Abstract

This paper proposes a method that can measure high-contrast surfaces in real-time without changing camera exposures. We propose to use 180-degree phase-shifted (or inverted) fringe patterns to complement regular fringe patterns. If not all of the regular patterns are saturated, inverted fringe patterns are used in lieu of original saturated patterns for phase retrieval, and if all of the regular fringe patterns are saturated, both the original and inverted fringe patterns are all used for phase computation to reduce phase error. Experimental results demonstrate that three-dimensional (3D) shape measurement can be achieved in real time by adopting the proposed high dynamic range method.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
3D shape measurement of objects with high dynamic range of surface reflectivity

Gui-hua Liu, Xian-Yong Liu, and Quan-Yuan Feng
Appl. Opt. 50(23) 4557-4565 (2011)

Real-time, high-accuracy 3D imaging and shape measurement

Hieu Nguyen, Dung Nguyen, Zhaoyang Wang, Hien Kieu, and Minh Le
Appl. Opt. 54(1) A9-A17 (2015)

Adaptive digital fringe projection technique for high dynamic range three-dimensional shape measurement

Hui Lin, Jian Gao, Qing Mei, Yunbo He, Junxiu Liu, and Xingjin Wang
Opt. Express 24(7) 7703-7718 (2016)

References

  • View by:
  • |
  • |
  • |

  1. S. Zhang and S.-T. Yau, “High dynamic range scanning technique,” Opt. Eng. 48, 033604 (2009).
    [Crossref]
  2. C. Waddington and J. Kofman, “Analysis of measurement sensitivity to illuminance and fringe-pattern gray levels for fringe-pattern projection adaptive to ambient lighting,” Opt. Laser Eng. 48, 251–256 (2010).
    [Crossref]
  3. H. Jiang, H. Zhao, and X. Li, “High dynamic range fringe acquisition: A novel 3-d scanning technique for high-reflective surfaces,” Opt. Laser Eng. 50, 1484–1493 (2012).
    [Crossref]
  4. H. Zhao, X. Liang, X. Diao, and H. Jiang, “Rapid in-situ 3d measurement of shiny object based on fast and high dynamic range digital fringe projector,” Opt. Laser Eng. 54, 170–174 (2014).
    [Crossref]
  5. L. Ekstrand and S. Zhang, “Auto-exposure for three-dimensional shape measurement with a digital-light-processing projector,” Opt. Eng. 50, 123603 (2011).
    [Crossref]
  6. L. Ekstrand and S. Zhang, “Automated high-dynamic range three-dimensional optical metrology technique,” in Proceedings of the ASME 2014 International Manufacturing Science and Engineering Conference V001T05A005, (2014), pp. 2014–4101.
  7. Y. Yamaguchi, H. Miyake, O. Nishikawa, and T. Iyoda, “Shape measurement of glossy objects by range finder with polarization optical system,” Gazo Denshi Gakkai Kenkyukai Koen Yoko (in Japanese) 200, 43–50 (2003).
  8. B. Salahieh, Z. Chen, J. J. Rodriguez, and R. Liang, “Multi-polarization fringe projection imaging for high dynamic range objects,” Opt. Express 22, 10064–10071 (2014).
    [Crossref] [PubMed]
  9. R. Kokku and G. Brooksby, “Improving 3d surface measurement accuracy on metallic surfaces,” Proc. SPIE 5856, 618–624 (2005).
    [Crossref]
  10. Q. Hu, K. G. Harding, X. Du, and D. Hamilton, “Shiny parts measurement using color separation,” Proc. SPIE 6000, 6000D1 (2005).
  11. D. Malacara, ed., Optical Shop Testing, 3rd ed. (John Wiley and Sons, 2007).
    [Crossref]
  12. B. Li, N. Karpinsky, and S. Zhang, “Novel calibration method for structured light system with an out-of-focus projector,” Appl. Opt. 56, 3415–3426 (2014).
    [Crossref]
  13. S. Zhang, “Flexible 3d shape measurement using projector defocusing: Extended measurement range,” Opt. Lett. 35, 931–933 (2010).
  14. S. Zhang, X. Li, and S.-T. Yau, “Multilevel quality-guided phase unwrapping algorithm for real-time three-dimensional shape reconstruction,” Appl. Opt. 46, 50–57 (2007).
    [Crossref]
  15. Y. Xu, L. Ekstrand, J. Dai, and S. Zhang, “Phase error compensation for three-dimensional shape measurement with projector defocusing,” Appl. Opt. 50, 2572–2581 (2011).
    [Crossref] [PubMed]

2014 (3)

H. Zhao, X. Liang, X. Diao, and H. Jiang, “Rapid in-situ 3d measurement of shiny object based on fast and high dynamic range digital fringe projector,” Opt. Laser Eng. 54, 170–174 (2014).
[Crossref]

B. Salahieh, Z. Chen, J. J. Rodriguez, and R. Liang, “Multi-polarization fringe projection imaging for high dynamic range objects,” Opt. Express 22, 10064–10071 (2014).
[Crossref] [PubMed]

B. Li, N. Karpinsky, and S. Zhang, “Novel calibration method for structured light system with an out-of-focus projector,” Appl. Opt. 56, 3415–3426 (2014).
[Crossref]

2012 (1)

H. Jiang, H. Zhao, and X. Li, “High dynamic range fringe acquisition: A novel 3-d scanning technique for high-reflective surfaces,” Opt. Laser Eng. 50, 1484–1493 (2012).
[Crossref]

2011 (2)

Y. Xu, L. Ekstrand, J. Dai, and S. Zhang, “Phase error compensation for three-dimensional shape measurement with projector defocusing,” Appl. Opt. 50, 2572–2581 (2011).
[Crossref] [PubMed]

L. Ekstrand and S. Zhang, “Auto-exposure for three-dimensional shape measurement with a digital-light-processing projector,” Opt. Eng. 50, 123603 (2011).
[Crossref]

2010 (2)

C. Waddington and J. Kofman, “Analysis of measurement sensitivity to illuminance and fringe-pattern gray levels for fringe-pattern projection adaptive to ambient lighting,” Opt. Laser Eng. 48, 251–256 (2010).
[Crossref]

S. Zhang, “Flexible 3d shape measurement using projector defocusing: Extended measurement range,” Opt. Lett. 35, 931–933 (2010).

2009 (1)

S. Zhang and S.-T. Yau, “High dynamic range scanning technique,” Opt. Eng. 48, 033604 (2009).
[Crossref]

2007 (1)

2005 (2)

R. Kokku and G. Brooksby, “Improving 3d surface measurement accuracy on metallic surfaces,” Proc. SPIE 5856, 618–624 (2005).
[Crossref]

Q. Hu, K. G. Harding, X. Du, and D. Hamilton, “Shiny parts measurement using color separation,” Proc. SPIE 6000, 6000D1 (2005).

2003 (1)

Y. Yamaguchi, H. Miyake, O. Nishikawa, and T. Iyoda, “Shape measurement of glossy objects by range finder with polarization optical system,” Gazo Denshi Gakkai Kenkyukai Koen Yoko (in Japanese) 200, 43–50 (2003).

Brooksby, G.

R. Kokku and G. Brooksby, “Improving 3d surface measurement accuracy on metallic surfaces,” Proc. SPIE 5856, 618–624 (2005).
[Crossref]

Chen, Z.

Dai, J.

Diao, X.

H. Zhao, X. Liang, X. Diao, and H. Jiang, “Rapid in-situ 3d measurement of shiny object based on fast and high dynamic range digital fringe projector,” Opt. Laser Eng. 54, 170–174 (2014).
[Crossref]

Du, X.

Q. Hu, K. G. Harding, X. Du, and D. Hamilton, “Shiny parts measurement using color separation,” Proc. SPIE 6000, 6000D1 (2005).

Ekstrand, L.

L. Ekstrand and S. Zhang, “Auto-exposure for three-dimensional shape measurement with a digital-light-processing projector,” Opt. Eng. 50, 123603 (2011).
[Crossref]

Y. Xu, L. Ekstrand, J. Dai, and S. Zhang, “Phase error compensation for three-dimensional shape measurement with projector defocusing,” Appl. Opt. 50, 2572–2581 (2011).
[Crossref] [PubMed]

L. Ekstrand and S. Zhang, “Automated high-dynamic range three-dimensional optical metrology technique,” in Proceedings of the ASME 2014 International Manufacturing Science and Engineering Conference V001T05A005, (2014), pp. 2014–4101.

Hamilton, D.

Q. Hu, K. G. Harding, X. Du, and D. Hamilton, “Shiny parts measurement using color separation,” Proc. SPIE 6000, 6000D1 (2005).

Harding, K. G.

Q. Hu, K. G. Harding, X. Du, and D. Hamilton, “Shiny parts measurement using color separation,” Proc. SPIE 6000, 6000D1 (2005).

Hu, Q.

Q. Hu, K. G. Harding, X. Du, and D. Hamilton, “Shiny parts measurement using color separation,” Proc. SPIE 6000, 6000D1 (2005).

Iyoda, T.

Y. Yamaguchi, H. Miyake, O. Nishikawa, and T. Iyoda, “Shape measurement of glossy objects by range finder with polarization optical system,” Gazo Denshi Gakkai Kenkyukai Koen Yoko (in Japanese) 200, 43–50 (2003).

Jiang, H.

H. Zhao, X. Liang, X. Diao, and H. Jiang, “Rapid in-situ 3d measurement of shiny object based on fast and high dynamic range digital fringe projector,” Opt. Laser Eng. 54, 170–174 (2014).
[Crossref]

H. Jiang, H. Zhao, and X. Li, “High dynamic range fringe acquisition: A novel 3-d scanning technique for high-reflective surfaces,” Opt. Laser Eng. 50, 1484–1493 (2012).
[Crossref]

Karpinsky, N.

B. Li, N. Karpinsky, and S. Zhang, “Novel calibration method for structured light system with an out-of-focus projector,” Appl. Opt. 56, 3415–3426 (2014).
[Crossref]

Kofman, J.

C. Waddington and J. Kofman, “Analysis of measurement sensitivity to illuminance and fringe-pattern gray levels for fringe-pattern projection adaptive to ambient lighting,” Opt. Laser Eng. 48, 251–256 (2010).
[Crossref]

Kokku, R.

R. Kokku and G. Brooksby, “Improving 3d surface measurement accuracy on metallic surfaces,” Proc. SPIE 5856, 618–624 (2005).
[Crossref]

Li, B.

B. Li, N. Karpinsky, and S. Zhang, “Novel calibration method for structured light system with an out-of-focus projector,” Appl. Opt. 56, 3415–3426 (2014).
[Crossref]

Li, X.

H. Jiang, H. Zhao, and X. Li, “High dynamic range fringe acquisition: A novel 3-d scanning technique for high-reflective surfaces,” Opt. Laser Eng. 50, 1484–1493 (2012).
[Crossref]

S. Zhang, X. Li, and S.-T. Yau, “Multilevel quality-guided phase unwrapping algorithm for real-time three-dimensional shape reconstruction,” Appl. Opt. 46, 50–57 (2007).
[Crossref]

Liang, R.

Liang, X.

H. Zhao, X. Liang, X. Diao, and H. Jiang, “Rapid in-situ 3d measurement of shiny object based on fast and high dynamic range digital fringe projector,” Opt. Laser Eng. 54, 170–174 (2014).
[Crossref]

Miyake, H.

Y. Yamaguchi, H. Miyake, O. Nishikawa, and T. Iyoda, “Shape measurement of glossy objects by range finder with polarization optical system,” Gazo Denshi Gakkai Kenkyukai Koen Yoko (in Japanese) 200, 43–50 (2003).

Nishikawa, O.

Y. Yamaguchi, H. Miyake, O. Nishikawa, and T. Iyoda, “Shape measurement of glossy objects by range finder with polarization optical system,” Gazo Denshi Gakkai Kenkyukai Koen Yoko (in Japanese) 200, 43–50 (2003).

Rodriguez, J. J.

Salahieh, B.

Waddington, C.

C. Waddington and J. Kofman, “Analysis of measurement sensitivity to illuminance and fringe-pattern gray levels for fringe-pattern projection adaptive to ambient lighting,” Opt. Laser Eng. 48, 251–256 (2010).
[Crossref]

Xu, Y.

Yamaguchi, Y.

Y. Yamaguchi, H. Miyake, O. Nishikawa, and T. Iyoda, “Shape measurement of glossy objects by range finder with polarization optical system,” Gazo Denshi Gakkai Kenkyukai Koen Yoko (in Japanese) 200, 43–50 (2003).

Yau, S.-T.

Zhang, S.

B. Li, N. Karpinsky, and S. Zhang, “Novel calibration method for structured light system with an out-of-focus projector,” Appl. Opt. 56, 3415–3426 (2014).
[Crossref]

L. Ekstrand and S. Zhang, “Auto-exposure for three-dimensional shape measurement with a digital-light-processing projector,” Opt. Eng. 50, 123603 (2011).
[Crossref]

Y. Xu, L. Ekstrand, J. Dai, and S. Zhang, “Phase error compensation for three-dimensional shape measurement with projector defocusing,” Appl. Opt. 50, 2572–2581 (2011).
[Crossref] [PubMed]

S. Zhang, “Flexible 3d shape measurement using projector defocusing: Extended measurement range,” Opt. Lett. 35, 931–933 (2010).

S. Zhang and S.-T. Yau, “High dynamic range scanning technique,” Opt. Eng. 48, 033604 (2009).
[Crossref]

S. Zhang, X. Li, and S.-T. Yau, “Multilevel quality-guided phase unwrapping algorithm for real-time three-dimensional shape reconstruction,” Appl. Opt. 46, 50–57 (2007).
[Crossref]

L. Ekstrand and S. Zhang, “Automated high-dynamic range three-dimensional optical metrology technique,” in Proceedings of the ASME 2014 International Manufacturing Science and Engineering Conference V001T05A005, (2014), pp. 2014–4101.

Zhao, H.

H. Zhao, X. Liang, X. Diao, and H. Jiang, “Rapid in-situ 3d measurement of shiny object based on fast and high dynamic range digital fringe projector,” Opt. Laser Eng. 54, 170–174 (2014).
[Crossref]

H. Jiang, H. Zhao, and X. Li, “High dynamic range fringe acquisition: A novel 3-d scanning technique for high-reflective surfaces,” Opt. Laser Eng. 50, 1484–1493 (2012).
[Crossref]

Appl. Opt. (3)

Gazo Denshi Gakkai Kenkyukai Koen Yoko (in Japanese) (1)

Y. Yamaguchi, H. Miyake, O. Nishikawa, and T. Iyoda, “Shape measurement of glossy objects by range finder with polarization optical system,” Gazo Denshi Gakkai Kenkyukai Koen Yoko (in Japanese) 200, 43–50 (2003).

Opt. Eng. (2)

S. Zhang and S.-T. Yau, “High dynamic range scanning technique,” Opt. Eng. 48, 033604 (2009).
[Crossref]

L. Ekstrand and S. Zhang, “Auto-exposure for three-dimensional shape measurement with a digital-light-processing projector,” Opt. Eng. 50, 123603 (2011).
[Crossref]

Opt. Express (1)

Opt. Laser Eng. (3)

C. Waddington and J. Kofman, “Analysis of measurement sensitivity to illuminance and fringe-pattern gray levels for fringe-pattern projection adaptive to ambient lighting,” Opt. Laser Eng. 48, 251–256 (2010).
[Crossref]

H. Jiang, H. Zhao, and X. Li, “High dynamic range fringe acquisition: A novel 3-d scanning technique for high-reflective surfaces,” Opt. Laser Eng. 50, 1484–1493 (2012).
[Crossref]

H. Zhao, X. Liang, X. Diao, and H. Jiang, “Rapid in-situ 3d measurement of shiny object based on fast and high dynamic range digital fringe projector,” Opt. Laser Eng. 54, 170–174 (2014).
[Crossref]

Opt. Lett. (1)

Proc. SPIE (2)

R. Kokku and G. Brooksby, “Improving 3d surface measurement accuracy on metallic surfaces,” Proc. SPIE 5856, 618–624 (2005).
[Crossref]

Q. Hu, K. G. Harding, X. Du, and D. Hamilton, “Shiny parts measurement using color separation,” Proc. SPIE 6000, 6000D1 (2005).

Other (2)

D. Malacara, ed., Optical Shop Testing, 3rd ed. (John Wiley and Sons, 2007).
[Crossref]

L. Ekstrand and S. Zhang, “Automated high-dynamic range three-dimensional optical metrology technique,” in Proceedings of the ASME 2014 International Manufacturing Science and Engineering Conference V001T05A005, (2014), pp. 2014–4101.

Supplementary Material (4)

NameDescription
» Visualization 1: MP4 (5730 KB)      Visualization 1
» Visualization 2: MP4 (5752 KB)      Visualization 2
» Visualization 3: MP4 (5315 KB)      Visualization 3
» Visualization 4: MP4 (2064 KB)      Visualization 4

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Example of regular and inverted fringe patterns when the patterns are saturated. (a) Three phase-shifted fringe patterns; (b) unwrapped phase obtained from fringe patterns in (a); (c) phase error (rms 0.30 rad); (d) three inverted fringe patterns; (e) unwrapped phase obtained from fringe patterns in (d); (f) phase error (rms 0.30 rad).

Fig. 2
Fig. 2

Recovered phase using the proposed HDR algorithm and the patterns shown in Fig. 1. (a) Unwrapped phase; (b) phase error (rms 3.1 ×10−16 rad)

Fig. 3
Fig. 3

Simulation results when both inverted and regular fringe patterns are saturated for certain pixels. (a) Example regular and inverted fringe patterns. The red windows highlight points to where both the regular and inverted fringe patterns are saturated; (b) phase error using conventional phase shifting algorithm (rms 0.43 rad); (c) phase error using proposed HDR algorithm (rms 0.03 rad).

Fig. 4
Fig. 4

Measurement results of a flat white board. (a) Cross section of one of the regular and one of the inverted fringe patterns when either inverted or regular fringe pattern is not saturated; (b) phase error (rms 0.29 rad) using the conventional three-step phase-shifting algorithm; (c) phase error using our HDR algorithm (rms 0.02); (d) Cross section of one of the regular and one of the inverted fringe patterns when both inverted and regular fringe pattern are saturated for some pixels; (e) phase error (rms 0.52 rad) using the conventional three-step phase-shifting algorithm; (f) phase error using our HDR algorithm (rms 0.08).

Fig. 5
Fig. 5

Experimental results of a high contrast object with different degrees of saturation (fringe period is 36 pixels); (a) Photography of the measured object; (b) One of the regular, low exposure phase-shifted patterns; (c) One of the inverted phase-shifted patterns; (d) One of the combined fringe patterns for the HDR algorithm; (e) 3D reconstruction by conventional methods from the low exposure pattern (b); (f) 3D reconstruction by conventional methods from high exposure regular patterns; (g) 3D reconstruction by conventional methods from high exposure inverted patterns (c); (h) 3D reconstruction by the proposed HDR algorithm from high exposure patterns (d).

Fig. 6
Fig. 6

Zoomed-in results of the head part from Fig. 5; (a) Photography of the zoomedin area; (b) 3D reconstruction by regular patterns on low exposure; (c) 3D reconstruction by regular patterns on high exposure; (d) 3D reconstruction by inverted pattens on high exposure; 3D reconstruction by HDR algorithm on high exposure; (f) 3D reconstruction by HDR algorithm on low exposure.

Fig. 7
Fig. 7

Real-time 3D shape measurement using the proposed HDR algorithm (associated Visualization 1 Visualization 2 Visualization 3 Visualization 4). (a) 3D reconstruction by the conventional single-exposure method from regular patterns; (b) 3D reconstruction by the conventional single-exposure method from inverted patterns; (c) 3D reconstruction by the proposed HDR method; (d) close-up view of (a); (e) close-up view of (b); (f) close-up view of (c).

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

I 1 ( x , y ) = I ( x , y ) + I ( x , y ) cos [ ϕ ( x , y ) 2 π / 3 ] ,
I 2 ( x , y ) = I ( x , y ) + I ( x , y ) cos [ ϕ ( x , y ) ] ,
I 3 ( x , y ) = I ( x , y ) + I ( x , y ) cos [ ϕ ( x , y ) + 2 π / 3 ] ,
ϕ ( x , y ) = tan 1 [ 3 ( I 1 I 3 ) 2 I 2 I 1 I 3 ] .
I 1 inv ( x , y ) = I ( x , y ) I ( x , y ) cos [ ϕ ( x , y ) 2 π / 3 ] ,
I 2 inv ( x , y ) = I ( x , y ) I ( x , y ) cos [ ϕ ( x , y ) ] ,
I 3 inv ( x , y ) = I ( x , y ) I ( x , y ) cos [ ϕ ( x , y ) + 2 π / 3 ] .
ϕ ( x , y ) = tan 1 { 3 I 1 inv ( x , y ) + 2 I 2 ( x , y ) + I 3 ( x , y ) 3 [ I 1 inv ( x , y ) I 3 ( x , y ) ] } .
ϕ ( x , y ) = tan 1 { I 1 ( x , y ) I 3 ( x , y ) 3 [ I 1 ( x , y ) + I 3 ( x , y ) 2 I 2 inv ( x , y ) ] } .
ϕ ( x , y ) = tan 1 { I 1 ( x , y ) 2 I 2 ( x , y ) + 3 I 3 inv ( x , y ) 3 [ I 3 inv ( x , y ) I 1 ( x , y ) ] } .
ϕ ( x , y ) = tan 1 { I 1 inv ( x , y ) + 2 I 2 inv ( x , y ) 3 I 3 ( x , y ) 3 [ I 1 inv ( x , y ) I 3 ( x , y ) ] } .
ϕ ( x , y ) = tan 1 { I 3 inv ( x , y ) I 1 inv ( x , y ) 3 [ 2 I 2 ( x , y ) I 1 inv ( x , y ) I 3 inv ( x , y ) ] } .
ϕ ( x , y ) = tan 1 { 3 I 1 ( x , y ) 2 I 2 inv ( x , y ) I 3 inv ( x , y ) 3 [ I 3 inv ( x , y ) I 1 ( x , y ) ] } .
ϕ ( x , y ) = tan 1 { 2 B 1 ( x , y ) B 3 ( x , y ) 3 [ B 2 ( x , y ) B 1 ( x , y ) B 3 ( x , y ) ] } ,

Metrics