Abstract

In this work, we proposed a novel strategy to manipulate the behavior of the metallic nanoparticle under the resonant condition by using engineered azimuthally polarized optical field. Through optimizing the spatial phase distribution of the illumination, the optical force can be tailored to support stable optical trapping while avoiding trap destabilization caused by optical overheating effect simultaneously. Besides, the resonant particle can be stably trapped at predefined location in 3 dimensional space, or revolves around the beam axis with characteristics that can be holistically controlled in terms of both trajectory and rotation direction. The technique demonstrated in this work may open up new avenues for optical manipulation.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Manipulation of resonant metallic nanoparticle using 4Pi focusing system

Xiaoyan Wang, Guanghao Rui, Liping Gong, Bing Gu, and Yiping Cui
Opt. Express 24(21) 24143-24152 (2016)

Manipulation of metallic nanoparticle with evanescent vortex Bessel beam

Guanghao Rui, Xiaoyan Wang, and Yiping Cui
Opt. Express 23(20) 25707-25716 (2015)

Trapping metallic particles under resonant wavelength with 4π tight focusing of radially polarized beam

Wenjing Cui, Feng Song, Feifei Song, Dandan Ju, and Shujing Liu
Opt. Express 24(18) 20062-20068 (2016)

References

  • View by:
  • |
  • |
  • |

  1. M. A. El-Sayed, “Small is different: shape-, size-, and composition-dependent properties of some colloidal semiconductor nanocrystals,” Acc. Chem. Res. 37(5), 326–333 (2004).
    [Crossref] [PubMed]
  2. M. A. El-Sayed, “Some interesting properties of metals confined in time and nanometer space of different shapes,” Acc. Chem. Res. 34(4), 257–264 (2001).
    [Crossref] [PubMed]
  3. K. Kneipp, M. Moskovits, and H. Kneipp, Surface-Enhanced Raman Scattering (Berlin: Springer, 2006).
  4. L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100(23), 13549–13554 (2003).
    [Crossref] [PubMed]
  5. X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
    [Crossref] [PubMed]
  6. J. Chen, D. Wang, J. Xi, L. Au, A. Siekkinen, A. Warsen, Z.-Y. Li, H. Zhang, Y. Xia, and X. Li, “Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells,” Nano Lett. 7(5), 1318–1322 (2007).
    [Crossref] [PubMed]
  7. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
    [Crossref] [PubMed]
  8. D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
    [Crossref] [PubMed]
  9. P. M. Bendix, S. N. Reihani, L. B. Oddershede, and L. B. Oddershede, “Direct measurements of heating by electromagnetically trapped gold nanoparticles on supported lipid bilayers,” ACS Nano 4(4), 2256–2262 (2010).
    [Crossref] [PubMed]
  10. G. Baffou and R. Quidant, “Thermo-plasmonics: using metallic nanostructures as nano-sources of heat,” Laser Photonics Rev. 7(2), 171–187 (2013).
    [Crossref]
  11. P. M. Hansen, V. K. L. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett. 5(10), 1937–1942 (2005).
    [Crossref] [PubMed]
  12. R. Saija, P. Denti, F. Borghese, O. M. Maragò, and M. A. Iatì, “Optical trapping calculations for metal nanoparticles. Comparison with experimental data for Au and Ag spheres,” Opt. Express 17(12), 10231–10241 (2009).
    [Crossref] [PubMed]
  13. M. Dienerowitz, M. Mazilu, P. J. Reece, T. F. Krauss, and K. Dholakia, “Optical vortex trap for resonant confinement of metal nanoparticles,” Opt. Express 16(7), 4991–4999 (2008).
    [Crossref] [PubMed]
  14. Q. Zhan, “Trapping metallic Rayleigh particles with radial polarization,” Opt. Express 12(15), 3377–3382 (2004).
    [Crossref] [PubMed]
  15. L. Huang, H. Guo, J. Li, L. Ling, B. Feng, and Z. Y. Li, “Optical trapping of gold nanoparticles by cylindrical vector beam,” Opt. Lett. 37(10), 1694–1696 (2012).
    [Crossref] [PubMed]
  16. G. Rui and Q. Zhan, “Trapping of resonant metallic nanoparticles with engineered vectorial optical field,” Nanophotonics 3(6), 351–361 (2014).
    [Crossref]
  17. C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
    [Crossref] [PubMed]
  18. A. Ohlinger, S. Nedev, A. A. Lutich, and J. Feldmann, “Optothermal escape of plasmonically coupled silver nanoparticles from a three-dimensional optical trap,” Nano Lett. 11(4), 1770–1774 (2011).
    [Crossref] [PubMed]
  19. G. Rui and Q. Zhan, “Tailoring optical complex fields with nano-metallic surfaces,” Nanophotonics 4(1), 2–25 (2015).
    [Crossref]
  20. M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys., A Mater. Sci. Process. 86(3), 329–334 (2007).
    [Crossref]
  21. M. Beresna, M. Gecevičius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98(20), 201101 (2011).
    [Crossref]
  22. W. Chen and Q. Zhan, “Creating a spherical focal spot with spatially modulated radial polarization in 4Pi microscopy,” Opt. Lett. 34(16), 2444–2446 (2009).
    [Crossref] [PubMed]
  23. J. Chen, J. Ng, Z. Lin, and C. T. Chan, “Optical pulling force,” Nat. Photonics 5(9), 531–534 (2011).
    [Crossref]
  24. J. J. Sáenz, “Optical forces: laser tractor beams,” Nat. Photonics 5(9), 514–515 (2011).
    [Crossref]
  25. M. R. Dennis, K. O’Holleran, and M. J. Padgett, “Singular optics: optical vortices and polarization singularities,” Prog. Opt. 53, 293–363 (2009).
    [Crossref]
  26. D. S. Bradshaw and D. L. Andrews, “Interactions between spherical nanoparticles optically trapped in Laguerre-Gaussian modes,” Opt. Lett. 30(22), 3039–3041 (2005).
    [Crossref] [PubMed]
  27. M. Šiler, P. Jákl, O. Brzobohatý, and P. Zemánek, “Optical forces induced behavior of a particle in a non-diffracting vortex beam,” Opt. Express 20(22), 24304–24319 (2012).
    [Crossref] [PubMed]
  28. K. Volke-Seplveda, S. Chavez-Cerda, V. Garces-Chávez, and K. Dholakia, “Three–dimensional optical forces and transfer of orbital angular momentum from multiringed light beams to spherical microparticles,” J. Opt. Soc. Am. B 21(10), 1749–1757 (2004).
    [Crossref]
  29. G. Rui, X. Wang, and Y. Cui, “Manipulation of metallic nanoparticle with evanescent vortex Bessel beam,” Opt. Express 23(20), 25707–25716 (2015).
    [Crossref] [PubMed]
  30. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photonics 1(1), 1–57 (2009).
    [Crossref]
  31. M. Gu, Advanced Optical Imaging Theory (Springer, 2000).
  32. S. Albaladejo, M. I. Marqués, M. Laroche, and J. J. Sáenz, “Scattering forces from the curl of the spin angular momentum of a light field,” Phys. Rev. Lett. 102(11), 113602 (2009).
    [Crossref] [PubMed]
  33. Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill, and D. G. Grier, “Optical forces arising from phase gradients,” Phys. Rev. Lett. 100(1), 013602 (2008).
    [Crossref] [PubMed]
  34. K. Svoboda and S. M. Block, “Optical trapping of metallic Rayleigh particles,” Opt. Lett. 19(13), 930–932 (1994).
    [Crossref] [PubMed]
  35. V. Kotaidis, C. Dahmen, G. von Plessen, F. Springer, and A. Plech, “Excitation of nanoscale vapor bubbles at the surface of gold nanoparticles in water,” J. Chem. Phys. 124(18), 184702 (2006).
    [Crossref] [PubMed]

2015 (2)

G. Rui and Q. Zhan, “Tailoring optical complex fields with nano-metallic surfaces,” Nanophotonics 4(1), 2–25 (2015).
[Crossref]

G. Rui, X. Wang, and Y. Cui, “Manipulation of metallic nanoparticle with evanescent vortex Bessel beam,” Opt. Express 23(20), 25707–25716 (2015).
[Crossref] [PubMed]

2014 (1)

G. Rui and Q. Zhan, “Trapping of resonant metallic nanoparticles with engineered vectorial optical field,” Nanophotonics 3(6), 351–361 (2014).
[Crossref]

2013 (2)

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref] [PubMed]

G. Baffou and R. Quidant, “Thermo-plasmonics: using metallic nanostructures as nano-sources of heat,” Laser Photonics Rev. 7(2), 171–187 (2013).
[Crossref]

2012 (2)

2011 (4)

M. Beresna, M. Gecevičius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98(20), 201101 (2011).
[Crossref]

J. Chen, J. Ng, Z. Lin, and C. T. Chan, “Optical pulling force,” Nat. Photonics 5(9), 531–534 (2011).
[Crossref]

J. J. Sáenz, “Optical forces: laser tractor beams,” Nat. Photonics 5(9), 514–515 (2011).
[Crossref]

A. Ohlinger, S. Nedev, A. A. Lutich, and J. Feldmann, “Optothermal escape of plasmonically coupled silver nanoparticles from a three-dimensional optical trap,” Nano Lett. 11(4), 1770–1774 (2011).
[Crossref] [PubMed]

2010 (1)

P. M. Bendix, S. N. Reihani, L. B. Oddershede, and L. B. Oddershede, “Direct measurements of heating by electromagnetically trapped gold nanoparticles on supported lipid bilayers,” ACS Nano 4(4), 2256–2262 (2010).
[Crossref] [PubMed]

2009 (5)

R. Saija, P. Denti, F. Borghese, O. M. Maragò, and M. A. Iatì, “Optical trapping calculations for metal nanoparticles. Comparison with experimental data for Au and Ag spheres,” Opt. Express 17(12), 10231–10241 (2009).
[Crossref] [PubMed]

M. R. Dennis, K. O’Holleran, and M. J. Padgett, “Singular optics: optical vortices and polarization singularities,” Prog. Opt. 53, 293–363 (2009).
[Crossref]

W. Chen and Q. Zhan, “Creating a spherical focal spot with spatially modulated radial polarization in 4Pi microscopy,” Opt. Lett. 34(16), 2444–2446 (2009).
[Crossref] [PubMed]

Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photonics 1(1), 1–57 (2009).
[Crossref]

S. Albaladejo, M. I. Marqués, M. Laroche, and J. J. Sáenz, “Scattering forces from the curl of the spin angular momentum of a light field,” Phys. Rev. Lett. 102(11), 113602 (2009).
[Crossref] [PubMed]

2008 (2)

Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill, and D. G. Grier, “Optical forces arising from phase gradients,” Phys. Rev. Lett. 100(1), 013602 (2008).
[Crossref] [PubMed]

M. Dienerowitz, M. Mazilu, P. J. Reece, T. F. Krauss, and K. Dholakia, “Optical vortex trap for resonant confinement of metal nanoparticles,” Opt. Express 16(7), 4991–4999 (2008).
[Crossref] [PubMed]

2007 (2)

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys., A Mater. Sci. Process. 86(3), 329–334 (2007).
[Crossref]

J. Chen, D. Wang, J. Xi, L. Au, A. Siekkinen, A. Warsen, Z.-Y. Li, H. Zhang, Y. Xia, and X. Li, “Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells,” Nano Lett. 7(5), 1318–1322 (2007).
[Crossref] [PubMed]

2006 (2)

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[Crossref] [PubMed]

V. Kotaidis, C. Dahmen, G. von Plessen, F. Springer, and A. Plech, “Excitation of nanoscale vapor bubbles at the surface of gold nanoparticles in water,” J. Chem. Phys. 124(18), 184702 (2006).
[Crossref] [PubMed]

2005 (2)

D. S. Bradshaw and D. L. Andrews, “Interactions between spherical nanoparticles optically trapped in Laguerre-Gaussian modes,” Opt. Lett. 30(22), 3039–3041 (2005).
[Crossref] [PubMed]

P. M. Hansen, V. K. L. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett. 5(10), 1937–1942 (2005).
[Crossref] [PubMed]

2004 (3)

2003 (2)

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100(23), 13549–13554 (2003).
[Crossref] [PubMed]

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref] [PubMed]

2001 (1)

M. A. El-Sayed, “Some interesting properties of metals confined in time and nanometer space of different shapes,” Acc. Chem. Res. 34(4), 257–264 (2001).
[Crossref] [PubMed]

1994 (1)

1986 (1)

Albaladejo, S.

S. Albaladejo, M. I. Marqués, M. Laroche, and J. J. Sáenz, “Scattering forces from the curl of the spin angular momentum of a light field,” Phys. Rev. Lett. 102(11), 113602 (2009).
[Crossref] [PubMed]

Amato-Grill, J.

Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill, and D. G. Grier, “Optical forces arising from phase gradients,” Phys. Rev. Lett. 100(1), 013602 (2008).
[Crossref] [PubMed]

Andrews, D. L.

Ashkin, A.

Au, L.

J. Chen, D. Wang, J. Xi, L. Au, A. Siekkinen, A. Warsen, Z.-Y. Li, H. Zhang, Y. Xia, and X. Li, “Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells,” Nano Lett. 7(5), 1318–1322 (2007).
[Crossref] [PubMed]

Baffou, G.

G. Baffou and R. Quidant, “Thermo-plasmonics: using metallic nanostructures as nano-sources of heat,” Laser Photonics Rev. 7(2), 171–187 (2013).
[Crossref]

Bankson, J. A.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100(23), 13549–13554 (2003).
[Crossref] [PubMed]

Bendix, P. M.

P. M. Bendix, S. N. Reihani, L. B. Oddershede, and L. B. Oddershede, “Direct measurements of heating by electromagnetically trapped gold nanoparticles on supported lipid bilayers,” ACS Nano 4(4), 2256–2262 (2010).
[Crossref] [PubMed]

Beresna, M.

M. Beresna, M. Gecevičius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98(20), 201101 (2011).
[Crossref]

Bhatia, V. K. L.

P. M. Hansen, V. K. L. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett. 5(10), 1937–1942 (2005).
[Crossref] [PubMed]

Bjorkholm, J. E.

Block, S. M.

Borghese, F.

Bradshaw, D. S.

Brzobohatý, O.

Chan, C. T.

J. Chen, J. Ng, Z. Lin, and C. T. Chan, “Optical pulling force,” Nat. Photonics 5(9), 531–534 (2011).
[Crossref]

Chavez-Cerda, S.

Chen, J.

J. Chen, J. Ng, Z. Lin, and C. T. Chan, “Optical pulling force,” Nat. Photonics 5(9), 531–534 (2011).
[Crossref]

J. Chen, D. Wang, J. Xi, L. Au, A. Siekkinen, A. Warsen, Z.-Y. Li, H. Zhang, Y. Xia, and X. Li, “Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells,” Nano Lett. 7(5), 1318–1322 (2007).
[Crossref] [PubMed]

Chen, W.

Chu, S.

Cui, Y.

Dahmen, C.

V. Kotaidis, C. Dahmen, G. von Plessen, F. Springer, and A. Plech, “Excitation of nanoscale vapor bubbles at the surface of gold nanoparticles in water,” J. Chem. Phys. 124(18), 184702 (2006).
[Crossref] [PubMed]

Dennis, M. R.

M. R. Dennis, K. O’Holleran, and M. J. Padgett, “Singular optics: optical vortices and polarization singularities,” Prog. Opt. 53, 293–363 (2009).
[Crossref]

Denti, P.

Dholakia, K.

Dienerowitz, M.

Du, L.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref] [PubMed]

Dziedzic, J. M.

El-Sayed, I. H.

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[Crossref] [PubMed]

El-Sayed, M. A.

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[Crossref] [PubMed]

M. A. El-Sayed, “Small is different: shape-, size-, and composition-dependent properties of some colloidal semiconductor nanocrystals,” Acc. Chem. Res. 37(5), 326–333 (2004).
[Crossref] [PubMed]

M. A. El-Sayed, “Some interesting properties of metals confined in time and nanometer space of different shapes,” Acc. Chem. Res. 34(4), 257–264 (2001).
[Crossref] [PubMed]

Fang, H.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref] [PubMed]

Feldmann, J.

A. Ohlinger, S. Nedev, A. A. Lutich, and J. Feldmann, “Optothermal escape of plasmonically coupled silver nanoparticles from a three-dimensional optical trap,” Nano Lett. 11(4), 1770–1774 (2011).
[Crossref] [PubMed]

Feng, B.

Feurer, T.

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys., A Mater. Sci. Process. 86(3), 329–334 (2007).
[Crossref]

Garces-Chávez, V.

Gecevicius, M.

M. Beresna, M. Gecevičius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98(20), 201101 (2011).
[Crossref]

Gertus, T.

M. Beresna, M. Gecevičius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98(20), 201101 (2011).
[Crossref]

Grier, D. G.

Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill, and D. G. Grier, “Optical forces arising from phase gradients,” Phys. Rev. Lett. 100(1), 013602 (2008).
[Crossref] [PubMed]

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref] [PubMed]

Guo, H.

Halas, N. J.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100(23), 13549–13554 (2003).
[Crossref] [PubMed]

Hansen, P. M.

P. M. Hansen, V. K. L. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett. 5(10), 1937–1942 (2005).
[Crossref] [PubMed]

Harrit, N.

P. M. Hansen, V. K. L. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett. 5(10), 1937–1942 (2005).
[Crossref] [PubMed]

Hazle, J. D.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100(23), 13549–13554 (2003).
[Crossref] [PubMed]

Hirsch, L. R.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100(23), 13549–13554 (2003).
[Crossref] [PubMed]

Huang, L.

Huang, X.

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[Crossref] [PubMed]

Iatì, M. A.

Jákl, P.

Kazansky, P. G.

M. Beresna, M. Gecevičius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98(20), 201101 (2011).
[Crossref]

Kotaidis, V.

V. Kotaidis, C. Dahmen, G. von Plessen, F. Springer, and A. Plech, “Excitation of nanoscale vapor bubbles at the surface of gold nanoparticles in water,” J. Chem. Phys. 124(18), 184702 (2006).
[Crossref] [PubMed]

Krauss, T. F.

Laroche, M.

S. Albaladejo, M. I. Marqués, M. Laroche, and J. J. Sáenz, “Scattering forces from the curl of the spin angular momentum of a light field,” Phys. Rev. Lett. 102(11), 113602 (2009).
[Crossref] [PubMed]

Lei, T.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref] [PubMed]

Li, J.

Li, X.

J. Chen, D. Wang, J. Xi, L. Au, A. Siekkinen, A. Warsen, Z.-Y. Li, H. Zhang, Y. Xia, and X. Li, “Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells,” Nano Lett. 7(5), 1318–1322 (2007).
[Crossref] [PubMed]

Li, Z. Y.

Li, Z.-Y.

J. Chen, D. Wang, J. Xi, L. Au, A. Siekkinen, A. Warsen, Z.-Y. Li, H. Zhang, Y. Xia, and X. Li, “Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells,” Nano Lett. 7(5), 1318–1322 (2007).
[Crossref] [PubMed]

Lin, Z.

J. Chen, J. Ng, Z. Lin, and C. T. Chan, “Optical pulling force,” Nat. Photonics 5(9), 531–534 (2011).
[Crossref]

Ling, L.

Lutich, A. A.

A. Ohlinger, S. Nedev, A. A. Lutich, and J. Feldmann, “Optothermal escape of plasmonically coupled silver nanoparticles from a three-dimensional optical trap,” Nano Lett. 11(4), 1770–1774 (2011).
[Crossref] [PubMed]

Maragò, O. M.

Marqués, M. I.

S. Albaladejo, M. I. Marqués, M. Laroche, and J. J. Sáenz, “Scattering forces from the curl of the spin angular momentum of a light field,” Phys. Rev. Lett. 102(11), 113602 (2009).
[Crossref] [PubMed]

Mazilu, M.

Meier, M.

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys., A Mater. Sci. Process. 86(3), 329–334 (2007).
[Crossref]

Min, C.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref] [PubMed]

Nedev, S.

A. Ohlinger, S. Nedev, A. A. Lutich, and J. Feldmann, “Optothermal escape of plasmonically coupled silver nanoparticles from a three-dimensional optical trap,” Nano Lett. 11(4), 1770–1774 (2011).
[Crossref] [PubMed]

Ng, J.

J. Chen, J. Ng, Z. Lin, and C. T. Chan, “Optical pulling force,” Nat. Photonics 5(9), 531–534 (2011).
[Crossref]

O’Holleran, K.

M. R. Dennis, K. O’Holleran, and M. J. Padgett, “Singular optics: optical vortices and polarization singularities,” Prog. Opt. 53, 293–363 (2009).
[Crossref]

Oddershede, L.

P. M. Hansen, V. K. L. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett. 5(10), 1937–1942 (2005).
[Crossref] [PubMed]

Oddershede, L. B.

P. M. Bendix, S. N. Reihani, L. B. Oddershede, and L. B. Oddershede, “Direct measurements of heating by electromagnetically trapped gold nanoparticles on supported lipid bilayers,” ACS Nano 4(4), 2256–2262 (2010).
[Crossref] [PubMed]

P. M. Bendix, S. N. Reihani, L. B. Oddershede, and L. B. Oddershede, “Direct measurements of heating by electromagnetically trapped gold nanoparticles on supported lipid bilayers,” ACS Nano 4(4), 2256–2262 (2010).
[Crossref] [PubMed]

Ohlinger, A.

A. Ohlinger, S. Nedev, A. A. Lutich, and J. Feldmann, “Optothermal escape of plasmonically coupled silver nanoparticles from a three-dimensional optical trap,” Nano Lett. 11(4), 1770–1774 (2011).
[Crossref] [PubMed]

Padgett, M. J.

M. R. Dennis, K. O’Holleran, and M. J. Padgett, “Singular optics: optical vortices and polarization singularities,” Prog. Opt. 53, 293–363 (2009).
[Crossref]

Plech, A.

V. Kotaidis, C. Dahmen, G. von Plessen, F. Springer, and A. Plech, “Excitation of nanoscale vapor bubbles at the surface of gold nanoparticles in water,” J. Chem. Phys. 124(18), 184702 (2006).
[Crossref] [PubMed]

Price, R. E.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100(23), 13549–13554 (2003).
[Crossref] [PubMed]

Qian, W.

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[Crossref] [PubMed]

Quidant, R.

G. Baffou and R. Quidant, “Thermo-plasmonics: using metallic nanostructures as nano-sources of heat,” Laser Photonics Rev. 7(2), 171–187 (2013).
[Crossref]

Reece, P. J.

Reihani, S. N.

P. M. Bendix, S. N. Reihani, L. B. Oddershede, and L. B. Oddershede, “Direct measurements of heating by electromagnetically trapped gold nanoparticles on supported lipid bilayers,” ACS Nano 4(4), 2256–2262 (2010).
[Crossref] [PubMed]

Rivera, B.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100(23), 13549–13554 (2003).
[Crossref] [PubMed]

Roichman, Y.

Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill, and D. G. Grier, “Optical forces arising from phase gradients,” Phys. Rev. Lett. 100(1), 013602 (2008).
[Crossref] [PubMed]

Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill, and D. G. Grier, “Optical forces arising from phase gradients,” Phys. Rev. Lett. 100(1), 013602 (2008).
[Crossref] [PubMed]

Romano, V.

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys., A Mater. Sci. Process. 86(3), 329–334 (2007).
[Crossref]

Rui, G.

G. Rui and Q. Zhan, “Tailoring optical complex fields with nano-metallic surfaces,” Nanophotonics 4(1), 2–25 (2015).
[Crossref]

G. Rui, X. Wang, and Y. Cui, “Manipulation of metallic nanoparticle with evanescent vortex Bessel beam,” Opt. Express 23(20), 25707–25716 (2015).
[Crossref] [PubMed]

G. Rui and Q. Zhan, “Trapping of resonant metallic nanoparticles with engineered vectorial optical field,” Nanophotonics 3(6), 351–361 (2014).
[Crossref]

Sáenz, J. J.

J. J. Sáenz, “Optical forces: laser tractor beams,” Nat. Photonics 5(9), 514–515 (2011).
[Crossref]

S. Albaladejo, M. I. Marqués, M. Laroche, and J. J. Sáenz, “Scattering forces from the curl of the spin angular momentum of a light field,” Phys. Rev. Lett. 102(11), 113602 (2009).
[Crossref] [PubMed]

Saija, R.

Sershen, S. R.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100(23), 13549–13554 (2003).
[Crossref] [PubMed]

Shen, J.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref] [PubMed]

Shen, Z.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref] [PubMed]

Siekkinen, A.

J. Chen, D. Wang, J. Xi, L. Au, A. Siekkinen, A. Warsen, Z.-Y. Li, H. Zhang, Y. Xia, and X. Li, “Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells,” Nano Lett. 7(5), 1318–1322 (2007).
[Crossref] [PubMed]

Šiler, M.

Springer, F.

V. Kotaidis, C. Dahmen, G. von Plessen, F. Springer, and A. Plech, “Excitation of nanoscale vapor bubbles at the surface of gold nanoparticles in water,” J. Chem. Phys. 124(18), 184702 (2006).
[Crossref] [PubMed]

Stafford, R. J.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100(23), 13549–13554 (2003).
[Crossref] [PubMed]

Sun, B.

Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill, and D. G. Grier, “Optical forces arising from phase gradients,” Phys. Rev. Lett. 100(1), 013602 (2008).
[Crossref] [PubMed]

Svoboda, K.

Volke-Seplveda, K.

von Plessen, G.

V. Kotaidis, C. Dahmen, G. von Plessen, F. Springer, and A. Plech, “Excitation of nanoscale vapor bubbles at the surface of gold nanoparticles in water,” J. Chem. Phys. 124(18), 184702 (2006).
[Crossref] [PubMed]

Wang, D.

J. Chen, D. Wang, J. Xi, L. Au, A. Siekkinen, A. Warsen, Z.-Y. Li, H. Zhang, Y. Xia, and X. Li, “Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells,” Nano Lett. 7(5), 1318–1322 (2007).
[Crossref] [PubMed]

Wang, X.

Warsen, A.

J. Chen, D. Wang, J. Xi, L. Au, A. Siekkinen, A. Warsen, Z.-Y. Li, H. Zhang, Y. Xia, and X. Li, “Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells,” Nano Lett. 7(5), 1318–1322 (2007).
[Crossref] [PubMed]

West, J. L.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100(23), 13549–13554 (2003).
[Crossref] [PubMed]

Xi, J.

J. Chen, D. Wang, J. Xi, L. Au, A. Siekkinen, A. Warsen, Z.-Y. Li, H. Zhang, Y. Xia, and X. Li, “Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells,” Nano Lett. 7(5), 1318–1322 (2007).
[Crossref] [PubMed]

Xia, Y.

J. Chen, D. Wang, J. Xi, L. Au, A. Siekkinen, A. Warsen, Z.-Y. Li, H. Zhang, Y. Xia, and X. Li, “Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells,” Nano Lett. 7(5), 1318–1322 (2007).
[Crossref] [PubMed]

Yuan, G.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref] [PubMed]

Yuan, X.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref] [PubMed]

Zemánek, P.

Zhan, Q.

G. Rui and Q. Zhan, “Tailoring optical complex fields with nano-metallic surfaces,” Nanophotonics 4(1), 2–25 (2015).
[Crossref]

G. Rui and Q. Zhan, “Trapping of resonant metallic nanoparticles with engineered vectorial optical field,” Nanophotonics 3(6), 351–361 (2014).
[Crossref]

W. Chen and Q. Zhan, “Creating a spherical focal spot with spatially modulated radial polarization in 4Pi microscopy,” Opt. Lett. 34(16), 2444–2446 (2009).
[Crossref] [PubMed]

Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photonics 1(1), 1–57 (2009).
[Crossref]

Q. Zhan, “Trapping metallic Rayleigh particles with radial polarization,” Opt. Express 12(15), 3377–3382 (2004).
[Crossref] [PubMed]

Zhang, H.

J. Chen, D. Wang, J. Xi, L. Au, A. Siekkinen, A. Warsen, Z.-Y. Li, H. Zhang, Y. Xia, and X. Li, “Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells,” Nano Lett. 7(5), 1318–1322 (2007).
[Crossref] [PubMed]

Zhang, Y.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref] [PubMed]

Zhu, S.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref] [PubMed]

Acc. Chem. Res. (2)

M. A. El-Sayed, “Small is different: shape-, size-, and composition-dependent properties of some colloidal semiconductor nanocrystals,” Acc. Chem. Res. 37(5), 326–333 (2004).
[Crossref] [PubMed]

M. A. El-Sayed, “Some interesting properties of metals confined in time and nanometer space of different shapes,” Acc. Chem. Res. 34(4), 257–264 (2001).
[Crossref] [PubMed]

ACS Nano (1)

P. M. Bendix, S. N. Reihani, L. B. Oddershede, and L. B. Oddershede, “Direct measurements of heating by electromagnetically trapped gold nanoparticles on supported lipid bilayers,” ACS Nano 4(4), 2256–2262 (2010).
[Crossref] [PubMed]

Adv. Opt. Photonics (1)

Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photonics 1(1), 1–57 (2009).
[Crossref]

Appl. Phys. Lett. (1)

M. Beresna, M. Gecevičius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98(20), 201101 (2011).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys., A Mater. Sci. Process. 86(3), 329–334 (2007).
[Crossref]

J. Am. Chem. Soc. (1)

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[Crossref] [PubMed]

J. Chem. Phys. (1)

V. Kotaidis, C. Dahmen, G. von Plessen, F. Springer, and A. Plech, “Excitation of nanoscale vapor bubbles at the surface of gold nanoparticles in water,” J. Chem. Phys. 124(18), 184702 (2006).
[Crossref] [PubMed]

J. Opt. Soc. Am. B (1)

Laser Photonics Rev. (1)

G. Baffou and R. Quidant, “Thermo-plasmonics: using metallic nanostructures as nano-sources of heat,” Laser Photonics Rev. 7(2), 171–187 (2013).
[Crossref]

Nano Lett. (3)

P. M. Hansen, V. K. L. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett. 5(10), 1937–1942 (2005).
[Crossref] [PubMed]

J. Chen, D. Wang, J. Xi, L. Au, A. Siekkinen, A. Warsen, Z.-Y. Li, H. Zhang, Y. Xia, and X. Li, “Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells,” Nano Lett. 7(5), 1318–1322 (2007).
[Crossref] [PubMed]

A. Ohlinger, S. Nedev, A. A. Lutich, and J. Feldmann, “Optothermal escape of plasmonically coupled silver nanoparticles from a three-dimensional optical trap,” Nano Lett. 11(4), 1770–1774 (2011).
[Crossref] [PubMed]

Nanophotonics (2)

G. Rui and Q. Zhan, “Tailoring optical complex fields with nano-metallic surfaces,” Nanophotonics 4(1), 2–25 (2015).
[Crossref]

G. Rui and Q. Zhan, “Trapping of resonant metallic nanoparticles with engineered vectorial optical field,” Nanophotonics 3(6), 351–361 (2014).
[Crossref]

Nat. Commun. (1)

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref] [PubMed]

Nat. Photonics (2)

J. Chen, J. Ng, Z. Lin, and C. T. Chan, “Optical pulling force,” Nat. Photonics 5(9), 531–534 (2011).
[Crossref]

J. J. Sáenz, “Optical forces: laser tractor beams,” Nat. Photonics 5(9), 514–515 (2011).
[Crossref]

Nature (1)

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (5)

Phys. Rev. Lett. (2)

S. Albaladejo, M. I. Marqués, M. Laroche, and J. J. Sáenz, “Scattering forces from the curl of the spin angular momentum of a light field,” Phys. Rev. Lett. 102(11), 113602 (2009).
[Crossref] [PubMed]

Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill, and D. G. Grier, “Optical forces arising from phase gradients,” Phys. Rev. Lett. 100(1), 013602 (2008).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100(23), 13549–13554 (2003).
[Crossref] [PubMed]

Prog. Opt. (1)

M. R. Dennis, K. O’Holleran, and M. J. Padgett, “Singular optics: optical vortices and polarization singularities,” Prog. Opt. 53, 293–363 (2009).
[Crossref]

Other (2)

M. Gu, Advanced Optical Imaging Theory (Springer, 2000).

K. Kneipp, M. Moskovits, and H. Kneipp, Surface-Enhanced Raman Scattering (Berlin: Springer, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Diagram of the proposed optical tweezers design. An incident azimuthally polarized beam is highly focused by an objective lens. A diffraction optical element is inserted at the entrance pupil plane of the objective lens.

Fig. 2
Fig. 2

(a) Scattering cross section and (b) absorption cross section of 50 nm radius gold nanoparticles in water.

Fig. 3
Fig. 3

Optical forces on 50 nm (radius) gold nanoparticle produced by APVB with m = 2 at 532 nm using conventional trapping method. (a) Optical forces along the z-axis at the radial equilibrium point and φ = 0. (b) Optical forces along the r-axis at φ = 0 and z = 0. (c) Optical forces along the φ-axis at the radial equilibrium point and z = 0. (d) |E|2 distribution in the x-z plane at y = 0. (e) Eφ phase distribution along the z-axis at the radial equilibrium point and φ = 0. (f) Eφ phase distribution along the φ-axis at the radial equilibrium point and z = 0.

Fig. 4
Fig. 4

Optical forces on 50 nm (radius) gold nanoparticle at 532 nm using DOE with Δϕ = 0.96π and θ0 = 1.46 rad for APVB with m = 2. (a) Optical forces along the z-axis at the radial equilibrium point and φ = 0. (b) Optical forces along the r-axis at the longitudinal equilibrium point and φ = 0. (c) Optical forces along the φ-axis at the longitudinal and radial equilibrium points. (d) |E|2 distribution in the x-z plane at y = 0. (e) Eφ phase distribution along the z-axis at the radial equilibrium point and φ = 0. (f) Eφ phase distribution along the φ-axis at the longitudinal and radial equilibrium points.

Fig. 5
Fig. 5

Optical forces on 50 nm (radius) gold nanoparticle at 532 nm using DOE with Δϕ = −0.63π and θ0 = 1.47 rad for APVB with m = −3. (a) Optical forces along the z-axis at the radial equilibrium point and φ = 0. (b) Optical forces along the r-axis at the longitudinal equilibrium point and φ = 0. (c) Optical forces along the φ-axis at the longitudinal and radial equilibrium points. (d) |E|2 distribution in the x-z plane at y = 0. (e) Eφ phase distribution along the z-axis at the radial equilibrium point and φ = 0. (f) Eφ phase distribution along the φ-axis at the longitudinal and radial equilibrium points.

Fig. 6
Fig. 6

Optical forces on 50 nm (radius) gold nanoparticle at 532 nm using DOE with Δϕ = π and θ0 = 1.44 rad for azimuthally polarized beam with sinusoidal varied phase (n = 4). (a) Optical forces along the z-axis at the radial and azimuthal equilibrium points. (b) Optical forces along the r-axis at the longitudinal and azimuthal equilibrium points. (c) Optical forces along the φ-axis at the longitudinal and radial equilibrium points. (d) Eφ phase distribution along the φ-axis at the longitudinal and radial equilibrium points.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

E φ ( r,φ )= E 0 e imφ e ^ φ ,
E r (r,φ,z)=A θ min θ max M(θ)P(θ)sinθ[ J m+1 (krsinθ)+ J m1 (krsinθ) ] ×exp(ikzcosθ)exp(imφ)dθ,
E φ (r,φ,z)=iA θ min θ max M(θ)P(θ)sinθ[ J m+1 (krsinθ) J m1 (krsinθ) ] ×exp(ikzcosθ)exp(imφ)dθ,
α= α 0 1 i α 0 k 3 / ( 6π ε 0 ) ,
F = 1 4 ε 0 Re{ α } | E | 2 + nσ 2c { E × H * }+ σ 2 Re{ i ε 0 k 0 ( E ) E * },
F r = 1 4 ε 0 Re(α) r | E | 2 + nσ 2c Re( E ϕ H z * )+ σ ε 0 2 k 0 Re{ i( E r E r * r + E ϕ r E r * ϕ ) },
F ϕ = 1 4 ε 0 Re(α) ϕ | E | 2 + nσ 2c Re( E r H z * )+ σ ε 0 2 k 0 Re{ i( E r E ϕ * r + E ϕ r E ϕ * ϕ ) },
F z = 1 4 ε 0 Re(α) z | E | 2 + nσ 2c Re( E r H ϕ * E ϕ H r * ).
M( θ )={ 1,θ> θ 0 Δϕ,θ θ 0 ,
E φ ( r,φ )= E 0 e isin( nφ ) e ^ φ .
E r =i A π θ min θ max 0 2π P(θ) M(θ)sinθsin(φϕ) e ik[ zcosθ+rsinθcos( φϕ ) ] e isin( nφ ) dφdθ,
E ϕ =i A π θ min θ max 0 2π P(θ) M(θ)sinθcos(φϕ) e ik[ zcosθ+rsinθcos( φϕ ) ] e isin( nφ ) dφdθ.

Metrics