Abstract

We proposed a switchable beam steering device with cycloidal diffractive waveplate (CDW) for eye tracking in a virtual reality (VR) or augmented reality (AR) display system. Such a CDW diffracts the incident circularly polarized light to the first order with over 95% efficiency. To convert the input linearly polarized light to right-handed or left-handed circular polarization, we developed a broadband polarization switch consisting of a twisted nematic liquid crystal cell and an achromatic quarter-wave retardation film. By cascading 2-3 CDWs together, multiple diffraction angles can be achieved. To suppress the color dispersion, we proposed two approaches to obtain the same diffraction angle for red, green, and blue LEDs-based full color displays. Our device exhibits several advantages, such as high diffraction efficiency, fast response time, low power consumption, and low cost. It holds promise for the emerging VR/AR displays.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
All-optical diffractive/transmissive switch based on coupled cycloidal diffractive waveplates

Svetlana V. Serak, Rafael S. Hakobyan, Sarik R. Nersisyan, Nelson V. Tabiryan, Timothy J. White, Timothy J. Bunning, Diane M. Steeves, and Brian R. Kimball
Opt. Express 20(5) 5460-5469 (2012)

Submillisecond-response nematic liquid crystals for augmented reality displays

Haiwei Chen, Fangwang Gou, and Shin-Tson Wu
Opt. Mater. Express 7(1) 195-201 (2017)

Large-aperture transparent beam steering screen based on LCMPA

Hongjuan Wang, Oleg Yaroshchuk, Xiangyu Zhang, Zhenfeng Zhuang, Phil Surman, Xiao Wei Sun, and Yuanjin Zheng
Appl. Opt. 55(28) 7824-7829 (2016)

References

  • View by:
  • |
  • |
  • |

  1. O. Cakmakci and J. Rolland, “Head-worn displays: a review,” J. Disp. Technol. 2(3), 199–216 (2006).
    [Crossref]
  2. B. Furht, Handbook of Augmented Reality (Springer, 2011).
  3. R. A. Earnshaw, Virtual Reality Systems (Academic, 2014).
  4. K. Akeley, S. J. Watt, A. R. Girshick, and M. S. Banks, “A stereo display prototype with multiple focal distances,” ACM Trans. Graph. 23(3), 804–813 (2004).
    [Crossref]
  5. V. Tanriverdi and R. J. Jacob, “Interacting with eye movements in virtual environments,” Chin. Lett. 2(1), 265–272 (2000).
  6. A. T. Duchowski, V. Shivashankaraiah, T. Rawls, A. K. Gramopadhye, B. J. Melloy, and B. Kanki, “Binocular eye tracking in virtual reality for inspection training,” in Proceedings of the 2000 Symposium on Eye Tracking Research and Applications (ACM, 2000), pp. 89–96.
    [Crossref]
  7. F. Zhou, H. B. L. Duh, and M. Billinghurst, “Trends in augmented reality tracking, interaction and display: A review of ten years of ISMAR,” in Proceedings of the 7th IEEE/ACM International Symposium on Mixed and Augmented Reality (ACM, 2008) pp. 193–202.
  8. N. C. Tien, O. Solgaard, M. H. Kiang, M. Daneman, K. Y. Lau, and R. S. Muller, “Surface-micromachined mirrors for laser-beam positioning,” Sens. Actuators A Phys. 52(1), 76–80 (1996).
    [Crossref]
  9. N. R. Smith, D. C. Abeysinghe, J. W. Haus, and J. Heikenfeld, “Agile wide-angle beam steering with electrowetting microprisms,” Opt. Express 14(14), 6557–6563 (2006).
    [Crossref] [PubMed]
  10. P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97(6), 1078–1096 (2009).
    [Crossref]
  11. S. R. Davis, G. Farca, S. D. Rommel, S. Johnson, and M. H. Anderson, “Liquid crystal waveguides: new devices enabled by > 1000 waves of optical phase control,” Proc. SPIE 7618, 76180E (2010).
    [Crossref]
  12. C. Provenzano, P. Pagliusi, and G. Cipparrone, “Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces,” Appl. Phys. Lett. 89(12), 121105 (2006).
    [Crossref]
  13. S. Serak, N. Tabiryan, and B. Zeldovich, “High-efficiency 1.5 µm thick optical axis grating and its use for laser beam combining,” Opt. Lett. 32(2), 169–171 (2007).
    [Crossref] [PubMed]
  14. C. Oh and M. J. Escuti, “Achromatic diffraction from polarization gratings with high efficiency,” Opt. Lett. 33(20), 2287–2289 (2008).
    [Crossref] [PubMed]
  15. S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater. 18(1), 1–47 (2009).
    [Crossref]
  16. N. V. Tabiryan, S. R. Nersisyan, D. M. Steeves, and B. R. Kimball, “The promise of diffractive waveplates,” Opt. Photonics News 21, 41–45 (2010).
  17. H. Sarkissian, S. V. Serak, N. V. Tabiryan, L. B. Glebov, V. Rotar, and B. Y. Zeldovich, “Polarization-controlled switching between diffraction orders in transverse-periodically aligned nematic liquid crystals,” Opt. Lett. 31(15), 2248–2250 (2006).
    [Crossref] [PubMed]
  18. S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “The principles of laser beam control with polarization gratings introduced as diffractive waveplates,” Proc. SPIE 7775, 77750U (2010).
    [Crossref]
  19. S. R. Nersisyan, N. V. Tabiryan, L. Hoke, D. M. Steeves, and B. R. Kimball, “Polarization insensitive imaging through polarization gratings,” Opt. Express 17(3), 1817–1830 (2009).
    [Crossref] [PubMed]
  20. S. T. Wu, U. Efron, and L. D. Hess, “Birefringence measurements of liquid crystals,” Appl. Opt. 23(21), 3911–3915 (1984).
    [Crossref] [PubMed]
  21. M. Schadt and W. Helfrich, “Voltage-dependent optical activity of a twisted nematic liquid crystal,” Appl. Phys. Lett. 18(4), 127–128 (1971).
    [Crossref]
  22. H. Ren, S. Xu, Y. Liu, and S. T. Wu, “Switchable focus using a polymeric lenticular microlens array and a polarization rotator,” Opt. Express 21(7), 7916–7925 (2013).
    [Crossref] [PubMed]
  23. R. Zhu, S. Xu, Q. Hong, S. T. Wu, C. Lee, C. M. Yang, C. C. Lo, and A. Lien, “Polymeric-lens-embedded 2D/3D switchable display with dramatically reduced crosstalk,” Appl. Opt. 53(7), 1388–1395 (2014).
    [Crossref] [PubMed]
  24. S. Gauza, X. Zhu, W. Piecek, R. Dabrowski, and S. T. Wu, “Fast switching liquid crystals for color-sequential LCDs,” J. Disp. Technol. 3(3), 250–252 (2007).
    [Crossref]
  25. H. Chen, F. Peng, Z. Luo, D. Xu, S. T. Wu, M. C. Li, S. L. Lee, and W. C. Tsai, “High performance liquid crystal displays with a low dielectric constant material,” Opt. Mater. Express 4(11), 2262–2273 (2014).
  26. H. Chen, M. Hu, F. Peng, J. Li, Z. An, and S. T. Wu, “Ultra-low viscosity liquid crystals,” Opt. Mater. Express 5(3), 655–660 (2015).
    [Crossref]
  27. S. T. Wu and C. S. Wu, “High‐speed liquid‐crystal modulators using transient nematic effect,” J. Appl. Phys. 65(2), 527–532 (1989).
    [Crossref]
  28. S. T. Wu, “Nematic liquid crystal modulator with response time less than 100 μs at room temperature,” Appl. Phys. Lett. 57(10), 986–988 (1990).
    [Crossref]
  29. A. Chao, K. T. Huang, C. W. Tsai, Y. W. Hung, H. F. Cheng, W. Yeh, C. H. Yu, and H. H. Wu, “The fastest response TN-Type TFT LCD of the world likes OCB level,” SID Int. Symp. Digest Tech. Papers 38(1), 603–606 (2007).
    [Crossref]
  30. H. Xianyu, S. T. Wu, and C. L. Lin, “Dual frequency liquid crystals: a review,” Liq. Cryst. 36(6–7), 717–726 (2009).
    [Crossref]
  31. K. Holmqvist, M. Nyström, R. Andersson, R. Dewhurst, H. Jarodzka, and J. Van de Weijer, Eye Tracking: A Comprehensive Guide to Methods and Measures (Oxford University, 2011).
  32. D. K. Yang and S. T. Wu, Fundamentals of Liquid Crystal Devices (John Wiley and Sons, 2014).
  33. T.-H. Yoon, K. H. Kim, D. H. Song, and J. C. Kim, “Fast switching technologies for a nematic liquid crystal cell,” Proc. SPIE 7956, 79560M (2011).
    [Crossref]
  34. D. Xu, H. Chen, S. T. Wu, M. C. Li, S. L. Lee, and W. C. Tsai, “A fringe field switching liquid crystal display with fast grayscale response time,” J. Disp. Technol. 11(4), 353–359 (2015).
    [Crossref]
  35. H. Chen, Z. Luo, D. Xu, F. Peng, S. T. Wu, M. C. Li, S. L. Lee, and W. C. Tsai, “A fast-response A-film-enhanced fringe field switching liquid crystal display,” Liq. Cryst. 42(4), 537–542 (2015).
    [Crossref]
  36. D. H. You, C. J. Yu, and S. D. Lee, “Reflective configuration of vertically aligned deformed-helix ferroelectric liquid crystal display,” Ferroelectrics 278(1), 233–240 (2002).
    [Crossref]
  37. H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1(1), 64–68 (2002).
    [Crossref] [PubMed]
  38. K. M. Chen, S. Gauza, H. Xianyu, and S. T. Wu, “Submillisecond gray-level response time of a polymer-stabilized liquid crystal,” J. Disp. Technol. 6(2), 49–51 (2010).
    [Crossref]
  39. J. Kim, C. Oh, M. J. Escuti, and S. Serati, “Wide-angle nonmechanical beam steering using thin liquid crystal polarization gratings,” Proc. SPIE 7093, 709302 (2008).
    [Crossref]
  40. K. M. Johnson, D. J. McKnight, and I. Underwood, “Smart spatial light modulators using liquid crystals on silicon,” IEEE J. Quantum Electron. 29(2), 699–714 (1993).
    [Crossref]
  41. H. Dai, K. Xu, Y. Liu, X. Wang, and J. Liu, “Characteristics of LCoS phase-only spatial light modulator and its applications,” Opt. Commun. 238(4-6), 269–276 (2004).
    [Crossref]
  42. D. Dudley, W. M. Duncan, and J. Slaughter, “Emerging digital micromirror device (DMD) applications,” Proc. SPIE 4985, 14–25 (2003).
    [Crossref]
  43. J. Li, C. H. Wen, S. Gauza, R. Lu, and S. T. Wu, “Refractive indices of liquid crystals for display applications,” J. Disp. Technol. 1(1), 51–61 (2005).
    [Crossref]
  44. ITU-R Recommendation BT.2020, “Parameter values for ultra-high definition television systems for production and international programme exchange,” 2012.
  45. K. Masaoka, Y. Nishida, M. Sugawara, and E. Nakasu, “Design of primaries for a wide-gamut television colorimetry,” IEEE Trans. Broadcast 56(4), 452–457 (2010).
    [Crossref]
  46. R. Zhu, Z. Luo, H. Chen, Y. Dong, and S. T. Wu, “Realizing Rec. 2020 color gamut with quantum dot displays,” Opt. Express 23(18), 23680–23693 (2015).
    [Crossref] [PubMed]
  47. E. Jang, S. Jun, H. Jang, J. Lim, B. Kim, and Y. Kim, “White-light-emitting diodes with quantum dot color converters for display backlights,” Adv. Mater. 22(28), 3076–3080 (2010).
    [Crossref] [PubMed]
  48. Z. Luo, Y. Chen, and S. T. Wu, “Wide color gamut LCD with a quantum dot backlight,” Opt. Express 21(22), 26269–26284 (2013).
    [Crossref] [PubMed]
  49. C. H. Chen, F. C. Lin, Y. T. Hsu, Y. P. Huang, and H. P. D. Shieh, “A field sequential color LCD based on color fields arrangement for color breakup and flicker reduction,” J. Disp. Technol. 5(1), 34–39 (2009).
    [Crossref]

2015 (4)

H. Chen, M. Hu, F. Peng, J. Li, Z. An, and S. T. Wu, “Ultra-low viscosity liquid crystals,” Opt. Mater. Express 5(3), 655–660 (2015).
[Crossref]

D. Xu, H. Chen, S. T. Wu, M. C. Li, S. L. Lee, and W. C. Tsai, “A fringe field switching liquid crystal display with fast grayscale response time,” J. Disp. Technol. 11(4), 353–359 (2015).
[Crossref]

H. Chen, Z. Luo, D. Xu, F. Peng, S. T. Wu, M. C. Li, S. L. Lee, and W. C. Tsai, “A fast-response A-film-enhanced fringe field switching liquid crystal display,” Liq. Cryst. 42(4), 537–542 (2015).
[Crossref]

R. Zhu, Z. Luo, H. Chen, Y. Dong, and S. T. Wu, “Realizing Rec. 2020 color gamut with quantum dot displays,” Opt. Express 23(18), 23680–23693 (2015).
[Crossref] [PubMed]

2014 (2)

2013 (2)

2011 (1)

T.-H. Yoon, K. H. Kim, D. H. Song, and J. C. Kim, “Fast switching technologies for a nematic liquid crystal cell,” Proc. SPIE 7956, 79560M (2011).
[Crossref]

2010 (6)

K. M. Chen, S. Gauza, H. Xianyu, and S. T. Wu, “Submillisecond gray-level response time of a polymer-stabilized liquid crystal,” J. Disp. Technol. 6(2), 49–51 (2010).
[Crossref]

S. R. Davis, G. Farca, S. D. Rommel, S. Johnson, and M. H. Anderson, “Liquid crystal waveguides: new devices enabled by > 1000 waves of optical phase control,” Proc. SPIE 7618, 76180E (2010).
[Crossref]

N. V. Tabiryan, S. R. Nersisyan, D. M. Steeves, and B. R. Kimball, “The promise of diffractive waveplates,” Opt. Photonics News 21, 41–45 (2010).

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “The principles of laser beam control with polarization gratings introduced as diffractive waveplates,” Proc. SPIE 7775, 77750U (2010).
[Crossref]

E. Jang, S. Jun, H. Jang, J. Lim, B. Kim, and Y. Kim, “White-light-emitting diodes with quantum dot color converters for display backlights,” Adv. Mater. 22(28), 3076–3080 (2010).
[Crossref] [PubMed]

K. Masaoka, Y. Nishida, M. Sugawara, and E. Nakasu, “Design of primaries for a wide-gamut television colorimetry,” IEEE Trans. Broadcast 56(4), 452–457 (2010).
[Crossref]

2009 (5)

C. H. Chen, F. C. Lin, Y. T. Hsu, Y. P. Huang, and H. P. D. Shieh, “A field sequential color LCD based on color fields arrangement for color breakup and flicker reduction,” J. Disp. Technol. 5(1), 34–39 (2009).
[Crossref]

S. R. Nersisyan, N. V. Tabiryan, L. Hoke, D. M. Steeves, and B. R. Kimball, “Polarization insensitive imaging through polarization gratings,” Opt. Express 17(3), 1817–1830 (2009).
[Crossref] [PubMed]

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97(6), 1078–1096 (2009).
[Crossref]

H. Xianyu, S. T. Wu, and C. L. Lin, “Dual frequency liquid crystals: a review,” Liq. Cryst. 36(6–7), 717–726 (2009).
[Crossref]

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater. 18(1), 1–47 (2009).
[Crossref]

2008 (2)

J. Kim, C. Oh, M. J. Escuti, and S. Serati, “Wide-angle nonmechanical beam steering using thin liquid crystal polarization gratings,” Proc. SPIE 7093, 709302 (2008).
[Crossref]

C. Oh and M. J. Escuti, “Achromatic diffraction from polarization gratings with high efficiency,” Opt. Lett. 33(20), 2287–2289 (2008).
[Crossref] [PubMed]

2007 (2)

S. Serak, N. Tabiryan, and B. Zeldovich, “High-efficiency 1.5 µm thick optical axis grating and its use for laser beam combining,” Opt. Lett. 32(2), 169–171 (2007).
[Crossref] [PubMed]

S. Gauza, X. Zhu, W. Piecek, R. Dabrowski, and S. T. Wu, “Fast switching liquid crystals for color-sequential LCDs,” J. Disp. Technol. 3(3), 250–252 (2007).
[Crossref]

2006 (4)

2005 (1)

J. Li, C. H. Wen, S. Gauza, R. Lu, and S. T. Wu, “Refractive indices of liquid crystals for display applications,” J. Disp. Technol. 1(1), 51–61 (2005).
[Crossref]

2004 (2)

H. Dai, K. Xu, Y. Liu, X. Wang, and J. Liu, “Characteristics of LCoS phase-only spatial light modulator and its applications,” Opt. Commun. 238(4-6), 269–276 (2004).
[Crossref]

K. Akeley, S. J. Watt, A. R. Girshick, and M. S. Banks, “A stereo display prototype with multiple focal distances,” ACM Trans. Graph. 23(3), 804–813 (2004).
[Crossref]

2003 (1)

D. Dudley, W. M. Duncan, and J. Slaughter, “Emerging digital micromirror device (DMD) applications,” Proc. SPIE 4985, 14–25 (2003).
[Crossref]

2002 (2)

D. H. You, C. J. Yu, and S. D. Lee, “Reflective configuration of vertically aligned deformed-helix ferroelectric liquid crystal display,” Ferroelectrics 278(1), 233–240 (2002).
[Crossref]

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1(1), 64–68 (2002).
[Crossref] [PubMed]

2000 (1)

V. Tanriverdi and R. J. Jacob, “Interacting with eye movements in virtual environments,” Chin. Lett. 2(1), 265–272 (2000).

1996 (1)

N. C. Tien, O. Solgaard, M. H. Kiang, M. Daneman, K. Y. Lau, and R. S. Muller, “Surface-micromachined mirrors for laser-beam positioning,” Sens. Actuators A Phys. 52(1), 76–80 (1996).
[Crossref]

1993 (1)

K. M. Johnson, D. J. McKnight, and I. Underwood, “Smart spatial light modulators using liquid crystals on silicon,” IEEE J. Quantum Electron. 29(2), 699–714 (1993).
[Crossref]

1990 (1)

S. T. Wu, “Nematic liquid crystal modulator with response time less than 100 μs at room temperature,” Appl. Phys. Lett. 57(10), 986–988 (1990).
[Crossref]

1989 (1)

S. T. Wu and C. S. Wu, “High‐speed liquid‐crystal modulators using transient nematic effect,” J. Appl. Phys. 65(2), 527–532 (1989).
[Crossref]

1984 (1)

1971 (1)

M. Schadt and W. Helfrich, “Voltage-dependent optical activity of a twisted nematic liquid crystal,” Appl. Phys. Lett. 18(4), 127–128 (1971).
[Crossref]

Abeysinghe, D. C.

Akeley, K.

K. Akeley, S. J. Watt, A. R. Girshick, and M. S. Banks, “A stereo display prototype with multiple focal distances,” ACM Trans. Graph. 23(3), 804–813 (2004).
[Crossref]

An, Z.

Anderson, M. H.

S. R. Davis, G. Farca, S. D. Rommel, S. Johnson, and M. H. Anderson, “Liquid crystal waveguides: new devices enabled by > 1000 waves of optical phase control,” Proc. SPIE 7618, 76180E (2010).
[Crossref]

Banks, M. S.

K. Akeley, S. J. Watt, A. R. Girshick, and M. S. Banks, “A stereo display prototype with multiple focal distances,” ACM Trans. Graph. 23(3), 804–813 (2004).
[Crossref]

Billinghurst, M.

F. Zhou, H. B. L. Duh, and M. Billinghurst, “Trends in augmented reality tracking, interaction and display: A review of ten years of ISMAR,” in Proceedings of the 7th IEEE/ACM International Symposium on Mixed and Augmented Reality (ACM, 2008) pp. 193–202.

Bos, P. J.

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97(6), 1078–1096 (2009).
[Crossref]

Cakmakci, O.

O. Cakmakci and J. Rolland, “Head-worn displays: a review,” J. Disp. Technol. 2(3), 199–216 (2006).
[Crossref]

Chen, C. H.

C. H. Chen, F. C. Lin, Y. T. Hsu, Y. P. Huang, and H. P. D. Shieh, “A field sequential color LCD based on color fields arrangement for color breakup and flicker reduction,” J. Disp. Technol. 5(1), 34–39 (2009).
[Crossref]

Chen, H.

H. Chen, Z. Luo, D. Xu, F. Peng, S. T. Wu, M. C. Li, S. L. Lee, and W. C. Tsai, “A fast-response A-film-enhanced fringe field switching liquid crystal display,” Liq. Cryst. 42(4), 537–542 (2015).
[Crossref]

D. Xu, H. Chen, S. T. Wu, M. C. Li, S. L. Lee, and W. C. Tsai, “A fringe field switching liquid crystal display with fast grayscale response time,” J. Disp. Technol. 11(4), 353–359 (2015).
[Crossref]

H. Chen, M. Hu, F. Peng, J. Li, Z. An, and S. T. Wu, “Ultra-low viscosity liquid crystals,” Opt. Mater. Express 5(3), 655–660 (2015).
[Crossref]

R. Zhu, Z. Luo, H. Chen, Y. Dong, and S. T. Wu, “Realizing Rec. 2020 color gamut with quantum dot displays,” Opt. Express 23(18), 23680–23693 (2015).
[Crossref] [PubMed]

H. Chen, F. Peng, Z. Luo, D. Xu, S. T. Wu, M. C. Li, S. L. Lee, and W. C. Tsai, “High performance liquid crystal displays with a low dielectric constant material,” Opt. Mater. Express 4(11), 2262–2273 (2014).

Chen, K. M.

K. M. Chen, S. Gauza, H. Xianyu, and S. T. Wu, “Submillisecond gray-level response time of a polymer-stabilized liquid crystal,” J. Disp. Technol. 6(2), 49–51 (2010).
[Crossref]

Chen, Y.

Cipparrone, G.

C. Provenzano, P. Pagliusi, and G. Cipparrone, “Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces,” Appl. Phys. Lett. 89(12), 121105 (2006).
[Crossref]

Dabrowski, R.

S. Gauza, X. Zhu, W. Piecek, R. Dabrowski, and S. T. Wu, “Fast switching liquid crystals for color-sequential LCDs,” J. Disp. Technol. 3(3), 250–252 (2007).
[Crossref]

Dai, H.

H. Dai, K. Xu, Y. Liu, X. Wang, and J. Liu, “Characteristics of LCoS phase-only spatial light modulator and its applications,” Opt. Commun. 238(4-6), 269–276 (2004).
[Crossref]

Daneman, M.

N. C. Tien, O. Solgaard, M. H. Kiang, M. Daneman, K. Y. Lau, and R. S. Muller, “Surface-micromachined mirrors for laser-beam positioning,” Sens. Actuators A Phys. 52(1), 76–80 (1996).
[Crossref]

Davis, S. R.

S. R. Davis, G. Farca, S. D. Rommel, S. Johnson, and M. H. Anderson, “Liquid crystal waveguides: new devices enabled by > 1000 waves of optical phase control,” Proc. SPIE 7618, 76180E (2010).
[Crossref]

Dong, Y.

Duchowski, A. T.

A. T. Duchowski, V. Shivashankaraiah, T. Rawls, A. K. Gramopadhye, B. J. Melloy, and B. Kanki, “Binocular eye tracking in virtual reality for inspection training,” in Proceedings of the 2000 Symposium on Eye Tracking Research and Applications (ACM, 2000), pp. 89–96.
[Crossref]

Dudley, D.

D. Dudley, W. M. Duncan, and J. Slaughter, “Emerging digital micromirror device (DMD) applications,” Proc. SPIE 4985, 14–25 (2003).
[Crossref]

Duh, H. B. L.

F. Zhou, H. B. L. Duh, and M. Billinghurst, “Trends in augmented reality tracking, interaction and display: A review of ten years of ISMAR,” in Proceedings of the 7th IEEE/ACM International Symposium on Mixed and Augmented Reality (ACM, 2008) pp. 193–202.

Duncan, W. M.

D. Dudley, W. M. Duncan, and J. Slaughter, “Emerging digital micromirror device (DMD) applications,” Proc. SPIE 4985, 14–25 (2003).
[Crossref]

Efron, U.

Escuti, M. J.

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97(6), 1078–1096 (2009).
[Crossref]

C. Oh and M. J. Escuti, “Achromatic diffraction from polarization gratings with high efficiency,” Opt. Lett. 33(20), 2287–2289 (2008).
[Crossref] [PubMed]

J. Kim, C. Oh, M. J. Escuti, and S. Serati, “Wide-angle nonmechanical beam steering using thin liquid crystal polarization gratings,” Proc. SPIE 7093, 709302 (2008).
[Crossref]

Farca, G.

S. R. Davis, G. Farca, S. D. Rommel, S. Johnson, and M. H. Anderson, “Liquid crystal waveguides: new devices enabled by > 1000 waves of optical phase control,” Proc. SPIE 7618, 76180E (2010).
[Crossref]

Gauza, S.

K. M. Chen, S. Gauza, H. Xianyu, and S. T. Wu, “Submillisecond gray-level response time of a polymer-stabilized liquid crystal,” J. Disp. Technol. 6(2), 49–51 (2010).
[Crossref]

S. Gauza, X. Zhu, W. Piecek, R. Dabrowski, and S. T. Wu, “Fast switching liquid crystals for color-sequential LCDs,” J. Disp. Technol. 3(3), 250–252 (2007).
[Crossref]

J. Li, C. H. Wen, S. Gauza, R. Lu, and S. T. Wu, “Refractive indices of liquid crystals for display applications,” J. Disp. Technol. 1(1), 51–61 (2005).
[Crossref]

Girshick, A. R.

K. Akeley, S. J. Watt, A. R. Girshick, and M. S. Banks, “A stereo display prototype with multiple focal distances,” ACM Trans. Graph. 23(3), 804–813 (2004).
[Crossref]

Glebov, L. B.

Gramopadhye, A. K.

A. T. Duchowski, V. Shivashankaraiah, T. Rawls, A. K. Gramopadhye, B. J. Melloy, and B. Kanki, “Binocular eye tracking in virtual reality for inspection training,” in Proceedings of the 2000 Symposium on Eye Tracking Research and Applications (ACM, 2000), pp. 89–96.
[Crossref]

Haus, J. W.

Heikenfeld, J.

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97(6), 1078–1096 (2009).
[Crossref]

N. R. Smith, D. C. Abeysinghe, J. W. Haus, and J. Heikenfeld, “Agile wide-angle beam steering with electrowetting microprisms,” Opt. Express 14(14), 6557–6563 (2006).
[Crossref] [PubMed]

Helfrich, W.

M. Schadt and W. Helfrich, “Voltage-dependent optical activity of a twisted nematic liquid crystal,” Appl. Phys. Lett. 18(4), 127–128 (1971).
[Crossref]

Hess, L. D.

Hisakado, Y.

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1(1), 64–68 (2002).
[Crossref] [PubMed]

Hoke, L.

Hong, Q.

Hsu, Y. T.

C. H. Chen, F. C. Lin, Y. T. Hsu, Y. P. Huang, and H. P. D. Shieh, “A field sequential color LCD based on color fields arrangement for color breakup and flicker reduction,” J. Disp. Technol. 5(1), 34–39 (2009).
[Crossref]

Hu, M.

Huang, Y. P.

C. H. Chen, F. C. Lin, Y. T. Hsu, Y. P. Huang, and H. P. D. Shieh, “A field sequential color LCD based on color fields arrangement for color breakup and flicker reduction,” J. Disp. Technol. 5(1), 34–39 (2009).
[Crossref]

Jacob, R. J.

V. Tanriverdi and R. J. Jacob, “Interacting with eye movements in virtual environments,” Chin. Lett. 2(1), 265–272 (2000).

Jang, E.

E. Jang, S. Jun, H. Jang, J. Lim, B. Kim, and Y. Kim, “White-light-emitting diodes with quantum dot color converters for display backlights,” Adv. Mater. 22(28), 3076–3080 (2010).
[Crossref] [PubMed]

Jang, H.

E. Jang, S. Jun, H. Jang, J. Lim, B. Kim, and Y. Kim, “White-light-emitting diodes with quantum dot color converters for display backlights,” Adv. Mater. 22(28), 3076–3080 (2010).
[Crossref] [PubMed]

Johnson, K. M.

K. M. Johnson, D. J. McKnight, and I. Underwood, “Smart spatial light modulators using liquid crystals on silicon,” IEEE J. Quantum Electron. 29(2), 699–714 (1993).
[Crossref]

Johnson, S.

S. R. Davis, G. Farca, S. D. Rommel, S. Johnson, and M. H. Anderson, “Liquid crystal waveguides: new devices enabled by > 1000 waves of optical phase control,” Proc. SPIE 7618, 76180E (2010).
[Crossref]

Jun, S.

E. Jang, S. Jun, H. Jang, J. Lim, B. Kim, and Y. Kim, “White-light-emitting diodes with quantum dot color converters for display backlights,” Adv. Mater. 22(28), 3076–3080 (2010).
[Crossref] [PubMed]

Kajiyama, T.

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1(1), 64–68 (2002).
[Crossref] [PubMed]

Kanki, B.

A. T. Duchowski, V. Shivashankaraiah, T. Rawls, A. K. Gramopadhye, B. J. Melloy, and B. Kanki, “Binocular eye tracking in virtual reality for inspection training,” in Proceedings of the 2000 Symposium on Eye Tracking Research and Applications (ACM, 2000), pp. 89–96.
[Crossref]

Kiang, M. H.

N. C. Tien, O. Solgaard, M. H. Kiang, M. Daneman, K. Y. Lau, and R. S. Muller, “Surface-micromachined mirrors for laser-beam positioning,” Sens. Actuators A Phys. 52(1), 76–80 (1996).
[Crossref]

Kikuchi, H.

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1(1), 64–68 (2002).
[Crossref] [PubMed]

Kim, B.

E. Jang, S. Jun, H. Jang, J. Lim, B. Kim, and Y. Kim, “White-light-emitting diodes with quantum dot color converters for display backlights,” Adv. Mater. 22(28), 3076–3080 (2010).
[Crossref] [PubMed]

Kim, J.

J. Kim, C. Oh, M. J. Escuti, and S. Serati, “Wide-angle nonmechanical beam steering using thin liquid crystal polarization gratings,” Proc. SPIE 7093, 709302 (2008).
[Crossref]

Kim, J. C.

T.-H. Yoon, K. H. Kim, D. H. Song, and J. C. Kim, “Fast switching technologies for a nematic liquid crystal cell,” Proc. SPIE 7956, 79560M (2011).
[Crossref]

Kim, K. H.

T.-H. Yoon, K. H. Kim, D. H. Song, and J. C. Kim, “Fast switching technologies for a nematic liquid crystal cell,” Proc. SPIE 7956, 79560M (2011).
[Crossref]

Kim, Y.

E. Jang, S. Jun, H. Jang, J. Lim, B. Kim, and Y. Kim, “White-light-emitting diodes with quantum dot color converters for display backlights,” Adv. Mater. 22(28), 3076–3080 (2010).
[Crossref] [PubMed]

Kimball, B. R.

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “The principles of laser beam control with polarization gratings introduced as diffractive waveplates,” Proc. SPIE 7775, 77750U (2010).
[Crossref]

N. V. Tabiryan, S. R. Nersisyan, D. M. Steeves, and B. R. Kimball, “The promise of diffractive waveplates,” Opt. Photonics News 21, 41–45 (2010).

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater. 18(1), 1–47 (2009).
[Crossref]

S. R. Nersisyan, N. V. Tabiryan, L. Hoke, D. M. Steeves, and B. R. Kimball, “Polarization insensitive imaging through polarization gratings,” Opt. Express 17(3), 1817–1830 (2009).
[Crossref] [PubMed]

Lau, K. Y.

N. C. Tien, O. Solgaard, M. H. Kiang, M. Daneman, K. Y. Lau, and R. S. Muller, “Surface-micromachined mirrors for laser-beam positioning,” Sens. Actuators A Phys. 52(1), 76–80 (1996).
[Crossref]

Lee, C.

Lee, S. D.

D. H. You, C. J. Yu, and S. D. Lee, “Reflective configuration of vertically aligned deformed-helix ferroelectric liquid crystal display,” Ferroelectrics 278(1), 233–240 (2002).
[Crossref]

Lee, S. L.

H. Chen, Z. Luo, D. Xu, F. Peng, S. T. Wu, M. C. Li, S. L. Lee, and W. C. Tsai, “A fast-response A-film-enhanced fringe field switching liquid crystal display,” Liq. Cryst. 42(4), 537–542 (2015).
[Crossref]

D. Xu, H. Chen, S. T. Wu, M. C. Li, S. L. Lee, and W. C. Tsai, “A fringe field switching liquid crystal display with fast grayscale response time,” J. Disp. Technol. 11(4), 353–359 (2015).
[Crossref]

H. Chen, F. Peng, Z. Luo, D. Xu, S. T. Wu, M. C. Li, S. L. Lee, and W. C. Tsai, “High performance liquid crystal displays with a low dielectric constant material,” Opt. Mater. Express 4(11), 2262–2273 (2014).

Li, J.

H. Chen, M. Hu, F. Peng, J. Li, Z. An, and S. T. Wu, “Ultra-low viscosity liquid crystals,” Opt. Mater. Express 5(3), 655–660 (2015).
[Crossref]

J. Li, C. H. Wen, S. Gauza, R. Lu, and S. T. Wu, “Refractive indices of liquid crystals for display applications,” J. Disp. Technol. 1(1), 51–61 (2005).
[Crossref]

Li, M. C.

H. Chen, Z. Luo, D. Xu, F. Peng, S. T. Wu, M. C. Li, S. L. Lee, and W. C. Tsai, “A fast-response A-film-enhanced fringe field switching liquid crystal display,” Liq. Cryst. 42(4), 537–542 (2015).
[Crossref]

D. Xu, H. Chen, S. T. Wu, M. C. Li, S. L. Lee, and W. C. Tsai, “A fringe field switching liquid crystal display with fast grayscale response time,” J. Disp. Technol. 11(4), 353–359 (2015).
[Crossref]

H. Chen, F. Peng, Z. Luo, D. Xu, S. T. Wu, M. C. Li, S. L. Lee, and W. C. Tsai, “High performance liquid crystal displays with a low dielectric constant material,” Opt. Mater. Express 4(11), 2262–2273 (2014).

Lien, A.

Lim, J.

E. Jang, S. Jun, H. Jang, J. Lim, B. Kim, and Y. Kim, “White-light-emitting diodes with quantum dot color converters for display backlights,” Adv. Mater. 22(28), 3076–3080 (2010).
[Crossref] [PubMed]

Lin, C. L.

H. Xianyu, S. T. Wu, and C. L. Lin, “Dual frequency liquid crystals: a review,” Liq. Cryst. 36(6–7), 717–726 (2009).
[Crossref]

Lin, F. C.

C. H. Chen, F. C. Lin, Y. T. Hsu, Y. P. Huang, and H. P. D. Shieh, “A field sequential color LCD based on color fields arrangement for color breakup and flicker reduction,” J. Disp. Technol. 5(1), 34–39 (2009).
[Crossref]

Liu, J.

H. Dai, K. Xu, Y. Liu, X. Wang, and J. Liu, “Characteristics of LCoS phase-only spatial light modulator and its applications,” Opt. Commun. 238(4-6), 269–276 (2004).
[Crossref]

Liu, Y.

H. Ren, S. Xu, Y. Liu, and S. T. Wu, “Switchable focus using a polymeric lenticular microlens array and a polarization rotator,” Opt. Express 21(7), 7916–7925 (2013).
[Crossref] [PubMed]

H. Dai, K. Xu, Y. Liu, X. Wang, and J. Liu, “Characteristics of LCoS phase-only spatial light modulator and its applications,” Opt. Commun. 238(4-6), 269–276 (2004).
[Crossref]

Lo, C. C.

Lu, R.

J. Li, C. H. Wen, S. Gauza, R. Lu, and S. T. Wu, “Refractive indices of liquid crystals for display applications,” J. Disp. Technol. 1(1), 51–61 (2005).
[Crossref]

Luo, Z.

Masaoka, K.

K. Masaoka, Y. Nishida, M. Sugawara, and E. Nakasu, “Design of primaries for a wide-gamut television colorimetry,” IEEE Trans. Broadcast 56(4), 452–457 (2010).
[Crossref]

McKnight, D. J.

K. M. Johnson, D. J. McKnight, and I. Underwood, “Smart spatial light modulators using liquid crystals on silicon,” IEEE J. Quantum Electron. 29(2), 699–714 (1993).
[Crossref]

McManamon, P. F.

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97(6), 1078–1096 (2009).
[Crossref]

Melloy, B. J.

A. T. Duchowski, V. Shivashankaraiah, T. Rawls, A. K. Gramopadhye, B. J. Melloy, and B. Kanki, “Binocular eye tracking in virtual reality for inspection training,” in Proceedings of the 2000 Symposium on Eye Tracking Research and Applications (ACM, 2000), pp. 89–96.
[Crossref]

Muller, R. S.

N. C. Tien, O. Solgaard, M. H. Kiang, M. Daneman, K. Y. Lau, and R. S. Muller, “Surface-micromachined mirrors for laser-beam positioning,” Sens. Actuators A Phys. 52(1), 76–80 (1996).
[Crossref]

Nakasu, E.

K. Masaoka, Y. Nishida, M. Sugawara, and E. Nakasu, “Design of primaries for a wide-gamut television colorimetry,” IEEE Trans. Broadcast 56(4), 452–457 (2010).
[Crossref]

Nersisyan, S. R.

N. V. Tabiryan, S. R. Nersisyan, D. M. Steeves, and B. R. Kimball, “The promise of diffractive waveplates,” Opt. Photonics News 21, 41–45 (2010).

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “The principles of laser beam control with polarization gratings introduced as diffractive waveplates,” Proc. SPIE 7775, 77750U (2010).
[Crossref]

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater. 18(1), 1–47 (2009).
[Crossref]

S. R. Nersisyan, N. V. Tabiryan, L. Hoke, D. M. Steeves, and B. R. Kimball, “Polarization insensitive imaging through polarization gratings,” Opt. Express 17(3), 1817–1830 (2009).
[Crossref] [PubMed]

Nishida, Y.

K. Masaoka, Y. Nishida, M. Sugawara, and E. Nakasu, “Design of primaries for a wide-gamut television colorimetry,” IEEE Trans. Broadcast 56(4), 452–457 (2010).
[Crossref]

Oh, C.

C. Oh and M. J. Escuti, “Achromatic diffraction from polarization gratings with high efficiency,” Opt. Lett. 33(20), 2287–2289 (2008).
[Crossref] [PubMed]

J. Kim, C. Oh, M. J. Escuti, and S. Serati, “Wide-angle nonmechanical beam steering using thin liquid crystal polarization gratings,” Proc. SPIE 7093, 709302 (2008).
[Crossref]

Pagliusi, P.

C. Provenzano, P. Pagliusi, and G. Cipparrone, “Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces,” Appl. Phys. Lett. 89(12), 121105 (2006).
[Crossref]

Peng, F.

Piecek, W.

S. Gauza, X. Zhu, W. Piecek, R. Dabrowski, and S. T. Wu, “Fast switching liquid crystals for color-sequential LCDs,” J. Disp. Technol. 3(3), 250–252 (2007).
[Crossref]

Provenzano, C.

C. Provenzano, P. Pagliusi, and G. Cipparrone, “Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces,” Appl. Phys. Lett. 89(12), 121105 (2006).
[Crossref]

Rawls, T.

A. T. Duchowski, V. Shivashankaraiah, T. Rawls, A. K. Gramopadhye, B. J. Melloy, and B. Kanki, “Binocular eye tracking in virtual reality for inspection training,” in Proceedings of the 2000 Symposium on Eye Tracking Research and Applications (ACM, 2000), pp. 89–96.
[Crossref]

Ren, H.

Rolland, J.

O. Cakmakci and J. Rolland, “Head-worn displays: a review,” J. Disp. Technol. 2(3), 199–216 (2006).
[Crossref]

Rommel, S. D.

S. R. Davis, G. Farca, S. D. Rommel, S. Johnson, and M. H. Anderson, “Liquid crystal waveguides: new devices enabled by > 1000 waves of optical phase control,” Proc. SPIE 7618, 76180E (2010).
[Crossref]

Rotar, V.

Sarkissian, H.

Schadt, M.

M. Schadt and W. Helfrich, “Voltage-dependent optical activity of a twisted nematic liquid crystal,” Appl. Phys. Lett. 18(4), 127–128 (1971).
[Crossref]

Serak, S.

Serak, S. V.

Serati, S.

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97(6), 1078–1096 (2009).
[Crossref]

J. Kim, C. Oh, M. J. Escuti, and S. Serati, “Wide-angle nonmechanical beam steering using thin liquid crystal polarization gratings,” Proc. SPIE 7093, 709302 (2008).
[Crossref]

Shieh, H. P. D.

C. H. Chen, F. C. Lin, Y. T. Hsu, Y. P. Huang, and H. P. D. Shieh, “A field sequential color LCD based on color fields arrangement for color breakup and flicker reduction,” J. Disp. Technol. 5(1), 34–39 (2009).
[Crossref]

Shivashankaraiah, V.

A. T. Duchowski, V. Shivashankaraiah, T. Rawls, A. K. Gramopadhye, B. J. Melloy, and B. Kanki, “Binocular eye tracking in virtual reality for inspection training,” in Proceedings of the 2000 Symposium on Eye Tracking Research and Applications (ACM, 2000), pp. 89–96.
[Crossref]

Slaughter, J.

D. Dudley, W. M. Duncan, and J. Slaughter, “Emerging digital micromirror device (DMD) applications,” Proc. SPIE 4985, 14–25 (2003).
[Crossref]

Smith, N. R.

Solgaard, O.

N. C. Tien, O. Solgaard, M. H. Kiang, M. Daneman, K. Y. Lau, and R. S. Muller, “Surface-micromachined mirrors for laser-beam positioning,” Sens. Actuators A Phys. 52(1), 76–80 (1996).
[Crossref]

Song, D. H.

T.-H. Yoon, K. H. Kim, D. H. Song, and J. C. Kim, “Fast switching technologies for a nematic liquid crystal cell,” Proc. SPIE 7956, 79560M (2011).
[Crossref]

Steeves, D. M.

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “The principles of laser beam control with polarization gratings introduced as diffractive waveplates,” Proc. SPIE 7775, 77750U (2010).
[Crossref]

N. V. Tabiryan, S. R. Nersisyan, D. M. Steeves, and B. R. Kimball, “The promise of diffractive waveplates,” Opt. Photonics News 21, 41–45 (2010).

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater. 18(1), 1–47 (2009).
[Crossref]

S. R. Nersisyan, N. V. Tabiryan, L. Hoke, D. M. Steeves, and B. R. Kimball, “Polarization insensitive imaging through polarization gratings,” Opt. Express 17(3), 1817–1830 (2009).
[Crossref] [PubMed]

Sugawara, M.

K. Masaoka, Y. Nishida, M. Sugawara, and E. Nakasu, “Design of primaries for a wide-gamut television colorimetry,” IEEE Trans. Broadcast 56(4), 452–457 (2010).
[Crossref]

Tabiryan, N.

Tabiryan, N. V.

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “The principles of laser beam control with polarization gratings introduced as diffractive waveplates,” Proc. SPIE 7775, 77750U (2010).
[Crossref]

N. V. Tabiryan, S. R. Nersisyan, D. M. Steeves, and B. R. Kimball, “The promise of diffractive waveplates,” Opt. Photonics News 21, 41–45 (2010).

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater. 18(1), 1–47 (2009).
[Crossref]

S. R. Nersisyan, N. V. Tabiryan, L. Hoke, D. M. Steeves, and B. R. Kimball, “Polarization insensitive imaging through polarization gratings,” Opt. Express 17(3), 1817–1830 (2009).
[Crossref] [PubMed]

H. Sarkissian, S. V. Serak, N. V. Tabiryan, L. B. Glebov, V. Rotar, and B. Y. Zeldovich, “Polarization-controlled switching between diffraction orders in transverse-periodically aligned nematic liquid crystals,” Opt. Lett. 31(15), 2248–2250 (2006).
[Crossref] [PubMed]

Tanriverdi, V.

V. Tanriverdi and R. J. Jacob, “Interacting with eye movements in virtual environments,” Chin. Lett. 2(1), 265–272 (2000).

Tien, N. C.

N. C. Tien, O. Solgaard, M. H. Kiang, M. Daneman, K. Y. Lau, and R. S. Muller, “Surface-micromachined mirrors for laser-beam positioning,” Sens. Actuators A Phys. 52(1), 76–80 (1996).
[Crossref]

Tsai, W. C.

D. Xu, H. Chen, S. T. Wu, M. C. Li, S. L. Lee, and W. C. Tsai, “A fringe field switching liquid crystal display with fast grayscale response time,” J. Disp. Technol. 11(4), 353–359 (2015).
[Crossref]

H. Chen, Z. Luo, D. Xu, F. Peng, S. T. Wu, M. C. Li, S. L. Lee, and W. C. Tsai, “A fast-response A-film-enhanced fringe field switching liquid crystal display,” Liq. Cryst. 42(4), 537–542 (2015).
[Crossref]

H. Chen, F. Peng, Z. Luo, D. Xu, S. T. Wu, M. C. Li, S. L. Lee, and W. C. Tsai, “High performance liquid crystal displays with a low dielectric constant material,” Opt. Mater. Express 4(11), 2262–2273 (2014).

Underwood, I.

K. M. Johnson, D. J. McKnight, and I. Underwood, “Smart spatial light modulators using liquid crystals on silicon,” IEEE J. Quantum Electron. 29(2), 699–714 (1993).
[Crossref]

Wang, X.

H. Dai, K. Xu, Y. Liu, X. Wang, and J. Liu, “Characteristics of LCoS phase-only spatial light modulator and its applications,” Opt. Commun. 238(4-6), 269–276 (2004).
[Crossref]

Watson, E. A.

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97(6), 1078–1096 (2009).
[Crossref]

Watt, S. J.

K. Akeley, S. J. Watt, A. R. Girshick, and M. S. Banks, “A stereo display prototype with multiple focal distances,” ACM Trans. Graph. 23(3), 804–813 (2004).
[Crossref]

Wen, C. H.

J. Li, C. H. Wen, S. Gauza, R. Lu, and S. T. Wu, “Refractive indices of liquid crystals for display applications,” J. Disp. Technol. 1(1), 51–61 (2005).
[Crossref]

Wu, C. S.

S. T. Wu and C. S. Wu, “High‐speed liquid‐crystal modulators using transient nematic effect,” J. Appl. Phys. 65(2), 527–532 (1989).
[Crossref]

Wu, S. T.

D. Xu, H. Chen, S. T. Wu, M. C. Li, S. L. Lee, and W. C. Tsai, “A fringe field switching liquid crystal display with fast grayscale response time,” J. Disp. Technol. 11(4), 353–359 (2015).
[Crossref]

H. Chen, Z. Luo, D. Xu, F. Peng, S. T. Wu, M. C. Li, S. L. Lee, and W. C. Tsai, “A fast-response A-film-enhanced fringe field switching liquid crystal display,” Liq. Cryst. 42(4), 537–542 (2015).
[Crossref]

H. Chen, M. Hu, F. Peng, J. Li, Z. An, and S. T. Wu, “Ultra-low viscosity liquid crystals,” Opt. Mater. Express 5(3), 655–660 (2015).
[Crossref]

R. Zhu, Z. Luo, H. Chen, Y. Dong, and S. T. Wu, “Realizing Rec. 2020 color gamut with quantum dot displays,” Opt. Express 23(18), 23680–23693 (2015).
[Crossref] [PubMed]

H. Chen, F. Peng, Z. Luo, D. Xu, S. T. Wu, M. C. Li, S. L. Lee, and W. C. Tsai, “High performance liquid crystal displays with a low dielectric constant material,” Opt. Mater. Express 4(11), 2262–2273 (2014).

R. Zhu, S. Xu, Q. Hong, S. T. Wu, C. Lee, C. M. Yang, C. C. Lo, and A. Lien, “Polymeric-lens-embedded 2D/3D switchable display with dramatically reduced crosstalk,” Appl. Opt. 53(7), 1388–1395 (2014).
[Crossref] [PubMed]

H. Ren, S. Xu, Y. Liu, and S. T. Wu, “Switchable focus using a polymeric lenticular microlens array and a polarization rotator,” Opt. Express 21(7), 7916–7925 (2013).
[Crossref] [PubMed]

Z. Luo, Y. Chen, and S. T. Wu, “Wide color gamut LCD with a quantum dot backlight,” Opt. Express 21(22), 26269–26284 (2013).
[Crossref] [PubMed]

K. M. Chen, S. Gauza, H. Xianyu, and S. T. Wu, “Submillisecond gray-level response time of a polymer-stabilized liquid crystal,” J. Disp. Technol. 6(2), 49–51 (2010).
[Crossref]

H. Xianyu, S. T. Wu, and C. L. Lin, “Dual frequency liquid crystals: a review,” Liq. Cryst. 36(6–7), 717–726 (2009).
[Crossref]

S. Gauza, X. Zhu, W. Piecek, R. Dabrowski, and S. T. Wu, “Fast switching liquid crystals for color-sequential LCDs,” J. Disp. Technol. 3(3), 250–252 (2007).
[Crossref]

J. Li, C. H. Wen, S. Gauza, R. Lu, and S. T. Wu, “Refractive indices of liquid crystals for display applications,” J. Disp. Technol. 1(1), 51–61 (2005).
[Crossref]

S. T. Wu, “Nematic liquid crystal modulator with response time less than 100 μs at room temperature,” Appl. Phys. Lett. 57(10), 986–988 (1990).
[Crossref]

S. T. Wu and C. S. Wu, “High‐speed liquid‐crystal modulators using transient nematic effect,” J. Appl. Phys. 65(2), 527–532 (1989).
[Crossref]

S. T. Wu, U. Efron, and L. D. Hess, “Birefringence measurements of liquid crystals,” Appl. Opt. 23(21), 3911–3915 (1984).
[Crossref] [PubMed]

Xianyu, H.

K. M. Chen, S. Gauza, H. Xianyu, and S. T. Wu, “Submillisecond gray-level response time of a polymer-stabilized liquid crystal,” J. Disp. Technol. 6(2), 49–51 (2010).
[Crossref]

H. Xianyu, S. T. Wu, and C. L. Lin, “Dual frequency liquid crystals: a review,” Liq. Cryst. 36(6–7), 717–726 (2009).
[Crossref]

Xie, H.

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97(6), 1078–1096 (2009).
[Crossref]

Xu, D.

D. Xu, H. Chen, S. T. Wu, M. C. Li, S. L. Lee, and W. C. Tsai, “A fringe field switching liquid crystal display with fast grayscale response time,” J. Disp. Technol. 11(4), 353–359 (2015).
[Crossref]

H. Chen, Z. Luo, D. Xu, F. Peng, S. T. Wu, M. C. Li, S. L. Lee, and W. C. Tsai, “A fast-response A-film-enhanced fringe field switching liquid crystal display,” Liq. Cryst. 42(4), 537–542 (2015).
[Crossref]

H. Chen, F. Peng, Z. Luo, D. Xu, S. T. Wu, M. C. Li, S. L. Lee, and W. C. Tsai, “High performance liquid crystal displays with a low dielectric constant material,” Opt. Mater. Express 4(11), 2262–2273 (2014).

Xu, K.

H. Dai, K. Xu, Y. Liu, X. Wang, and J. Liu, “Characteristics of LCoS phase-only spatial light modulator and its applications,” Opt. Commun. 238(4-6), 269–276 (2004).
[Crossref]

Xu, S.

Yang, C. M.

Yang, H.

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1(1), 64–68 (2002).
[Crossref] [PubMed]

Yokota, M.

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1(1), 64–68 (2002).
[Crossref] [PubMed]

Yoon, T.-H.

T.-H. Yoon, K. H. Kim, D. H. Song, and J. C. Kim, “Fast switching technologies for a nematic liquid crystal cell,” Proc. SPIE 7956, 79560M (2011).
[Crossref]

You, D. H.

D. H. You, C. J. Yu, and S. D. Lee, “Reflective configuration of vertically aligned deformed-helix ferroelectric liquid crystal display,” Ferroelectrics 278(1), 233–240 (2002).
[Crossref]

Yu, C. J.

D. H. You, C. J. Yu, and S. D. Lee, “Reflective configuration of vertically aligned deformed-helix ferroelectric liquid crystal display,” Ferroelectrics 278(1), 233–240 (2002).
[Crossref]

Zeldovich, B.

Zeldovich, B. Y.

Zhou, F.

F. Zhou, H. B. L. Duh, and M. Billinghurst, “Trends in augmented reality tracking, interaction and display: A review of ten years of ISMAR,” in Proceedings of the 7th IEEE/ACM International Symposium on Mixed and Augmented Reality (ACM, 2008) pp. 193–202.

Zhu, R.

Zhu, X.

S. Gauza, X. Zhu, W. Piecek, R. Dabrowski, and S. T. Wu, “Fast switching liquid crystals for color-sequential LCDs,” J. Disp. Technol. 3(3), 250–252 (2007).
[Crossref]

ACM Trans. Graph. (1)

K. Akeley, S. J. Watt, A. R. Girshick, and M. S. Banks, “A stereo display prototype with multiple focal distances,” ACM Trans. Graph. 23(3), 804–813 (2004).
[Crossref]

Adv. Mater. (1)

E. Jang, S. Jun, H. Jang, J. Lim, B. Kim, and Y. Kim, “White-light-emitting diodes with quantum dot color converters for display backlights,” Adv. Mater. 22(28), 3076–3080 (2010).
[Crossref] [PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (3)

M. Schadt and W. Helfrich, “Voltage-dependent optical activity of a twisted nematic liquid crystal,” Appl. Phys. Lett. 18(4), 127–128 (1971).
[Crossref]

S. T. Wu, “Nematic liquid crystal modulator with response time less than 100 μs at room temperature,” Appl. Phys. Lett. 57(10), 986–988 (1990).
[Crossref]

C. Provenzano, P. Pagliusi, and G. Cipparrone, “Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces,” Appl. Phys. Lett. 89(12), 121105 (2006).
[Crossref]

Chin. Lett. (1)

V. Tanriverdi and R. J. Jacob, “Interacting with eye movements in virtual environments,” Chin. Lett. 2(1), 265–272 (2000).

Ferroelectrics (1)

D. H. You, C. J. Yu, and S. D. Lee, “Reflective configuration of vertically aligned deformed-helix ferroelectric liquid crystal display,” Ferroelectrics 278(1), 233–240 (2002).
[Crossref]

IEEE J. Quantum Electron. (1)

K. M. Johnson, D. J. McKnight, and I. Underwood, “Smart spatial light modulators using liquid crystals on silicon,” IEEE J. Quantum Electron. 29(2), 699–714 (1993).
[Crossref]

IEEE Trans. Broadcast (1)

K. Masaoka, Y. Nishida, M. Sugawara, and E. Nakasu, “Design of primaries for a wide-gamut television colorimetry,” IEEE Trans. Broadcast 56(4), 452–457 (2010).
[Crossref]

J. Appl. Phys. (1)

S. T. Wu and C. S. Wu, “High‐speed liquid‐crystal modulators using transient nematic effect,” J. Appl. Phys. 65(2), 527–532 (1989).
[Crossref]

J. Disp. Technol. (6)

D. Xu, H. Chen, S. T. Wu, M. C. Li, S. L. Lee, and W. C. Tsai, “A fringe field switching liquid crystal display with fast grayscale response time,” J. Disp. Technol. 11(4), 353–359 (2015).
[Crossref]

S. Gauza, X. Zhu, W. Piecek, R. Dabrowski, and S. T. Wu, “Fast switching liquid crystals for color-sequential LCDs,” J. Disp. Technol. 3(3), 250–252 (2007).
[Crossref]

O. Cakmakci and J. Rolland, “Head-worn displays: a review,” J. Disp. Technol. 2(3), 199–216 (2006).
[Crossref]

J. Li, C. H. Wen, S. Gauza, R. Lu, and S. T. Wu, “Refractive indices of liquid crystals for display applications,” J. Disp. Technol. 1(1), 51–61 (2005).
[Crossref]

K. M. Chen, S. Gauza, H. Xianyu, and S. T. Wu, “Submillisecond gray-level response time of a polymer-stabilized liquid crystal,” J. Disp. Technol. 6(2), 49–51 (2010).
[Crossref]

C. H. Chen, F. C. Lin, Y. T. Hsu, Y. P. Huang, and H. P. D. Shieh, “A field sequential color LCD based on color fields arrangement for color breakup and flicker reduction,” J. Disp. Technol. 5(1), 34–39 (2009).
[Crossref]

J. Nonlinear Opt. Phys. Mater. (1)

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater. 18(1), 1–47 (2009).
[Crossref]

Liq. Cryst. (2)

H. Chen, Z. Luo, D. Xu, F. Peng, S. T. Wu, M. C. Li, S. L. Lee, and W. C. Tsai, “A fast-response A-film-enhanced fringe field switching liquid crystal display,” Liq. Cryst. 42(4), 537–542 (2015).
[Crossref]

H. Xianyu, S. T. Wu, and C. L. Lin, “Dual frequency liquid crystals: a review,” Liq. Cryst. 36(6–7), 717–726 (2009).
[Crossref]

Nat. Mater. (1)

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1(1), 64–68 (2002).
[Crossref] [PubMed]

Opt. Commun. (1)

H. Dai, K. Xu, Y. Liu, X. Wang, and J. Liu, “Characteristics of LCoS phase-only spatial light modulator and its applications,” Opt. Commun. 238(4-6), 269–276 (2004).
[Crossref]

Opt. Express (5)

Opt. Lett. (3)

Opt. Mater. Express (2)

Opt. Photonics News (1)

N. V. Tabiryan, S. R. Nersisyan, D. M. Steeves, and B. R. Kimball, “The promise of diffractive waveplates,” Opt. Photonics News 21, 41–45 (2010).

Proc. IEEE (1)

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97(6), 1078–1096 (2009).
[Crossref]

Proc. SPIE (5)

S. R. Davis, G. Farca, S. D. Rommel, S. Johnson, and M. H. Anderson, “Liquid crystal waveguides: new devices enabled by > 1000 waves of optical phase control,” Proc. SPIE 7618, 76180E (2010).
[Crossref]

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “The principles of laser beam control with polarization gratings introduced as diffractive waveplates,” Proc. SPIE 7775, 77750U (2010).
[Crossref]

T.-H. Yoon, K. H. Kim, D. H. Song, and J. C. Kim, “Fast switching technologies for a nematic liquid crystal cell,” Proc. SPIE 7956, 79560M (2011).
[Crossref]

D. Dudley, W. M. Duncan, and J. Slaughter, “Emerging digital micromirror device (DMD) applications,” Proc. SPIE 4985, 14–25 (2003).
[Crossref]

J. Kim, C. Oh, M. J. Escuti, and S. Serati, “Wide-angle nonmechanical beam steering using thin liquid crystal polarization gratings,” Proc. SPIE 7093, 709302 (2008).
[Crossref]

Sens. Actuators A Phys. (1)

N. C. Tien, O. Solgaard, M. H. Kiang, M. Daneman, K. Y. Lau, and R. S. Muller, “Surface-micromachined mirrors for laser-beam positioning,” Sens. Actuators A Phys. 52(1), 76–80 (1996).
[Crossref]

Other (8)

B. Furht, Handbook of Augmented Reality (Springer, 2011).

R. A. Earnshaw, Virtual Reality Systems (Academic, 2014).

A. T. Duchowski, V. Shivashankaraiah, T. Rawls, A. K. Gramopadhye, B. J. Melloy, and B. Kanki, “Binocular eye tracking in virtual reality for inspection training,” in Proceedings of the 2000 Symposium on Eye Tracking Research and Applications (ACM, 2000), pp. 89–96.
[Crossref]

F. Zhou, H. B. L. Duh, and M. Billinghurst, “Trends in augmented reality tracking, interaction and display: A review of ten years of ISMAR,” in Proceedings of the 7th IEEE/ACM International Symposium on Mixed and Augmented Reality (ACM, 2008) pp. 193–202.

K. Holmqvist, M. Nyström, R. Andersson, R. Dewhurst, H. Jarodzka, and J. Van de Weijer, Eye Tracking: A Comprehensive Guide to Methods and Measures (Oxford University, 2011).

D. K. Yang and S. T. Wu, Fundamentals of Liquid Crystal Devices (John Wiley and Sons, 2014).

A. Chao, K. T. Huang, C. W. Tsai, Y. W. Hung, H. F. Cheng, W. Yeh, C. H. Yu, and H. H. Wu, “The fastest response TN-Type TFT LCD of the world likes OCB level,” SID Int. Symp. Digest Tech. Papers 38(1), 603–606 (2007).
[Crossref]

ITU-R Recommendation BT.2020, “Parameter values for ultra-high definition television systems for production and international programme exchange,” 2012.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Schematic structure of the cycloidal diffractive waveplate.

Fig. 2
Fig. 2

Simulated diffraction angles for (a) right-handed circularly polarized incident light, and (b) linearly polarized incident light.

Fig. 3
Fig. 3

Dispersion effect of cycloidal diffractive waveplate.

Fig. 4
Fig. 4

Incident angle dependent (a) diffraction angle, and (b) relative diffraction angle.

Fig. 5
Fig. 5

(a) Relationship between diffraction efficiency and incident angle, and (b) Simulated field distributions within one spatial period structure using COMSOL Multiphysics The axes coincide with the schematic diagram in Fig. 1, where the horizontal axis (z) is the light propagation direction, and vertical axis (x) is periodic structure of CDW; Red arrows represent the power flow or Poynting vector.

Fig. 6
Fig. 6

Schematic diagram of proposed optical switch based on CDW.

Fig. 7
Fig. 7

Captured images at (a) voltage-off state and (b) voltage-on state.

Fig. 8
Fig. 8

Measured response time of the optical switch: (a) rise time, and (b) decay time.

Fig. 9
Fig. 9

Cascaded design using multiple CDWs in sequence. PS: polarization switch; CDW: cycloidal diffractive waveplate.

Fig. 10
Fig. 10

Possible diffraction angles for three cascaded CDWs.

Fig. 11
Fig. 11

(a) Simulated wavelength dependent diffraction efficiency, and (b) wavelength dependent diffraction angle.

Fig. 12
Fig. 12

Schematic diagram of proposed optical switch with three independent parts: red (R), green (G), and blue (B) CDWs.

Fig. 13
Fig. 13

Simulated incident angle dependent diffraction efficiency at λ = 532 nm.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

n ={ cos(qx),sin(qx),0 }, q=2π/Λ.
η(λ)= sin 2 πLΔn λ .
n e = A e + B e λ 2 + C e λ 4 ,
n o = A o + B o λ 2 + C o λ 4 ,
θ(λ) sin 1 (λ/Λ).

Metrics