Abstract

Limited by long acquisition time of 2D ghost imaging, current ghost imaging systems are so far inapplicable for dynamic scenes. However, it’s been demonstrated that nature images are spatiotemporally redundant and the redundancy is scene dependent. Inspired by that, we propose a content-adaptive computational ghost imaging approach to achieve high reconstruction quality under a small number of measurements, and thus achieve ghost imaging of dynamic scenes. To utilize content-adaptive inter-frame redundancy, we put the reconstruction under an iterative reweighted optimization, with non-uniform weight computed from temporal-correlated frame sequences. The proposed approach can achieve dynamic imaging at 16fps with 64×64-pixel resolution.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Patch-primitive driven compressive ghost imaging

Xuemei Hu, Jinli Suo, Tao Yue, Liheng Bian, and Qionghai Dai
Opt. Express 23(9) 11092-11104 (2015)

Detection and removal of fence occlusions in an image using a video of the static/dynamic scene

Sankaraganesh Jonna, Krishna K. Nakka, Vrushali S. Khasare, Rajiv R. Sahay, and Mohan S. Kankanhalli
J. Opt. Soc. Am. A 33(10) 1917-1930 (2016)

Compressive adaptive ghost imaging via sharing mechanism and fellow relationship

Yaoran Huo, Hongjie He, and Fan Chen
Appl. Opt. 55(12) 3356-3367 (2016)

References

  • View by:
  • |
  • |
  • |

  1. T. Pittman, Y. Shih, D. Strekalov, and A. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52(5), R3429 (1995).
    [Crossref] [PubMed]
  2. R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Two-photon coincidence imaging with a classical source,” Phys. Rev. Lett 89(11), 113601 (2002).
    [Crossref] [PubMed]
  3. A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: comparing entanglement and classical correlation,” Phys. Rev. Lett 93(9), 093602 (2004).
    [Crossref] [PubMed]
  4. D. Zhang, Y. H. Zhai, L. A. Wu, and X. H. Chen, “Correlated two-photon imaging with true thermal light,” Opt. Lett 30(18), 2354–2356 (2005).
    [Crossref] [PubMed]
  5. A. Valencia, G. Scarcelli, M. DAngelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett 94, 063601 (2005).
    [Crossref] [PubMed]
  6. B. I. Erkmen and J. H. Shapiro, “Unified theory of ghost imaging with gaussian-state light,” Phys. Rev. A 77(4), 043809 (2008).
    [Crossref]
  7. J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78(6), 061802 (2008).
    [Crossref]
  8. Y. Bromberg, O. Katz, and Y. Silberberg, “Ghost imaging with a single detector,” Phys. Rev. A 79(5), 053840 (2009).
    [Crossref]
  9. B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3D computational imaging with single-pixel detectors,” Science 340(6134), 844847 (2013).
    [Crossref]
  10. R. E. Meyers, K. S. Deacon, and Y. Shih, “Turbulence-free ghost imaging,” Appl. Phys. Lett 98(11), 111115 (2011).
    [Crossref]
  11. C. Zhao, W. Gong, M. Chen, E. Li, H. Wang, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints,” Appl. Phys. Lett 101(14), 141123 (2012).
    [Crossref]
  12. P. Clemente, V. Durn, V. Torres-Company, E. Tajahuerce, and J. Lancis, “Optical encryption based on computational ghost imaging,” Opt. Lett 35(14), 2391 (2010).
    [Crossref] [PubMed]
  13. M. Tanha, R. Kheradmand, and S. Ahmadi-Kandjani, “Gray-scale and color optical encryption based on computational ghost imaging,” Appl. Phys. Lett 101(10), 101108 (2012).
    [Crossref]
  14. J. Cheng, “Ghost imaging through turbulent atmosphere,” Opt. Express 17(10), 7916 (2009).
    [Crossref] [PubMed]
  15. N. D. Hardy and J. H. Shapiro, “Reflective ghost imaging through turbulence,” Phys. Rev. A 84(6), 3474 (2011).
    [Crossref]
  16. S. Vincent, B. Jrome, C. Makhlad, M. H. Shams, C. Emmanuel, and D. Maxime, “Compressive fluorescence microscopy for biological and hyperspectral imaging,” in Proceedings of the National Academy of Sciences (Academic, 2012), pp. 1679–1687.
  17. O. S. Magana-Loaiza, G. A. Howland, M. Malik, J. C. Howell, and R. W. Boyd, “Compressive object tracking using entangled photons,” Appl. Phys. Lett 102(23), 231104 (2013).
    [Crossref]
  18. E. Li, Z. Bo, M. Chen, W. Gong, and S. Han, “Ghost imaging of a moving target with an unknown constant speed,” Appl. Phys. Lett 104(25), 251120 (2014).
    [Crossref]
  19. M. Wakin, J. Laska, M. Duarte, D. Baron, S. Sarvotham, D. Takhar, K. Kelly, and R. Baraniuk, “Compressive imaging for video representation and coding,” in Proceedings of Picture Coding Symposium (IEEE, 2006).
  20. A. Thompson, “Compressive single-pixel imaging,” presented at the 2nd IMA Conference on Mathematics in Defence, Swindon, the United Kingdom, 20 October 2011.
  21. R. F. Marcia and R. M. Willett, “Compressive coded aperture superresolution image reconstruction,” in Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (IEEE, 2008), pp. 833–836.
  22. T. Goldstein, L. Xu, K. F. Kelly, and R. Baraniuk, “The STONE transform: Multi-resolution image enhancement and real-time compressive video,” http://arxiv.org/abs/1311.3405 .
  23. M. P. Edgar, G. M. Gibson, R. W. Bowman, B. Sun, N. Radwell, K. J. Mitchell, S. S. Welsh, and M. J. Padgett, “Simultaneous real-time visible and infrared video with single-pixel detectors,” Sci. Reports 5, 10669 (2015).
    [Crossref]
  24. J. Du, W. Gong, and S. Han, “The influence of sparsity property of images on ghost imaging with thermal light,” Opt. Lett 37, 1067–1069 (2012).
    [Crossref] [PubMed]
  25. P. W. Holland and R. E. Welsch, “Robust regression using iteratively reweighted least-squares,” Commun. Stat. Theory 6(9), 813–827 (1977).
    [Crossref]
  26. D. P. OLeary, “Robust regression computation using iteratively reweighted least squares,” Siam. J. Matrix. Anal. A 11(3), 466–480 (1990).
    [Crossref]
  27. E. J. Candes, M. B. Wakin, and S. P. Boyd, “Enhancing sparsity by reweighted L1 minimization,” J. Fourier. Anal. Appl 14(5–6), 877–905 (2007).
    [Crossref]
  28. O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett 95(13), 131110 (2009).
    [Crossref]
  29. C. Li, “An efficient algorithm for total variation regularization with applications to the single pixel camera and compressive sensing,” Master Thesis, Rice University (2009).
  30. S. S. Beauchemin and J. L. Barron, “The computation of optical flow,” Acm. Comput. Surv 27(3), 433–466 (1995).
    [Crossref]
  31. C. Liu, “Beyond pixels : exploring new representations and applications for motion analysis,” Mass. Inst. Technol (2010).
  32. S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical learning via the alternating direction method of multipliers,” Found. Trends. Mach. Learn 3(1), 1–122 (2011).
    [Crossref]
  33. F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett 104(25), 253603 (2010).
    [Crossref] [PubMed]
  34. B. Sun, S. S. Welsh, M. P. Edgar, J. H. Shapiro, and M. J. Padgett, “Normalized ghost imaging,” Opt. Express 20(15), 16892–16901 (2012).
    [Crossref]
  35. B. Sun, M. Edgar, R. Bowman, L. Vittert, S. Welsh, A. Bowman, and M. Padgett, “Differential computational ghost imaging,” in Imaging and Applied Optics, OSA Technical Digest (online) (Optical Society of America, 2013), paper CTu1C.4.
    [Crossref]
  36. J. Du, W. Gong, and S. Han, “The influence of sparsity property of images on ghost imaging with thermal light,” Opt. Lett. 37, 1067–1069 (2012).
    [Crossref] [PubMed]

2015 (1)

M. P. Edgar, G. M. Gibson, R. W. Bowman, B. Sun, N. Radwell, K. J. Mitchell, S. S. Welsh, and M. J. Padgett, “Simultaneous real-time visible and infrared video with single-pixel detectors,” Sci. Reports 5, 10669 (2015).
[Crossref]

2014 (1)

E. Li, Z. Bo, M. Chen, W. Gong, and S. Han, “Ghost imaging of a moving target with an unknown constant speed,” Appl. Phys. Lett 104(25), 251120 (2014).
[Crossref]

2013 (2)

O. S. Magana-Loaiza, G. A. Howland, M. Malik, J. C. Howell, and R. W. Boyd, “Compressive object tracking using entangled photons,” Appl. Phys. Lett 102(23), 231104 (2013).
[Crossref]

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3D computational imaging with single-pixel detectors,” Science 340(6134), 844847 (2013).
[Crossref]

2012 (5)

C. Zhao, W. Gong, M. Chen, E. Li, H. Wang, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints,” Appl. Phys. Lett 101(14), 141123 (2012).
[Crossref]

M. Tanha, R. Kheradmand, and S. Ahmadi-Kandjani, “Gray-scale and color optical encryption based on computational ghost imaging,” Appl. Phys. Lett 101(10), 101108 (2012).
[Crossref]

J. Du, W. Gong, and S. Han, “The influence of sparsity property of images on ghost imaging with thermal light,” Opt. Lett 37, 1067–1069 (2012).
[Crossref] [PubMed]

J. Du, W. Gong, and S. Han, “The influence of sparsity property of images on ghost imaging with thermal light,” Opt. Lett. 37, 1067–1069 (2012).
[Crossref] [PubMed]

B. Sun, S. S. Welsh, M. P. Edgar, J. H. Shapiro, and M. J. Padgett, “Normalized ghost imaging,” Opt. Express 20(15), 16892–16901 (2012).
[Crossref]

2011 (3)

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical learning via the alternating direction method of multipliers,” Found. Trends. Mach. Learn 3(1), 1–122 (2011).
[Crossref]

N. D. Hardy and J. H. Shapiro, “Reflective ghost imaging through turbulence,” Phys. Rev. A 84(6), 3474 (2011).
[Crossref]

R. E. Meyers, K. S. Deacon, and Y. Shih, “Turbulence-free ghost imaging,” Appl. Phys. Lett 98(11), 111115 (2011).
[Crossref]

2010 (2)

P. Clemente, V. Durn, V. Torres-Company, E. Tajahuerce, and J. Lancis, “Optical encryption based on computational ghost imaging,” Opt. Lett 35(14), 2391 (2010).
[Crossref] [PubMed]

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett 104(25), 253603 (2010).
[Crossref] [PubMed]

2009 (3)

J. Cheng, “Ghost imaging through turbulent atmosphere,” Opt. Express 17(10), 7916 (2009).
[Crossref] [PubMed]

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett 95(13), 131110 (2009).
[Crossref]

Y. Bromberg, O. Katz, and Y. Silberberg, “Ghost imaging with a single detector,” Phys. Rev. A 79(5), 053840 (2009).
[Crossref]

2008 (2)

B. I. Erkmen and J. H. Shapiro, “Unified theory of ghost imaging with gaussian-state light,” Phys. Rev. A 77(4), 043809 (2008).
[Crossref]

J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78(6), 061802 (2008).
[Crossref]

2007 (1)

E. J. Candes, M. B. Wakin, and S. P. Boyd, “Enhancing sparsity by reweighted L1 minimization,” J. Fourier. Anal. Appl 14(5–6), 877–905 (2007).
[Crossref]

2005 (2)

D. Zhang, Y. H. Zhai, L. A. Wu, and X. H. Chen, “Correlated two-photon imaging with true thermal light,” Opt. Lett 30(18), 2354–2356 (2005).
[Crossref] [PubMed]

A. Valencia, G. Scarcelli, M. DAngelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett 94, 063601 (2005).
[Crossref] [PubMed]

2004 (1)

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: comparing entanglement and classical correlation,” Phys. Rev. Lett 93(9), 093602 (2004).
[Crossref] [PubMed]

2002 (1)

R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Two-photon coincidence imaging with a classical source,” Phys. Rev. Lett 89(11), 113601 (2002).
[Crossref] [PubMed]

1995 (2)

T. Pittman, Y. Shih, D. Strekalov, and A. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52(5), R3429 (1995).
[Crossref] [PubMed]

S. S. Beauchemin and J. L. Barron, “The computation of optical flow,” Acm. Comput. Surv 27(3), 433–466 (1995).
[Crossref]

1990 (1)

D. P. OLeary, “Robust regression computation using iteratively reweighted least squares,” Siam. J. Matrix. Anal. A 11(3), 466–480 (1990).
[Crossref]

1977 (1)

P. W. Holland and R. E. Welsch, “Robust regression using iteratively reweighted least-squares,” Commun. Stat. Theory 6(9), 813–827 (1977).
[Crossref]

Ahmadi-Kandjani, S.

M. Tanha, R. Kheradmand, and S. Ahmadi-Kandjani, “Gray-scale and color optical encryption based on computational ghost imaging,” Appl. Phys. Lett 101(10), 101108 (2012).
[Crossref]

Bache, M.

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: comparing entanglement and classical correlation,” Phys. Rev. Lett 93(9), 093602 (2004).
[Crossref] [PubMed]

Baraniuk, R.

M. Wakin, J. Laska, M. Duarte, D. Baron, S. Sarvotham, D. Takhar, K. Kelly, and R. Baraniuk, “Compressive imaging for video representation and coding,” in Proceedings of Picture Coding Symposium (IEEE, 2006).

Baron, D.

M. Wakin, J. Laska, M. Duarte, D. Baron, S. Sarvotham, D. Takhar, K. Kelly, and R. Baraniuk, “Compressive imaging for video representation and coding,” in Proceedings of Picture Coding Symposium (IEEE, 2006).

Barron, J. L.

S. S. Beauchemin and J. L. Barron, “The computation of optical flow,” Acm. Comput. Surv 27(3), 433–466 (1995).
[Crossref]

Beauchemin, S. S.

S. S. Beauchemin and J. L. Barron, “The computation of optical flow,” Acm. Comput. Surv 27(3), 433–466 (1995).
[Crossref]

Bennink, R. S.

R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Two-photon coincidence imaging with a classical source,” Phys. Rev. Lett 89(11), 113601 (2002).
[Crossref] [PubMed]

Bentley, S. J.

R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Two-photon coincidence imaging with a classical source,” Phys. Rev. Lett 89(11), 113601 (2002).
[Crossref] [PubMed]

Bo, Z.

E. Li, Z. Bo, M. Chen, W. Gong, and S. Han, “Ghost imaging of a moving target with an unknown constant speed,” Appl. Phys. Lett 104(25), 251120 (2014).
[Crossref]

Bowman, A.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3D computational imaging with single-pixel detectors,” Science 340(6134), 844847 (2013).
[Crossref]

B. Sun, M. Edgar, R. Bowman, L. Vittert, S. Welsh, A. Bowman, and M. Padgett, “Differential computational ghost imaging,” in Imaging and Applied Optics, OSA Technical Digest (online) (Optical Society of America, 2013), paper CTu1C.4.
[Crossref]

Bowman, R.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3D computational imaging with single-pixel detectors,” Science 340(6134), 844847 (2013).
[Crossref]

B. Sun, M. Edgar, R. Bowman, L. Vittert, S. Welsh, A. Bowman, and M. Padgett, “Differential computational ghost imaging,” in Imaging and Applied Optics, OSA Technical Digest (online) (Optical Society of America, 2013), paper CTu1C.4.
[Crossref]

Bowman, R. W.

M. P. Edgar, G. M. Gibson, R. W. Bowman, B. Sun, N. Radwell, K. J. Mitchell, S. S. Welsh, and M. J. Padgett, “Simultaneous real-time visible and infrared video with single-pixel detectors,” Sci. Reports 5, 10669 (2015).
[Crossref]

Boyd, R. W.

O. S. Magana-Loaiza, G. A. Howland, M. Malik, J. C. Howell, and R. W. Boyd, “Compressive object tracking using entangled photons,” Appl. Phys. Lett 102(23), 231104 (2013).
[Crossref]

R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Two-photon coincidence imaging with a classical source,” Phys. Rev. Lett 89(11), 113601 (2002).
[Crossref] [PubMed]

Boyd, S.

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical learning via the alternating direction method of multipliers,” Found. Trends. Mach. Learn 3(1), 1–122 (2011).
[Crossref]

Boyd, S. P.

E. J. Candes, M. B. Wakin, and S. P. Boyd, “Enhancing sparsity by reweighted L1 minimization,” J. Fourier. Anal. Appl 14(5–6), 877–905 (2007).
[Crossref]

Brambilla, E.

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: comparing entanglement and classical correlation,” Phys. Rev. Lett 93(9), 093602 (2004).
[Crossref] [PubMed]

Bromberg, Y.

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett 95(13), 131110 (2009).
[Crossref]

Y. Bromberg, O. Katz, and Y. Silberberg, “Ghost imaging with a single detector,” Phys. Rev. A 79(5), 053840 (2009).
[Crossref]

Candes, E. J.

E. J. Candes, M. B. Wakin, and S. P. Boyd, “Enhancing sparsity by reweighted L1 minimization,” J. Fourier. Anal. Appl 14(5–6), 877–905 (2007).
[Crossref]

Chen, M.

E. Li, Z. Bo, M. Chen, W. Gong, and S. Han, “Ghost imaging of a moving target with an unknown constant speed,” Appl. Phys. Lett 104(25), 251120 (2014).
[Crossref]

C. Zhao, W. Gong, M. Chen, E. Li, H. Wang, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints,” Appl. Phys. Lett 101(14), 141123 (2012).
[Crossref]

Chen, X. H.

D. Zhang, Y. H. Zhai, L. A. Wu, and X. H. Chen, “Correlated two-photon imaging with true thermal light,” Opt. Lett 30(18), 2354–2356 (2005).
[Crossref] [PubMed]

Cheng, J.

Chu, E.

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical learning via the alternating direction method of multipliers,” Found. Trends. Mach. Learn 3(1), 1–122 (2011).
[Crossref]

Clemente, P.

P. Clemente, V. Durn, V. Torres-Company, E. Tajahuerce, and J. Lancis, “Optical encryption based on computational ghost imaging,” Opt. Lett 35(14), 2391 (2010).
[Crossref] [PubMed]

DAngelo, M.

A. Valencia, G. Scarcelli, M. DAngelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett 94, 063601 (2005).
[Crossref] [PubMed]

Deacon, K. S.

R. E. Meyers, K. S. Deacon, and Y. Shih, “Turbulence-free ghost imaging,” Appl. Phys. Lett 98(11), 111115 (2011).
[Crossref]

Du, J.

J. Du, W. Gong, and S. Han, “The influence of sparsity property of images on ghost imaging with thermal light,” Opt. Lett 37, 1067–1069 (2012).
[Crossref] [PubMed]

J. Du, W. Gong, and S. Han, “The influence of sparsity property of images on ghost imaging with thermal light,” Opt. Lett. 37, 1067–1069 (2012).
[Crossref] [PubMed]

Duarte, M.

M. Wakin, J. Laska, M. Duarte, D. Baron, S. Sarvotham, D. Takhar, K. Kelly, and R. Baraniuk, “Compressive imaging for video representation and coding,” in Proceedings of Picture Coding Symposium (IEEE, 2006).

Durn, V.

P. Clemente, V. Durn, V. Torres-Company, E. Tajahuerce, and J. Lancis, “Optical encryption based on computational ghost imaging,” Opt. Lett 35(14), 2391 (2010).
[Crossref] [PubMed]

Eckstein, J.

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical learning via the alternating direction method of multipliers,” Found. Trends. Mach. Learn 3(1), 1–122 (2011).
[Crossref]

Edgar, M.

B. Sun, M. Edgar, R. Bowman, L. Vittert, S. Welsh, A. Bowman, and M. Padgett, “Differential computational ghost imaging,” in Imaging and Applied Optics, OSA Technical Digest (online) (Optical Society of America, 2013), paper CTu1C.4.
[Crossref]

Edgar, M. P.

M. P. Edgar, G. M. Gibson, R. W. Bowman, B. Sun, N. Radwell, K. J. Mitchell, S. S. Welsh, and M. J. Padgett, “Simultaneous real-time visible and infrared video with single-pixel detectors,” Sci. Reports 5, 10669 (2015).
[Crossref]

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3D computational imaging with single-pixel detectors,” Science 340(6134), 844847 (2013).
[Crossref]

B. Sun, S. S. Welsh, M. P. Edgar, J. H. Shapiro, and M. J. Padgett, “Normalized ghost imaging,” Opt. Express 20(15), 16892–16901 (2012).
[Crossref]

Emmanuel, C.

S. Vincent, B. Jrome, C. Makhlad, M. H. Shams, C. Emmanuel, and D. Maxime, “Compressive fluorescence microscopy for biological and hyperspectral imaging,” in Proceedings of the National Academy of Sciences (Academic, 2012), pp. 1679–1687.

Erkmen, B. I.

B. I. Erkmen and J. H. Shapiro, “Unified theory of ghost imaging with gaussian-state light,” Phys. Rev. A 77(4), 043809 (2008).
[Crossref]

Ferri, F.

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett 104(25), 253603 (2010).
[Crossref] [PubMed]

Gatti, A.

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett 104(25), 253603 (2010).
[Crossref] [PubMed]

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: comparing entanglement and classical correlation,” Phys. Rev. Lett 93(9), 093602 (2004).
[Crossref] [PubMed]

Gibson, G. M.

M. P. Edgar, G. M. Gibson, R. W. Bowman, B. Sun, N. Radwell, K. J. Mitchell, S. S. Welsh, and M. J. Padgett, “Simultaneous real-time visible and infrared video with single-pixel detectors,” Sci. Reports 5, 10669 (2015).
[Crossref]

Gong, W.

E. Li, Z. Bo, M. Chen, W. Gong, and S. Han, “Ghost imaging of a moving target with an unknown constant speed,” Appl. Phys. Lett 104(25), 251120 (2014).
[Crossref]

J. Du, W. Gong, and S. Han, “The influence of sparsity property of images on ghost imaging with thermal light,” Opt. Lett 37, 1067–1069 (2012).
[Crossref] [PubMed]

J. Du, W. Gong, and S. Han, “The influence of sparsity property of images on ghost imaging with thermal light,” Opt. Lett. 37, 1067–1069 (2012).
[Crossref] [PubMed]

C. Zhao, W. Gong, M. Chen, E. Li, H. Wang, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints,” Appl. Phys. Lett 101(14), 141123 (2012).
[Crossref]

Han, S.

E. Li, Z. Bo, M. Chen, W. Gong, and S. Han, “Ghost imaging of a moving target with an unknown constant speed,” Appl. Phys. Lett 104(25), 251120 (2014).
[Crossref]

C. Zhao, W. Gong, M. Chen, E. Li, H. Wang, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints,” Appl. Phys. Lett 101(14), 141123 (2012).
[Crossref]

J. Du, W. Gong, and S. Han, “The influence of sparsity property of images on ghost imaging with thermal light,” Opt. Lett. 37, 1067–1069 (2012).
[Crossref] [PubMed]

J. Du, W. Gong, and S. Han, “The influence of sparsity property of images on ghost imaging with thermal light,” Opt. Lett 37, 1067–1069 (2012).
[Crossref] [PubMed]

Hardy, N. D.

N. D. Hardy and J. H. Shapiro, “Reflective ghost imaging through turbulence,” Phys. Rev. A 84(6), 3474 (2011).
[Crossref]

Holland, P. W.

P. W. Holland and R. E. Welsch, “Robust regression using iteratively reweighted least-squares,” Commun. Stat. Theory 6(9), 813–827 (1977).
[Crossref]

Howell, J. C.

O. S. Magana-Loaiza, G. A. Howland, M. Malik, J. C. Howell, and R. W. Boyd, “Compressive object tracking using entangled photons,” Appl. Phys. Lett 102(23), 231104 (2013).
[Crossref]

Howland, G. A.

O. S. Magana-Loaiza, G. A. Howland, M. Malik, J. C. Howell, and R. W. Boyd, “Compressive object tracking using entangled photons,” Appl. Phys. Lett 102(23), 231104 (2013).
[Crossref]

Jrome, B.

S. Vincent, B. Jrome, C. Makhlad, M. H. Shams, C. Emmanuel, and D. Maxime, “Compressive fluorescence microscopy for biological and hyperspectral imaging,” in Proceedings of the National Academy of Sciences (Academic, 2012), pp. 1679–1687.

Katz, O.

Y. Bromberg, O. Katz, and Y. Silberberg, “Ghost imaging with a single detector,” Phys. Rev. A 79(5), 053840 (2009).
[Crossref]

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett 95(13), 131110 (2009).
[Crossref]

Kelly, K.

M. Wakin, J. Laska, M. Duarte, D. Baron, S. Sarvotham, D. Takhar, K. Kelly, and R. Baraniuk, “Compressive imaging for video representation and coding,” in Proceedings of Picture Coding Symposium (IEEE, 2006).

Kheradmand, R.

M. Tanha, R. Kheradmand, and S. Ahmadi-Kandjani, “Gray-scale and color optical encryption based on computational ghost imaging,” Appl. Phys. Lett 101(10), 101108 (2012).
[Crossref]

Lancis, J.

P. Clemente, V. Durn, V. Torres-Company, E. Tajahuerce, and J. Lancis, “Optical encryption based on computational ghost imaging,” Opt. Lett 35(14), 2391 (2010).
[Crossref] [PubMed]

Laska, J.

M. Wakin, J. Laska, M. Duarte, D. Baron, S. Sarvotham, D. Takhar, K. Kelly, and R. Baraniuk, “Compressive imaging for video representation and coding,” in Proceedings of Picture Coding Symposium (IEEE, 2006).

Li, C.

C. Li, “An efficient algorithm for total variation regularization with applications to the single pixel camera and compressive sensing,” Master Thesis, Rice University (2009).

Li, E.

E. Li, Z. Bo, M. Chen, W. Gong, and S. Han, “Ghost imaging of a moving target with an unknown constant speed,” Appl. Phys. Lett 104(25), 251120 (2014).
[Crossref]

C. Zhao, W. Gong, M. Chen, E. Li, H. Wang, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints,” Appl. Phys. Lett 101(14), 141123 (2012).
[Crossref]

Liu, C.

C. Liu, “Beyond pixels : exploring new representations and applications for motion analysis,” Mass. Inst. Technol (2010).

Lugiato, L. A.

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett 104(25), 253603 (2010).
[Crossref] [PubMed]

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: comparing entanglement and classical correlation,” Phys. Rev. Lett 93(9), 093602 (2004).
[Crossref] [PubMed]

Magana-Loaiza, O. S.

O. S. Magana-Loaiza, G. A. Howland, M. Malik, J. C. Howell, and R. W. Boyd, “Compressive object tracking using entangled photons,” Appl. Phys. Lett 102(23), 231104 (2013).
[Crossref]

Magatti, D.

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett 104(25), 253603 (2010).
[Crossref] [PubMed]

Makhlad, C.

S. Vincent, B. Jrome, C. Makhlad, M. H. Shams, C. Emmanuel, and D. Maxime, “Compressive fluorescence microscopy for biological and hyperspectral imaging,” in Proceedings of the National Academy of Sciences (Academic, 2012), pp. 1679–1687.

Malik, M.

O. S. Magana-Loaiza, G. A. Howland, M. Malik, J. C. Howell, and R. W. Boyd, “Compressive object tracking using entangled photons,” Appl. Phys. Lett 102(23), 231104 (2013).
[Crossref]

Marcia, R. F.

R. F. Marcia and R. M. Willett, “Compressive coded aperture superresolution image reconstruction,” in Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (IEEE, 2008), pp. 833–836.

Maxime, D.

S. Vincent, B. Jrome, C. Makhlad, M. H. Shams, C. Emmanuel, and D. Maxime, “Compressive fluorescence microscopy for biological and hyperspectral imaging,” in Proceedings of the National Academy of Sciences (Academic, 2012), pp. 1679–1687.

Meyers, R. E.

R. E. Meyers, K. S. Deacon, and Y. Shih, “Turbulence-free ghost imaging,” Appl. Phys. Lett 98(11), 111115 (2011).
[Crossref]

Mitchell, K. J.

M. P. Edgar, G. M. Gibson, R. W. Bowman, B. Sun, N. Radwell, K. J. Mitchell, S. S. Welsh, and M. J. Padgett, “Simultaneous real-time visible and infrared video with single-pixel detectors,” Sci. Reports 5, 10669 (2015).
[Crossref]

OLeary, D. P.

D. P. OLeary, “Robust regression computation using iteratively reweighted least squares,” Siam. J. Matrix. Anal. A 11(3), 466–480 (1990).
[Crossref]

Padgett, M.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3D computational imaging with single-pixel detectors,” Science 340(6134), 844847 (2013).
[Crossref]

B. Sun, M. Edgar, R. Bowman, L. Vittert, S. Welsh, A. Bowman, and M. Padgett, “Differential computational ghost imaging,” in Imaging and Applied Optics, OSA Technical Digest (online) (Optical Society of America, 2013), paper CTu1C.4.
[Crossref]

Padgett, M. J.

M. P. Edgar, G. M. Gibson, R. W. Bowman, B. Sun, N. Radwell, K. J. Mitchell, S. S. Welsh, and M. J. Padgett, “Simultaneous real-time visible and infrared video with single-pixel detectors,” Sci. Reports 5, 10669 (2015).
[Crossref]

B. Sun, S. S. Welsh, M. P. Edgar, J. H. Shapiro, and M. J. Padgett, “Normalized ghost imaging,” Opt. Express 20(15), 16892–16901 (2012).
[Crossref]

Parikh, N.

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical learning via the alternating direction method of multipliers,” Found. Trends. Mach. Learn 3(1), 1–122 (2011).
[Crossref]

Peleato, B.

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical learning via the alternating direction method of multipliers,” Found. Trends. Mach. Learn 3(1), 1–122 (2011).
[Crossref]

Pittman, T.

T. Pittman, Y. Shih, D. Strekalov, and A. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52(5), R3429 (1995).
[Crossref] [PubMed]

Radwell, N.

M. P. Edgar, G. M. Gibson, R. W. Bowman, B. Sun, N. Radwell, K. J. Mitchell, S. S. Welsh, and M. J. Padgett, “Simultaneous real-time visible and infrared video with single-pixel detectors,” Sci. Reports 5, 10669 (2015).
[Crossref]

Sarvotham, S.

M. Wakin, J. Laska, M. Duarte, D. Baron, S. Sarvotham, D. Takhar, K. Kelly, and R. Baraniuk, “Compressive imaging for video representation and coding,” in Proceedings of Picture Coding Symposium (IEEE, 2006).

Scarcelli, G.

A. Valencia, G. Scarcelli, M. DAngelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett 94, 063601 (2005).
[Crossref] [PubMed]

Sergienko, A.

T. Pittman, Y. Shih, D. Strekalov, and A. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52(5), R3429 (1995).
[Crossref] [PubMed]

Shams, M. H.

S. Vincent, B. Jrome, C. Makhlad, M. H. Shams, C. Emmanuel, and D. Maxime, “Compressive fluorescence microscopy for biological and hyperspectral imaging,” in Proceedings of the National Academy of Sciences (Academic, 2012), pp. 1679–1687.

Shapiro, J. H.

B. Sun, S. S. Welsh, M. P. Edgar, J. H. Shapiro, and M. J. Padgett, “Normalized ghost imaging,” Opt. Express 20(15), 16892–16901 (2012).
[Crossref]

N. D. Hardy and J. H. Shapiro, “Reflective ghost imaging through turbulence,” Phys. Rev. A 84(6), 3474 (2011).
[Crossref]

B. I. Erkmen and J. H. Shapiro, “Unified theory of ghost imaging with gaussian-state light,” Phys. Rev. A 77(4), 043809 (2008).
[Crossref]

J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78(6), 061802 (2008).
[Crossref]

Shih, Y.

R. E. Meyers, K. S. Deacon, and Y. Shih, “Turbulence-free ghost imaging,” Appl. Phys. Lett 98(11), 111115 (2011).
[Crossref]

A. Valencia, G. Scarcelli, M. DAngelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett 94, 063601 (2005).
[Crossref] [PubMed]

T. Pittman, Y. Shih, D. Strekalov, and A. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52(5), R3429 (1995).
[Crossref] [PubMed]

Silberberg, Y.

Y. Bromberg, O. Katz, and Y. Silberberg, “Ghost imaging with a single detector,” Phys. Rev. A 79(5), 053840 (2009).
[Crossref]

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett 95(13), 131110 (2009).
[Crossref]

Strekalov, D.

T. Pittman, Y. Shih, D. Strekalov, and A. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52(5), R3429 (1995).
[Crossref] [PubMed]

Sun, B.

M. P. Edgar, G. M. Gibson, R. W. Bowman, B. Sun, N. Radwell, K. J. Mitchell, S. S. Welsh, and M. J. Padgett, “Simultaneous real-time visible and infrared video with single-pixel detectors,” Sci. Reports 5, 10669 (2015).
[Crossref]

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3D computational imaging with single-pixel detectors,” Science 340(6134), 844847 (2013).
[Crossref]

B. Sun, S. S. Welsh, M. P. Edgar, J. H. Shapiro, and M. J. Padgett, “Normalized ghost imaging,” Opt. Express 20(15), 16892–16901 (2012).
[Crossref]

B. Sun, M. Edgar, R. Bowman, L. Vittert, S. Welsh, A. Bowman, and M. Padgett, “Differential computational ghost imaging,” in Imaging and Applied Optics, OSA Technical Digest (online) (Optical Society of America, 2013), paper CTu1C.4.
[Crossref]

Tajahuerce, E.

P. Clemente, V. Durn, V. Torres-Company, E. Tajahuerce, and J. Lancis, “Optical encryption based on computational ghost imaging,” Opt. Lett 35(14), 2391 (2010).
[Crossref] [PubMed]

Takhar, D.

M. Wakin, J. Laska, M. Duarte, D. Baron, S. Sarvotham, D. Takhar, K. Kelly, and R. Baraniuk, “Compressive imaging for video representation and coding,” in Proceedings of Picture Coding Symposium (IEEE, 2006).

Tanha, M.

M. Tanha, R. Kheradmand, and S. Ahmadi-Kandjani, “Gray-scale and color optical encryption based on computational ghost imaging,” Appl. Phys. Lett 101(10), 101108 (2012).
[Crossref]

Thompson, A.

A. Thompson, “Compressive single-pixel imaging,” presented at the 2nd IMA Conference on Mathematics in Defence, Swindon, the United Kingdom, 20 October 2011.

Torres-Company, V.

P. Clemente, V. Durn, V. Torres-Company, E. Tajahuerce, and J. Lancis, “Optical encryption based on computational ghost imaging,” Opt. Lett 35(14), 2391 (2010).
[Crossref] [PubMed]

Valencia, A.

A. Valencia, G. Scarcelli, M. DAngelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett 94, 063601 (2005).
[Crossref] [PubMed]

Vincent, S.

S. Vincent, B. Jrome, C. Makhlad, M. H. Shams, C. Emmanuel, and D. Maxime, “Compressive fluorescence microscopy for biological and hyperspectral imaging,” in Proceedings of the National Academy of Sciences (Academic, 2012), pp. 1679–1687.

Vittert, L.

B. Sun, M. Edgar, R. Bowman, L. Vittert, S. Welsh, A. Bowman, and M. Padgett, “Differential computational ghost imaging,” in Imaging and Applied Optics, OSA Technical Digest (online) (Optical Society of America, 2013), paper CTu1C.4.
[Crossref]

Vittert, L. E.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3D computational imaging with single-pixel detectors,” Science 340(6134), 844847 (2013).
[Crossref]

Wakin, M.

M. Wakin, J. Laska, M. Duarte, D. Baron, S. Sarvotham, D. Takhar, K. Kelly, and R. Baraniuk, “Compressive imaging for video representation and coding,” in Proceedings of Picture Coding Symposium (IEEE, 2006).

Wakin, M. B.

E. J. Candes, M. B. Wakin, and S. P. Boyd, “Enhancing sparsity by reweighted L1 minimization,” J. Fourier. Anal. Appl 14(5–6), 877–905 (2007).
[Crossref]

Wang, H.

C. Zhao, W. Gong, M. Chen, E. Li, H. Wang, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints,” Appl. Phys. Lett 101(14), 141123 (2012).
[Crossref]

Welsch, R. E.

P. W. Holland and R. E. Welsch, “Robust regression using iteratively reweighted least-squares,” Commun. Stat. Theory 6(9), 813–827 (1977).
[Crossref]

Welsh, S.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3D computational imaging with single-pixel detectors,” Science 340(6134), 844847 (2013).
[Crossref]

B. Sun, M. Edgar, R. Bowman, L. Vittert, S. Welsh, A. Bowman, and M. Padgett, “Differential computational ghost imaging,” in Imaging and Applied Optics, OSA Technical Digest (online) (Optical Society of America, 2013), paper CTu1C.4.
[Crossref]

Welsh, S. S.

M. P. Edgar, G. M. Gibson, R. W. Bowman, B. Sun, N. Radwell, K. J. Mitchell, S. S. Welsh, and M. J. Padgett, “Simultaneous real-time visible and infrared video with single-pixel detectors,” Sci. Reports 5, 10669 (2015).
[Crossref]

B. Sun, S. S. Welsh, M. P. Edgar, J. H. Shapiro, and M. J. Padgett, “Normalized ghost imaging,” Opt. Express 20(15), 16892–16901 (2012).
[Crossref]

Willett, R. M.

R. F. Marcia and R. M. Willett, “Compressive coded aperture superresolution image reconstruction,” in Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (IEEE, 2008), pp. 833–836.

Wu, L. A.

D. Zhang, Y. H. Zhai, L. A. Wu, and X. H. Chen, “Correlated two-photon imaging with true thermal light,” Opt. Lett 30(18), 2354–2356 (2005).
[Crossref] [PubMed]

Xu, W.

C. Zhao, W. Gong, M. Chen, E. Li, H. Wang, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints,” Appl. Phys. Lett 101(14), 141123 (2012).
[Crossref]

Zhai, Y. H.

D. Zhang, Y. H. Zhai, L. A. Wu, and X. H. Chen, “Correlated two-photon imaging with true thermal light,” Opt. Lett 30(18), 2354–2356 (2005).
[Crossref] [PubMed]

Zhang, D.

D. Zhang, Y. H. Zhai, L. A. Wu, and X. H. Chen, “Correlated two-photon imaging with true thermal light,” Opt. Lett 30(18), 2354–2356 (2005).
[Crossref] [PubMed]

Zhao, C.

C. Zhao, W. Gong, M. Chen, E. Li, H. Wang, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints,” Appl. Phys. Lett 101(14), 141123 (2012).
[Crossref]

Acm. Comput. Surv (1)

S. S. Beauchemin and J. L. Barron, “The computation of optical flow,” Acm. Comput. Surv 27(3), 433–466 (1995).
[Crossref]

Appl. Phys. Lett (6)

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett 95(13), 131110 (2009).
[Crossref]

O. S. Magana-Loaiza, G. A. Howland, M. Malik, J. C. Howell, and R. W. Boyd, “Compressive object tracking using entangled photons,” Appl. Phys. Lett 102(23), 231104 (2013).
[Crossref]

E. Li, Z. Bo, M. Chen, W. Gong, and S. Han, “Ghost imaging of a moving target with an unknown constant speed,” Appl. Phys. Lett 104(25), 251120 (2014).
[Crossref]

R. E. Meyers, K. S. Deacon, and Y. Shih, “Turbulence-free ghost imaging,” Appl. Phys. Lett 98(11), 111115 (2011).
[Crossref]

C. Zhao, W. Gong, M. Chen, E. Li, H. Wang, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints,” Appl. Phys. Lett 101(14), 141123 (2012).
[Crossref]

M. Tanha, R. Kheradmand, and S. Ahmadi-Kandjani, “Gray-scale and color optical encryption based on computational ghost imaging,” Appl. Phys. Lett 101(10), 101108 (2012).
[Crossref]

Commun. Stat. Theory (1)

P. W. Holland and R. E. Welsch, “Robust regression using iteratively reweighted least-squares,” Commun. Stat. Theory 6(9), 813–827 (1977).
[Crossref]

Found. Trends. Mach. Learn (1)

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical learning via the alternating direction method of multipliers,” Found. Trends. Mach. Learn 3(1), 1–122 (2011).
[Crossref]

J. Fourier. Anal. Appl (1)

E. J. Candes, M. B. Wakin, and S. P. Boyd, “Enhancing sparsity by reweighted L1 minimization,” J. Fourier. Anal. Appl 14(5–6), 877–905 (2007).
[Crossref]

Opt. Express (2)

Opt. Lett (3)

P. Clemente, V. Durn, V. Torres-Company, E. Tajahuerce, and J. Lancis, “Optical encryption based on computational ghost imaging,” Opt. Lett 35(14), 2391 (2010).
[Crossref] [PubMed]

D. Zhang, Y. H. Zhai, L. A. Wu, and X. H. Chen, “Correlated two-photon imaging with true thermal light,” Opt. Lett 30(18), 2354–2356 (2005).
[Crossref] [PubMed]

J. Du, W. Gong, and S. Han, “The influence of sparsity property of images on ghost imaging with thermal light,” Opt. Lett 37, 1067–1069 (2012).
[Crossref] [PubMed]

Opt. Lett. (1)

Phys. Rev. A (5)

T. Pittman, Y. Shih, D. Strekalov, and A. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52(5), R3429 (1995).
[Crossref] [PubMed]

B. I. Erkmen and J. H. Shapiro, “Unified theory of ghost imaging with gaussian-state light,” Phys. Rev. A 77(4), 043809 (2008).
[Crossref]

J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78(6), 061802 (2008).
[Crossref]

Y. Bromberg, O. Katz, and Y. Silberberg, “Ghost imaging with a single detector,” Phys. Rev. A 79(5), 053840 (2009).
[Crossref]

N. D. Hardy and J. H. Shapiro, “Reflective ghost imaging through turbulence,” Phys. Rev. A 84(6), 3474 (2011).
[Crossref]

Phys. Rev. Lett (4)

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett 104(25), 253603 (2010).
[Crossref] [PubMed]

R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Two-photon coincidence imaging with a classical source,” Phys. Rev. Lett 89(11), 113601 (2002).
[Crossref] [PubMed]

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: comparing entanglement and classical correlation,” Phys. Rev. Lett 93(9), 093602 (2004).
[Crossref] [PubMed]

A. Valencia, G. Scarcelli, M. DAngelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett 94, 063601 (2005).
[Crossref] [PubMed]

Sci. Reports (1)

M. P. Edgar, G. M. Gibson, R. W. Bowman, B. Sun, N. Radwell, K. J. Mitchell, S. S. Welsh, and M. J. Padgett, “Simultaneous real-time visible and infrared video with single-pixel detectors,” Sci. Reports 5, 10669 (2015).
[Crossref]

Science (1)

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3D computational imaging with single-pixel detectors,” Science 340(6134), 844847 (2013).
[Crossref]

Siam. J. Matrix. Anal. A (1)

D. P. OLeary, “Robust regression computation using iteratively reweighted least squares,” Siam. J. Matrix. Anal. A 11(3), 466–480 (1990).
[Crossref]

Other (8)

C. Li, “An efficient algorithm for total variation regularization with applications to the single pixel camera and compressive sensing,” Master Thesis, Rice University (2009).

C. Liu, “Beyond pixels : exploring new representations and applications for motion analysis,” Mass. Inst. Technol (2010).

S. Vincent, B. Jrome, C. Makhlad, M. H. Shams, C. Emmanuel, and D. Maxime, “Compressive fluorescence microscopy for biological and hyperspectral imaging,” in Proceedings of the National Academy of Sciences (Academic, 2012), pp. 1679–1687.

M. Wakin, J. Laska, M. Duarte, D. Baron, S. Sarvotham, D. Takhar, K. Kelly, and R. Baraniuk, “Compressive imaging for video representation and coding,” in Proceedings of Picture Coding Symposium (IEEE, 2006).

A. Thompson, “Compressive single-pixel imaging,” presented at the 2nd IMA Conference on Mathematics in Defence, Swindon, the United Kingdom, 20 October 2011.

R. F. Marcia and R. M. Willett, “Compressive coded aperture superresolution image reconstruction,” in Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (IEEE, 2008), pp. 833–836.

T. Goldstein, L. Xu, K. F. Kelly, and R. Baraniuk, “The STONE transform: Multi-resolution image enhancement and real-time compressive video,” http://arxiv.org/abs/1311.3405 .

B. Sun, M. Edgar, R. Bowman, L. Vittert, S. Welsh, A. Bowman, and M. Padgett, “Differential computational ghost imaging,” in Imaging and Applied Optics, OSA Technical Digest (online) (Optical Society of America, 2013), paper CTu1C.4.
[Crossref]

Supplementary Material (1)

NameDescription
» Visualization 1: MP4 (2767 KB)      Complete reconstructed videos on real data by our method and 3DTV method

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Illustration of our iteratively content-adaptive algorithm. White arrows indicate the initial reconstruction with all-zero reliability, and black arrows indicate the iterative procedure of reliability updating and optimization. A sustainable refinement in reconstruction and enhancement in reliability can be obtained through the iteration.

Fig. 2
Fig. 2

Iterative progression of the reconstructions on three synthetic exemplar sequences. (a)Visual results. (b) PSNR curves.

Fig. 3
Fig. 3

Performance comparison with 3D-DWT and 3DTV. (a)(b) show reconstructed frames by our content-adaptive method, 3DTV and 3D-DWT algorithms. (c)(d) are PSNR vesus sampling rate on ‘Fan’ example and ‘Fish’ example. (e)(f) are PSNR vesus noise level on two examples.

Fig. 4
Fig. 4

Experimental scheme of our proposed system. Laser source: Thorlabs, DJ532-10, 532nm, 10mW. DMDp and DMDo: Texas Instrument DLP Discovery 4100, .7XGA. Bucket detector: Thorlabs PDA100A Si switchable gain detector, 340-1100nm, response time is 0.625ns. Acquisition card: ART PCI8552, 14-bit digitalization depth.

Fig. 5
Fig. 5

(Better viewed in electronic version) Experimental results on three general dynamic scenes, with data captured by our experimental setup (see Visualization 1).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

min Dx 1 s . t . Ax + n = y , n N ( 0 , σ 2 ) .
R i , i k = 1 1 + ε × d i k
min D x t k 1 + μ 2 R k ( x t k x t k 1 ) 2 2 s . t . A x t k + n = y , n N ( 0 , σ 2 ) .
min D x t k 1 + μ 2 R k ( x t k x t k 1 ) 2 2 + λ 2 A x t k y 2 2 .

Metrics