” Sov. Phys. Usp. 31(3), 196–224 (1988).
[Crossref]

Other (1)

O. D. Lavrentovich, “6. Defects and textures of liquid crystals,” in Handbook of Liquid Crystals, Vol. 2, J. W. Goodby et al. eds. (Wiley-VCH, 2014), pp. 189–241.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Microscopic analysis for a CLC droplet with a helical pitch of 90 μm and a diameter of 84 μm. a) POM image under crossed polarizers. b) POM image without polarizers. c) Selected FCPM images at different vertical locations from top to bottom of the droplet under a vertical polarizer. d) FCPM images at the same vertical location with varying polarizer directions. The last image in (d) shows the collection of defect lines determined from the other four images. The arrows indicate the direction of polarizer. Scale bar: 30 μm.

Fig. 2
Fig. 2

The shape of defect lines in the polarized FCPM images (a) for a horizontal defect line, (b) for a tilted defect line, and (c) for a vertical defect line. The top illustrations represent the director orientations around the defect line, and the green and gray directors represent the bright and dark molecular arrangements under the polarizer (blue arrows), respectively. The green lines in the small inset images in (a) and (b) denote the locations of corresponding detect lines in FCPM images. The red circle and green ellipses in the inset image in (c) denote the vertical defect point and the molecular arrangement around it. The extended defect line from the vertical defect is marked by orange lines and yellow arrows in (c).

Fig. 3
Fig. 3

(a)-(d) The defect loops for the CLC droplet in Fig. 1 roughly at z = 1/5, 2/5, 3/5, and 4/5 of the droplet from the top, respectively. The last image in each row represents the combined defect loops in each vertical section. (e) Combined defect loops, POM image, and the reconstructed 3D defect loops based on the sectional images. (f)-(j) 3D reconstruction of the defect loops for another CLC droplet with a vertical defect line, via the same procedure. Droplet size: 120 μm. Helical pitch: 136 μm. Arrows: polarizer axes. Scale bar: 30 μm.

Fig. 4
Fig. 4

(a) FCPM images for a droplet with short helical pitch for different vertical levels (top, middle, and bottom levels), and (b) the reconstructed 3D images using the stacked FCPM images. The yellow arrows denote the top view direction. Droplet size: 130 μm. Helical pitch: 26 μm. Scale bar: 30 μm.

Metrics