Abstract

The spectral power distributions (SPD) of outdoor light sources are not constant over time and atmospheric conditions, which causes the appearance variation of a scene and common natural illumination phenomena, such as twilight, shadow, and haze/fog. Calculating the SPD of outdoor light sources at different time (or zenith angles) and under different atmospheric conditions is of interest to physically-based vision. In this paper, for computer vision and its applications, we propose a feasible, simple, and effective SPD calculating method based on analyzing the transmittance functions of absorption and scattering along the path of solar radiation through the atmosphere in the visible spectrum. Compared with previous SPD calculation methods, our model has less parameters and is accurate enough to be directly applied in computer vision. It can be applied in computer vision tasks including spectral inverse calculation, lighting conversion, and shadowed image processing. The experimental results of the applications demonstrate that our calculation methods have practical values in computer vision. It establishes a bridge between image and physical environmental information, e.g., time, location, and weather conditions.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Colorimetric analysis of outdoor illumination across varieties of atmospheric conditions

Shahram Peyvandi, Javier Hernández-Andrés, F. J. Olmo, Juan Luis Nieves, and Javier Romero
J. Opt. Soc. Am. A 33(6) 1049-1059 (2016)

Image synthesizing for all-weather outdoor scenes

Ji-Yu Tang and Zi-Qin Sang
Appl. Opt. 40(29) 5183-5191 (2001)

Backward Monte Carlo Calculations of the Polarization Characteristics of the Radiation Emerging from Spherical-Shell Atmospheres

Dave G. Collins, Wolfram G. Blättner, Michael B. Wells, and Henry G. Horak
Appl. Opt. 11(11) 2684-2696 (1972)

References

  • View by:
  • |
  • |
  • |

  1. N. Jacobs, N. Roman, and R. Pless, “Toward fully automatic geo-location and geo-orientation of static outdoor cameras,” in IEEE Workshop on Applications of Computer Vision, (IEEE, 2008), pp. 1–6.
  2. J.-F. Lalonde, S. G. Narasimhan, and A. A. Efros, “What does the sky tell us about the camera?” in Proc. ECCV, (Springer, 2008), pp. 354–367.
  3. J.-F. Lalonde, S. G. Narasimhan, and A. A. Efros, “What do the sun and the sky tell us about the camera?” Int. J. Comput. Vis. 88, 24–51 (2010).
    [Crossref]
  4. Y. Liu, X. Qin, S. Xu, E. Nakamae, and Q. Peng, “Light source estimation of outdoor scenes for mixed reality,” The Visual Computer 25, 637–646 (2009).
    [Crossref]
  5. K. Sunkavalli, F. Romeiro, W. Matusik, T. Zickler, and H. Pfister, “What do color changes reveal about an outdoor scene?” in Proc. CVPR (IEEE, 2008), pp. 1–8.
  6. J. Haber, M. Magnor, and H.-P. Seidel, “Physically-based simulation of twilight phenomena,” ACM Trans. Graph. 24, 1353–1373 (2005).
    [Crossref]
  7. R. Perez, R. Seals, and J. Michalsky, “All-weather model for sky luminance distribution—preliminary configuration and validation,” Sol. Energy 50, 235–245 (1993).
    [Crossref]
  8. K.-J. Yoon, E. Prados, and P. Sturm, “Joint estimation of shape and reflectance using multiple images with known illumination conditions,” Int. J. Comput. Vis. 86, 192–210 (2010).
    [Crossref]
  9. D. Wu, J. Tian, B. Li, Y. Wang, and Y. Tang, “Recovering sensor spectral sensitivity from raw data,” J. Electron. Imaging 22, 023032 (2013).
    [Crossref]
  10. G. D. Finlayson and S. D. Hordley, “Color constancy at a pixel,” J. Opt. Soc. Am. A 18, 253–264 (2001).
    [Crossref]
  11. X. Xing, W. Dong, X. Zhang, and J.-C. Paul, “Spectrally-based single image relighting,” in Entertainment for Education. Digital Techniques and Systems (Springer, 2010), pp. 509–517.
    [Crossref]
  12. T. Gierlinger, D. Danch, and A. Stork, “Rendering techniques for mixed reality,” J. Real-Time Image Processing 5, 109–120 (2010).
    [Crossref]
  13. J. Wither, S. DiVerdi, and T. Höllerer, “Annotation in outdoor augmented reality,” Comp. Graphics 33, 679–689 (2009).
    [Crossref]
  14. G. D. Finlayson, M. S. Drew, and C. Lu, “Entropy minimization for shadow removal,” Int. J. Comput. Vis. 85, 35–57 (2009).
    [Crossref]
  15. J. Tian, J. Sun, and Y. Tang, “Tricolor attenuation model for shadow detection,” IEEE Trans. Image Process. 18, 2355–2363 (2009).
    [Crossref] [PubMed]
  16. D. B. Judd, D. L. MacAdam, G. Wyszecki, H. Budde, H. Condit, S. Henderson, and J. Simonds, “Spectral distribution of typical daylight as a function of correlated color temperature,” J. Opt. Soc. Am. A. 54, 1031–1040 (1964).
    [Crossref]
  17. A. J. Preetham, P. Shirley, and B. Smits, “A practical analytic model for daylight,” in Proceedings of the 26th annual conference on Computer graphics and interactive techniques, (ACM Press/Addison-Wesley Publishing Co., 1999), pp. 91–100.
  18. J. Jung, J. Lee, and I. Kweon, “One-day outdoor photometric stereo via skylight estimation,” in Proc. CVPR (IEEE, 2015), pp. 4521–4529.
  19. R. Kawakami, H. Zhao, R. T. Tan, and K. Ikeuchi, “Camera spectral sensitivity and white balance estimation from sky images,” Int. J. Comput. Vis. 105,187–204, 2013.
    [Crossref]
  20. C. Gueymard, SMARTS2: A Simple Model of the Atmospheric Radiative Transfer of Sunshine: Algorithms and Performance Assessment (Florida Solar Energy Center Cocoa, FL, 1995).
  21. A. Berk, L. S. Bernstein, and D. C. Robertson, Modtran: A moderate resolution model for lowtran, Tech. Rep., DTIC Document (DTIC1987).
  22. R. E. Bird and C. Riordan, “Simple solar spectral model for direct and diffuse irradiance on horizontal and tilted planes at the earth’s surface for cloudless atmospheres,” J. Climate Appl. Meteor. 25, 87–97 (1986).
    [Crossref]
  23. International Electrotechnical Commission, Multimedia systems and equipment - Colour measurement and management - Part 2-1: Colour management - Default RGB colour space - sRGB, Tech. Rep. IEC 619966-2-1(1999).
  24. B. Leckner, “The spectral distribution of solar radiation at the earth’s surface—elements of a model,” Sol. Energy 20, 143–150 (1978).
    [Crossref]
  25. R. Schroeder and J. Davies, “Significance of nitrogen dioxide absorption in estimating aerosol optical depth and size distributions,” Atmosphere-Ocean 25, 107–114 (1987).
    [Crossref]
  26. J. H. Pierluissi and C.-M. Tsai, “New lowtran models for the uniformly mixed gases,” App. Opt. 26, 616–618 (1987).
    [Crossref]
  27. L. Zhou, P. Guo, and Y. Tan, “A new way to study water-vapor absorption coefficient,” Marine Science Bulletin7 (2005).
  28. M. Iqbal, An Introduction to Solar Radiation (Elsevier, 2012).
  29. J. Jiang, D. Liu, J. Gu, and S. Susstrunk, “What is the space of spectral sensitivity functions for digital color cameras?,” in IEEE Workshop on Applications of Computer Vision (IEEE, 2013), pp. 168–179.
  30. J. Tian and Y. Tang, “Linearity of each channel pixel values from a surface in and out of shadows and its applications,” in Proc. CVPR (IEEE, 2011), pp. 985–992.
  31. L. Qu, J. Tian, Z. Han, and Y. Tang, “Pixel-wise Orthogonal Decomposition for Color Illumination Invariant and Shadow-free Image,” Opt. Express 23,2220–2239, 2015.
    [Crossref] [PubMed]
  32. J. Tian and Y. Tang, “Wavelength-sensitive-function controlled reflectance reconstruction,” Opt. Lett. 38, 2818–2820 (2013).
    [Crossref] [PubMed]

2015 (1)

2013 (3)

R. Kawakami, H. Zhao, R. T. Tan, and K. Ikeuchi, “Camera spectral sensitivity and white balance estimation from sky images,” Int. J. Comput. Vis. 105,187–204, 2013.
[Crossref]

D. Wu, J. Tian, B. Li, Y. Wang, and Y. Tang, “Recovering sensor spectral sensitivity from raw data,” J. Electron. Imaging 22, 023032 (2013).
[Crossref]

J. Tian and Y. Tang, “Wavelength-sensitive-function controlled reflectance reconstruction,” Opt. Lett. 38, 2818–2820 (2013).
[Crossref] [PubMed]

2010 (3)

K.-J. Yoon, E. Prados, and P. Sturm, “Joint estimation of shape and reflectance using multiple images with known illumination conditions,” Int. J. Comput. Vis. 86, 192–210 (2010).
[Crossref]

J.-F. Lalonde, S. G. Narasimhan, and A. A. Efros, “What do the sun and the sky tell us about the camera?” Int. J. Comput. Vis. 88, 24–51 (2010).
[Crossref]

T. Gierlinger, D. Danch, and A. Stork, “Rendering techniques for mixed reality,” J. Real-Time Image Processing 5, 109–120 (2010).
[Crossref]

2009 (4)

J. Wither, S. DiVerdi, and T. Höllerer, “Annotation in outdoor augmented reality,” Comp. Graphics 33, 679–689 (2009).
[Crossref]

G. D. Finlayson, M. S. Drew, and C. Lu, “Entropy minimization for shadow removal,” Int. J. Comput. Vis. 85, 35–57 (2009).
[Crossref]

J. Tian, J. Sun, and Y. Tang, “Tricolor attenuation model for shadow detection,” IEEE Trans. Image Process. 18, 2355–2363 (2009).
[Crossref] [PubMed]

Y. Liu, X. Qin, S. Xu, E. Nakamae, and Q. Peng, “Light source estimation of outdoor scenes for mixed reality,” The Visual Computer 25, 637–646 (2009).
[Crossref]

2005 (1)

J. Haber, M. Magnor, and H.-P. Seidel, “Physically-based simulation of twilight phenomena,” ACM Trans. Graph. 24, 1353–1373 (2005).
[Crossref]

2001 (1)

1993 (1)

R. Perez, R. Seals, and J. Michalsky, “All-weather model for sky luminance distribution—preliminary configuration and validation,” Sol. Energy 50, 235–245 (1993).
[Crossref]

1987 (2)

R. Schroeder and J. Davies, “Significance of nitrogen dioxide absorption in estimating aerosol optical depth and size distributions,” Atmosphere-Ocean 25, 107–114 (1987).
[Crossref]

J. H. Pierluissi and C.-M. Tsai, “New lowtran models for the uniformly mixed gases,” App. Opt. 26, 616–618 (1987).
[Crossref]

1986 (1)

R. E. Bird and C. Riordan, “Simple solar spectral model for direct and diffuse irradiance on horizontal and tilted planes at the earth’s surface for cloudless atmospheres,” J. Climate Appl. Meteor. 25, 87–97 (1986).
[Crossref]

1978 (1)

B. Leckner, “The spectral distribution of solar radiation at the earth’s surface—elements of a model,” Sol. Energy 20, 143–150 (1978).
[Crossref]

1964 (1)

D. B. Judd, D. L. MacAdam, G. Wyszecki, H. Budde, H. Condit, S. Henderson, and J. Simonds, “Spectral distribution of typical daylight as a function of correlated color temperature,” J. Opt. Soc. Am. A. 54, 1031–1040 (1964).
[Crossref]

Berk, A.

A. Berk, L. S. Bernstein, and D. C. Robertson, Modtran: A moderate resolution model for lowtran, Tech. Rep., DTIC Document (DTIC1987).

Bernstein, L. S.

A. Berk, L. S. Bernstein, and D. C. Robertson, Modtran: A moderate resolution model for lowtran, Tech. Rep., DTIC Document (DTIC1987).

Bird, R. E.

R. E. Bird and C. Riordan, “Simple solar spectral model for direct and diffuse irradiance on horizontal and tilted planes at the earth’s surface for cloudless atmospheres,” J. Climate Appl. Meteor. 25, 87–97 (1986).
[Crossref]

Budde, H.

D. B. Judd, D. L. MacAdam, G. Wyszecki, H. Budde, H. Condit, S. Henderson, and J. Simonds, “Spectral distribution of typical daylight as a function of correlated color temperature,” J. Opt. Soc. Am. A. 54, 1031–1040 (1964).
[Crossref]

Condit, H.

D. B. Judd, D. L. MacAdam, G. Wyszecki, H. Budde, H. Condit, S. Henderson, and J. Simonds, “Spectral distribution of typical daylight as a function of correlated color temperature,” J. Opt. Soc. Am. A. 54, 1031–1040 (1964).
[Crossref]

Danch, D.

T. Gierlinger, D. Danch, and A. Stork, “Rendering techniques for mixed reality,” J. Real-Time Image Processing 5, 109–120 (2010).
[Crossref]

Davies, J.

R. Schroeder and J. Davies, “Significance of nitrogen dioxide absorption in estimating aerosol optical depth and size distributions,” Atmosphere-Ocean 25, 107–114 (1987).
[Crossref]

DiVerdi, S.

J. Wither, S. DiVerdi, and T. Höllerer, “Annotation in outdoor augmented reality,” Comp. Graphics 33, 679–689 (2009).
[Crossref]

Dong, W.

X. Xing, W. Dong, X. Zhang, and J.-C. Paul, “Spectrally-based single image relighting,” in Entertainment for Education. Digital Techniques and Systems (Springer, 2010), pp. 509–517.
[Crossref]

Drew, M. S.

G. D. Finlayson, M. S. Drew, and C. Lu, “Entropy minimization for shadow removal,” Int. J. Comput. Vis. 85, 35–57 (2009).
[Crossref]

Efros, A. A.

J.-F. Lalonde, S. G. Narasimhan, and A. A. Efros, “What do the sun and the sky tell us about the camera?” Int. J. Comput. Vis. 88, 24–51 (2010).
[Crossref]

J.-F. Lalonde, S. G. Narasimhan, and A. A. Efros, “What does the sky tell us about the camera?” in Proc. ECCV, (Springer, 2008), pp. 354–367.

Finlayson, G. D.

G. D. Finlayson, M. S. Drew, and C. Lu, “Entropy minimization for shadow removal,” Int. J. Comput. Vis. 85, 35–57 (2009).
[Crossref]

G. D. Finlayson and S. D. Hordley, “Color constancy at a pixel,” J. Opt. Soc. Am. A 18, 253–264 (2001).
[Crossref]

Gierlinger, T.

T. Gierlinger, D. Danch, and A. Stork, “Rendering techniques for mixed reality,” J. Real-Time Image Processing 5, 109–120 (2010).
[Crossref]

Gu, J.

J. Jiang, D. Liu, J. Gu, and S. Susstrunk, “What is the space of spectral sensitivity functions for digital color cameras?,” in IEEE Workshop on Applications of Computer Vision (IEEE, 2013), pp. 168–179.

Gueymard, C.

C. Gueymard, SMARTS2: A Simple Model of the Atmospheric Radiative Transfer of Sunshine: Algorithms and Performance Assessment (Florida Solar Energy Center Cocoa, FL, 1995).

Guo, P.

L. Zhou, P. Guo, and Y. Tan, “A new way to study water-vapor absorption coefficient,” Marine Science Bulletin7 (2005).

Haber, J.

J. Haber, M. Magnor, and H.-P. Seidel, “Physically-based simulation of twilight phenomena,” ACM Trans. Graph. 24, 1353–1373 (2005).
[Crossref]

Han, Z.

Henderson, S.

D. B. Judd, D. L. MacAdam, G. Wyszecki, H. Budde, H. Condit, S. Henderson, and J. Simonds, “Spectral distribution of typical daylight as a function of correlated color temperature,” J. Opt. Soc. Am. A. 54, 1031–1040 (1964).
[Crossref]

Höllerer, T.

J. Wither, S. DiVerdi, and T. Höllerer, “Annotation in outdoor augmented reality,” Comp. Graphics 33, 679–689 (2009).
[Crossref]

Hordley, S. D.

Ikeuchi, K.

R. Kawakami, H. Zhao, R. T. Tan, and K. Ikeuchi, “Camera spectral sensitivity and white balance estimation from sky images,” Int. J. Comput. Vis. 105,187–204, 2013.
[Crossref]

Iqbal, M.

M. Iqbal, An Introduction to Solar Radiation (Elsevier, 2012).

Jacobs, N.

N. Jacobs, N. Roman, and R. Pless, “Toward fully automatic geo-location and geo-orientation of static outdoor cameras,” in IEEE Workshop on Applications of Computer Vision, (IEEE, 2008), pp. 1–6.

Jiang, J.

J. Jiang, D. Liu, J. Gu, and S. Susstrunk, “What is the space of spectral sensitivity functions for digital color cameras?,” in IEEE Workshop on Applications of Computer Vision (IEEE, 2013), pp. 168–179.

Judd, D. B.

D. B. Judd, D. L. MacAdam, G. Wyszecki, H. Budde, H. Condit, S. Henderson, and J. Simonds, “Spectral distribution of typical daylight as a function of correlated color temperature,” J. Opt. Soc. Am. A. 54, 1031–1040 (1964).
[Crossref]

Jung, J.

J. Jung, J. Lee, and I. Kweon, “One-day outdoor photometric stereo via skylight estimation,” in Proc. CVPR (IEEE, 2015), pp. 4521–4529.

Kawakami, R.

R. Kawakami, H. Zhao, R. T. Tan, and K. Ikeuchi, “Camera spectral sensitivity and white balance estimation from sky images,” Int. J. Comput. Vis. 105,187–204, 2013.
[Crossref]

Kweon, I.

J. Jung, J. Lee, and I. Kweon, “One-day outdoor photometric stereo via skylight estimation,” in Proc. CVPR (IEEE, 2015), pp. 4521–4529.

Lalonde, J.-F.

J.-F. Lalonde, S. G. Narasimhan, and A. A. Efros, “What do the sun and the sky tell us about the camera?” Int. J. Comput. Vis. 88, 24–51 (2010).
[Crossref]

J.-F. Lalonde, S. G. Narasimhan, and A. A. Efros, “What does the sky tell us about the camera?” in Proc. ECCV, (Springer, 2008), pp. 354–367.

Leckner, B.

B. Leckner, “The spectral distribution of solar radiation at the earth’s surface—elements of a model,” Sol. Energy 20, 143–150 (1978).
[Crossref]

Lee, J.

J. Jung, J. Lee, and I. Kweon, “One-day outdoor photometric stereo via skylight estimation,” in Proc. CVPR (IEEE, 2015), pp. 4521–4529.

Li, B.

D. Wu, J. Tian, B. Li, Y. Wang, and Y. Tang, “Recovering sensor spectral sensitivity from raw data,” J. Electron. Imaging 22, 023032 (2013).
[Crossref]

Liu, D.

J. Jiang, D. Liu, J. Gu, and S. Susstrunk, “What is the space of spectral sensitivity functions for digital color cameras?,” in IEEE Workshop on Applications of Computer Vision (IEEE, 2013), pp. 168–179.

Liu, Y.

Y. Liu, X. Qin, S. Xu, E. Nakamae, and Q. Peng, “Light source estimation of outdoor scenes for mixed reality,” The Visual Computer 25, 637–646 (2009).
[Crossref]

Lu, C.

G. D. Finlayson, M. S. Drew, and C. Lu, “Entropy minimization for shadow removal,” Int. J. Comput. Vis. 85, 35–57 (2009).
[Crossref]

MacAdam, D. L.

D. B. Judd, D. L. MacAdam, G. Wyszecki, H. Budde, H. Condit, S. Henderson, and J. Simonds, “Spectral distribution of typical daylight as a function of correlated color temperature,” J. Opt. Soc. Am. A. 54, 1031–1040 (1964).
[Crossref]

Magnor, M.

J. Haber, M. Magnor, and H.-P. Seidel, “Physically-based simulation of twilight phenomena,” ACM Trans. Graph. 24, 1353–1373 (2005).
[Crossref]

Matusik, W.

K. Sunkavalli, F. Romeiro, W. Matusik, T. Zickler, and H. Pfister, “What do color changes reveal about an outdoor scene?” in Proc. CVPR (IEEE, 2008), pp. 1–8.

Michalsky, J.

R. Perez, R. Seals, and J. Michalsky, “All-weather model for sky luminance distribution—preliminary configuration and validation,” Sol. Energy 50, 235–245 (1993).
[Crossref]

Nakamae, E.

Y. Liu, X. Qin, S. Xu, E. Nakamae, and Q. Peng, “Light source estimation of outdoor scenes for mixed reality,” The Visual Computer 25, 637–646 (2009).
[Crossref]

Narasimhan, S. G.

J.-F. Lalonde, S. G. Narasimhan, and A. A. Efros, “What do the sun and the sky tell us about the camera?” Int. J. Comput. Vis. 88, 24–51 (2010).
[Crossref]

J.-F. Lalonde, S. G. Narasimhan, and A. A. Efros, “What does the sky tell us about the camera?” in Proc. ECCV, (Springer, 2008), pp. 354–367.

Paul, J.-C.

X. Xing, W. Dong, X. Zhang, and J.-C. Paul, “Spectrally-based single image relighting,” in Entertainment for Education. Digital Techniques and Systems (Springer, 2010), pp. 509–517.
[Crossref]

Peng, Q.

Y. Liu, X. Qin, S. Xu, E. Nakamae, and Q. Peng, “Light source estimation of outdoor scenes for mixed reality,” The Visual Computer 25, 637–646 (2009).
[Crossref]

Perez, R.

R. Perez, R. Seals, and J. Michalsky, “All-weather model for sky luminance distribution—preliminary configuration and validation,” Sol. Energy 50, 235–245 (1993).
[Crossref]

Pfister, H.

K. Sunkavalli, F. Romeiro, W. Matusik, T. Zickler, and H. Pfister, “What do color changes reveal about an outdoor scene?” in Proc. CVPR (IEEE, 2008), pp. 1–8.

Pierluissi, J. H.

J. H. Pierluissi and C.-M. Tsai, “New lowtran models for the uniformly mixed gases,” App. Opt. 26, 616–618 (1987).
[Crossref]

Pless, R.

N. Jacobs, N. Roman, and R. Pless, “Toward fully automatic geo-location and geo-orientation of static outdoor cameras,” in IEEE Workshop on Applications of Computer Vision, (IEEE, 2008), pp. 1–6.

Prados, E.

K.-J. Yoon, E. Prados, and P. Sturm, “Joint estimation of shape and reflectance using multiple images with known illumination conditions,” Int. J. Comput. Vis. 86, 192–210 (2010).
[Crossref]

Preetham, A. J.

A. J. Preetham, P. Shirley, and B. Smits, “A practical analytic model for daylight,” in Proceedings of the 26th annual conference on Computer graphics and interactive techniques, (ACM Press/Addison-Wesley Publishing Co., 1999), pp. 91–100.

Qin, X.

Y. Liu, X. Qin, S. Xu, E. Nakamae, and Q. Peng, “Light source estimation of outdoor scenes for mixed reality,” The Visual Computer 25, 637–646 (2009).
[Crossref]

Qu, L.

Riordan, C.

R. E. Bird and C. Riordan, “Simple solar spectral model for direct and diffuse irradiance on horizontal and tilted planes at the earth’s surface for cloudless atmospheres,” J. Climate Appl. Meteor. 25, 87–97 (1986).
[Crossref]

Robertson, D. C.

A. Berk, L. S. Bernstein, and D. C. Robertson, Modtran: A moderate resolution model for lowtran, Tech. Rep., DTIC Document (DTIC1987).

Roman, N.

N. Jacobs, N. Roman, and R. Pless, “Toward fully automatic geo-location and geo-orientation of static outdoor cameras,” in IEEE Workshop on Applications of Computer Vision, (IEEE, 2008), pp. 1–6.

Romeiro, F.

K. Sunkavalli, F. Romeiro, W. Matusik, T. Zickler, and H. Pfister, “What do color changes reveal about an outdoor scene?” in Proc. CVPR (IEEE, 2008), pp. 1–8.

Schroeder, R.

R. Schroeder and J. Davies, “Significance of nitrogen dioxide absorption in estimating aerosol optical depth and size distributions,” Atmosphere-Ocean 25, 107–114 (1987).
[Crossref]

Seals, R.

R. Perez, R. Seals, and J. Michalsky, “All-weather model for sky luminance distribution—preliminary configuration and validation,” Sol. Energy 50, 235–245 (1993).
[Crossref]

Seidel, H.-P.

J. Haber, M. Magnor, and H.-P. Seidel, “Physically-based simulation of twilight phenomena,” ACM Trans. Graph. 24, 1353–1373 (2005).
[Crossref]

Shirley, P.

A. J. Preetham, P. Shirley, and B. Smits, “A practical analytic model for daylight,” in Proceedings of the 26th annual conference on Computer graphics and interactive techniques, (ACM Press/Addison-Wesley Publishing Co., 1999), pp. 91–100.

Simonds, J.

D. B. Judd, D. L. MacAdam, G. Wyszecki, H. Budde, H. Condit, S. Henderson, and J. Simonds, “Spectral distribution of typical daylight as a function of correlated color temperature,” J. Opt. Soc. Am. A. 54, 1031–1040 (1964).
[Crossref]

Smits, B.

A. J. Preetham, P. Shirley, and B. Smits, “A practical analytic model for daylight,” in Proceedings of the 26th annual conference on Computer graphics and interactive techniques, (ACM Press/Addison-Wesley Publishing Co., 1999), pp. 91–100.

Stork, A.

T. Gierlinger, D. Danch, and A. Stork, “Rendering techniques for mixed reality,” J. Real-Time Image Processing 5, 109–120 (2010).
[Crossref]

Sturm, P.

K.-J. Yoon, E. Prados, and P. Sturm, “Joint estimation of shape and reflectance using multiple images with known illumination conditions,” Int. J. Comput. Vis. 86, 192–210 (2010).
[Crossref]

Sun, J.

J. Tian, J. Sun, and Y. Tang, “Tricolor attenuation model for shadow detection,” IEEE Trans. Image Process. 18, 2355–2363 (2009).
[Crossref] [PubMed]

Sunkavalli, K.

K. Sunkavalli, F. Romeiro, W. Matusik, T. Zickler, and H. Pfister, “What do color changes reveal about an outdoor scene?” in Proc. CVPR (IEEE, 2008), pp. 1–8.

Susstrunk, S.

J. Jiang, D. Liu, J. Gu, and S. Susstrunk, “What is the space of spectral sensitivity functions for digital color cameras?,” in IEEE Workshop on Applications of Computer Vision (IEEE, 2013), pp. 168–179.

Tan, R. T.

R. Kawakami, H. Zhao, R. T. Tan, and K. Ikeuchi, “Camera spectral sensitivity and white balance estimation from sky images,” Int. J. Comput. Vis. 105,187–204, 2013.
[Crossref]

Tan, Y.

L. Zhou, P. Guo, and Y. Tan, “A new way to study water-vapor absorption coefficient,” Marine Science Bulletin7 (2005).

Tang, Y.

L. Qu, J. Tian, Z. Han, and Y. Tang, “Pixel-wise Orthogonal Decomposition for Color Illumination Invariant and Shadow-free Image,” Opt. Express 23,2220–2239, 2015.
[Crossref] [PubMed]

D. Wu, J. Tian, B. Li, Y. Wang, and Y. Tang, “Recovering sensor spectral sensitivity from raw data,” J. Electron. Imaging 22, 023032 (2013).
[Crossref]

J. Tian and Y. Tang, “Wavelength-sensitive-function controlled reflectance reconstruction,” Opt. Lett. 38, 2818–2820 (2013).
[Crossref] [PubMed]

J. Tian, J. Sun, and Y. Tang, “Tricolor attenuation model for shadow detection,” IEEE Trans. Image Process. 18, 2355–2363 (2009).
[Crossref] [PubMed]

J. Tian and Y. Tang, “Linearity of each channel pixel values from a surface in and out of shadows and its applications,” in Proc. CVPR (IEEE, 2011), pp. 985–992.

Tian, J.

L. Qu, J. Tian, Z. Han, and Y. Tang, “Pixel-wise Orthogonal Decomposition for Color Illumination Invariant and Shadow-free Image,” Opt. Express 23,2220–2239, 2015.
[Crossref] [PubMed]

D. Wu, J. Tian, B. Li, Y. Wang, and Y. Tang, “Recovering sensor spectral sensitivity from raw data,” J. Electron. Imaging 22, 023032 (2013).
[Crossref]

J. Tian and Y. Tang, “Wavelength-sensitive-function controlled reflectance reconstruction,” Opt. Lett. 38, 2818–2820 (2013).
[Crossref] [PubMed]

J. Tian, J. Sun, and Y. Tang, “Tricolor attenuation model for shadow detection,” IEEE Trans. Image Process. 18, 2355–2363 (2009).
[Crossref] [PubMed]

J. Tian and Y. Tang, “Linearity of each channel pixel values from a surface in and out of shadows and its applications,” in Proc. CVPR (IEEE, 2011), pp. 985–992.

Tsai, C.-M.

J. H. Pierluissi and C.-M. Tsai, “New lowtran models for the uniformly mixed gases,” App. Opt. 26, 616–618 (1987).
[Crossref]

Wang, Y.

D. Wu, J. Tian, B. Li, Y. Wang, and Y. Tang, “Recovering sensor spectral sensitivity from raw data,” J. Electron. Imaging 22, 023032 (2013).
[Crossref]

Wither, J.

J. Wither, S. DiVerdi, and T. Höllerer, “Annotation in outdoor augmented reality,” Comp. Graphics 33, 679–689 (2009).
[Crossref]

Wu, D.

D. Wu, J. Tian, B. Li, Y. Wang, and Y. Tang, “Recovering sensor spectral sensitivity from raw data,” J. Electron. Imaging 22, 023032 (2013).
[Crossref]

Wyszecki, G.

D. B. Judd, D. L. MacAdam, G. Wyszecki, H. Budde, H. Condit, S. Henderson, and J. Simonds, “Spectral distribution of typical daylight as a function of correlated color temperature,” J. Opt. Soc. Am. A. 54, 1031–1040 (1964).
[Crossref]

Xing, X.

X. Xing, W. Dong, X. Zhang, and J.-C. Paul, “Spectrally-based single image relighting,” in Entertainment for Education. Digital Techniques and Systems (Springer, 2010), pp. 509–517.
[Crossref]

Xu, S.

Y. Liu, X. Qin, S. Xu, E. Nakamae, and Q. Peng, “Light source estimation of outdoor scenes for mixed reality,” The Visual Computer 25, 637–646 (2009).
[Crossref]

Yoon, K.-J.

K.-J. Yoon, E. Prados, and P. Sturm, “Joint estimation of shape and reflectance using multiple images with known illumination conditions,” Int. J. Comput. Vis. 86, 192–210 (2010).
[Crossref]

Zhang, X.

X. Xing, W. Dong, X. Zhang, and J.-C. Paul, “Spectrally-based single image relighting,” in Entertainment for Education. Digital Techniques and Systems (Springer, 2010), pp. 509–517.
[Crossref]

Zhao, H.

R. Kawakami, H. Zhao, R. T. Tan, and K. Ikeuchi, “Camera spectral sensitivity and white balance estimation from sky images,” Int. J. Comput. Vis. 105,187–204, 2013.
[Crossref]

Zhou, L.

L. Zhou, P. Guo, and Y. Tan, “A new way to study water-vapor absorption coefficient,” Marine Science Bulletin7 (2005).

Zickler, T.

K. Sunkavalli, F. Romeiro, W. Matusik, T. Zickler, and H. Pfister, “What do color changes reveal about an outdoor scene?” in Proc. CVPR (IEEE, 2008), pp. 1–8.

ACM Trans. Graph. (1)

J. Haber, M. Magnor, and H.-P. Seidel, “Physically-based simulation of twilight phenomena,” ACM Trans. Graph. 24, 1353–1373 (2005).
[Crossref]

App. Opt. (1)

J. H. Pierluissi and C.-M. Tsai, “New lowtran models for the uniformly mixed gases,” App. Opt. 26, 616–618 (1987).
[Crossref]

Atmosphere-Ocean (1)

R. Schroeder and J. Davies, “Significance of nitrogen dioxide absorption in estimating aerosol optical depth and size distributions,” Atmosphere-Ocean 25, 107–114 (1987).
[Crossref]

Comp. Graphics (1)

J. Wither, S. DiVerdi, and T. Höllerer, “Annotation in outdoor augmented reality,” Comp. Graphics 33, 679–689 (2009).
[Crossref]

IEEE Trans. Image Process. (1)

J. Tian, J. Sun, and Y. Tang, “Tricolor attenuation model for shadow detection,” IEEE Trans. Image Process. 18, 2355–2363 (2009).
[Crossref] [PubMed]

Int. J. Comput. Vis. (4)

G. D. Finlayson, M. S. Drew, and C. Lu, “Entropy minimization for shadow removal,” Int. J. Comput. Vis. 85, 35–57 (2009).
[Crossref]

R. Kawakami, H. Zhao, R. T. Tan, and K. Ikeuchi, “Camera spectral sensitivity and white balance estimation from sky images,” Int. J. Comput. Vis. 105,187–204, 2013.
[Crossref]

J.-F. Lalonde, S. G. Narasimhan, and A. A. Efros, “What do the sun and the sky tell us about the camera?” Int. J. Comput. Vis. 88, 24–51 (2010).
[Crossref]

K.-J. Yoon, E. Prados, and P. Sturm, “Joint estimation of shape and reflectance using multiple images with known illumination conditions,” Int. J. Comput. Vis. 86, 192–210 (2010).
[Crossref]

J. Climate Appl. Meteor. (1)

R. E. Bird and C. Riordan, “Simple solar spectral model for direct and diffuse irradiance on horizontal and tilted planes at the earth’s surface for cloudless atmospheres,” J. Climate Appl. Meteor. 25, 87–97 (1986).
[Crossref]

J. Electron. Imaging (1)

D. Wu, J. Tian, B. Li, Y. Wang, and Y. Tang, “Recovering sensor spectral sensitivity from raw data,” J. Electron. Imaging 22, 023032 (2013).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. A. (1)

D. B. Judd, D. L. MacAdam, G. Wyszecki, H. Budde, H. Condit, S. Henderson, and J. Simonds, “Spectral distribution of typical daylight as a function of correlated color temperature,” J. Opt. Soc. Am. A. 54, 1031–1040 (1964).
[Crossref]

J. Real-Time Image Processing (1)

T. Gierlinger, D. Danch, and A. Stork, “Rendering techniques for mixed reality,” J. Real-Time Image Processing 5, 109–120 (2010).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Sol. Energy (2)

B. Leckner, “The spectral distribution of solar radiation at the earth’s surface—elements of a model,” Sol. Energy 20, 143–150 (1978).
[Crossref]

R. Perez, R. Seals, and J. Michalsky, “All-weather model for sky luminance distribution—preliminary configuration and validation,” Sol. Energy 50, 235–245 (1993).
[Crossref]

The Visual Computer (1)

Y. Liu, X. Qin, S. Xu, E. Nakamae, and Q. Peng, “Light source estimation of outdoor scenes for mixed reality,” The Visual Computer 25, 637–646 (2009).
[Crossref]

Other (13)

K. Sunkavalli, F. Romeiro, W. Matusik, T. Zickler, and H. Pfister, “What do color changes reveal about an outdoor scene?” in Proc. CVPR (IEEE, 2008), pp. 1–8.

X. Xing, W. Dong, X. Zhang, and J.-C. Paul, “Spectrally-based single image relighting,” in Entertainment for Education. Digital Techniques and Systems (Springer, 2010), pp. 509–517.
[Crossref]

A. J. Preetham, P. Shirley, and B. Smits, “A practical analytic model for daylight,” in Proceedings of the 26th annual conference on Computer graphics and interactive techniques, (ACM Press/Addison-Wesley Publishing Co., 1999), pp. 91–100.

J. Jung, J. Lee, and I. Kweon, “One-day outdoor photometric stereo via skylight estimation,” in Proc. CVPR (IEEE, 2015), pp. 4521–4529.

International Electrotechnical Commission, Multimedia systems and equipment - Colour measurement and management - Part 2-1: Colour management - Default RGB colour space - sRGB, Tech. Rep. IEC 619966-2-1(1999).

C. Gueymard, SMARTS2: A Simple Model of the Atmospheric Radiative Transfer of Sunshine: Algorithms and Performance Assessment (Florida Solar Energy Center Cocoa, FL, 1995).

A. Berk, L. S. Bernstein, and D. C. Robertson, Modtran: A moderate resolution model for lowtran, Tech. Rep., DTIC Document (DTIC1987).

L. Zhou, P. Guo, and Y. Tan, “A new way to study water-vapor absorption coefficient,” Marine Science Bulletin7 (2005).

M. Iqbal, An Introduction to Solar Radiation (Elsevier, 2012).

J. Jiang, D. Liu, J. Gu, and S. Susstrunk, “What is the space of spectral sensitivity functions for digital color cameras?,” in IEEE Workshop on Applications of Computer Vision (IEEE, 2013), pp. 168–179.

J. Tian and Y. Tang, “Linearity of each channel pixel values from a surface in and out of shadows and its applications,” in Proc. CVPR (IEEE, 2011), pp. 985–992.

N. Jacobs, N. Roman, and R. Pless, “Toward fully automatic geo-location and geo-orientation of static outdoor cameras,” in IEEE Workshop on Applications of Computer Vision, (IEEE, 2008), pp. 1–6.

J.-F. Lalonde, S. G. Narasimhan, and A. A. Efros, “What does the sky tell us about the camera?” in Proc. ECCV, (Springer, 2008), pp. 354–367.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (19)

Fig. 1
Fig. 1

Outdoor appearances vary with time and air conditions.

Fig. 2
Fig. 2

Illustration of the image formation procedure.

Fig. 3
Fig. 3

New attenuation and transmittance expressions of water vapor and uniformly mixed gases produce good results as the original expressions.

Fig. 4
Fig. 4

Total absorption coefficient.

Fig. 5
Fig. 5

The SPD of extraterrestrial irradiance reported by World Radiation Center and that after absorption at air mass equals to 2.

Fig. 6
Fig. 6

Schematic diagram of the solar radiation onto the Earth surface.

Fig. 7
Fig. 7

Comparison of the calculated SPDs by our method and by Bird’s method [22] and SMARTS2 method [20] at different zenith angles for β = 0.1. From top to bottom, the zenith angle equals to 20, 30,…,80 degree, respectively. The x-coordinate denotes wavelength (nm) and the y-coordinate denotes irradiance power(W·m2·nm1). The 2nd column shows simulated Xrite colorchecker appearances under sunlight and the 4th column is that under skylight. Upper: Our; Middle: Bird’s; Lower: SMARTS2. The last column is pixel value differences (percent). A: Direct sunlight compared with Bird’s method. B: Direct sunlight compared with SMARTS2 method. C: Diffuse skylight compared with Bird’s method. D: Diffuse skylight compared with SMARTS2 method.

Fig. 8
Fig. 8

Comparisons of the calculated SPDs by our method and those by Bird’s method [22] and SMARTS2 method [20] under different turbidities. From top to bottom are β = 0, β = 0.2, and β = 0.3, respectively.

Fig. 9
Fig. 9

Using blackbody radiation to approximate the true extraterrestrial data. The right image is the close-up view of the left one.

Fig. 10
Fig. 10

CIE Chromaticity of sunlight, skylight, and daylight are compared with Planckian locus formed by color temperatures from 1000k to 500000k.

Fig. 11
Fig. 11

Compared with Preetham model. Left: at 30 degree zenith angle. Right: at 60 degree zenith angle.

Fig. 12
Fig. 12

A 24 color checker image captured by a Canon 5D Mark II camera under skylight and its corresponding spectral reflectance.

Fig. 13
Fig. 13

The recovered skylight spectrum and the recovered CSS of Canon 5D Mark II. In the second figure, M and E are the abbreviations of ”Measured” and ”Estimated”, respectively.

Fig. 14
Fig. 14

Our SPD calculation method can predict KH in shadowed images.

Fig. 15
Fig. 15

Intrinsic image result. Left: Original image; middle: Grayscale intrinsic image; right: Color intrinsic image.

Fig. 16
Fig. 16

More accurate estimation of KH can produce better intrinsic image results. Left: Original images; middle: Intrinsic image results using KH calculated by Eq. (29) and the SPDs calculation method proposed in this paper. right: Intrinsic image results using KH introduced in [31] that is calculated from the mean value of some real measured SPDs.

Fig. 17
Fig. 17

Converting illumination from skylight to daylight. Left: Image illuminated by skylight; Middle: The image with illumination converted to daylight. Right: The real image captured in daylight.

Fig. 18
Fig. 18

Errors between the converted image and the real captured one.

Fig. 19
Fig. 19

Two more results of image lighting conversions. Left: Original images; Right: converted images.

Tables (4)

Tables Icon

Table 1 Proportion of the scattered light that can reach the ground with different zenith angles

Tables Icon

Table 2 Comparison of the formula expressions of our methods with those of SMARTS2 and Bird’s method

Tables Icon

Table 3 The calculated KH at different sun angles and under different turbidities

Tables Icon

Table 4 Our proposed total absorption coefficient.

Equations (36)

Equations on this page are rendered with MathJax. Learn more.

F H = 400 700 E ( λ ) S ( λ ) Q H ( λ ) d λ
E i n = E o λ T o λ T N λ T w λ T u λ
T o λ = exp ( 0.35 a o λ m ) ( R e f e r t o [ 24 ] )
T N λ = exp ( 0.0016 a n λ m ) ( R e f e r t o [ 20 , 25 ] )
T w λ = exp [ 0.2385 a w λ W m / ( 1 + 20.07 a w λ W m ) 0.45 ]
T u λ = exp [ 1.41 a u λ m / ( 1 + 118.93 a u λ m ) 0.45 ]
m = sec ( θ )
T w λ ( a w λ + ε a u λ | m ) = T w λ ( a w λ | m ) T u λ ( a u λ | m )
ε = a r g m i n m T w λ T u λ T w λ ( a w λ + ε a u λ ) 2
T w λ ( a w λ + 4.3 a u λ ) T w λ T u λ
T w λ = exp [ 0.2385 a w λ W m / ( 1 + 20.07 a w λ W m ) 0.45 ]
T w λ n e w = exp [ p ( a w λ ) q m ]
p , q = a r g m i n m p ( a w λ ) q m log ( T w λ ) 2
T w λ n e w = exp [ 0.055 ( a w λ ) 0.56 m ]
E i n = E o λ T λ
T λ = exp ( τ ( λ ) m )
τ ( λ ) = 0.35 a o λ + 0.0016 a n λ + 0.055 a w λ 0.56
E d λ = E i n T r λ T a λ
T r λ = exp ( 0.008735 λ 4.08 m )
T a λ = exp ( β λ α m )
E s λ = E i n cos ( θ ) ( 1 T r λ T a λ ) κ
F H = 400 700 E s λ S ( λ ) Q H ( λ ) d λ .
F H = 400 700 E s λ S ( λ ) Q H ( λ ) d λ .
Δ E L a b = Δ L 2 + Δ a 2 + Δ b 2
κ = a r g m i n Δ E L a b
F H = 400 700 E ( θ , T , λ ) S ( λ ) Q H ( λ ) d λ , H = R , G , B
n = 1 24 F H n λ E ( θ , T ) S n [ σ H C H ] , H = R , G , B
F H f H = 400 700 E d a y ( θ , T , λ ) S ( λ ) Q H ( λ ) d λ 400 700 E s k y ( θ , T , λ ) S ( λ ) Q H ( λ ) d λ = K H
E d a y ( θ , T , λ ) = E s u n ( θ , T , λ ) cos θ + E s k y ( θ , T , λ ) .
log ( F H + 14 ) = log ( K H ) 2.4 + log ( f H + 14 )
log ( F R + 14 ) + log ( F G + 14 ) β 1 log ( F B + 14 ) = log ( f R + 14 ) + log ( f G + 14 ) β 1 log ( f B + 14 )
β 1 = log ( K R ) + log ( K G ) log ( K B )
I 1 = log ( F R + 14 ) + log ( F G + 14 ) β 1 log ( F B + 14 ) = log ( f R + 14 ) + log ( f G + 14 ) β 1 log ( f B + 14 ) = log ( v R + 14 ) + log ( v G + 14 ) β 1 log ( v B + 14 )
I 2 = log ( F R + 14 ) β 2 log ( F G + 14 ) + log ( F B + 14 ) = log ( f R + 14 ) β 2 log ( f G + 14 ) + log ( f B + 14 ) = log ( v R + 14 ) β 2 log ( v G + 14 ) + log ( v B + 14 )
I 3 = β 3 log ( F R + 14 ) + log ( F G + 14 ) + log ( F B + 14 ) = β 3 log ( f R + 14 ) + log ( f G + 14 ) + log ( f B + 14 ) = β 3 log ( v R + 14 ) + log ( v G + 14 ) + log ( v B + 14 )
β 2 = log ( K R ) + log ( K B ) log ( K G ) , β 3 = log ( K G ) log ( K B ) log ( K R )

Metrics