Abstract

High power and high brightness mid-infrared GaSb based lasers are desired for many applications, however, the high lateral divergence is still the influence factor for practical application. In this paper, a simple and effective approach based on the fishbone-shape microstructure was proposed, the effective improvement on both the lateral divergence and output power of 2 μm GaSb based broad-area lasers was demonstrated. The lateral divergence is reduced averagely by 55% and 15.8° for 95% power content is realized. The continuous-wave emission power is increased about 19% with the decreased threshold current. The other merits for this microstructure are the unchanged intrinsic characteristic of broad-area lasers and the low cost fabrication.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Spatial and temporal coherence of broad-area lasers with grating feedback

Ming-Wei Pan, Daniel J. Evans, George R. Gray, Lee M. Smith, Robert E. Benner, Carl W. Johnson, and Daniel D. Knowlton
J. Opt. Soc. Am. B 15(10) 2531-2536 (1998)

Interband cascade lasers with AlGaAsSb bulk cladding layers

Robert Weih, Adam Bauer, Martin Kamp, and Sven Höfling
Opt. Mater. Express 3(10) 1624-1631 (2013)

Mid-infrared W quantum-well lasers for noncryogenic continuous-wave operation

Christopher L. Felix, William W. Bewley, Igor Vurgaftman, Robert E. Bartolo, Donna W. Stokes, Jerry R. Meyer, Ming-Jey Yang, Hao Lee, Ray J. Menna, Ramon U. Martinelli, Dmitri Z. Garbuzov, John C. Connolly, Michael Maiorov, Alan R. Sugg, and Greg H. Olsen
Appl. Opt. 40(6) 806-811 (2001)

References

  • View by:
  • |
  • |
  • |

  1. S. Karsten, L. Samir, K. Philpp, and F. Peter, “2µm laser sources and their possible applications,” in Frontiers in Guided Wave Optics and Optoelectronics, P. Bishnu, ed. (Intech, 2010).
  2. Q. Gaimard, M. Triki, T. Nguyen-Ba, L. Cerutti, G. Boissier, R. Teissier, A. Baranov, Y. Rouillard, and A. Vicet, “Distributed feedback GaSb based laser diodes with buried grating: a new field of single-frequency sources from 2 to 3 µm for gas sensing applications,” Opt. Express 23(15), 19118–19128 (2015).
    [Crossref] [PubMed]
  3. E. Geerlings, M. Rattunde, J. Schmitz, G. Kaufel, H. Zappe, and J. Wagner, “Widely tunable GaSb-based external cavity diode laser emitting around 2.3 μm,” IEEE Photonics Technol. Lett. 18(18), 1913–1915 (2006).
    [Crossref]
  4. G. Belenky, L. Shterengas, J. G. Kim, R. Martinelli, S. Suchalkin, and M. Kisin, “GaSb-based lasers for spectral region 2–4 μm: challenges and limitations,” Proc. SPIE 5732, 169–174 (2005).
    [Crossref]
  5. Y. Rouillard, F. Genty, A. Perona, A. Vicet, D. A. Yarekha, G. Boissier, P. Grech, A. N. Baranov, and C. Alibert, “Edge and vertical surface emitting lasers around 2.0–2.5 μm and their applications,” Philos. Trans. A 359(1780), 581–597 (2001).
    [Crossref]
  6. M. Muller, M. Rattunde, G. Kaufel, J. Schmitz, and J. Wagner, “Short-pulse high-power operation of GaSb-based diode lasers,” IEEE Photonics Technol. Lett. 21(23), 1770–1772 (2009).
    [Crossref]
  7. A. Gassenq, T. Taliercio, L. Cerutti, A. N. Baranov, and E. Tournie, “Mid-IR lasing from highly tensile-strained, type II, GaInAs/GaSb quantum wells,” Electron. Lett. 45(25), 1320–1321 (2009).
    [Crossref]
  8. M. Rattunde, J. Schmitz, G. Kaufel, M. Kelemen, J. Weber, and J. Wagner, “GaSb-based 2.X μm quantum-well diode lasers with low beam divergence and high output power,” Appl. Phys. Lett. 88(8), 081115 (2006).
    [Crossref]
  9. S. Jung, G. Kipshidze, R. Liang, S. Suchalkin, L. Shterengas, and G. Belenky, “Gasb-based mid-infrared single lateral mode lasers fabricated by selective wet etching technique with an etch stop layer,” J. Electron. Mater. 41(5), 899–904 (2012).
    [Crossref]
  10. R. B. Swint, T. S. Yeoh, V. C. Elarde, J. J. Coleman, and M. S. Zediker, “Curved waveguides for spatial mode filters in semiconductor lasers,” IEEE Photonics Technol. Lett. 16(1), 12–14 (2004).
    [Crossref]
  11. H. Wenzel, P. Crump, J. Fricke, P. Ressel, and G. Erbert, “Suppression of higher-order lateral modes in broad-area diode lasers by resonant anti-guiding,” IEEE J. Quantum Electron. 49(12), 1102–1108 (2013).
    [Crossref]
  12. M. T. Cha and R. Gordon, “Spatially filtered feedback for mode control in vertical-cavity surface-emitting lasers,” J. Lightwave Technol. 26(24), 3893–3900 (2008).
    [Crossref]
  13. M. Lichtner, V. Z. Tronciu, and A. G. Vladimirov, “Theoretical investigation of striped and non-striped broad area lasers with off-axis feedback,” IEEE J. Quantum Electron. 48(3), 353–360 (2012).
    [Crossref]
  14. H. Wenzel, E. Bugge, M. Dallmer, F. Dittmar, J. Fricke, K. H. Hasler, and G. Erbert, “Fundamental-lateral mode stabilized high-power ridge-waveguide lasers with a low beam divergence,” IEEE Photonics Technol. Lett. 20(3), 214–216 (2008).
    [Crossref]
  15. H. K. Choi, J. N. Walpole, G. W. Turner, M. K. Conners, L. J. Missaggia, and M. J. Manfra, “GaInAsSb–AlGaAsSb tapered lasers emitting at 2.05 μm with 0.6 W diffraction-limited power,” IEEE Photonics Technol. Lett. 10(7), 938–940 (1998).
    [Crossref]
  16. P. Crump, P. Leisher, T. Matson, V. Anderson, D. Schulte, J. Bell, J. Farmer, M. DeVito, R. Martinsen, Y. K. Kim, K. D. Choquette, G. Erbert, and G. Tränkle, “Control of optical mode distribution through etched microstructures for improved broad area laser performance,” Appl. Phys. Lett. 92(13), 131113 (2008).
    [Crossref]
  17. S. Forouhar, R. M. Briggs, C. Frez, K. J. Franz, and A. Ksendzov, “High-power laterally coupled distributed-feedback GaSb-based diode lasers at 2 μm wavelength,” Appl. Phys. Lett. 100(3), 031107 (2012).
    [Crossref]
  18. M. T. Kelemen, J. Weber, M. Mikulla, and G. Weimann, “High-power high-brightness tapered diode lasers and amplifiers,” Proc. SPIE 5723, 198–208 (2005).
    [Crossref]
  19. J. Hecht, “Bringing high brightness to high-power laser diodes,” Laser Focus World 47(11), 43–46 (2011).
  20. V. P. Kalosha, K. Posilovic, and D. Bimberg, “Lateral-Longitudinal modes of high-power inhomogeneous waveguide lasers,” IEEE J. Quantum Electron. 48(2), 123–128 (2012).
    [Crossref]
  21. P. Crump, S. Boldicke, C. M. Schultz, H. Ekhteraei, H. Wenzel, and G. Erbert, “Experimental and theoretical analysis of the dominant lateral waveguiding mechanism in 975 nm high power broad area diode lasers,” Semicond. Sci. Technol. 27(4), 045001 (2012).
    [Crossref]
  22. A. F. Jonathan, A. B. Mikhail, and C. Federico, “Wide-ridge metal-metal terahertz quantum cascade lasers with high-order lateral mode suppression,” Appl. Phys. Lett. 92(3), 031106 (2008).
    [Crossref]
  23. P. Crump, M. Ekterai, C. M. Schultz, G. Erbert, and G. Tränkle, “Studies of limitations to lateral brightness in high power diode lasers using spectrally-resolved mode profiles,” in Proceedings of IEEE International Semiconductor Laser Conference (IEEE, 2014), pp. 23–24.
    [Crossref]

2015 (1)

2013 (1)

H. Wenzel, P. Crump, J. Fricke, P. Ressel, and G. Erbert, “Suppression of higher-order lateral modes in broad-area diode lasers by resonant anti-guiding,” IEEE J. Quantum Electron. 49(12), 1102–1108 (2013).
[Crossref]

2012 (5)

M. Lichtner, V. Z. Tronciu, and A. G. Vladimirov, “Theoretical investigation of striped and non-striped broad area lasers with off-axis feedback,” IEEE J. Quantum Electron. 48(3), 353–360 (2012).
[Crossref]

S. Forouhar, R. M. Briggs, C. Frez, K. J. Franz, and A. Ksendzov, “High-power laterally coupled distributed-feedback GaSb-based diode lasers at 2 μm wavelength,” Appl. Phys. Lett. 100(3), 031107 (2012).
[Crossref]

S. Jung, G. Kipshidze, R. Liang, S. Suchalkin, L. Shterengas, and G. Belenky, “Gasb-based mid-infrared single lateral mode lasers fabricated by selective wet etching technique with an etch stop layer,” J. Electron. Mater. 41(5), 899–904 (2012).
[Crossref]

V. P. Kalosha, K. Posilovic, and D. Bimberg, “Lateral-Longitudinal modes of high-power inhomogeneous waveguide lasers,” IEEE J. Quantum Electron. 48(2), 123–128 (2012).
[Crossref]

P. Crump, S. Boldicke, C. M. Schultz, H. Ekhteraei, H. Wenzel, and G. Erbert, “Experimental and theoretical analysis of the dominant lateral waveguiding mechanism in 975 nm high power broad area diode lasers,” Semicond. Sci. Technol. 27(4), 045001 (2012).
[Crossref]

2011 (1)

J. Hecht, “Bringing high brightness to high-power laser diodes,” Laser Focus World 47(11), 43–46 (2011).

2009 (2)

M. Muller, M. Rattunde, G. Kaufel, J. Schmitz, and J. Wagner, “Short-pulse high-power operation of GaSb-based diode lasers,” IEEE Photonics Technol. Lett. 21(23), 1770–1772 (2009).
[Crossref]

A. Gassenq, T. Taliercio, L. Cerutti, A. N. Baranov, and E. Tournie, “Mid-IR lasing from highly tensile-strained, type II, GaInAs/GaSb quantum wells,” Electron. Lett. 45(25), 1320–1321 (2009).
[Crossref]

2008 (4)

P. Crump, P. Leisher, T. Matson, V. Anderson, D. Schulte, J. Bell, J. Farmer, M. DeVito, R. Martinsen, Y. K. Kim, K. D. Choquette, G. Erbert, and G. Tränkle, “Control of optical mode distribution through etched microstructures for improved broad area laser performance,” Appl. Phys. Lett. 92(13), 131113 (2008).
[Crossref]

H. Wenzel, E. Bugge, M. Dallmer, F. Dittmar, J. Fricke, K. H. Hasler, and G. Erbert, “Fundamental-lateral mode stabilized high-power ridge-waveguide lasers with a low beam divergence,” IEEE Photonics Technol. Lett. 20(3), 214–216 (2008).
[Crossref]

M. T. Cha and R. Gordon, “Spatially filtered feedback for mode control in vertical-cavity surface-emitting lasers,” J. Lightwave Technol. 26(24), 3893–3900 (2008).
[Crossref]

A. F. Jonathan, A. B. Mikhail, and C. Federico, “Wide-ridge metal-metal terahertz quantum cascade lasers with high-order lateral mode suppression,” Appl. Phys. Lett. 92(3), 031106 (2008).
[Crossref]

2006 (2)

M. Rattunde, J. Schmitz, G. Kaufel, M. Kelemen, J. Weber, and J. Wagner, “GaSb-based 2.X μm quantum-well diode lasers with low beam divergence and high output power,” Appl. Phys. Lett. 88(8), 081115 (2006).
[Crossref]

E. Geerlings, M. Rattunde, J. Schmitz, G. Kaufel, H. Zappe, and J. Wagner, “Widely tunable GaSb-based external cavity diode laser emitting around 2.3 μm,” IEEE Photonics Technol. Lett. 18(18), 1913–1915 (2006).
[Crossref]

2005 (2)

G. Belenky, L. Shterengas, J. G. Kim, R. Martinelli, S. Suchalkin, and M. Kisin, “GaSb-based lasers for spectral region 2–4 μm: challenges and limitations,” Proc. SPIE 5732, 169–174 (2005).
[Crossref]

M. T. Kelemen, J. Weber, M. Mikulla, and G. Weimann, “High-power high-brightness tapered diode lasers and amplifiers,” Proc. SPIE 5723, 198–208 (2005).
[Crossref]

2004 (1)

R. B. Swint, T. S. Yeoh, V. C. Elarde, J. J. Coleman, and M. S. Zediker, “Curved waveguides for spatial mode filters in semiconductor lasers,” IEEE Photonics Technol. Lett. 16(1), 12–14 (2004).
[Crossref]

2001 (1)

Y. Rouillard, F. Genty, A. Perona, A. Vicet, D. A. Yarekha, G. Boissier, P. Grech, A. N. Baranov, and C. Alibert, “Edge and vertical surface emitting lasers around 2.0–2.5 μm and their applications,” Philos. Trans. A 359(1780), 581–597 (2001).
[Crossref]

1998 (1)

H. K. Choi, J. N. Walpole, G. W. Turner, M. K. Conners, L. J. Missaggia, and M. J. Manfra, “GaInAsSb–AlGaAsSb tapered lasers emitting at 2.05 μm with 0.6 W diffraction-limited power,” IEEE Photonics Technol. Lett. 10(7), 938–940 (1998).
[Crossref]

Alibert, C.

Y. Rouillard, F. Genty, A. Perona, A. Vicet, D. A. Yarekha, G. Boissier, P. Grech, A. N. Baranov, and C. Alibert, “Edge and vertical surface emitting lasers around 2.0–2.5 μm and their applications,” Philos. Trans. A 359(1780), 581–597 (2001).
[Crossref]

Anderson, V.

P. Crump, P. Leisher, T. Matson, V. Anderson, D. Schulte, J. Bell, J. Farmer, M. DeVito, R. Martinsen, Y. K. Kim, K. D. Choquette, G. Erbert, and G. Tränkle, “Control of optical mode distribution through etched microstructures for improved broad area laser performance,” Appl. Phys. Lett. 92(13), 131113 (2008).
[Crossref]

Baranov, A.

Baranov, A. N.

A. Gassenq, T. Taliercio, L. Cerutti, A. N. Baranov, and E. Tournie, “Mid-IR lasing from highly tensile-strained, type II, GaInAs/GaSb quantum wells,” Electron. Lett. 45(25), 1320–1321 (2009).
[Crossref]

Y. Rouillard, F. Genty, A. Perona, A. Vicet, D. A. Yarekha, G. Boissier, P. Grech, A. N. Baranov, and C. Alibert, “Edge and vertical surface emitting lasers around 2.0–2.5 μm and their applications,” Philos. Trans. A 359(1780), 581–597 (2001).
[Crossref]

Belenky, G.

S. Jung, G. Kipshidze, R. Liang, S. Suchalkin, L. Shterengas, and G. Belenky, “Gasb-based mid-infrared single lateral mode lasers fabricated by selective wet etching technique with an etch stop layer,” J. Electron. Mater. 41(5), 899–904 (2012).
[Crossref]

G. Belenky, L. Shterengas, J. G. Kim, R. Martinelli, S. Suchalkin, and M. Kisin, “GaSb-based lasers for spectral region 2–4 μm: challenges and limitations,” Proc. SPIE 5732, 169–174 (2005).
[Crossref]

Bell, J.

P. Crump, P. Leisher, T. Matson, V. Anderson, D. Schulte, J. Bell, J. Farmer, M. DeVito, R. Martinsen, Y. K. Kim, K. D. Choquette, G. Erbert, and G. Tränkle, “Control of optical mode distribution through etched microstructures for improved broad area laser performance,” Appl. Phys. Lett. 92(13), 131113 (2008).
[Crossref]

Bimberg, D.

V. P. Kalosha, K. Posilovic, and D. Bimberg, “Lateral-Longitudinal modes of high-power inhomogeneous waveguide lasers,” IEEE J. Quantum Electron. 48(2), 123–128 (2012).
[Crossref]

Boissier, G.

Q. Gaimard, M. Triki, T. Nguyen-Ba, L. Cerutti, G. Boissier, R. Teissier, A. Baranov, Y. Rouillard, and A. Vicet, “Distributed feedback GaSb based laser diodes with buried grating: a new field of single-frequency sources from 2 to 3 µm for gas sensing applications,” Opt. Express 23(15), 19118–19128 (2015).
[Crossref] [PubMed]

Y. Rouillard, F. Genty, A. Perona, A. Vicet, D. A. Yarekha, G. Boissier, P. Grech, A. N. Baranov, and C. Alibert, “Edge and vertical surface emitting lasers around 2.0–2.5 μm and their applications,” Philos. Trans. A 359(1780), 581–597 (2001).
[Crossref]

Boldicke, S.

P. Crump, S. Boldicke, C. M. Schultz, H. Ekhteraei, H. Wenzel, and G. Erbert, “Experimental and theoretical analysis of the dominant lateral waveguiding mechanism in 975 nm high power broad area diode lasers,” Semicond. Sci. Technol. 27(4), 045001 (2012).
[Crossref]

Briggs, R. M.

S. Forouhar, R. M. Briggs, C. Frez, K. J. Franz, and A. Ksendzov, “High-power laterally coupled distributed-feedback GaSb-based diode lasers at 2 μm wavelength,” Appl. Phys. Lett. 100(3), 031107 (2012).
[Crossref]

Bugge, E.

H. Wenzel, E. Bugge, M. Dallmer, F. Dittmar, J. Fricke, K. H. Hasler, and G. Erbert, “Fundamental-lateral mode stabilized high-power ridge-waveguide lasers with a low beam divergence,” IEEE Photonics Technol. Lett. 20(3), 214–216 (2008).
[Crossref]

Cerutti, L.

Cha, M. T.

Choi, H. K.

H. K. Choi, J. N. Walpole, G. W. Turner, M. K. Conners, L. J. Missaggia, and M. J. Manfra, “GaInAsSb–AlGaAsSb tapered lasers emitting at 2.05 μm with 0.6 W diffraction-limited power,” IEEE Photonics Technol. Lett. 10(7), 938–940 (1998).
[Crossref]

Choquette, K. D.

P. Crump, P. Leisher, T. Matson, V. Anderson, D. Schulte, J. Bell, J. Farmer, M. DeVito, R. Martinsen, Y. K. Kim, K. D. Choquette, G. Erbert, and G. Tränkle, “Control of optical mode distribution through etched microstructures for improved broad area laser performance,” Appl. Phys. Lett. 92(13), 131113 (2008).
[Crossref]

Coleman, J. J.

R. B. Swint, T. S. Yeoh, V. C. Elarde, J. J. Coleman, and M. S. Zediker, “Curved waveguides for spatial mode filters in semiconductor lasers,” IEEE Photonics Technol. Lett. 16(1), 12–14 (2004).
[Crossref]

Conners, M. K.

H. K. Choi, J. N. Walpole, G. W. Turner, M. K. Conners, L. J. Missaggia, and M. J. Manfra, “GaInAsSb–AlGaAsSb tapered lasers emitting at 2.05 μm with 0.6 W diffraction-limited power,” IEEE Photonics Technol. Lett. 10(7), 938–940 (1998).
[Crossref]

Crump, P.

H. Wenzel, P. Crump, J. Fricke, P. Ressel, and G. Erbert, “Suppression of higher-order lateral modes in broad-area diode lasers by resonant anti-guiding,” IEEE J. Quantum Electron. 49(12), 1102–1108 (2013).
[Crossref]

P. Crump, S. Boldicke, C. M. Schultz, H. Ekhteraei, H. Wenzel, and G. Erbert, “Experimental and theoretical analysis of the dominant lateral waveguiding mechanism in 975 nm high power broad area diode lasers,” Semicond. Sci. Technol. 27(4), 045001 (2012).
[Crossref]

P. Crump, P. Leisher, T. Matson, V. Anderson, D. Schulte, J. Bell, J. Farmer, M. DeVito, R. Martinsen, Y. K. Kim, K. D. Choquette, G. Erbert, and G. Tränkle, “Control of optical mode distribution through etched microstructures for improved broad area laser performance,” Appl. Phys. Lett. 92(13), 131113 (2008).
[Crossref]

P. Crump, M. Ekterai, C. M. Schultz, G. Erbert, and G. Tränkle, “Studies of limitations to lateral brightness in high power diode lasers using spectrally-resolved mode profiles,” in Proceedings of IEEE International Semiconductor Laser Conference (IEEE, 2014), pp. 23–24.
[Crossref]

Dallmer, M.

H. Wenzel, E. Bugge, M. Dallmer, F. Dittmar, J. Fricke, K. H. Hasler, and G. Erbert, “Fundamental-lateral mode stabilized high-power ridge-waveguide lasers with a low beam divergence,” IEEE Photonics Technol. Lett. 20(3), 214–216 (2008).
[Crossref]

DeVito, M.

P. Crump, P. Leisher, T. Matson, V. Anderson, D. Schulte, J. Bell, J. Farmer, M. DeVito, R. Martinsen, Y. K. Kim, K. D. Choquette, G. Erbert, and G. Tränkle, “Control of optical mode distribution through etched microstructures for improved broad area laser performance,” Appl. Phys. Lett. 92(13), 131113 (2008).
[Crossref]

Dittmar, F.

H. Wenzel, E. Bugge, M. Dallmer, F. Dittmar, J. Fricke, K. H. Hasler, and G. Erbert, “Fundamental-lateral mode stabilized high-power ridge-waveguide lasers with a low beam divergence,” IEEE Photonics Technol. Lett. 20(3), 214–216 (2008).
[Crossref]

Ekhteraei, H.

P. Crump, S. Boldicke, C. M. Schultz, H. Ekhteraei, H. Wenzel, and G. Erbert, “Experimental and theoretical analysis of the dominant lateral waveguiding mechanism in 975 nm high power broad area diode lasers,” Semicond. Sci. Technol. 27(4), 045001 (2012).
[Crossref]

Ekterai, M.

P. Crump, M. Ekterai, C. M. Schultz, G. Erbert, and G. Tränkle, “Studies of limitations to lateral brightness in high power diode lasers using spectrally-resolved mode profiles,” in Proceedings of IEEE International Semiconductor Laser Conference (IEEE, 2014), pp. 23–24.
[Crossref]

Elarde, V. C.

R. B. Swint, T. S. Yeoh, V. C. Elarde, J. J. Coleman, and M. S. Zediker, “Curved waveguides for spatial mode filters in semiconductor lasers,” IEEE Photonics Technol. Lett. 16(1), 12–14 (2004).
[Crossref]

Erbert, G.

H. Wenzel, P. Crump, J. Fricke, P. Ressel, and G. Erbert, “Suppression of higher-order lateral modes in broad-area diode lasers by resonant anti-guiding,” IEEE J. Quantum Electron. 49(12), 1102–1108 (2013).
[Crossref]

P. Crump, S. Boldicke, C. M. Schultz, H. Ekhteraei, H. Wenzel, and G. Erbert, “Experimental and theoretical analysis of the dominant lateral waveguiding mechanism in 975 nm high power broad area diode lasers,” Semicond. Sci. Technol. 27(4), 045001 (2012).
[Crossref]

P. Crump, P. Leisher, T. Matson, V. Anderson, D. Schulte, J. Bell, J. Farmer, M. DeVito, R. Martinsen, Y. K. Kim, K. D. Choquette, G. Erbert, and G. Tränkle, “Control of optical mode distribution through etched microstructures for improved broad area laser performance,” Appl. Phys. Lett. 92(13), 131113 (2008).
[Crossref]

H. Wenzel, E. Bugge, M. Dallmer, F. Dittmar, J. Fricke, K. H. Hasler, and G. Erbert, “Fundamental-lateral mode stabilized high-power ridge-waveguide lasers with a low beam divergence,” IEEE Photonics Technol. Lett. 20(3), 214–216 (2008).
[Crossref]

P. Crump, M. Ekterai, C. M. Schultz, G. Erbert, and G. Tränkle, “Studies of limitations to lateral brightness in high power diode lasers using spectrally-resolved mode profiles,” in Proceedings of IEEE International Semiconductor Laser Conference (IEEE, 2014), pp. 23–24.
[Crossref]

Farmer, J.

P. Crump, P. Leisher, T. Matson, V. Anderson, D. Schulte, J. Bell, J. Farmer, M. DeVito, R. Martinsen, Y. K. Kim, K. D. Choquette, G. Erbert, and G. Tränkle, “Control of optical mode distribution through etched microstructures for improved broad area laser performance,” Appl. Phys. Lett. 92(13), 131113 (2008).
[Crossref]

Federico, C.

A. F. Jonathan, A. B. Mikhail, and C. Federico, “Wide-ridge metal-metal terahertz quantum cascade lasers with high-order lateral mode suppression,” Appl. Phys. Lett. 92(3), 031106 (2008).
[Crossref]

Forouhar, S.

S. Forouhar, R. M. Briggs, C. Frez, K. J. Franz, and A. Ksendzov, “High-power laterally coupled distributed-feedback GaSb-based diode lasers at 2 μm wavelength,” Appl. Phys. Lett. 100(3), 031107 (2012).
[Crossref]

Franz, K. J.

S. Forouhar, R. M. Briggs, C. Frez, K. J. Franz, and A. Ksendzov, “High-power laterally coupled distributed-feedback GaSb-based diode lasers at 2 μm wavelength,” Appl. Phys. Lett. 100(3), 031107 (2012).
[Crossref]

Frez, C.

S. Forouhar, R. M. Briggs, C. Frez, K. J. Franz, and A. Ksendzov, “High-power laterally coupled distributed-feedback GaSb-based diode lasers at 2 μm wavelength,” Appl. Phys. Lett. 100(3), 031107 (2012).
[Crossref]

Fricke, J.

H. Wenzel, P. Crump, J. Fricke, P. Ressel, and G. Erbert, “Suppression of higher-order lateral modes in broad-area diode lasers by resonant anti-guiding,” IEEE J. Quantum Electron. 49(12), 1102–1108 (2013).
[Crossref]

H. Wenzel, E. Bugge, M. Dallmer, F. Dittmar, J. Fricke, K. H. Hasler, and G. Erbert, “Fundamental-lateral mode stabilized high-power ridge-waveguide lasers with a low beam divergence,” IEEE Photonics Technol. Lett. 20(3), 214–216 (2008).
[Crossref]

Gaimard, Q.

Gassenq, A.

A. Gassenq, T. Taliercio, L. Cerutti, A. N. Baranov, and E. Tournie, “Mid-IR lasing from highly tensile-strained, type II, GaInAs/GaSb quantum wells,” Electron. Lett. 45(25), 1320–1321 (2009).
[Crossref]

Geerlings, E.

E. Geerlings, M. Rattunde, J. Schmitz, G. Kaufel, H. Zappe, and J. Wagner, “Widely tunable GaSb-based external cavity diode laser emitting around 2.3 μm,” IEEE Photonics Technol. Lett. 18(18), 1913–1915 (2006).
[Crossref]

Genty, F.

Y. Rouillard, F. Genty, A. Perona, A. Vicet, D. A. Yarekha, G. Boissier, P. Grech, A. N. Baranov, and C. Alibert, “Edge and vertical surface emitting lasers around 2.0–2.5 μm and their applications,” Philos. Trans. A 359(1780), 581–597 (2001).
[Crossref]

Gordon, R.

Grech, P.

Y. Rouillard, F. Genty, A. Perona, A. Vicet, D. A. Yarekha, G. Boissier, P. Grech, A. N. Baranov, and C. Alibert, “Edge and vertical surface emitting lasers around 2.0–2.5 μm and their applications,” Philos. Trans. A 359(1780), 581–597 (2001).
[Crossref]

Hasler, K. H.

H. Wenzel, E. Bugge, M. Dallmer, F. Dittmar, J. Fricke, K. H. Hasler, and G. Erbert, “Fundamental-lateral mode stabilized high-power ridge-waveguide lasers with a low beam divergence,” IEEE Photonics Technol. Lett. 20(3), 214–216 (2008).
[Crossref]

Hecht, J.

J. Hecht, “Bringing high brightness to high-power laser diodes,” Laser Focus World 47(11), 43–46 (2011).

Jonathan, A. F.

A. F. Jonathan, A. B. Mikhail, and C. Federico, “Wide-ridge metal-metal terahertz quantum cascade lasers with high-order lateral mode suppression,” Appl. Phys. Lett. 92(3), 031106 (2008).
[Crossref]

Jung, S.

S. Jung, G. Kipshidze, R. Liang, S. Suchalkin, L. Shterengas, and G. Belenky, “Gasb-based mid-infrared single lateral mode lasers fabricated by selective wet etching technique with an etch stop layer,” J. Electron. Mater. 41(5), 899–904 (2012).
[Crossref]

Kalosha, V. P.

V. P. Kalosha, K. Posilovic, and D. Bimberg, “Lateral-Longitudinal modes of high-power inhomogeneous waveguide lasers,” IEEE J. Quantum Electron. 48(2), 123–128 (2012).
[Crossref]

Kaufel, G.

M. Muller, M. Rattunde, G. Kaufel, J. Schmitz, and J. Wagner, “Short-pulse high-power operation of GaSb-based diode lasers,” IEEE Photonics Technol. Lett. 21(23), 1770–1772 (2009).
[Crossref]

M. Rattunde, J. Schmitz, G. Kaufel, M. Kelemen, J. Weber, and J. Wagner, “GaSb-based 2.X μm quantum-well diode lasers with low beam divergence and high output power,” Appl. Phys. Lett. 88(8), 081115 (2006).
[Crossref]

E. Geerlings, M. Rattunde, J. Schmitz, G. Kaufel, H. Zappe, and J. Wagner, “Widely tunable GaSb-based external cavity diode laser emitting around 2.3 μm,” IEEE Photonics Technol. Lett. 18(18), 1913–1915 (2006).
[Crossref]

Kelemen, M.

M. Rattunde, J. Schmitz, G. Kaufel, M. Kelemen, J. Weber, and J. Wagner, “GaSb-based 2.X μm quantum-well diode lasers with low beam divergence and high output power,” Appl. Phys. Lett. 88(8), 081115 (2006).
[Crossref]

Kelemen, M. T.

M. T. Kelemen, J. Weber, M. Mikulla, and G. Weimann, “High-power high-brightness tapered diode lasers and amplifiers,” Proc. SPIE 5723, 198–208 (2005).
[Crossref]

Kim, J. G.

G. Belenky, L. Shterengas, J. G. Kim, R. Martinelli, S. Suchalkin, and M. Kisin, “GaSb-based lasers for spectral region 2–4 μm: challenges and limitations,” Proc. SPIE 5732, 169–174 (2005).
[Crossref]

Kim, Y. K.

P. Crump, P. Leisher, T. Matson, V. Anderson, D. Schulte, J. Bell, J. Farmer, M. DeVito, R. Martinsen, Y. K. Kim, K. D. Choquette, G. Erbert, and G. Tränkle, “Control of optical mode distribution through etched microstructures for improved broad area laser performance,” Appl. Phys. Lett. 92(13), 131113 (2008).
[Crossref]

Kipshidze, G.

S. Jung, G. Kipshidze, R. Liang, S. Suchalkin, L. Shterengas, and G. Belenky, “Gasb-based mid-infrared single lateral mode lasers fabricated by selective wet etching technique with an etch stop layer,” J. Electron. Mater. 41(5), 899–904 (2012).
[Crossref]

Kisin, M.

G. Belenky, L. Shterengas, J. G. Kim, R. Martinelli, S. Suchalkin, and M. Kisin, “GaSb-based lasers for spectral region 2–4 μm: challenges and limitations,” Proc. SPIE 5732, 169–174 (2005).
[Crossref]

Ksendzov, A.

S. Forouhar, R. M. Briggs, C. Frez, K. J. Franz, and A. Ksendzov, “High-power laterally coupled distributed-feedback GaSb-based diode lasers at 2 μm wavelength,” Appl. Phys. Lett. 100(3), 031107 (2012).
[Crossref]

Leisher, P.

P. Crump, P. Leisher, T. Matson, V. Anderson, D. Schulte, J. Bell, J. Farmer, M. DeVito, R. Martinsen, Y. K. Kim, K. D. Choquette, G. Erbert, and G. Tränkle, “Control of optical mode distribution through etched microstructures for improved broad area laser performance,” Appl. Phys. Lett. 92(13), 131113 (2008).
[Crossref]

Liang, R.

S. Jung, G. Kipshidze, R. Liang, S. Suchalkin, L. Shterengas, and G. Belenky, “Gasb-based mid-infrared single lateral mode lasers fabricated by selective wet etching technique with an etch stop layer,” J. Electron. Mater. 41(5), 899–904 (2012).
[Crossref]

Lichtner, M.

M. Lichtner, V. Z. Tronciu, and A. G. Vladimirov, “Theoretical investigation of striped and non-striped broad area lasers with off-axis feedback,” IEEE J. Quantum Electron. 48(3), 353–360 (2012).
[Crossref]

Manfra, M. J.

H. K. Choi, J. N. Walpole, G. W. Turner, M. K. Conners, L. J. Missaggia, and M. J. Manfra, “GaInAsSb–AlGaAsSb tapered lasers emitting at 2.05 μm with 0.6 W diffraction-limited power,” IEEE Photonics Technol. Lett. 10(7), 938–940 (1998).
[Crossref]

Martinelli, R.

G. Belenky, L. Shterengas, J. G. Kim, R. Martinelli, S. Suchalkin, and M. Kisin, “GaSb-based lasers for spectral region 2–4 μm: challenges and limitations,” Proc. SPIE 5732, 169–174 (2005).
[Crossref]

Martinsen, R.

P. Crump, P. Leisher, T. Matson, V. Anderson, D. Schulte, J. Bell, J. Farmer, M. DeVito, R. Martinsen, Y. K. Kim, K. D. Choquette, G. Erbert, and G. Tränkle, “Control of optical mode distribution through etched microstructures for improved broad area laser performance,” Appl. Phys. Lett. 92(13), 131113 (2008).
[Crossref]

Matson, T.

P. Crump, P. Leisher, T. Matson, V. Anderson, D. Schulte, J. Bell, J. Farmer, M. DeVito, R. Martinsen, Y. K. Kim, K. D. Choquette, G. Erbert, and G. Tränkle, “Control of optical mode distribution through etched microstructures for improved broad area laser performance,” Appl. Phys. Lett. 92(13), 131113 (2008).
[Crossref]

Mikhail, A. B.

A. F. Jonathan, A. B. Mikhail, and C. Federico, “Wide-ridge metal-metal terahertz quantum cascade lasers with high-order lateral mode suppression,” Appl. Phys. Lett. 92(3), 031106 (2008).
[Crossref]

Mikulla, M.

M. T. Kelemen, J. Weber, M. Mikulla, and G. Weimann, “High-power high-brightness tapered diode lasers and amplifiers,” Proc. SPIE 5723, 198–208 (2005).
[Crossref]

Missaggia, L. J.

H. K. Choi, J. N. Walpole, G. W. Turner, M. K. Conners, L. J. Missaggia, and M. J. Manfra, “GaInAsSb–AlGaAsSb tapered lasers emitting at 2.05 μm with 0.6 W diffraction-limited power,” IEEE Photonics Technol. Lett. 10(7), 938–940 (1998).
[Crossref]

Muller, M.

M. Muller, M. Rattunde, G. Kaufel, J. Schmitz, and J. Wagner, “Short-pulse high-power operation of GaSb-based diode lasers,” IEEE Photonics Technol. Lett. 21(23), 1770–1772 (2009).
[Crossref]

Nguyen-Ba, T.

Perona, A.

Y. Rouillard, F. Genty, A. Perona, A. Vicet, D. A. Yarekha, G. Boissier, P. Grech, A. N. Baranov, and C. Alibert, “Edge and vertical surface emitting lasers around 2.0–2.5 μm and their applications,” Philos. Trans. A 359(1780), 581–597 (2001).
[Crossref]

Posilovic, K.

V. P. Kalosha, K. Posilovic, and D. Bimberg, “Lateral-Longitudinal modes of high-power inhomogeneous waveguide lasers,” IEEE J. Quantum Electron. 48(2), 123–128 (2012).
[Crossref]

Rattunde, M.

M. Muller, M. Rattunde, G. Kaufel, J. Schmitz, and J. Wagner, “Short-pulse high-power operation of GaSb-based diode lasers,” IEEE Photonics Technol. Lett. 21(23), 1770–1772 (2009).
[Crossref]

M. Rattunde, J. Schmitz, G. Kaufel, M. Kelemen, J. Weber, and J. Wagner, “GaSb-based 2.X μm quantum-well diode lasers with low beam divergence and high output power,” Appl. Phys. Lett. 88(8), 081115 (2006).
[Crossref]

E. Geerlings, M. Rattunde, J. Schmitz, G. Kaufel, H. Zappe, and J. Wagner, “Widely tunable GaSb-based external cavity diode laser emitting around 2.3 μm,” IEEE Photonics Technol. Lett. 18(18), 1913–1915 (2006).
[Crossref]

Ressel, P.

H. Wenzel, P. Crump, J. Fricke, P. Ressel, and G. Erbert, “Suppression of higher-order lateral modes in broad-area diode lasers by resonant anti-guiding,” IEEE J. Quantum Electron. 49(12), 1102–1108 (2013).
[Crossref]

Rouillard, Y.

Q. Gaimard, M. Triki, T. Nguyen-Ba, L. Cerutti, G. Boissier, R. Teissier, A. Baranov, Y. Rouillard, and A. Vicet, “Distributed feedback GaSb based laser diodes with buried grating: a new field of single-frequency sources from 2 to 3 µm for gas sensing applications,” Opt. Express 23(15), 19118–19128 (2015).
[Crossref] [PubMed]

Y. Rouillard, F. Genty, A. Perona, A. Vicet, D. A. Yarekha, G. Boissier, P. Grech, A. N. Baranov, and C. Alibert, “Edge and vertical surface emitting lasers around 2.0–2.5 μm and their applications,” Philos. Trans. A 359(1780), 581–597 (2001).
[Crossref]

Schmitz, J.

M. Muller, M. Rattunde, G. Kaufel, J. Schmitz, and J. Wagner, “Short-pulse high-power operation of GaSb-based diode lasers,” IEEE Photonics Technol. Lett. 21(23), 1770–1772 (2009).
[Crossref]

M. Rattunde, J. Schmitz, G. Kaufel, M. Kelemen, J. Weber, and J. Wagner, “GaSb-based 2.X μm quantum-well diode lasers with low beam divergence and high output power,” Appl. Phys. Lett. 88(8), 081115 (2006).
[Crossref]

E. Geerlings, M. Rattunde, J. Schmitz, G. Kaufel, H. Zappe, and J. Wagner, “Widely tunable GaSb-based external cavity diode laser emitting around 2.3 μm,” IEEE Photonics Technol. Lett. 18(18), 1913–1915 (2006).
[Crossref]

Schulte, D.

P. Crump, P. Leisher, T. Matson, V. Anderson, D. Schulte, J. Bell, J. Farmer, M. DeVito, R. Martinsen, Y. K. Kim, K. D. Choquette, G. Erbert, and G. Tränkle, “Control of optical mode distribution through etched microstructures for improved broad area laser performance,” Appl. Phys. Lett. 92(13), 131113 (2008).
[Crossref]

Schultz, C. M.

P. Crump, S. Boldicke, C. M. Schultz, H. Ekhteraei, H. Wenzel, and G. Erbert, “Experimental and theoretical analysis of the dominant lateral waveguiding mechanism in 975 nm high power broad area diode lasers,” Semicond. Sci. Technol. 27(4), 045001 (2012).
[Crossref]

P. Crump, M. Ekterai, C. M. Schultz, G. Erbert, and G. Tränkle, “Studies of limitations to lateral brightness in high power diode lasers using spectrally-resolved mode profiles,” in Proceedings of IEEE International Semiconductor Laser Conference (IEEE, 2014), pp. 23–24.
[Crossref]

Shterengas, L.

S. Jung, G. Kipshidze, R. Liang, S. Suchalkin, L. Shterengas, and G. Belenky, “Gasb-based mid-infrared single lateral mode lasers fabricated by selective wet etching technique with an etch stop layer,” J. Electron. Mater. 41(5), 899–904 (2012).
[Crossref]

G. Belenky, L. Shterengas, J. G. Kim, R. Martinelli, S. Suchalkin, and M. Kisin, “GaSb-based lasers for spectral region 2–4 μm: challenges and limitations,” Proc. SPIE 5732, 169–174 (2005).
[Crossref]

Suchalkin, S.

S. Jung, G. Kipshidze, R. Liang, S. Suchalkin, L. Shterengas, and G. Belenky, “Gasb-based mid-infrared single lateral mode lasers fabricated by selective wet etching technique with an etch stop layer,” J. Electron. Mater. 41(5), 899–904 (2012).
[Crossref]

G. Belenky, L. Shterengas, J. G. Kim, R. Martinelli, S. Suchalkin, and M. Kisin, “GaSb-based lasers for spectral region 2–4 μm: challenges and limitations,” Proc. SPIE 5732, 169–174 (2005).
[Crossref]

Swint, R. B.

R. B. Swint, T. S. Yeoh, V. C. Elarde, J. J. Coleman, and M. S. Zediker, “Curved waveguides for spatial mode filters in semiconductor lasers,” IEEE Photonics Technol. Lett. 16(1), 12–14 (2004).
[Crossref]

Taliercio, T.

A. Gassenq, T. Taliercio, L. Cerutti, A. N. Baranov, and E. Tournie, “Mid-IR lasing from highly tensile-strained, type II, GaInAs/GaSb quantum wells,” Electron. Lett. 45(25), 1320–1321 (2009).
[Crossref]

Teissier, R.

Tournie, E.

A. Gassenq, T. Taliercio, L. Cerutti, A. N. Baranov, and E. Tournie, “Mid-IR lasing from highly tensile-strained, type II, GaInAs/GaSb quantum wells,” Electron. Lett. 45(25), 1320–1321 (2009).
[Crossref]

Tränkle, G.

P. Crump, P. Leisher, T. Matson, V. Anderson, D. Schulte, J. Bell, J. Farmer, M. DeVito, R. Martinsen, Y. K. Kim, K. D. Choquette, G. Erbert, and G. Tränkle, “Control of optical mode distribution through etched microstructures for improved broad area laser performance,” Appl. Phys. Lett. 92(13), 131113 (2008).
[Crossref]

P. Crump, M. Ekterai, C. M. Schultz, G. Erbert, and G. Tränkle, “Studies of limitations to lateral brightness in high power diode lasers using spectrally-resolved mode profiles,” in Proceedings of IEEE International Semiconductor Laser Conference (IEEE, 2014), pp. 23–24.
[Crossref]

Triki, M.

Tronciu, V. Z.

M. Lichtner, V. Z. Tronciu, and A. G. Vladimirov, “Theoretical investigation of striped and non-striped broad area lasers with off-axis feedback,” IEEE J. Quantum Electron. 48(3), 353–360 (2012).
[Crossref]

Turner, G. W.

H. K. Choi, J. N. Walpole, G. W. Turner, M. K. Conners, L. J. Missaggia, and M. J. Manfra, “GaInAsSb–AlGaAsSb tapered lasers emitting at 2.05 μm with 0.6 W diffraction-limited power,” IEEE Photonics Technol. Lett. 10(7), 938–940 (1998).
[Crossref]

Vicet, A.

Q. Gaimard, M. Triki, T. Nguyen-Ba, L. Cerutti, G. Boissier, R. Teissier, A. Baranov, Y. Rouillard, and A. Vicet, “Distributed feedback GaSb based laser diodes with buried grating: a new field of single-frequency sources from 2 to 3 µm for gas sensing applications,” Opt. Express 23(15), 19118–19128 (2015).
[Crossref] [PubMed]

Y. Rouillard, F. Genty, A. Perona, A. Vicet, D. A. Yarekha, G. Boissier, P. Grech, A. N. Baranov, and C. Alibert, “Edge and vertical surface emitting lasers around 2.0–2.5 μm and their applications,” Philos. Trans. A 359(1780), 581–597 (2001).
[Crossref]

Vladimirov, A. G.

M. Lichtner, V. Z. Tronciu, and A. G. Vladimirov, “Theoretical investigation of striped and non-striped broad area lasers with off-axis feedback,” IEEE J. Quantum Electron. 48(3), 353–360 (2012).
[Crossref]

Wagner, J.

M. Muller, M. Rattunde, G. Kaufel, J. Schmitz, and J. Wagner, “Short-pulse high-power operation of GaSb-based diode lasers,” IEEE Photonics Technol. Lett. 21(23), 1770–1772 (2009).
[Crossref]

E. Geerlings, M. Rattunde, J. Schmitz, G. Kaufel, H. Zappe, and J. Wagner, “Widely tunable GaSb-based external cavity diode laser emitting around 2.3 μm,” IEEE Photonics Technol. Lett. 18(18), 1913–1915 (2006).
[Crossref]

M. Rattunde, J. Schmitz, G. Kaufel, M. Kelemen, J. Weber, and J. Wagner, “GaSb-based 2.X μm quantum-well diode lasers with low beam divergence and high output power,” Appl. Phys. Lett. 88(8), 081115 (2006).
[Crossref]

Walpole, J. N.

H. K. Choi, J. N. Walpole, G. W. Turner, M. K. Conners, L. J. Missaggia, and M. J. Manfra, “GaInAsSb–AlGaAsSb tapered lasers emitting at 2.05 μm with 0.6 W diffraction-limited power,” IEEE Photonics Technol. Lett. 10(7), 938–940 (1998).
[Crossref]

Weber, J.

M. Rattunde, J. Schmitz, G. Kaufel, M. Kelemen, J. Weber, and J. Wagner, “GaSb-based 2.X μm quantum-well diode lasers with low beam divergence and high output power,” Appl. Phys. Lett. 88(8), 081115 (2006).
[Crossref]

M. T. Kelemen, J. Weber, M. Mikulla, and G. Weimann, “High-power high-brightness tapered diode lasers and amplifiers,” Proc. SPIE 5723, 198–208 (2005).
[Crossref]

Weimann, G.

M. T. Kelemen, J. Weber, M. Mikulla, and G. Weimann, “High-power high-brightness tapered diode lasers and amplifiers,” Proc. SPIE 5723, 198–208 (2005).
[Crossref]

Wenzel, H.

H. Wenzel, P. Crump, J. Fricke, P. Ressel, and G. Erbert, “Suppression of higher-order lateral modes in broad-area diode lasers by resonant anti-guiding,” IEEE J. Quantum Electron. 49(12), 1102–1108 (2013).
[Crossref]

P. Crump, S. Boldicke, C. M. Schultz, H. Ekhteraei, H. Wenzel, and G. Erbert, “Experimental and theoretical analysis of the dominant lateral waveguiding mechanism in 975 nm high power broad area diode lasers,” Semicond. Sci. Technol. 27(4), 045001 (2012).
[Crossref]

H. Wenzel, E. Bugge, M. Dallmer, F. Dittmar, J. Fricke, K. H. Hasler, and G. Erbert, “Fundamental-lateral mode stabilized high-power ridge-waveguide lasers with a low beam divergence,” IEEE Photonics Technol. Lett. 20(3), 214–216 (2008).
[Crossref]

Yarekha, D. A.

Y. Rouillard, F. Genty, A. Perona, A. Vicet, D. A. Yarekha, G. Boissier, P. Grech, A. N. Baranov, and C. Alibert, “Edge and vertical surface emitting lasers around 2.0–2.5 μm and their applications,” Philos. Trans. A 359(1780), 581–597 (2001).
[Crossref]

Yeoh, T. S.

R. B. Swint, T. S. Yeoh, V. C. Elarde, J. J. Coleman, and M. S. Zediker, “Curved waveguides for spatial mode filters in semiconductor lasers,” IEEE Photonics Technol. Lett. 16(1), 12–14 (2004).
[Crossref]

Zappe, H.

E. Geerlings, M. Rattunde, J. Schmitz, G. Kaufel, H. Zappe, and J. Wagner, “Widely tunable GaSb-based external cavity diode laser emitting around 2.3 μm,” IEEE Photonics Technol. Lett. 18(18), 1913–1915 (2006).
[Crossref]

Zediker, M. S.

R. B. Swint, T. S. Yeoh, V. C. Elarde, J. J. Coleman, and M. S. Zediker, “Curved waveguides for spatial mode filters in semiconductor lasers,” IEEE Photonics Technol. Lett. 16(1), 12–14 (2004).
[Crossref]

Appl. Phys. Lett. (4)

M. Rattunde, J. Schmitz, G. Kaufel, M. Kelemen, J. Weber, and J. Wagner, “GaSb-based 2.X μm quantum-well diode lasers with low beam divergence and high output power,” Appl. Phys. Lett. 88(8), 081115 (2006).
[Crossref]

P. Crump, P. Leisher, T. Matson, V. Anderson, D. Schulte, J. Bell, J. Farmer, M. DeVito, R. Martinsen, Y. K. Kim, K. D. Choquette, G. Erbert, and G. Tränkle, “Control of optical mode distribution through etched microstructures for improved broad area laser performance,” Appl. Phys. Lett. 92(13), 131113 (2008).
[Crossref]

S. Forouhar, R. M. Briggs, C. Frez, K. J. Franz, and A. Ksendzov, “High-power laterally coupled distributed-feedback GaSb-based diode lasers at 2 μm wavelength,” Appl. Phys. Lett. 100(3), 031107 (2012).
[Crossref]

A. F. Jonathan, A. B. Mikhail, and C. Federico, “Wide-ridge metal-metal terahertz quantum cascade lasers with high-order lateral mode suppression,” Appl. Phys. Lett. 92(3), 031106 (2008).
[Crossref]

Electron. Lett. (1)

A. Gassenq, T. Taliercio, L. Cerutti, A. N. Baranov, and E. Tournie, “Mid-IR lasing from highly tensile-strained, type II, GaInAs/GaSb quantum wells,” Electron. Lett. 45(25), 1320–1321 (2009).
[Crossref]

IEEE J. Quantum Electron. (3)

H. Wenzel, P. Crump, J. Fricke, P. Ressel, and G. Erbert, “Suppression of higher-order lateral modes in broad-area diode lasers by resonant anti-guiding,” IEEE J. Quantum Electron. 49(12), 1102–1108 (2013).
[Crossref]

M. Lichtner, V. Z. Tronciu, and A. G. Vladimirov, “Theoretical investigation of striped and non-striped broad area lasers with off-axis feedback,” IEEE J. Quantum Electron. 48(3), 353–360 (2012).
[Crossref]

V. P. Kalosha, K. Posilovic, and D. Bimberg, “Lateral-Longitudinal modes of high-power inhomogeneous waveguide lasers,” IEEE J. Quantum Electron. 48(2), 123–128 (2012).
[Crossref]

IEEE Photonics Technol. Lett. (5)

H. Wenzel, E. Bugge, M. Dallmer, F. Dittmar, J. Fricke, K. H. Hasler, and G. Erbert, “Fundamental-lateral mode stabilized high-power ridge-waveguide lasers with a low beam divergence,” IEEE Photonics Technol. Lett. 20(3), 214–216 (2008).
[Crossref]

H. K. Choi, J. N. Walpole, G. W. Turner, M. K. Conners, L. J. Missaggia, and M. J. Manfra, “GaInAsSb–AlGaAsSb tapered lasers emitting at 2.05 μm with 0.6 W diffraction-limited power,” IEEE Photonics Technol. Lett. 10(7), 938–940 (1998).
[Crossref]

R. B. Swint, T. S. Yeoh, V. C. Elarde, J. J. Coleman, and M. S. Zediker, “Curved waveguides for spatial mode filters in semiconductor lasers,” IEEE Photonics Technol. Lett. 16(1), 12–14 (2004).
[Crossref]

M. Muller, M. Rattunde, G. Kaufel, J. Schmitz, and J. Wagner, “Short-pulse high-power operation of GaSb-based diode lasers,” IEEE Photonics Technol. Lett. 21(23), 1770–1772 (2009).
[Crossref]

E. Geerlings, M. Rattunde, J. Schmitz, G. Kaufel, H. Zappe, and J. Wagner, “Widely tunable GaSb-based external cavity diode laser emitting around 2.3 μm,” IEEE Photonics Technol. Lett. 18(18), 1913–1915 (2006).
[Crossref]

J. Electron. Mater. (1)

S. Jung, G. Kipshidze, R. Liang, S. Suchalkin, L. Shterengas, and G. Belenky, “Gasb-based mid-infrared single lateral mode lasers fabricated by selective wet etching technique with an etch stop layer,” J. Electron. Mater. 41(5), 899–904 (2012).
[Crossref]

J. Lightwave Technol. (1)

Laser Focus World (1)

J. Hecht, “Bringing high brightness to high-power laser diodes,” Laser Focus World 47(11), 43–46 (2011).

Opt. Express (1)

Philos. Trans. A (1)

Y. Rouillard, F. Genty, A. Perona, A. Vicet, D. A. Yarekha, G. Boissier, P. Grech, A. N. Baranov, and C. Alibert, “Edge and vertical surface emitting lasers around 2.0–2.5 μm and their applications,” Philos. Trans. A 359(1780), 581–597 (2001).
[Crossref]

Proc. SPIE (2)

G. Belenky, L. Shterengas, J. G. Kim, R. Martinelli, S. Suchalkin, and M. Kisin, “GaSb-based lasers for spectral region 2–4 μm: challenges and limitations,” Proc. SPIE 5732, 169–174 (2005).
[Crossref]

M. T. Kelemen, J. Weber, M. Mikulla, and G. Weimann, “High-power high-brightness tapered diode lasers and amplifiers,” Proc. SPIE 5723, 198–208 (2005).
[Crossref]

Semicond. Sci. Technol. (1)

P. Crump, S. Boldicke, C. M. Schultz, H. Ekhteraei, H. Wenzel, and G. Erbert, “Experimental and theoretical analysis of the dominant lateral waveguiding mechanism in 975 nm high power broad area diode lasers,” Semicond. Sci. Technol. 27(4), 045001 (2012).
[Crossref]

Other (2)

P. Crump, M. Ekterai, C. M. Schultz, G. Erbert, and G. Tränkle, “Studies of limitations to lateral brightness in high power diode lasers using spectrally-resolved mode profiles,” in Proceedings of IEEE International Semiconductor Laser Conference (IEEE, 2014), pp. 23–24.
[Crossref]

S. Karsten, L. Samir, K. Philpp, and F. Peter, “2µm laser sources and their possible applications,” in Frontiers in Guided Wave Optics and Optoelectronics, P. Bishnu, ed. (Intech, 2010).

Supplementary Material (1)

NameDescription
» Visualization 1: MOV (2240 KB)      Visualization 1

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Detail on the fishbone microstructure in the realistic device, (b)-(f) are the calculated optical field distribution after the different mode transmitting through the microstructure with stripe width of 100 µm (see also Visualization 1).

Fig. 2
Fig. 2

(a) Scanning electron microscope photographs of GaSb based BAL with the fishbone microstructure, (b) schematic diagram of device structure.

Fig. 3
Fig. 3

L-I-V characteristics of InGaSb/AlGaAsSb QW BALs with and without microstructure at room temperature.

Fig. 4
Fig. 4

Measured emission spectra of GaSb based BALs without and with microstructure at 0.8 A (a) and 1.5 A (b).

Fig. 5
Fig. 5

Vertical FF profiles of GaSb based BALs at 1.0 A.

Fig. 6
Fig. 6

Lateral FF angles of GaSb based BA lasers at 0.6 A (a), 1.0 A (b) and 1.5 A (c).

Tables (1)

Tables Icon

Table 1 Measured Performance of GaSb Based QW BALs at 1.5 A for Three Group Devices

Metrics