Abstract

A field-widened Michelson interferometer (FWMI), which is intended as the spectroscopic discriminator in ground-based high-spectral-resolution lidar (HSRL) for atmospheric aerosol detection, is described in this paper. The structure, specifications and design of the developed prototype FWMI are introduced, and an experimental approach is proposed to optimize the FWMI assembly and evaluate its comprehensive characteristic simultaneously. Experimental results show that, after optimization process, the peak-to-valley (PV) value and root-mean-square (RMS) value of measured OPD variation for the FWMI are 0.04λ and 0.008λ respectively among the half divergent angle range of 1.5 degree. Through an active locking technique, the frequency of the FWMI can be locked to the laser transmitter with accuracy of 27 MHz for more than one hour. The practical spectral discrimination ratio (SDR) for the developed FWMI is evaluated to be larger than 86 if the divergent angle of incident beam is smaller than 0.5 degree. All these results demonstrate the great potential of the developed FWMI as the spectroscopic discriminator for HSRLs, as well as the feasibility of the proposed design and optimization process. This paper is expected to provide a good entrance for the lidar community in future HSRL developments using the FWMI technique.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Field-widened Michelson interferometer for spectral discrimination in high-spectral-resolution lidar: theoretical framework

Zhongtao Cheng, Dong Liu, Jing Luo, Yongying Yang, Yudi Zhou, Yupeng Zhang, Lulin Duan, Lin Su, Liming Yang, Yibing Shen, Kaiwei Wang, and Jian Bai
Opt. Express 23(9) 12117-12134 (2015)

Generalized high-spectral-resolution lidar technique with a multimode laser for aerosol remote sensing

Zhongtao Cheng, Dong Liu, Yupeng Zhang, Chong Liu, Jian Bai, Dan Wang, Nanchao Wang, Yudi Zhou, Jing Luo, Yongying Yang, Yibing Shen, Lin Su, and Liming Yang
Opt. Express 25(2) 979-993 (2017)

References

  • View by:
  • |
  • |
  • |

  1. F. G. Fernald, “Analysis of atmospheric lidar observations: some comments,” Appl. Opt. 23(5), 652–653 (1984).
    [Crossref] [PubMed]
  2. S. T. Shipley, D. H. Tracy, E. W. Eloranta, J. T. Trauger, J. T. Sroga, F. L. Roesler, and J. A. Weinman, “High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 1: theory and instrumentation,” Appl. Opt. 22(23), 3716–3724 (1983).
    [Crossref] [PubMed]
  3. C. Y. She, R. J. Alvarez, L. M. Caldwell, and D. A. Krueger, “High-spectral-resolution Rayleigh-Mie lidar measurement of aerosol and atmospheric profiles,” Opt. Lett. 17(7), 541–543 (1992).
    [Crossref] [PubMed]
  4. P. Piironen and E. W. Eloranta, “Demonstration of a high-spectral-resolution lidar based on an iodine absorption filter,” Opt. Lett. 19(3), 234–236 (1994).
    [Crossref] [PubMed]
  5. Z. Y. Liu, I. Matsui, and N. Sugimoto, “High-spectral-resolution lidar using an iodine absorption filter for atmospheric measurements,” Opt. Eng. 38(10), 1661–1670 (1999).
    [Crossref]
  6. J. W. Hair, L. M. Caldwell, D. A. Krueger, and C.-Y. She, “High-spectral-resolution lidar with iodine-vapor filters: measurement of atmospheric-state and aerosol profiles,” Appl. Opt. 40(30), 5280–5294 (2001).
    [Crossref] [PubMed]
  7. M. Esselborn, M. Wirth, A. Fix, M. Tesche, and G. Ehret, “Airborne high spectral resolution lidar for measuring aerosol extinction and backscatter coefficients,” Appl. Opt. 47(3), 346–358 (2008).
    [Crossref] [PubMed]
  8. J. W. Hair, C. A. Hostetler, A. L. Cook, D. B. Harper, R. A. Ferrare, T. L. Mack, W. Welch, L. R. Izquierdo, and F. E. Hovis, “Airborne high spectral resolution lidar for profiling aerosol optical properties,” Appl. Opt. 47(36), 6734–6752 (2008).
    [Crossref] [PubMed]
  9. D. S. Hoffman, K. S. Repasky, J. A. Reagan, and J. L. Carlsten, “Development of a high spectral resolution lidar based on confocal Fabry-Perot spectral filters,” Appl. Opt. 51(25), 6233–6244 (2012).
    [Crossref] [PubMed]
  10. D. Liu, Y. Yang, Z. Cheng, H. Huang, B. Zhang, T. Ling, and Y. Shen, “Retrieval and analysis of a polarized high-spectral-resolution lidar for profiling aerosol optical properties,” Opt. Express 21(11), 13084–13093 (2013).
    [Crossref] [PubMed]
  11. Z. Cheng, D. Liu, J. Luo, Y. Yang, L. Su, L. Yang, H. Huang, and Y. Shen, “Effects of spectral discrimination in high-spectral-resolution lidar on the retrieval errors for atmospheric aerosol optical properties,” Appl. Opt. 53(20), 4386–4397 (2014).
    [Crossref] [PubMed]
  12. W. Gong, X. Ma, Y. N. Dong, H. Lin, and J. Li, “The use of 1572 nm Mie LiDAR for observation of the optical properties of aerosols over Wuhan, China,” Opt. Laser Technol. 56, 52–57 (2014).
    [Crossref]
  13. H. Xia, G. Shentu, M. Shangguan, X. Xia, X. Jia, C. Wang, J. Zhang, J. S. Pelc, M. M. Fejer, Q. Zhang, X. Dou, and J. W. Pan, “Long-range micro-pulse aerosol lidar at 1.5 μm with an upconversion single-photon detector,” Opt. Lett. 40(7), 1579–1582 (2015).
    [Crossref] [PubMed]
  14. D. Hua, M. Uchida, and T. Kobayashi, “Ultraviolet Rayleigh-Mie lidar with Mie-scattering correction by Fabry-Perot etalons for temperature profiling of the troposphere,” Appl. Opt. 44(7), 1305–1314 (2005).
    [Crossref] [PubMed]
  15. D. Bruneau and J. Pelon, “Simultaneous measurements of particle backscattering and extinction coefficients and wind velocity by lidar with a Mach-Zehnder interferometer: principle of operation and performance assessment,” Appl. Opt. 42(6), 1101–1114 (2003).
    [Crossref] [PubMed]
  16. D. Bruneau, J. Pelon, F. Blouzon, J. Spatazza, P. Genau, G. Buchholtz, N. Amarouche, A. Abchiche, and O. Aouji, “355-nm high spectral resolution airborne lidar LNG: system description and first results,” Appl. Opt. 54(29), 8776–8785 (2015).
    [Crossref] [PubMed]
  17. A. M. Title and H. E. Ramsey, “Improvements in birefringent filters. 6: analog birefringent elements,” Appl. Opt. 19(12), 2046–2058 (1980).
    [Crossref] [PubMed]
  18. G. G. Shepherd, W. A. Gault, D. W. Miller, Z. Pasturczyk, S. F. Johnston, P. R. Kosteniuk, J. W. Haslett, D. J. W. Kendall, and J. R. Wimperis, “WAMDII: wide-angle Michelson Doppler imaging interferometer for Spacelab,” Appl. Opt. 24(11), 1571–1584 (1985).
    [Crossref] [PubMed]
  19. G. Thuillier and G. G. Shepherd, “Fully compensated Michelson interferometer of fixed-path difference,” Appl. Opt. 24(11), 1599–1603 (1985).
    [Crossref] [PubMed]
  20. W. A. Gault, S. F. Johnston, and D. J. W. Kendall, “Optimization of a field-widened Michelson interferometer,” Appl. Opt. 24(11), 1604–1608 (1985).
    [Crossref] [PubMed]
  21. J. A. Langille, W. E. Ward, A. Scott, and D. L. Arsenault, “Measurement of two-dimensional Doppler wind fields using a field widened Michelson interferometer,” Appl. Opt. 52(8), 1617–1628 (2013).
    [Crossref] [PubMed]
  22. H. Gao, Y. Tang, D. Hua, H. Liu, X. Cao, X. Duan, Q. Jia, O. Qu, and Y. Wu, “Ground-based airglow imaging interferometer. Part 1: instrument and observation,” Appl. Opt. 52(36), 8650–8660 (2013).
    [Crossref] [PubMed]
  23. Z. Cheng, D. Liu, Y. Yang, L. Yang, and H. Huang, “Interferometric filters for spectral discrimination in high-spectral-resolution lidar: performance comparisons between Fabry-Perot interferometer and field-widened Michelson interferometer,” Appl. Opt. 52(32), 7838–7850 (2013).
    [Crossref] [PubMed]
  24. D. Liu, C. Hostetler, I. Miller, A. Cook, and J. Hair, “System analysis of a tilted field-widened Michelson interferometer for high spectral resolution lidar,” Opt. Express 20(2), 1406–1420 (2012).
    [Crossref] [PubMed]
  25. Z. Cheng, D. Liu, J. Luo, Y. Yang, Y. Zhou, Y. Zhang, L. Duan, L. Su, L. Yang, Y. Shen, K. Wang, and J. Bai, “Field-widened Michelson interferometer for spectral discrimination in high-spectral-resolution lidar: theoretical framework,” Opt. Express 23(9), 12117–12134 (2015).
    [Crossref] [PubMed]
  26. K. Freischlad and C. L. Koliopoulos, “Fourier description of digital phase-measuring interferometry,” J. Opt. Soc. Am. A 7(4), 542–551 (1990).
    [Crossref]
  27. D. Malacara, Optical Shop Testing (Wiley, 2007).
  28. Z. Cheng, D. Liu, J. Luo, Y. Yang, Y. Zhou, Y. Zhang, J. Bai, C. Liu, Y. Shen, K. Wang, L. Su, and L. Yang, “Frequency locking of field-widened Michelson interferometer in high-spectral-resolution lidar application,” Opt. Lett. (in preparation).

2015 (3)

2014 (2)

Z. Cheng, D. Liu, J. Luo, Y. Yang, L. Su, L. Yang, H. Huang, and Y. Shen, “Effects of spectral discrimination in high-spectral-resolution lidar on the retrieval errors for atmospheric aerosol optical properties,” Appl. Opt. 53(20), 4386–4397 (2014).
[Crossref] [PubMed]

W. Gong, X. Ma, Y. N. Dong, H. Lin, and J. Li, “The use of 1572 nm Mie LiDAR for observation of the optical properties of aerosols over Wuhan, China,” Opt. Laser Technol. 56, 52–57 (2014).
[Crossref]

2013 (4)

2012 (2)

2008 (2)

2005 (1)

2003 (1)

2001 (1)

1999 (1)

Z. Y. Liu, I. Matsui, and N. Sugimoto, “High-spectral-resolution lidar using an iodine absorption filter for atmospheric measurements,” Opt. Eng. 38(10), 1661–1670 (1999).
[Crossref]

1994 (1)

1992 (1)

1990 (1)

1985 (3)

1984 (1)

1983 (1)

1980 (1)

Abchiche, A.

Alvarez, R. J.

Amarouche, N.

Aouji, O.

Arsenault, D. L.

Bai, J.

Z. Cheng, D. Liu, J. Luo, Y. Yang, Y. Zhou, Y. Zhang, L. Duan, L. Su, L. Yang, Y. Shen, K. Wang, and J. Bai, “Field-widened Michelson interferometer for spectral discrimination in high-spectral-resolution lidar: theoretical framework,” Opt. Express 23(9), 12117–12134 (2015).
[Crossref] [PubMed]

Z. Cheng, D. Liu, J. Luo, Y. Yang, Y. Zhou, Y. Zhang, J. Bai, C. Liu, Y. Shen, K. Wang, L. Su, and L. Yang, “Frequency locking of field-widened Michelson interferometer in high-spectral-resolution lidar application,” Opt. Lett. (in preparation).

Blouzon, F.

Bruneau, D.

Buchholtz, G.

Caldwell, L. M.

Cao, X.

Carlsten, J. L.

Cheng, Z.

Cook, A.

Cook, A. L.

Dong, Y. N.

W. Gong, X. Ma, Y. N. Dong, H. Lin, and J. Li, “The use of 1572 nm Mie LiDAR for observation of the optical properties of aerosols over Wuhan, China,” Opt. Laser Technol. 56, 52–57 (2014).
[Crossref]

Dou, X.

Duan, L.

Duan, X.

Ehret, G.

Eloranta, E. W.

Esselborn, M.

Fejer, M. M.

Fernald, F. G.

Ferrare, R. A.

Fix, A.

Freischlad, K.

Gao, H.

Gault, W. A.

Genau, P.

Gong, W.

W. Gong, X. Ma, Y. N. Dong, H. Lin, and J. Li, “The use of 1572 nm Mie LiDAR for observation of the optical properties of aerosols over Wuhan, China,” Opt. Laser Technol. 56, 52–57 (2014).
[Crossref]

Hair, J.

Hair, J. W.

Harper, D. B.

Haslett, J. W.

Hoffman, D. S.

Hostetler, C.

Hostetler, C. A.

Hovis, F. E.

Hua, D.

Huang, H.

Izquierdo, L. R.

Jia, Q.

Jia, X.

Johnston, S. F.

Kendall, D. J. W.

Kobayashi, T.

Koliopoulos, C. L.

Kosteniuk, P. R.

Krueger, D. A.

Langille, J. A.

Li, J.

W. Gong, X. Ma, Y. N. Dong, H. Lin, and J. Li, “The use of 1572 nm Mie LiDAR for observation of the optical properties of aerosols over Wuhan, China,” Opt. Laser Technol. 56, 52–57 (2014).
[Crossref]

Lin, H.

W. Gong, X. Ma, Y. N. Dong, H. Lin, and J. Li, “The use of 1572 nm Mie LiDAR for observation of the optical properties of aerosols over Wuhan, China,” Opt. Laser Technol. 56, 52–57 (2014).
[Crossref]

Ling, T.

Liu, C.

Z. Cheng, D. Liu, J. Luo, Y. Yang, Y. Zhou, Y. Zhang, J. Bai, C. Liu, Y. Shen, K. Wang, L. Su, and L. Yang, “Frequency locking of field-widened Michelson interferometer in high-spectral-resolution lidar application,” Opt. Lett. (in preparation).

Liu, D.

Z. Cheng, D. Liu, J. Luo, Y. Yang, Y. Zhou, Y. Zhang, L. Duan, L. Su, L. Yang, Y. Shen, K. Wang, and J. Bai, “Field-widened Michelson interferometer for spectral discrimination in high-spectral-resolution lidar: theoretical framework,” Opt. Express 23(9), 12117–12134 (2015).
[Crossref] [PubMed]

Z. Cheng, D. Liu, J. Luo, Y. Yang, L. Su, L. Yang, H. Huang, and Y. Shen, “Effects of spectral discrimination in high-spectral-resolution lidar on the retrieval errors for atmospheric aerosol optical properties,” Appl. Opt. 53(20), 4386–4397 (2014).
[Crossref] [PubMed]

D. Liu, Y. Yang, Z. Cheng, H. Huang, B. Zhang, T. Ling, and Y. Shen, “Retrieval and analysis of a polarized high-spectral-resolution lidar for profiling aerosol optical properties,” Opt. Express 21(11), 13084–13093 (2013).
[Crossref] [PubMed]

Z. Cheng, D. Liu, Y. Yang, L. Yang, and H. Huang, “Interferometric filters for spectral discrimination in high-spectral-resolution lidar: performance comparisons between Fabry-Perot interferometer and field-widened Michelson interferometer,” Appl. Opt. 52(32), 7838–7850 (2013).
[Crossref] [PubMed]

D. Liu, C. Hostetler, I. Miller, A. Cook, and J. Hair, “System analysis of a tilted field-widened Michelson interferometer for high spectral resolution lidar,” Opt. Express 20(2), 1406–1420 (2012).
[Crossref] [PubMed]

Z. Cheng, D. Liu, J. Luo, Y. Yang, Y. Zhou, Y. Zhang, J. Bai, C. Liu, Y. Shen, K. Wang, L. Su, and L. Yang, “Frequency locking of field-widened Michelson interferometer in high-spectral-resolution lidar application,” Opt. Lett. (in preparation).

Liu, H.

Liu, Z. Y.

Z. Y. Liu, I. Matsui, and N. Sugimoto, “High-spectral-resolution lidar using an iodine absorption filter for atmospheric measurements,” Opt. Eng. 38(10), 1661–1670 (1999).
[Crossref]

Luo, J.

Ma, X.

W. Gong, X. Ma, Y. N. Dong, H. Lin, and J. Li, “The use of 1572 nm Mie LiDAR for observation of the optical properties of aerosols over Wuhan, China,” Opt. Laser Technol. 56, 52–57 (2014).
[Crossref]

Mack, T. L.

Matsui, I.

Z. Y. Liu, I. Matsui, and N. Sugimoto, “High-spectral-resolution lidar using an iodine absorption filter for atmospheric measurements,” Opt. Eng. 38(10), 1661–1670 (1999).
[Crossref]

Miller, D. W.

Miller, I.

Pan, J. W.

Pasturczyk, Z.

Pelc, J. S.

Pelon, J.

Piironen, P.

Qu, O.

Ramsey, H. E.

Reagan, J. A.

Repasky, K. S.

Roesler, F. L.

Scott, A.

Shangguan, M.

She, C. Y.

She, C.-Y.

Shen, Y.

Shentu, G.

Shepherd, G. G.

Shipley, S. T.

Spatazza, J.

Sroga, J. T.

Su, L.

Sugimoto, N.

Z. Y. Liu, I. Matsui, and N. Sugimoto, “High-spectral-resolution lidar using an iodine absorption filter for atmospheric measurements,” Opt. Eng. 38(10), 1661–1670 (1999).
[Crossref]

Tang, Y.

Tesche, M.

Thuillier, G.

Title, A. M.

Tracy, D. H.

Trauger, J. T.

Uchida, M.

Wang, C.

Wang, K.

Z. Cheng, D. Liu, J. Luo, Y. Yang, Y. Zhou, Y. Zhang, L. Duan, L. Su, L. Yang, Y. Shen, K. Wang, and J. Bai, “Field-widened Michelson interferometer for spectral discrimination in high-spectral-resolution lidar: theoretical framework,” Opt. Express 23(9), 12117–12134 (2015).
[Crossref] [PubMed]

Z. Cheng, D. Liu, J. Luo, Y. Yang, Y. Zhou, Y. Zhang, J. Bai, C. Liu, Y. Shen, K. Wang, L. Su, and L. Yang, “Frequency locking of field-widened Michelson interferometer in high-spectral-resolution lidar application,” Opt. Lett. (in preparation).

Ward, W. E.

Weinman, J. A.

Welch, W.

Wimperis, J. R.

Wirth, M.

Wu, Y.

Xia, H.

Xia, X.

Yang, L.

Yang, Y.

Zhang, B.

Zhang, J.

Zhang, Q.

Zhang, Y.

Z. Cheng, D. Liu, J. Luo, Y. Yang, Y. Zhou, Y. Zhang, L. Duan, L. Su, L. Yang, Y. Shen, K. Wang, and J. Bai, “Field-widened Michelson interferometer for spectral discrimination in high-spectral-resolution lidar: theoretical framework,” Opt. Express 23(9), 12117–12134 (2015).
[Crossref] [PubMed]

Z. Cheng, D. Liu, J. Luo, Y. Yang, Y. Zhou, Y. Zhang, J. Bai, C. Liu, Y. Shen, K. Wang, L. Su, and L. Yang, “Frequency locking of field-widened Michelson interferometer in high-spectral-resolution lidar application,” Opt. Lett. (in preparation).

Zhou, Y.

Z. Cheng, D. Liu, J. Luo, Y. Yang, Y. Zhou, Y. Zhang, L. Duan, L. Su, L. Yang, Y. Shen, K. Wang, and J. Bai, “Field-widened Michelson interferometer for spectral discrimination in high-spectral-resolution lidar: theoretical framework,” Opt. Express 23(9), 12117–12134 (2015).
[Crossref] [PubMed]

Z. Cheng, D. Liu, J. Luo, Y. Yang, Y. Zhou, Y. Zhang, J. Bai, C. Liu, Y. Shen, K. Wang, L. Su, and L. Yang, “Frequency locking of field-widened Michelson interferometer in high-spectral-resolution lidar application,” Opt. Lett. (in preparation).

Appl. Opt. (17)

A. M. Title and H. E. Ramsey, “Improvements in birefringent filters. 6: analog birefringent elements,” Appl. Opt. 19(12), 2046–2058 (1980).
[Crossref] [PubMed]

S. T. Shipley, D. H. Tracy, E. W. Eloranta, J. T. Trauger, J. T. Sroga, F. L. Roesler, and J. A. Weinman, “High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 1: theory and instrumentation,” Appl. Opt. 22(23), 3716–3724 (1983).
[Crossref] [PubMed]

F. G. Fernald, “Analysis of atmospheric lidar observations: some comments,” Appl. Opt. 23(5), 652–653 (1984).
[Crossref] [PubMed]

G. Thuillier and G. G. Shepherd, “Fully compensated Michelson interferometer of fixed-path difference,” Appl. Opt. 24(11), 1599–1603 (1985).
[Crossref] [PubMed]

W. A. Gault, S. F. Johnston, and D. J. W. Kendall, “Optimization of a field-widened Michelson interferometer,” Appl. Opt. 24(11), 1604–1608 (1985).
[Crossref] [PubMed]

J. W. Hair, L. M. Caldwell, D. A. Krueger, and C.-Y. She, “High-spectral-resolution lidar with iodine-vapor filters: measurement of atmospheric-state and aerosol profiles,” Appl. Opt. 40(30), 5280–5294 (2001).
[Crossref] [PubMed]

D. Bruneau and J. Pelon, “Simultaneous measurements of particle backscattering and extinction coefficients and wind velocity by lidar with a Mach-Zehnder interferometer: principle of operation and performance assessment,” Appl. Opt. 42(6), 1101–1114 (2003).
[Crossref] [PubMed]

G. G. Shepherd, W. A. Gault, D. W. Miller, Z. Pasturczyk, S. F. Johnston, P. R. Kosteniuk, J. W. Haslett, D. J. W. Kendall, and J. R. Wimperis, “WAMDII: wide-angle Michelson Doppler imaging interferometer for Spacelab,” Appl. Opt. 24(11), 1571–1584 (1985).
[Crossref] [PubMed]

D. Hua, M. Uchida, and T. Kobayashi, “Ultraviolet Rayleigh-Mie lidar with Mie-scattering correction by Fabry-Perot etalons for temperature profiling of the troposphere,” Appl. Opt. 44(7), 1305–1314 (2005).
[Crossref] [PubMed]

M. Esselborn, M. Wirth, A. Fix, M. Tesche, and G. Ehret, “Airborne high spectral resolution lidar for measuring aerosol extinction and backscatter coefficients,” Appl. Opt. 47(3), 346–358 (2008).
[Crossref] [PubMed]

J. W. Hair, C. A. Hostetler, A. L. Cook, D. B. Harper, R. A. Ferrare, T. L. Mack, W. Welch, L. R. Izquierdo, and F. E. Hovis, “Airborne high spectral resolution lidar for profiling aerosol optical properties,” Appl. Opt. 47(36), 6734–6752 (2008).
[Crossref] [PubMed]

D. S. Hoffman, K. S. Repasky, J. A. Reagan, and J. L. Carlsten, “Development of a high spectral resolution lidar based on confocal Fabry-Perot spectral filters,” Appl. Opt. 51(25), 6233–6244 (2012).
[Crossref] [PubMed]

J. A. Langille, W. E. Ward, A. Scott, and D. L. Arsenault, “Measurement of two-dimensional Doppler wind fields using a field widened Michelson interferometer,” Appl. Opt. 52(8), 1617–1628 (2013).
[Crossref] [PubMed]

Z. Cheng, D. Liu, Y. Yang, L. Yang, and H. Huang, “Interferometric filters for spectral discrimination in high-spectral-resolution lidar: performance comparisons between Fabry-Perot interferometer and field-widened Michelson interferometer,” Appl. Opt. 52(32), 7838–7850 (2013).
[Crossref] [PubMed]

H. Gao, Y. Tang, D. Hua, H. Liu, X. Cao, X. Duan, Q. Jia, O. Qu, and Y. Wu, “Ground-based airglow imaging interferometer. Part 1: instrument and observation,” Appl. Opt. 52(36), 8650–8660 (2013).
[Crossref] [PubMed]

Z. Cheng, D. Liu, J. Luo, Y. Yang, L. Su, L. Yang, H. Huang, and Y. Shen, “Effects of spectral discrimination in high-spectral-resolution lidar on the retrieval errors for atmospheric aerosol optical properties,” Appl. Opt. 53(20), 4386–4397 (2014).
[Crossref] [PubMed]

D. Bruneau, J. Pelon, F. Blouzon, J. Spatazza, P. Genau, G. Buchholtz, N. Amarouche, A. Abchiche, and O. Aouji, “355-nm high spectral resolution airborne lidar LNG: system description and first results,” Appl. Opt. 54(29), 8776–8785 (2015).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (1)

Opt. Eng. (1)

Z. Y. Liu, I. Matsui, and N. Sugimoto, “High-spectral-resolution lidar using an iodine absorption filter for atmospheric measurements,” Opt. Eng. 38(10), 1661–1670 (1999).
[Crossref]

Opt. Express (3)

Opt. Laser Technol. (1)

W. Gong, X. Ma, Y. N. Dong, H. Lin, and J. Li, “The use of 1572 nm Mie LiDAR for observation of the optical properties of aerosols over Wuhan, China,” Opt. Laser Technol. 56, 52–57 (2014).
[Crossref]

Opt. Lett. (3)

Other (2)

D. Malacara, Optical Shop Testing (Wiley, 2007).

Z. Cheng, D. Liu, J. Luo, Y. Yang, Y. Zhou, Y. Zhang, J. Bai, C. Liu, Y. Shen, K. Wang, L. Su, and L. Yang, “Frequency locking of field-widened Michelson interferometer in high-spectral-resolution lidar application,” Opt. Lett. (in preparation).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Practical structure of our developed prototype FWMI for ground-based HSRLs.

Fig. 2
Fig. 2

Theoretical OPD variation of the FWMI with respect to the incident angle. The red plot is the design result using our proposed field widening method, and the green one is that using the previous field widening concept as in WINDII.

Fig. 3
Fig. 3

Schematic of experimental setup for simultaneous assembly optimization and potential evaluation of the FWMI. Note that, the FWMI is slightly off-axis placed by about 1.5 degree in order to produce the same tilted usage condition as expected in HSRL operation.

Fig. 4
Fig. 4

Several typical interferograms sequentially captured during the manual moving of the M1 toward the cube beam splitter under the illumination of about 3.5 degree half divergent angular range. The moving step here is set to several centimeters intentionally to interpret the field widening phenomenon.

Fig. 5
Fig. 5

Field widening characteristic of the developed FWMI with respect to the incident angular range from zero to 1.5 degree. The x-y coordinates adopt the pixels to denote the wavefront angular aperture just for simplicity. The central pixel corresponds to zero divergent angle, and the edge pixels for 1.5 degree divergent angle. The corresponding divergent angle of any other pixel is proportional to the pixel distance relative to the central pixel.

Fig. 6
Fig. 6

Cumulative wavefront distortion of the developed FWMI from its central aperture with area of 70% of the total aperture.

Fig. 7
Fig. 7

Frequency locking performance of the developed FWMI.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

2[ n 1 d 1 ( 1 sin 2 θ t n 1 2 ) 1/2 n 2 d 2 ( 1 sin 2 θ t n 2 2 ) 1/2 ]=FOPD,
d 1 n 1 2 sin 2 θ t d 2 n 2 2 sin 2 θ t =0.

Metrics