Abstract

We experimentally demonstrate on-chip all-optical wavelength conversion of 10-Gbit/s (9.35-Gbit/s net rate) 4-level pulse amplitude modulation (PAM-4) signal by exploiting degenerate four-wave mixing (FWM) in a silicon waveguide. The measured optical signal-to-noise ratio (OSNR) penalty of wavelength conversion is ~1 dB at a bit-error rate (BER) of 2 × 10−3. Moreover, the use of wavelength conversion for PAM-4 signal regeneration is also demonstrated in the experiment.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Channel-selective wavelength conversion of quadrature amplitude modulation signal using a graphene-assisted silicon microring resonator

Yun Long, Yi Wang, Xiao Hu, Mengxi Ji, Li Shen, Andong Wang, and Jian Wang
Opt. Lett. 42(4) 799-802 (2017)

Low-power-penalty wavelength multicasting for 36  Gbit/s 16-QAM coherent optical signals in a silicon waveguide

Xiaoyan Wang, Lingchen Huang, and Shiming Gao
Opt. Lett. 39(24) 6907-6910 (2014)

Wavelength conversion of 28 GBaud 16-QAM signals based on four-wave mixing in a silicon nanowire

Rhys Adams, Mina Spasojevic, Mathieu Chagnon, Mahdi Malekiha, Jia Li, David V. Plant, and Lawrence R. Chen
Opt. Express 22(4) 4083-4090 (2014)

References

  • View by:
  • |
  • |
  • |

  1. A. E. Willner, S. Khaleghi, M. R. Chitgarha, and O. F. Yilmaz, “All-optical signal processing,” J. Lightwave Technol. 32(4), 660–680 (2014).
    [Crossref]
  2. M. Saruwatari, “All-optical signal processing for terabit/second optical transmission,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1363–1374 (2000).
    [Crossref]
  3. H. Dorren, M. Hill, Y. Liu, N. Calabretta, A. Srivatsa, F. Huijskens, H. De Waardt, and G. Khoe, “Optical packet switching and buffering by using all-optical signal processing methods,” J. Lightwave Technol. 21(1), 2–12 (2003).
    [Crossref]
  4. X. Wu, “High-speed optical signal processing for terabit/second optical networks,” in Asia Communications and Photonics Conference (Optical Society of America, 2012), paper AS2G.4.
    [Crossref]
  5. S. J. B. Yoo, “Wavelength conversion technologies for WDM network applications,” J. Lightwave Technol. 14(6), 955–966 (1996).
    [Crossref]
  6. J. M. H. Elmirghani and H. T. Mouftah, “All-optical wavelength conversion: technologies and applications in DWDM networks,” IEEE Commun. Mag. 38(3), 86–92 (2000).
    [Crossref]
  7. T. Durhuus, B. Mikkelsen, C. Joergensen, S. L. Danielsen, and K. E. Stubkjaer, “All-optical wavelength conversion by semiconductor optical amplifiers,” J. Lightwave Technol. 14(6), 942–954 (1996).
    [Crossref]
  8. S. Subramaniam, M. Azizoglu, and A. K. Soman, “All-optical networks with sparse wavelength conversion,” IEEE Netw. Trans. 4(4), 544–557 (1996).
    [Crossref]
  9. S. You, C. Li, Q. Yang, M. Luo, Y. Qiu, X. Xiao, and S. Yu, “Seamless sub-band wavelength conversion of Tb/s-class CO-OFDM superchannels,” IEEE Photonics Technol. Lett. 26(8), 801–804 (2014).
    [Crossref]
  10. C. Kachris and I. Tomkos, “A survey on optical interconnects for data centers,” IEEE Comm. Surv. and Tutor. 14(4), 1021–1036 (2012).
    [Crossref]
  11. K. N. Georgakilas, A. Tzanakaki, M. Anastasopoulos, and J. M. Pedersen, “Converged optical network and data center virtual infrastructure planning,” J. Opt. Commun. Netw. 4(9), 681–691 (2012).
    [Crossref]
  12. A. Wonfor, H. Wang, R. Penty, and I. White, “Large port count high-speed optical switch fabric for use within datacenters [Invited],” J. Opt. Commun. Netw. 3(8), A32–A39 (2011).
    [Crossref]
  13. B. Filion, W. C. Ng, A. T. Nguyen, L. A. Rusch, and S. Larochelle, “Wideband wavelength conversion of 16 Gbaud 16-QAM and 5 Gbaud 64-QAM signals in a semiconductor optical amplifier,” Opt. Express 21(17), 19825–19833 (2013).
    [Crossref] [PubMed]
  14. R. Elschner, T. Richter, M. Nölle, J. Hilt, and C. Schubert, “Parametric amplification of 28-GBd NRZ-16QAM signals,” in Optical Fiber Communication Conference (Optical Society of America, 2011), paper OThC2.
  15. A. H. Gnauck, E. Myslivets, M. Dinu, B. P. P. Kuo, P. Winzer, R. Jopson, N. Alic, A. Konczykowska, F. Jorge, and J.-Y. Dupuy, “All-optical tunable wavelength shifting of a 128-Gbit/s 64-QAM signal,” in European Conference and Exhibition on Optical Communication (Optical Society of America, 2012), paper Th.2.F.2.
    [Crossref]
  16. G.-W. Lu, T. Sakamoto, and T. Kawanishi, “Wavelength conversion of optical 64QAM through FWM in HNLF and its performance optimization by constellation monitoring,” Opt. Express 22(1), 15–22 (2014).
    [Crossref] [PubMed]
  17. W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23(1), 401–412 (2005).
    [Crossref]
  18. M. A. Ettabib, K. Hammani, F. Parmigiani, L. Jones, A. Kapsalis, A. Bogris, D. Syvridis, M. Brun, P. Labeye, S. Nicoletti, and P. Petropoulos, “FWM-based wavelength conversion of 40 Gbaud PSK signals in a silicon germanium waveguide,” Opt. Express 21(14), 16683–16689 (2013).
    [Crossref] [PubMed]
  19. H. Hu, H. Ji, M. Galili, M. Pu, C. Peucheret, H. C. H. Mulvad, K. Yvind, J. M. Hvam, P. Jeppesen, and L. K. Oxenløwe, “Ultra-high-speed wavelength conversion in a silicon photonic chip,” Opt. Express 19(21), 19886–19894 (2011).
    [Crossref] [PubMed]
  20. R. Adams, M. Spasojevic, M. Chagnon, M. Malekiha, J. Li, D. V. Plant, and L. R. Chen, “Wavelength conversion of 28 GBaud 16-QAM signals based on four-wave mixing in a silicon nanowire,” Opt. Express 22(4), 4083–4090 (2014).
    [Crossref] [PubMed]
  21. C. Li, C. Gui, X. Xiao, Q. Yang, S. Yu, and J. Wang, “On-chip all-optical wavelength conversion of multicarrier, multilevel modulation (OFDM m-QAM) signals using a silicon waveguide,” Opt. Lett. 39(15), 4583–4586 (2014).
    [Crossref] [PubMed]
  22. Y. Long, J. Liu, X. Hu, A. Wang, L. Zhou, K. Zou, Y. Zhu, F. Zhang, and J. Wang, “All-optical multi-channel wavelength conversion of Nyquist 16 QAM signal using a silicon waveguide,” Opt. Lett. 40(23), 5475–5478 (2015).
    [Crossref] [PubMed]
  23. R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2008).
    [Crossref]
  24. Z. Kangping, Z. Xian, G. Yuliang, C. Wei, M. Jiangwei, Z. Li, A. P. T. Lau, and L. Chao, “140-Gb/s 20-km Transmission of PAM-4 Signal at 1.3 um for Short Reach Communications,” IEEE Photonics Technol. Lett. 27, 1757–1760 (2015).
    [Crossref]
  25. S. Kota Pavan, J. Lavrencik, R. Shubochkin, Y. Sun, J. Kim, D. S. Vaidya, R. Lingle, T. Kise, and S. Ralph, “50Gbit/s PAM-4 MMF Transmission Using 1060nm VCSELs with Reach beyond 200m,” in Optical Fiber Communication Conference (Optical Society of America, 2014), paper W1F.5.
    [Crossref]
  26. X. Liu, X. Zhou, and C. Lu, “Four-wave mixing assisted stability enhancement: theory, experiment, and application,” Opt. Lett. 30(17), 2257–2259 (2005).
    [Crossref] [PubMed]
  27. M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Opt. Express 15(20), 12949–12958 (2007).
    [Crossref] [PubMed]
  28. K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, “All-optical efficient wavelength conversion using silicon photonic wire waveguide,” IEEE Photonics Technol. Lett. 18(9), 1046–1048 (2006).
    [Crossref]
  29. W. Mathlouthi, H. Rong, and M. Paniccia, “Characterization of efficient wavelength conversion by four-wave mixing in sub-micron silicon waveguides,” Opt. Express 16(21), 16735–16745 (2008).
    [Crossref] [PubMed]

2015 (2)

Z. Kangping, Z. Xian, G. Yuliang, C. Wei, M. Jiangwei, Z. Li, A. P. T. Lau, and L. Chao, “140-Gb/s 20-km Transmission of PAM-4 Signal at 1.3 um for Short Reach Communications,” IEEE Photonics Technol. Lett. 27, 1757–1760 (2015).
[Crossref]

Y. Long, J. Liu, X. Hu, A. Wang, L. Zhou, K. Zou, Y. Zhu, F. Zhang, and J. Wang, “All-optical multi-channel wavelength conversion of Nyquist 16 QAM signal using a silicon waveguide,” Opt. Lett. 40(23), 5475–5478 (2015).
[Crossref] [PubMed]

2014 (5)

2013 (2)

2012 (2)

2011 (2)

2008 (2)

W. Mathlouthi, H. Rong, and M. Paniccia, “Characterization of efficient wavelength conversion by four-wave mixing in sub-micron silicon waveguides,” Opt. Express 16(21), 16735–16745 (2008).
[Crossref] [PubMed]

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2008).
[Crossref]

2007 (1)

2006 (1)

K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, “All-optical efficient wavelength conversion using silicon photonic wire waveguide,” IEEE Photonics Technol. Lett. 18(9), 1046–1048 (2006).
[Crossref]

2005 (2)

2003 (1)

2000 (2)

M. Saruwatari, “All-optical signal processing for terabit/second optical transmission,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1363–1374 (2000).
[Crossref]

J. M. H. Elmirghani and H. T. Mouftah, “All-optical wavelength conversion: technologies and applications in DWDM networks,” IEEE Commun. Mag. 38(3), 86–92 (2000).
[Crossref]

1996 (3)

T. Durhuus, B. Mikkelsen, C. Joergensen, S. L. Danielsen, and K. E. Stubkjaer, “All-optical wavelength conversion by semiconductor optical amplifiers,” J. Lightwave Technol. 14(6), 942–954 (1996).
[Crossref]

S. Subramaniam, M. Azizoglu, and A. K. Soman, “All-optical networks with sparse wavelength conversion,” IEEE Netw. Trans. 4(4), 544–557 (1996).
[Crossref]

S. J. B. Yoo, “Wavelength conversion technologies for WDM network applications,” J. Lightwave Technol. 14(6), 955–966 (1996).
[Crossref]

Adams, R.

Alic, N.

A. H. Gnauck, E. Myslivets, M. Dinu, B. P. P. Kuo, P. Winzer, R. Jopson, N. Alic, A. Konczykowska, F. Jorge, and J.-Y. Dupuy, “All-optical tunable wavelength shifting of a 128-Gbit/s 64-QAM signal,” in European Conference and Exhibition on Optical Communication (Optical Society of America, 2012), paper Th.2.F.2.
[Crossref]

Anastasopoulos, M.

Azizoglu, M.

S. Subramaniam, M. Azizoglu, and A. K. Soman, “All-optical networks with sparse wavelength conversion,” IEEE Netw. Trans. 4(4), 544–557 (1996).
[Crossref]

Baets, R.

Beckx, S.

Bienstman, P.

Bogaerts, W.

Bogris, A.

Brun, M.

Calabretta, N.

Chagnon, M.

Chao, L.

Z. Kangping, Z. Xian, G. Yuliang, C. Wei, M. Jiangwei, Z. Li, A. P. T. Lau, and L. Chao, “140-Gb/s 20-km Transmission of PAM-4 Signal at 1.3 um for Short Reach Communications,” IEEE Photonics Technol. Lett. 27, 1757–1760 (2015).
[Crossref]

Chen, L. R.

Chitgarha, M. R.

Danielsen, S. L.

T. Durhuus, B. Mikkelsen, C. Joergensen, S. L. Danielsen, and K. E. Stubkjaer, “All-optical wavelength conversion by semiconductor optical amplifiers,” J. Lightwave Technol. 14(6), 942–954 (1996).
[Crossref]

De Waardt, H.

Dinu, M.

A. H. Gnauck, E. Myslivets, M. Dinu, B. P. P. Kuo, P. Winzer, R. Jopson, N. Alic, A. Konczykowska, F. Jorge, and J.-Y. Dupuy, “All-optical tunable wavelength shifting of a 128-Gbit/s 64-QAM signal,” in European Conference and Exhibition on Optical Communication (Optical Society of America, 2012), paper Th.2.F.2.
[Crossref]

Dorren, H.

Dumon, P.

Dupuy, J.-Y.

A. H. Gnauck, E. Myslivets, M. Dinu, B. P. P. Kuo, P. Winzer, R. Jopson, N. Alic, A. Konczykowska, F. Jorge, and J.-Y. Dupuy, “All-optical tunable wavelength shifting of a 128-Gbit/s 64-QAM signal,” in European Conference and Exhibition on Optical Communication (Optical Society of America, 2012), paper Th.2.F.2.
[Crossref]

Durhuus, T.

T. Durhuus, B. Mikkelsen, C. Joergensen, S. L. Danielsen, and K. E. Stubkjaer, “All-optical wavelength conversion by semiconductor optical amplifiers,” J. Lightwave Technol. 14(6), 942–954 (1996).
[Crossref]

Elmirghani, J. M. H.

J. M. H. Elmirghani and H. T. Mouftah, “All-optical wavelength conversion: technologies and applications in DWDM networks,” IEEE Commun. Mag. 38(3), 86–92 (2000).
[Crossref]

Elschner, R.

R. Elschner, T. Richter, M. Nölle, J. Hilt, and C. Schubert, “Parametric amplification of 28-GBd NRZ-16QAM signals,” in Optical Fiber Communication Conference (Optical Society of America, 2011), paper OThC2.

Ettabib, M. A.

Filion, B.

Foster, M. A.

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2008).
[Crossref]

M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Opt. Express 15(20), 12949–12958 (2007).
[Crossref] [PubMed]

Fukuda, H.

K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, “All-optical efficient wavelength conversion using silicon photonic wire waveguide,” IEEE Photonics Technol. Lett. 18(9), 1046–1048 (2006).
[Crossref]

Gaeta, A. L.

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2008).
[Crossref]

M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Opt. Express 15(20), 12949–12958 (2007).
[Crossref] [PubMed]

Galili, M.

Georgakilas, K. N.

Geraghty, D. F.

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2008).
[Crossref]

Gnauck, A. H.

A. H. Gnauck, E. Myslivets, M. Dinu, B. P. P. Kuo, P. Winzer, R. Jopson, N. Alic, A. Konczykowska, F. Jorge, and J.-Y. Dupuy, “All-optical tunable wavelength shifting of a 128-Gbit/s 64-QAM signal,” in European Conference and Exhibition on Optical Communication (Optical Society of America, 2012), paper Th.2.F.2.
[Crossref]

Gui, C.

Hammani, K.

Hill, M.

Hilt, J.

R. Elschner, T. Richter, M. Nölle, J. Hilt, and C. Schubert, “Parametric amplification of 28-GBd NRZ-16QAM signals,” in Optical Fiber Communication Conference (Optical Society of America, 2011), paper OThC2.

Hu, H.

Hu, X.

Huijskens, F.

Hvam, J. M.

Itabashi, S.

K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, “All-optical efficient wavelength conversion using silicon photonic wire waveguide,” IEEE Photonics Technol. Lett. 18(9), 1046–1048 (2006).
[Crossref]

Jeppesen, P.

Ji, H.

Jiangwei, M.

Z. Kangping, Z. Xian, G. Yuliang, C. Wei, M. Jiangwei, Z. Li, A. P. T. Lau, and L. Chao, “140-Gb/s 20-km Transmission of PAM-4 Signal at 1.3 um for Short Reach Communications,” IEEE Photonics Technol. Lett. 27, 1757–1760 (2015).
[Crossref]

Joergensen, C.

T. Durhuus, B. Mikkelsen, C. Joergensen, S. L. Danielsen, and K. E. Stubkjaer, “All-optical wavelength conversion by semiconductor optical amplifiers,” J. Lightwave Technol. 14(6), 942–954 (1996).
[Crossref]

Jones, L.

Jopson, R.

A. H. Gnauck, E. Myslivets, M. Dinu, B. P. P. Kuo, P. Winzer, R. Jopson, N. Alic, A. Konczykowska, F. Jorge, and J.-Y. Dupuy, “All-optical tunable wavelength shifting of a 128-Gbit/s 64-QAM signal,” in European Conference and Exhibition on Optical Communication (Optical Society of America, 2012), paper Th.2.F.2.
[Crossref]

Jorge, F.

A. H. Gnauck, E. Myslivets, M. Dinu, B. P. P. Kuo, P. Winzer, R. Jopson, N. Alic, A. Konczykowska, F. Jorge, and J.-Y. Dupuy, “All-optical tunable wavelength shifting of a 128-Gbit/s 64-QAM signal,” in European Conference and Exhibition on Optical Communication (Optical Society of America, 2012), paper Th.2.F.2.
[Crossref]

Kachris, C.

C. Kachris and I. Tomkos, “A survey on optical interconnects for data centers,” IEEE Comm. Surv. and Tutor. 14(4), 1021–1036 (2012).
[Crossref]

Kangping, Z.

Z. Kangping, Z. Xian, G. Yuliang, C. Wei, M. Jiangwei, Z. Li, A. P. T. Lau, and L. Chao, “140-Gb/s 20-km Transmission of PAM-4 Signal at 1.3 um for Short Reach Communications,” IEEE Photonics Technol. Lett. 27, 1757–1760 (2015).
[Crossref]

Kapsalis, A.

Kawanishi, T.

Khaleghi, S.

Khoe, G.

Kim, J.

S. Kota Pavan, J. Lavrencik, R. Shubochkin, Y. Sun, J. Kim, D. S. Vaidya, R. Lingle, T. Kise, and S. Ralph, “50Gbit/s PAM-4 MMF Transmission Using 1060nm VCSELs with Reach beyond 200m,” in Optical Fiber Communication Conference (Optical Society of America, 2014), paper W1F.5.
[Crossref]

Kise, T.

S. Kota Pavan, J. Lavrencik, R. Shubochkin, Y. Sun, J. Kim, D. S. Vaidya, R. Lingle, T. Kise, and S. Ralph, “50Gbit/s PAM-4 MMF Transmission Using 1060nm VCSELs with Reach beyond 200m,” in Optical Fiber Communication Conference (Optical Society of America, 2014), paper W1F.5.
[Crossref]

Konczykowska, A.

A. H. Gnauck, E. Myslivets, M. Dinu, B. P. P. Kuo, P. Winzer, R. Jopson, N. Alic, A. Konczykowska, F. Jorge, and J.-Y. Dupuy, “All-optical tunable wavelength shifting of a 128-Gbit/s 64-QAM signal,” in European Conference and Exhibition on Optical Communication (Optical Society of America, 2012), paper Th.2.F.2.
[Crossref]

Kota Pavan, S.

S. Kota Pavan, J. Lavrencik, R. Shubochkin, Y. Sun, J. Kim, D. S. Vaidya, R. Lingle, T. Kise, and S. Ralph, “50Gbit/s PAM-4 MMF Transmission Using 1060nm VCSELs with Reach beyond 200m,” in Optical Fiber Communication Conference (Optical Society of America, 2014), paper W1F.5.
[Crossref]

Kuo, B. P. P.

A. H. Gnauck, E. Myslivets, M. Dinu, B. P. P. Kuo, P. Winzer, R. Jopson, N. Alic, A. Konczykowska, F. Jorge, and J.-Y. Dupuy, “All-optical tunable wavelength shifting of a 128-Gbit/s 64-QAM signal,” in European Conference and Exhibition on Optical Communication (Optical Society of America, 2012), paper Th.2.F.2.
[Crossref]

Labeye, P.

Larochelle, S.

Lau, A. P. T.

Z. Kangping, Z. Xian, G. Yuliang, C. Wei, M. Jiangwei, Z. Li, A. P. T. Lau, and L. Chao, “140-Gb/s 20-km Transmission of PAM-4 Signal at 1.3 um for Short Reach Communications,” IEEE Photonics Technol. Lett. 27, 1757–1760 (2015).
[Crossref]

Lavrencik, J.

S. Kota Pavan, J. Lavrencik, R. Shubochkin, Y. Sun, J. Kim, D. S. Vaidya, R. Lingle, T. Kise, and S. Ralph, “50Gbit/s PAM-4 MMF Transmission Using 1060nm VCSELs with Reach beyond 200m,” in Optical Fiber Communication Conference (Optical Society of America, 2014), paper W1F.5.
[Crossref]

Li, C.

C. Li, C. Gui, X. Xiao, Q. Yang, S. Yu, and J. Wang, “On-chip all-optical wavelength conversion of multicarrier, multilevel modulation (OFDM m-QAM) signals using a silicon waveguide,” Opt. Lett. 39(15), 4583–4586 (2014).
[Crossref] [PubMed]

S. You, C. Li, Q. Yang, M. Luo, Y. Qiu, X. Xiao, and S. Yu, “Seamless sub-band wavelength conversion of Tb/s-class CO-OFDM superchannels,” IEEE Photonics Technol. Lett. 26(8), 801–804 (2014).
[Crossref]

Li, J.

Li, Z.

Z. Kangping, Z. Xian, G. Yuliang, C. Wei, M. Jiangwei, Z. Li, A. P. T. Lau, and L. Chao, “140-Gb/s 20-km Transmission of PAM-4 Signal at 1.3 um for Short Reach Communications,” IEEE Photonics Technol. Lett. 27, 1757–1760 (2015).
[Crossref]

Lingle, R.

S. Kota Pavan, J. Lavrencik, R. Shubochkin, Y. Sun, J. Kim, D. S. Vaidya, R. Lingle, T. Kise, and S. Ralph, “50Gbit/s PAM-4 MMF Transmission Using 1060nm VCSELs with Reach beyond 200m,” in Optical Fiber Communication Conference (Optical Society of America, 2014), paper W1F.5.
[Crossref]

Lipson, M.

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2008).
[Crossref]

M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Opt. Express 15(20), 12949–12958 (2007).
[Crossref] [PubMed]

Liu, J.

Liu, X.

Liu, Y.

Long, Y.

Lu, C.

Lu, G.-W.

Luo, M.

S. You, C. Li, Q. Yang, M. Luo, Y. Qiu, X. Xiao, and S. Yu, “Seamless sub-band wavelength conversion of Tb/s-class CO-OFDM superchannels,” IEEE Photonics Technol. Lett. 26(8), 801–804 (2014).
[Crossref]

Luyssaert, B.

Malekiha, M.

Mathlouthi, W.

Mikkelsen, B.

T. Durhuus, B. Mikkelsen, C. Joergensen, S. L. Danielsen, and K. E. Stubkjaer, “All-optical wavelength conversion by semiconductor optical amplifiers,” J. Lightwave Technol. 14(6), 942–954 (1996).
[Crossref]

Mouftah, H. T.

J. M. H. Elmirghani and H. T. Mouftah, “All-optical wavelength conversion: technologies and applications in DWDM networks,” IEEE Commun. Mag. 38(3), 86–92 (2000).
[Crossref]

Mulvad, H. C. H.

Myslivets, E.

A. H. Gnauck, E. Myslivets, M. Dinu, B. P. P. Kuo, P. Winzer, R. Jopson, N. Alic, A. Konczykowska, F. Jorge, and J.-Y. Dupuy, “All-optical tunable wavelength shifting of a 128-Gbit/s 64-QAM signal,” in European Conference and Exhibition on Optical Communication (Optical Society of America, 2012), paper Th.2.F.2.
[Crossref]

Ng, W. C.

Nguyen, A. T.

Nicoletti, S.

Nölle, M.

R. Elschner, T. Richter, M. Nölle, J. Hilt, and C. Schubert, “Parametric amplification of 28-GBd NRZ-16QAM signals,” in Optical Fiber Communication Conference (Optical Society of America, 2011), paper OThC2.

Oxenløwe, L. K.

Paniccia, M.

Parmigiani, F.

Pedersen, J. M.

Penty, R.

Petropoulos, P.

Peucheret, C.

Plant, D. V.

Pu, M.

Qiu, Y.

S. You, C. Li, Q. Yang, M. Luo, Y. Qiu, X. Xiao, and S. Yu, “Seamless sub-band wavelength conversion of Tb/s-class CO-OFDM superchannels,” IEEE Photonics Technol. Lett. 26(8), 801–804 (2014).
[Crossref]

Ralph, S.

S. Kota Pavan, J. Lavrencik, R. Shubochkin, Y. Sun, J. Kim, D. S. Vaidya, R. Lingle, T. Kise, and S. Ralph, “50Gbit/s PAM-4 MMF Transmission Using 1060nm VCSELs with Reach beyond 200m,” in Optical Fiber Communication Conference (Optical Society of America, 2014), paper W1F.5.
[Crossref]

Richter, T.

R. Elschner, T. Richter, M. Nölle, J. Hilt, and C. Schubert, “Parametric amplification of 28-GBd NRZ-16QAM signals,” in Optical Fiber Communication Conference (Optical Society of America, 2011), paper OThC2.

Rong, H.

Rusch, L. A.

Sakamoto, T.

Salem, R.

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2008).
[Crossref]

M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Opt. Express 15(20), 12949–12958 (2007).
[Crossref] [PubMed]

Saruwatari, M.

M. Saruwatari, “All-optical signal processing for terabit/second optical transmission,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1363–1374 (2000).
[Crossref]

Schubert, C.

R. Elschner, T. Richter, M. Nölle, J. Hilt, and C. Schubert, “Parametric amplification of 28-GBd NRZ-16QAM signals,” in Optical Fiber Communication Conference (Optical Society of America, 2011), paper OThC2.

Shoji, T.

K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, “All-optical efficient wavelength conversion using silicon photonic wire waveguide,” IEEE Photonics Technol. Lett. 18(9), 1046–1048 (2006).
[Crossref]

Shubochkin, R.

S. Kota Pavan, J. Lavrencik, R. Shubochkin, Y. Sun, J. Kim, D. S. Vaidya, R. Lingle, T. Kise, and S. Ralph, “50Gbit/s PAM-4 MMF Transmission Using 1060nm VCSELs with Reach beyond 200m,” in Optical Fiber Communication Conference (Optical Society of America, 2014), paper W1F.5.
[Crossref]

Soman, A. K.

S. Subramaniam, M. Azizoglu, and A. K. Soman, “All-optical networks with sparse wavelength conversion,” IEEE Netw. Trans. 4(4), 544–557 (1996).
[Crossref]

Spasojevic, M.

Srivatsa, A.

Stubkjaer, K. E.

T. Durhuus, B. Mikkelsen, C. Joergensen, S. L. Danielsen, and K. E. Stubkjaer, “All-optical wavelength conversion by semiconductor optical amplifiers,” J. Lightwave Technol. 14(6), 942–954 (1996).
[Crossref]

Subramaniam, S.

S. Subramaniam, M. Azizoglu, and A. K. Soman, “All-optical networks with sparse wavelength conversion,” IEEE Netw. Trans. 4(4), 544–557 (1996).
[Crossref]

Sun, Y.

S. Kota Pavan, J. Lavrencik, R. Shubochkin, Y. Sun, J. Kim, D. S. Vaidya, R. Lingle, T. Kise, and S. Ralph, “50Gbit/s PAM-4 MMF Transmission Using 1060nm VCSELs with Reach beyond 200m,” in Optical Fiber Communication Conference (Optical Society of America, 2014), paper W1F.5.
[Crossref]

Syvridis, D.

Taillaert, D.

Tomkos, I.

C. Kachris and I. Tomkos, “A survey on optical interconnects for data centers,” IEEE Comm. Surv. and Tutor. 14(4), 1021–1036 (2012).
[Crossref]

Tsuchizawa, T.

K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, “All-optical efficient wavelength conversion using silicon photonic wire waveguide,” IEEE Photonics Technol. Lett. 18(9), 1046–1048 (2006).
[Crossref]

Turner, A. C.

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2008).
[Crossref]

M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Opt. Express 15(20), 12949–12958 (2007).
[Crossref] [PubMed]

Tzanakaki, A.

Vaidya, D. S.

S. Kota Pavan, J. Lavrencik, R. Shubochkin, Y. Sun, J. Kim, D. S. Vaidya, R. Lingle, T. Kise, and S. Ralph, “50Gbit/s PAM-4 MMF Transmission Using 1060nm VCSELs with Reach beyond 200m,” in Optical Fiber Communication Conference (Optical Society of America, 2014), paper W1F.5.
[Crossref]

Van Campenhout, J.

Van Thourhout, D.

Wang, A.

Wang, H.

Wang, J.

Watanabe, T.

K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, “All-optical efficient wavelength conversion using silicon photonic wire waveguide,” IEEE Photonics Technol. Lett. 18(9), 1046–1048 (2006).
[Crossref]

Wei, C.

Z. Kangping, Z. Xian, G. Yuliang, C. Wei, M. Jiangwei, Z. Li, A. P. T. Lau, and L. Chao, “140-Gb/s 20-km Transmission of PAM-4 Signal at 1.3 um for Short Reach Communications,” IEEE Photonics Technol. Lett. 27, 1757–1760 (2015).
[Crossref]

White, I.

Wiaux, V.

Willner, A. E.

Winzer, P.

A. H. Gnauck, E. Myslivets, M. Dinu, B. P. P. Kuo, P. Winzer, R. Jopson, N. Alic, A. Konczykowska, F. Jorge, and J.-Y. Dupuy, “All-optical tunable wavelength shifting of a 128-Gbit/s 64-QAM signal,” in European Conference and Exhibition on Optical Communication (Optical Society of America, 2012), paper Th.2.F.2.
[Crossref]

Wonfor, A.

Wu, X.

X. Wu, “High-speed optical signal processing for terabit/second optical networks,” in Asia Communications and Photonics Conference (Optical Society of America, 2012), paper AS2G.4.
[Crossref]

Xian, Z.

Z. Kangping, Z. Xian, G. Yuliang, C. Wei, M. Jiangwei, Z. Li, A. P. T. Lau, and L. Chao, “140-Gb/s 20-km Transmission of PAM-4 Signal at 1.3 um for Short Reach Communications,” IEEE Photonics Technol. Lett. 27, 1757–1760 (2015).
[Crossref]

Xiao, X.

C. Li, C. Gui, X. Xiao, Q. Yang, S. Yu, and J. Wang, “On-chip all-optical wavelength conversion of multicarrier, multilevel modulation (OFDM m-QAM) signals using a silicon waveguide,” Opt. Lett. 39(15), 4583–4586 (2014).
[Crossref] [PubMed]

S. You, C. Li, Q. Yang, M. Luo, Y. Qiu, X. Xiao, and S. Yu, “Seamless sub-band wavelength conversion of Tb/s-class CO-OFDM superchannels,” IEEE Photonics Technol. Lett. 26(8), 801–804 (2014).
[Crossref]

Yamada, K.

K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, “All-optical efficient wavelength conversion using silicon photonic wire waveguide,” IEEE Photonics Technol. Lett. 18(9), 1046–1048 (2006).
[Crossref]

Yang, Q.

S. You, C. Li, Q. Yang, M. Luo, Y. Qiu, X. Xiao, and S. Yu, “Seamless sub-band wavelength conversion of Tb/s-class CO-OFDM superchannels,” IEEE Photonics Technol. Lett. 26(8), 801–804 (2014).
[Crossref]

C. Li, C. Gui, X. Xiao, Q. Yang, S. Yu, and J. Wang, “On-chip all-optical wavelength conversion of multicarrier, multilevel modulation (OFDM m-QAM) signals using a silicon waveguide,” Opt. Lett. 39(15), 4583–4586 (2014).
[Crossref] [PubMed]

Yilmaz, O. F.

Yoo, S. J. B.

S. J. B. Yoo, “Wavelength conversion technologies for WDM network applications,” J. Lightwave Technol. 14(6), 955–966 (1996).
[Crossref]

You, S.

S. You, C. Li, Q. Yang, M. Luo, Y. Qiu, X. Xiao, and S. Yu, “Seamless sub-band wavelength conversion of Tb/s-class CO-OFDM superchannels,” IEEE Photonics Technol. Lett. 26(8), 801–804 (2014).
[Crossref]

Yu, S.

S. You, C. Li, Q. Yang, M. Luo, Y. Qiu, X. Xiao, and S. Yu, “Seamless sub-band wavelength conversion of Tb/s-class CO-OFDM superchannels,” IEEE Photonics Technol. Lett. 26(8), 801–804 (2014).
[Crossref]

C. Li, C. Gui, X. Xiao, Q. Yang, S. Yu, and J. Wang, “On-chip all-optical wavelength conversion of multicarrier, multilevel modulation (OFDM m-QAM) signals using a silicon waveguide,” Opt. Lett. 39(15), 4583–4586 (2014).
[Crossref] [PubMed]

Yuliang, G.

Z. Kangping, Z. Xian, G. Yuliang, C. Wei, M. Jiangwei, Z. Li, A. P. T. Lau, and L. Chao, “140-Gb/s 20-km Transmission of PAM-4 Signal at 1.3 um for Short Reach Communications,” IEEE Photonics Technol. Lett. 27, 1757–1760 (2015).
[Crossref]

Yvind, K.

Zhang, F.

Zhou, L.

Zhou, X.

Zhu, Y.

Zou, K.

IEEE Comm. Surv. and Tutor. (1)

C. Kachris and I. Tomkos, “A survey on optical interconnects for data centers,” IEEE Comm. Surv. and Tutor. 14(4), 1021–1036 (2012).
[Crossref]

IEEE Commun. Mag. (1)

J. M. H. Elmirghani and H. T. Mouftah, “All-optical wavelength conversion: technologies and applications in DWDM networks,” IEEE Commun. Mag. 38(3), 86–92 (2000).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Saruwatari, “All-optical signal processing for terabit/second optical transmission,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1363–1374 (2000).
[Crossref]

IEEE Netw. Trans. (1)

S. Subramaniam, M. Azizoglu, and A. K. Soman, “All-optical networks with sparse wavelength conversion,” IEEE Netw. Trans. 4(4), 544–557 (1996).
[Crossref]

IEEE Photonics Technol. Lett. (3)

S. You, C. Li, Q. Yang, M. Luo, Y. Qiu, X. Xiao, and S. Yu, “Seamless sub-band wavelength conversion of Tb/s-class CO-OFDM superchannels,” IEEE Photonics Technol. Lett. 26(8), 801–804 (2014).
[Crossref]

Z. Kangping, Z. Xian, G. Yuliang, C. Wei, M. Jiangwei, Z. Li, A. P. T. Lau, and L. Chao, “140-Gb/s 20-km Transmission of PAM-4 Signal at 1.3 um for Short Reach Communications,” IEEE Photonics Technol. Lett. 27, 1757–1760 (2015).
[Crossref]

K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, “All-optical efficient wavelength conversion using silicon photonic wire waveguide,” IEEE Photonics Technol. Lett. 18(9), 1046–1048 (2006).
[Crossref]

J. Lightwave Technol. (5)

J. Opt. Commun. Netw. (2)

Nat. Photonics (1)

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2008).
[Crossref]

Opt. Express (7)

R. Adams, M. Spasojevic, M. Chagnon, M. Malekiha, J. Li, D. V. Plant, and L. R. Chen, “Wavelength conversion of 28 GBaud 16-QAM signals based on four-wave mixing in a silicon nanowire,” Opt. Express 22(4), 4083–4090 (2014).
[Crossref] [PubMed]

M. A. Ettabib, K. Hammani, F. Parmigiani, L. Jones, A. Kapsalis, A. Bogris, D. Syvridis, M. Brun, P. Labeye, S. Nicoletti, and P. Petropoulos, “FWM-based wavelength conversion of 40 Gbaud PSK signals in a silicon germanium waveguide,” Opt. Express 21(14), 16683–16689 (2013).
[Crossref] [PubMed]

B. Filion, W. C. Ng, A. T. Nguyen, L. A. Rusch, and S. Larochelle, “Wideband wavelength conversion of 16 Gbaud 16-QAM and 5 Gbaud 64-QAM signals in a semiconductor optical amplifier,” Opt. Express 21(17), 19825–19833 (2013).
[Crossref] [PubMed]

G.-W. Lu, T. Sakamoto, and T. Kawanishi, “Wavelength conversion of optical 64QAM through FWM in HNLF and its performance optimization by constellation monitoring,” Opt. Express 22(1), 15–22 (2014).
[Crossref] [PubMed]

H. Hu, H. Ji, M. Galili, M. Pu, C. Peucheret, H. C. H. Mulvad, K. Yvind, J. M. Hvam, P. Jeppesen, and L. K. Oxenløwe, “Ultra-high-speed wavelength conversion in a silicon photonic chip,” Opt. Express 19(21), 19886–19894 (2011).
[Crossref] [PubMed]

M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Opt. Express 15(20), 12949–12958 (2007).
[Crossref] [PubMed]

W. Mathlouthi, H. Rong, and M. Paniccia, “Characterization of efficient wavelength conversion by four-wave mixing in sub-micron silicon waveguides,” Opt. Express 16(21), 16735–16745 (2008).
[Crossref] [PubMed]

Opt. Lett. (3)

Other (4)

S. Kota Pavan, J. Lavrencik, R. Shubochkin, Y. Sun, J. Kim, D. S. Vaidya, R. Lingle, T. Kise, and S. Ralph, “50Gbit/s PAM-4 MMF Transmission Using 1060nm VCSELs with Reach beyond 200m,” in Optical Fiber Communication Conference (Optical Society of America, 2014), paper W1F.5.
[Crossref]

X. Wu, “High-speed optical signal processing for terabit/second optical networks,” in Asia Communications and Photonics Conference (Optical Society of America, 2012), paper AS2G.4.
[Crossref]

R. Elschner, T. Richter, M. Nölle, J. Hilt, and C. Schubert, “Parametric amplification of 28-GBd NRZ-16QAM signals,” in Optical Fiber Communication Conference (Optical Society of America, 2011), paper OThC2.

A. H. Gnauck, E. Myslivets, M. Dinu, B. P. P. Kuo, P. Winzer, R. Jopson, N. Alic, A. Konczykowska, F. Jorge, and J.-Y. Dupuy, “All-optical tunable wavelength shifting of a 128-Gbit/s 64-QAM signal,” in European Conference and Exhibition on Optical Communication (Optical Society of America, 2012), paper Th.2.F.2.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Concept and principle of all-optical wavelength conversion and signal regeneration of PAM-4 signal in a silicon waveguide. Case 1: traditional wavelength conversion; Case 2: signal regeneration.

Fig. 2
Fig. 2

Photomicrograph of the fabricated silicon waveguide.

Fig. 3
Fig. 3

Measured transmission of the grating couplers.

Fig. 4
Fig. 4

Expected dispersion of the silicon waveguide.

Fig. 5
Fig. 5

Experimental setup for silicon waveguide based PAM-4 wavelength conversion and signal regeneration in a silicon waveguide. ECL: external cavity laser; AWG: arbitrary waveform generator; EDFA: erbium-doped fiber amplifier; PC: polarization controller; OC: optical coupler; TF: tunable filter; OSA: optical spectrum analyzer; VOA: variable optical attenuator; PD: photodetector.

Fig. 6
Fig. 6

Measured spectrum of degenerate FWM process in the silicon waveguide.

Fig. 7
Fig. 7

Measured conversion efficiencies as a function of signal light wavelength when the pump wavelength is fixed at 1553.35 nm.

Fig. 8
Fig. 8

Measured idler powers as a function of signal power.

Fig. 9
Fig. 9

Measured (a)(c) eye diagrams and (b)(d) BER performance of B-to-B signal, converted idler 1 and idler 2 in (a)(b) Case 1 and (c)(d) Case 2, respectively.

Fig. 10
Fig. 10

Measured (a) eyes diagrams and (b) BER performance of B-to-B signal, converted idler 1 and idler 2 in the intermediate state between Case 1 and Case 2.

Metrics