Abstract

New dielectric SERS metamaterial is investigated. The material consists of periodic dielectric bars deposited on the metal substrate. Computer simulations as well as real experiment reveal extraordinary optical reflectance in the proposed metamaterial due to the excitation of the multiple dielectric resonances. We demonstrate the enhancement of the Raman signal from the complex of 5,5′-dithio-bis-[2-nitrobenzoic acid] molecules and gold nanoparticle (DTNB-Au-NP), which is immobilized on the surface of the barshaped dielectric metamaterial.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Versatile SERS sensing based on black silicon

Gediminas Seniutinas, Gediminas Gervinskas, Roli Verma, Banshi D. Gupta, Florian Lapierre, Paul R. Stoddart, Felix Clark, Sally L. McArthur, and Saulius Juodkazis
Opt. Express 23(5) 6763-6772 (2015)

SERS-active substrate based on gap surface plasmon polaritons

Hyun Chul Kim and Xing Cheng
Opt. Express 17(20) 17234-17241 (2009)

SERS enhancements via periodic arrays of gold nanoparticles on silver film structures

Jason M. Montgomery, Alexandra Imre, Ulrich Welp, Vitalii Vlasko-Vlasov, and Stephen K. Gray
Opt. Express 17(10) 8669-8675 (2009)

References

  • View by:
  • |
  • |
  • |

  1. M. Fleischmann, P. Hendra, and A. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
    [Crossref]
  2. S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).
    [Crossref]
  3. B. Sharma, R. R. Frontiera, A.-I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: metamerials, applications, and the future,” Mater. Today 15(1–2), 16–25 (2012).
    [Crossref]
  4. F. Brouers, S. Blacher, A. N. Lagarkov, A. K. Sarychev, P. Gadenne, and V. M. Shalaev, “Theory of giant Raman scattering from semicontinuous metal films,” Phys. Rev. B 55(19), 234–245 (1997).
    [Crossref]
  5. M. Fan, G. F. S. Andrade, and A. G. Brolo, “A review on the fabrication of substrates for surface enhanced Raman spectroscopy and their applications in analytical chemistry,” Anal. Chim. Acta 693, 7–25 (2011).
    [Crossref] [PubMed]
  6. F. Hu, H. Lin, Z. Zhang, F. Liao, M. Shao, Y. Lifshitz, and S.-T. Lee, “Smart liquid SERS substrates based on Fe3O4/Au nanoparticles with reversibly tunable enhancement factor for partical quantitative detection,” Sci. Rep. 4, 7204 (2014).
    [Crossref]
  7. L. Stolcova, J. Proska, and M. Prochazka, “Hexagonally ordered gold semishells as tunable SERS substrates,” in Proceedings of 4th International Conference Nanocom, (2012), pp. 1–6.
  8. N. M. B. Perney, J. J. Baumberg, M. E. Zoorob, M. D. B. Charlton, S. Mahnkopf, and C. M. Netti, “Tuning localized plasmons in nanostructured substrates for surface-enhanced Raman scattering,” Opt. Express 14(2), 847–857 (2006).
    [Crossref] [PubMed]
  9. B. Yan, A. Thubagere, W. R. Premasiri, L. D. Ziegler, L. D. Negro, and B. M. Reinhard, “Engineered SERS substrates with multiscale signal enhancement: nanoparticle cluster arrays,” ACS Nano 3(5), 1190–1202 (2009).
    [Crossref] [PubMed]
  10. A. D. McFarland, M. A. Young, J. A. Dieringer, and R. P. Van Duyne, “Wavelength-scanned surface-enhanced Raman excitation spectroscopy,” J. Phys. Chem. B 109, 11279–11285 (2005);
    [Crossref]
  11. M. G. Banaee and K. B. Crozier, “Mixed dimer double-resonance substrates for surface-enhanced Raman spectroscopy,” ACSNano 5(1), 307–314 (2011).
  12. W.-D. Li, F. Ding, J. Hu, and S. Y. Chou, “Three-dimensional cavity nanoantenna coupled plasmonic nanodots for ultrahigh and uniform surface-enhanced Raman scattering over large area,” Opt. Express 19(5), 3925–3936 (2011).
    [Crossref] [PubMed]
  13. N. Mattiucci, G. D’Aguanno, H. O. Everitt, J. V. Foreman, J. M. Callahan, M. C. Buncick, and M. J. Bloemer, “Ultraviolet surface-enhanced Raman scattering at the plasmonic band edge of a metallic grating,” Opt. Express 20(2), 1868–1877 (2012).
    [Crossref] [PubMed]
  14. J.-A. Huang, Y.-Q. Zhao, X.-J. Zhang, L.-F. He, T.-L. Wong, Y.-S. Chui, W.-J. Zhang, and S.-T. Lee, “Ordered Ag/Si nanowires array: wide-range surface-enhanced Raman spectroscopy for reproducible biomolecule detection,” Nano Lett. 13(11), 5039–5045 (2013).
    [Crossref] [PubMed]
  15. J. Lee, B. Hua, S. Park, M. Ha, Y. Lee, Z. Fan, and H. Ko, “Tailoring surface plasmons of high-density gold nanostar assemblies on metal films for surface-enhanced Raman spectroscopy,” Nanoscale 6, 616–623 (2014).
    [Crossref]
  16. N. Zhang, L. Liu, Z. Liu, H. Song, X. Zeng, D. Ji, A. Cheney, S. Jiang, and Q. Gan, “Ultrabroadband metasurface for efficient light trapping and localization: a universal sufrace-enhanced Raman spectroscopy substrate for ’all’ excitation wavelengths,” Adv. Mater. Interfaces 2(10), 1500142 (2015).
  17. H. Xu, E. J. Bjerneld, M. Kall, and L. Borjesson, “Spectroscopy of single hemoglobin molecules by Surface Enhanced Raman Scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (2009).
    [Crossref]
  18. M. S. Kiran, T. Itoh, K. Yoshida, N. Kawashima, V. Biju, and M. Ishikawa, “Selective detection of HbA1c using surface enhanced resonance Raman spectroscopy,” Anal. Chem. 82(4), 1342–1348 (2010).
    [Crossref] [PubMed]
  19. M. K. Hedayati, A. U. Zillohu, T. Strunskus, F. Faupel, and M. Elbahri, “Plasmonic tunable metamaterial absorber as ultraviolet protection film,” Appl. Phys. Lett. 104, 041103 (2014).
    [Crossref]
  20. K. Liu, S. Jiang, D. Ji, X. Zeng, N. Zhang, H. Song, Y. Xu, and Q. Gan, “Super absorbing ultraviolet metasurface,” IEEE Photonics Technol. Lett. 27(14), 1539–1542 (2015).
    [Crossref]
  21. Y. Han, R. Lupitskyy, T.-M. Chou, C. M. Stafford, H. Du, and S. Sukhishvili, “Effect of oxidation on surface-enhanced Raman scattering activity of silver nanoparticles: a quantitative correlation,” Anal. Chem. 83, 5873–5880 (2011).
    [Crossref] [PubMed]
  22. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B. 6(12), 4370–4379 (2009).
    [Crossref]
  23. G. Naik, V. Shalaev, and A. Boltaseeva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25, 3264–3294 (2013).
    [Crossref] [PubMed]
  24. S. E. Swiontek, M. Faryad, and A. Lakhtakia, “Surface plasmonic polaritonic sensors using a dielectric columnar thin film,” J. Nanophotonics 8, 083986 (2014).
    [Crossref]
  25. A. Lakhtakia and M. Faryad, “Theory of optical sensing with Dyakonov-Tamm waves,” J. Nanophotonics 8, 083072 (2014).
    [Crossref]
  26. I. Avrutsky, R. Soref, and W. Buchwald, “Sub-wavelength plasmonic modes in a conductor-gap-dielectric system with a nanoscale gap,” Opt. Express 18(1), 348–363 (2010).
    [Crossref] [PubMed]
  27. I. Avrutsky, I. Salakhutdinov, J. Elser, and V. Podolskiy, “Highly confined optical modes in nanoscale metal-dielectric multilayers,” Phys. Rev. B. 75, 241402 (2007).
    [Crossref]
  28. K. V. Sreekanth, A. De Luca, and G. Strangi, “Experimental demonstration of surface and bulk plasmon polaritons in hypergratings,” Sci. Rep. 3, 3291 (2013).
    [Crossref] [PubMed]
  29. Y.-G. Bi, J. Feng, Y.-S. Liu, Y. Chen, X.-L. Zhang, X.-C. Han, and H.-B. Sun, “Surface plasmon-polariton mediated red emission from organic light-emitting devices based on metallic electrodes integrated with dual-periodic corrugation,” Sci. Rep. 4, 7108 (2014).
    [Crossref] [PubMed]
  30. A. K. Sarychev and V. M. Shalaev, Electrodynamics of Metamaterials (World Scientific, 2007).
  31. S. O. Boyarintsev and A. K. Sarychev, “Computer simulation of surface enhanced Raman scattering in nanostructured metamaterials,” J. Exp. Theor. Phys. 113(6), 963–971 (2011).
    [Crossref]
  32. A. V. Ivanov, A. V. Vaskin, A. N. Lagarkov, and A. K. Sarychev, “The field enhancement and optical sensing in the array of almost adjoining metal and dielectric nanorods,” Proc. SPIE 9163, 91633C (2014).
    [Crossref]
  33. A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Lukyanchuk, “Magnetic light,” Sci. Rep. 2, 492–497 (2012).
    [Crossref] [PubMed]
  34. H. Cao and J. Wiersig, “Dielectric microcavities: model systems for wave chaos and non-Hermitian physics,” Rev. Mod. Phys. 87, 61–111 (2015).
    [Crossref]
  35. R.-M. Ma, S. Ota, Y. Li, S. Yang, and X. Zhang, “Explosives detection in a lasing plasmon nanocavity,” Nat. Nanotechnol. 9, 600–604 (2014).
    [Crossref] [PubMed]
  36. C. E. Soteropulos, H. K. Hunt, and A. M. Armani, “Determination of binding kinetics using whispering gallery mode microcavities,” Appl. Phys. Lett. 99, 103703 (2011).
    [Crossref] [PubMed]
  37. S. I. Shopova, R. Rajmangal, S. Holler, and S. Arnold, “Plasmonic enhancement of a whispering-gallery-mode biosensor for single nanoparticle detection,” Appl. Phys. Lett. 98, 243104 (2011).
    [Crossref]
  38. V. R. Dantham, S. Holler, V. Kolchenko, Z. Wan, and S. Arnold, “Taking whispering gallery-mode single virus detection and sizing to the limit,” Appl. Phys. Lett. 101, 043704 (2012).
    [Crossref]
  39. A. Armani, R. Kulkarni, S. Fraser, R. Flagan, and K. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783–787 (2007).
    [Crossref] [PubMed]
  40. T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
    [Crossref] [PubMed]
  41. N. Ozer, “Optical properties and electrochromic characterization of sol-gel deposited ceria films,” Sol. Energ. Mat. Sol. C. 68, 391–400 (2001).
    [Crossref]
  42. P. Patsalas, S. Logothetidis, and C. Metaxa, “Optical performance of nanocrystalline transparent ceria films,” Appl. Phys. Lett. 81(3), 466–468 (2002).
    [Crossref]
  43. K. C. Krogman, T. Druffel, and M. K. Sunkara, “Anti-reflective optical coatings incorporating nanoparticles,” Nanotechnology 16, s338–s343 (2005).
    [Crossref] [PubMed]
  44. A. Verma, N. Karar, A. K. Bakhshi, H. Chander, S. M. Shivaprasad, and S. A. Agnihotry, “Structural, morphological and photoluminescence characteristics of sol-gel derived nano phase CeO2 films deposited using citric acid,” J. Nanopart. Res. 9, 317–322 (2007).
    [Crossref]
  45. C. Mansilla, “Structure, microstructure and optical properties of cerium oxide thin films prepared by electron beam evaporation assisted with ion beams,” Solid State Sci. 11, 1456–1464 (2009).
    [Crossref]
  46. G. Balakrishnan, S. T. Sundari, P. C. Kuppusami, P. C. Mohan, M. P. Srinivasan, E. Mohandas, V. Ganesan, and D. Sastikumar, “A study of microstructural and optical properties of nanocrystalline ceria thin films prepared by pulsed laser deposition,” Thin Solid Films 519, 2520–2526 (2011).
    [Crossref]
  47. T.-S. Oh, Y. S. Tokpanov, Y. Hao, W. Jung, and S. M. Haile, “Determination of optical and microstructural parameters of ceria films,” J. of Appl. Phys. 112, 103535 (2012).
    [Crossref]
  48. R. Murugan, G. Vijayaprasath, T. Mahalingam, Y. Hayakawa, and G. Ravi, “Effect of rf power on the properties of magnetron sputtered CeO2 thin films,” J. Mater. Sci: Mater Electron 26(5), 2800–2809 (2015).
  49. M. I. Tribelsky and B. S. Luk’yanchuk, “Anomalous light scattering by small particles,” Phys. Rev. Lett. 97, 263902 (2006).
    [Crossref]
  50. M. Born and E. Wolf, Principles of Optics. Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 4th ed. (Pergamon, 1968).
  51. E. C. L. Ru and P. G. Etchegoin, Principles of Surface-Enhanced Raman Spectroscopy and Related Plasmonic Effects (Elsevier, 2009).
  52. M. Rahmani, B. Lukiyanchuk, B. Ng, A. K. G. Tavakkoli, Y. F. Liew, and M. Hong, “Generation of pronounced Fano resonances and tuning of subwavelength spatial light distribution in plasmonic pentamers,” Opt. Express 19(6), 4952–4956 (2011).
    [Crossref]
  53. M. Cottat, N. Lidgi-Guigui, I. Tijunelyte, G. Barbillon, F. Hamouda, P. Gogol, A. Aassime, J.-M. Lourtioz, B. Bartenlian, and M. L. de la Chapelle, “Soft UV nanoimprint lithography-designed highly sensitive substrates for SERS detection,” Nanoscale Res. Lett. 9, 623 (2014).
    [Crossref]
  54. D. Gerard and S. K. Gray, “Aluminium plasmonics,” J. Phys. D: Appl. Phys. 48(18), 1–14 (2015).
  55. V. Canalejas-Tejero, S. Herranz, A. Bellingham, M. C. Moreno-Bondi, and C. A. Barrios, “Passivated aluminium nanohole arrays for label-free biosensing applications,” ACS Appl. Mater. Interfaces 6, 1005–1010 (2013).
    [Crossref]
  56. E. D. Palik, Handbook of Optical Constants (Elsevier Science, 1991).
  57. J. Turkevich, P.S. Stevenson, and J. Hiller, “A study of the nucleation and growth processes in the synthesis of colloidal gold,” Discuss. Faraday Soc. 11, 55–75 (1955).
    [Crossref]
  58. I. Kurochkin, I. Ryzhikov, A. Sarychev, K. Afanasiev, I. Budashov, M. Sedova, I. Boginskaya, S. Amitonov, and A. Lagarkov, “New SERS-active junction based on cerium dioxide facet dielectric films for biosensing,” Adv. Electromagn. 3(1), 57–60 (2014).
    [Crossref]
  59. M. G. Gromova, L. V. Sigolaeva, M. A. Fastovets, E. G. Evtushenko, I. A. Babin, D. V. Pergushov, S. A. Amitonov, A. V. Eremenko, and I. N. Kurochkin, “Improved absorption of choline oxidase on a polyelectrolyte LBL film in the presence of iodine anions,” Soft Matter. 7, 7404–7409 (2011).
    [Crossref]
  60. U. Tamer, I. H. Boyaci, E. Temur, A. Zengin, I. Dincer, and Y. Elerman, “Fabrication of magnetic gold nanorod particles for immunomagnetic separation and SERS application,” J. Nanopart. Res. 13, 3167–3176 (2011).
    [Crossref]
  61. A. H. Kupcov and G. N. Zhizhin, The Fourier Spectra of Raman Scattering and Infrared Absorption of Polymers (Fizmatlit, 2001).

2015 (5)

N. Zhang, L. Liu, Z. Liu, H. Song, X. Zeng, D. Ji, A. Cheney, S. Jiang, and Q. Gan, “Ultrabroadband metasurface for efficient light trapping and localization: a universal sufrace-enhanced Raman spectroscopy substrate for ’all’ excitation wavelengths,” Adv. Mater. Interfaces 2(10), 1500142 (2015).

K. Liu, S. Jiang, D. Ji, X. Zeng, N. Zhang, H. Song, Y. Xu, and Q. Gan, “Super absorbing ultraviolet metasurface,” IEEE Photonics Technol. Lett. 27(14), 1539–1542 (2015).
[Crossref]

H. Cao and J. Wiersig, “Dielectric microcavities: model systems for wave chaos and non-Hermitian physics,” Rev. Mod. Phys. 87, 61–111 (2015).
[Crossref]

R. Murugan, G. Vijayaprasath, T. Mahalingam, Y. Hayakawa, and G. Ravi, “Effect of rf power on the properties of magnetron sputtered CeO2 thin films,” J. Mater. Sci: Mater Electron 26(5), 2800–2809 (2015).

D. Gerard and S. K. Gray, “Aluminium plasmonics,” J. Phys. D: Appl. Phys. 48(18), 1–14 (2015).

2014 (10)

M. Cottat, N. Lidgi-Guigui, I. Tijunelyte, G. Barbillon, F. Hamouda, P. Gogol, A. Aassime, J.-M. Lourtioz, B. Bartenlian, and M. L. de la Chapelle, “Soft UV nanoimprint lithography-designed highly sensitive substrates for SERS detection,” Nanoscale Res. Lett. 9, 623 (2014).
[Crossref]

I. Kurochkin, I. Ryzhikov, A. Sarychev, K. Afanasiev, I. Budashov, M. Sedova, I. Boginskaya, S. Amitonov, and A. Lagarkov, “New SERS-active junction based on cerium dioxide facet dielectric films for biosensing,” Adv. Electromagn. 3(1), 57–60 (2014).
[Crossref]

R.-M. Ma, S. Ota, Y. Li, S. Yang, and X. Zhang, “Explosives detection in a lasing plasmon nanocavity,” Nat. Nanotechnol. 9, 600–604 (2014).
[Crossref] [PubMed]

S. E. Swiontek, M. Faryad, and A. Lakhtakia, “Surface plasmonic polaritonic sensors using a dielectric columnar thin film,” J. Nanophotonics 8, 083986 (2014).
[Crossref]

A. Lakhtakia and M. Faryad, “Theory of optical sensing with Dyakonov-Tamm waves,” J. Nanophotonics 8, 083072 (2014).
[Crossref]

Y.-G. Bi, J. Feng, Y.-S. Liu, Y. Chen, X.-L. Zhang, X.-C. Han, and H.-B. Sun, “Surface plasmon-polariton mediated red emission from organic light-emitting devices based on metallic electrodes integrated with dual-periodic corrugation,” Sci. Rep. 4, 7108 (2014).
[Crossref] [PubMed]

A. V. Ivanov, A. V. Vaskin, A. N. Lagarkov, and A. K. Sarychev, “The field enhancement and optical sensing in the array of almost adjoining metal and dielectric nanorods,” Proc. SPIE 9163, 91633C (2014).
[Crossref]

M. K. Hedayati, A. U. Zillohu, T. Strunskus, F. Faupel, and M. Elbahri, “Plasmonic tunable metamaterial absorber as ultraviolet protection film,” Appl. Phys. Lett. 104, 041103 (2014).
[Crossref]

J. Lee, B. Hua, S. Park, M. Ha, Y. Lee, Z. Fan, and H. Ko, “Tailoring surface plasmons of high-density gold nanostar assemblies on metal films for surface-enhanced Raman spectroscopy,” Nanoscale 6, 616–623 (2014).
[Crossref]

F. Hu, H. Lin, Z. Zhang, F. Liao, M. Shao, Y. Lifshitz, and S.-T. Lee, “Smart liquid SERS substrates based on Fe3O4/Au nanoparticles with reversibly tunable enhancement factor for partical quantitative detection,” Sci. Rep. 4, 7204 (2014).
[Crossref]

2013 (4)

J.-A. Huang, Y.-Q. Zhao, X.-J. Zhang, L.-F. He, T.-L. Wong, Y.-S. Chui, W.-J. Zhang, and S.-T. Lee, “Ordered Ag/Si nanowires array: wide-range surface-enhanced Raman spectroscopy for reproducible biomolecule detection,” Nano Lett. 13(11), 5039–5045 (2013).
[Crossref] [PubMed]

G. Naik, V. Shalaev, and A. Boltaseeva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25, 3264–3294 (2013).
[Crossref] [PubMed]

K. V. Sreekanth, A. De Luca, and G. Strangi, “Experimental demonstration of surface and bulk plasmon polaritons in hypergratings,” Sci. Rep. 3, 3291 (2013).
[Crossref] [PubMed]

V. Canalejas-Tejero, S. Herranz, A. Bellingham, M. C. Moreno-Bondi, and C. A. Barrios, “Passivated aluminium nanohole arrays for label-free biosensing applications,” ACS Appl. Mater. Interfaces 6, 1005–1010 (2013).
[Crossref]

2012 (5)

T.-S. Oh, Y. S. Tokpanov, Y. Hao, W. Jung, and S. M. Haile, “Determination of optical and microstructural parameters of ceria films,” J. of Appl. Phys. 112, 103535 (2012).
[Crossref]

N. Mattiucci, G. D’Aguanno, H. O. Everitt, J. V. Foreman, J. M. Callahan, M. C. Buncick, and M. J. Bloemer, “Ultraviolet surface-enhanced Raman scattering at the plasmonic band edge of a metallic grating,” Opt. Express 20(2), 1868–1877 (2012).
[Crossref] [PubMed]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Lukyanchuk, “Magnetic light,” Sci. Rep. 2, 492–497 (2012).
[Crossref] [PubMed]

V. R. Dantham, S. Holler, V. Kolchenko, Z. Wan, and S. Arnold, “Taking whispering gallery-mode single virus detection and sizing to the limit,” Appl. Phys. Lett. 101, 043704 (2012).
[Crossref]

B. Sharma, R. R. Frontiera, A.-I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: metamerials, applications, and the future,” Mater. Today 15(1–2), 16–25 (2012).
[Crossref]

2011 (11)

M. Fan, G. F. S. Andrade, and A. G. Brolo, “A review on the fabrication of substrates for surface enhanced Raman spectroscopy and their applications in analytical chemistry,” Anal. Chim. Acta 693, 7–25 (2011).
[Crossref] [PubMed]

M. G. Banaee and K. B. Crozier, “Mixed dimer double-resonance substrates for surface-enhanced Raman spectroscopy,” ACSNano 5(1), 307–314 (2011).

Y. Han, R. Lupitskyy, T.-M. Chou, C. M. Stafford, H. Du, and S. Sukhishvili, “Effect of oxidation on surface-enhanced Raman scattering activity of silver nanoparticles: a quantitative correlation,” Anal. Chem. 83, 5873–5880 (2011).
[Crossref] [PubMed]

C. E. Soteropulos, H. K. Hunt, and A. M. Armani, “Determination of binding kinetics using whispering gallery mode microcavities,” Appl. Phys. Lett. 99, 103703 (2011).
[Crossref] [PubMed]

S. I. Shopova, R. Rajmangal, S. Holler, and S. Arnold, “Plasmonic enhancement of a whispering-gallery-mode biosensor for single nanoparticle detection,” Appl. Phys. Lett. 98, 243104 (2011).
[Crossref]

S. O. Boyarintsev and A. K. Sarychev, “Computer simulation of surface enhanced Raman scattering in nanostructured metamaterials,” J. Exp. Theor. Phys. 113(6), 963–971 (2011).
[Crossref]

W.-D. Li, F. Ding, J. Hu, and S. Y. Chou, “Three-dimensional cavity nanoantenna coupled plasmonic nanodots for ultrahigh and uniform surface-enhanced Raman scattering over large area,” Opt. Express 19(5), 3925–3936 (2011).
[Crossref] [PubMed]

G. Balakrishnan, S. T. Sundari, P. C. Kuppusami, P. C. Mohan, M. P. Srinivasan, E. Mohandas, V. Ganesan, and D. Sastikumar, “A study of microstructural and optical properties of nanocrystalline ceria thin films prepared by pulsed laser deposition,” Thin Solid Films 519, 2520–2526 (2011).
[Crossref]

M. Rahmani, B. Lukiyanchuk, B. Ng, A. K. G. Tavakkoli, Y. F. Liew, and M. Hong, “Generation of pronounced Fano resonances and tuning of subwavelength spatial light distribution in plasmonic pentamers,” Opt. Express 19(6), 4952–4956 (2011).
[Crossref]

M. G. Gromova, L. V. Sigolaeva, M. A. Fastovets, E. G. Evtushenko, I. A. Babin, D. V. Pergushov, S. A. Amitonov, A. V. Eremenko, and I. N. Kurochkin, “Improved absorption of choline oxidase on a polyelectrolyte LBL film in the presence of iodine anions,” Soft Matter. 7, 7404–7409 (2011).
[Crossref]

U. Tamer, I. H. Boyaci, E. Temur, A. Zengin, I. Dincer, and Y. Elerman, “Fabrication of magnetic gold nanorod particles for immunomagnetic separation and SERS application,” J. Nanopart. Res. 13, 3167–3176 (2011).
[Crossref]

2010 (2)

I. Avrutsky, R. Soref, and W. Buchwald, “Sub-wavelength plasmonic modes in a conductor-gap-dielectric system with a nanoscale gap,” Opt. Express 18(1), 348–363 (2010).
[Crossref] [PubMed]

M. S. Kiran, T. Itoh, K. Yoshida, N. Kawashima, V. Biju, and M. Ishikawa, “Selective detection of HbA1c using surface enhanced resonance Raman spectroscopy,” Anal. Chem. 82(4), 1342–1348 (2010).
[Crossref] [PubMed]

2009 (4)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B. 6(12), 4370–4379 (2009).
[Crossref]

H. Xu, E. J. Bjerneld, M. Kall, and L. Borjesson, “Spectroscopy of single hemoglobin molecules by Surface Enhanced Raman Scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (2009).
[Crossref]

B. Yan, A. Thubagere, W. R. Premasiri, L. D. Ziegler, L. D. Negro, and B. M. Reinhard, “Engineered SERS substrates with multiscale signal enhancement: nanoparticle cluster arrays,” ACS Nano 3(5), 1190–1202 (2009).
[Crossref] [PubMed]

C. Mansilla, “Structure, microstructure and optical properties of cerium oxide thin films prepared by electron beam evaporation assisted with ion beams,” Solid State Sci. 11, 1456–1464 (2009).
[Crossref]

2007 (4)

A. Verma, N. Karar, A. K. Bakhshi, H. Chander, S. M. Shivaprasad, and S. A. Agnihotry, “Structural, morphological and photoluminescence characteristics of sol-gel derived nano phase CeO2 films deposited using citric acid,” J. Nanopart. Res. 9, 317–322 (2007).
[Crossref]

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).
[Crossref]

I. Avrutsky, I. Salakhutdinov, J. Elser, and V. Podolskiy, “Highly confined optical modes in nanoscale metal-dielectric multilayers,” Phys. Rev. B. 75, 241402 (2007).
[Crossref]

A. Armani, R. Kulkarni, S. Fraser, R. Flagan, and K. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783–787 (2007).
[Crossref] [PubMed]

2006 (3)

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
[Crossref] [PubMed]

M. I. Tribelsky and B. S. Luk’yanchuk, “Anomalous light scattering by small particles,” Phys. Rev. Lett. 97, 263902 (2006).
[Crossref]

N. M. B. Perney, J. J. Baumberg, M. E. Zoorob, M. D. B. Charlton, S. Mahnkopf, and C. M. Netti, “Tuning localized plasmons in nanostructured substrates for surface-enhanced Raman scattering,” Opt. Express 14(2), 847–857 (2006).
[Crossref] [PubMed]

2005 (2)

K. C. Krogman, T. Druffel, and M. K. Sunkara, “Anti-reflective optical coatings incorporating nanoparticles,” Nanotechnology 16, s338–s343 (2005).
[Crossref] [PubMed]

A. D. McFarland, M. A. Young, J. A. Dieringer, and R. P. Van Duyne, “Wavelength-scanned surface-enhanced Raman excitation spectroscopy,” J. Phys. Chem. B 109, 11279–11285 (2005);
[Crossref]

2002 (1)

P. Patsalas, S. Logothetidis, and C. Metaxa, “Optical performance of nanocrystalline transparent ceria films,” Appl. Phys. Lett. 81(3), 466–468 (2002).
[Crossref]

2001 (1)

N. Ozer, “Optical properties and electrochromic characterization of sol-gel deposited ceria films,” Sol. Energ. Mat. Sol. C. 68, 391–400 (2001).
[Crossref]

1997 (1)

F. Brouers, S. Blacher, A. N. Lagarkov, A. K. Sarychev, P. Gadenne, and V. M. Shalaev, “Theory of giant Raman scattering from semicontinuous metal films,” Phys. Rev. B 55(19), 234–245 (1997).
[Crossref]

1974 (1)

M. Fleischmann, P. Hendra, and A. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
[Crossref]

1955 (1)

J. Turkevich, P.S. Stevenson, and J. Hiller, “A study of the nucleation and growth processes in the synthesis of colloidal gold,” Discuss. Faraday Soc. 11, 55–75 (1955).
[Crossref]

Aassime, A.

M. Cottat, N. Lidgi-Guigui, I. Tijunelyte, G. Barbillon, F. Hamouda, P. Gogol, A. Aassime, J.-M. Lourtioz, B. Bartenlian, and M. L. de la Chapelle, “Soft UV nanoimprint lithography-designed highly sensitive substrates for SERS detection,” Nanoscale Res. Lett. 9, 623 (2014).
[Crossref]

Afanasiev, K.

I. Kurochkin, I. Ryzhikov, A. Sarychev, K. Afanasiev, I. Budashov, M. Sedova, I. Boginskaya, S. Amitonov, and A. Lagarkov, “New SERS-active junction based on cerium dioxide facet dielectric films for biosensing,” Adv. Electromagn. 3(1), 57–60 (2014).
[Crossref]

Agnihotry, S. A.

A. Verma, N. Karar, A. K. Bakhshi, H. Chander, S. M. Shivaprasad, and S. A. Agnihotry, “Structural, morphological and photoluminescence characteristics of sol-gel derived nano phase CeO2 films deposited using citric acid,” J. Nanopart. Res. 9, 317–322 (2007).
[Crossref]

Amitonov, S.

I. Kurochkin, I. Ryzhikov, A. Sarychev, K. Afanasiev, I. Budashov, M. Sedova, I. Boginskaya, S. Amitonov, and A. Lagarkov, “New SERS-active junction based on cerium dioxide facet dielectric films for biosensing,” Adv. Electromagn. 3(1), 57–60 (2014).
[Crossref]

Amitonov, S. A.

M. G. Gromova, L. V. Sigolaeva, M. A. Fastovets, E. G. Evtushenko, I. A. Babin, D. V. Pergushov, S. A. Amitonov, A. V. Eremenko, and I. N. Kurochkin, “Improved absorption of choline oxidase on a polyelectrolyte LBL film in the presence of iodine anions,” Soft Matter. 7, 7404–7409 (2011).
[Crossref]

Andrade, G. F. S.

M. Fan, G. F. S. Andrade, and A. G. Brolo, “A review on the fabrication of substrates for surface enhanced Raman spectroscopy and their applications in analytical chemistry,” Anal. Chim. Acta 693, 7–25 (2011).
[Crossref] [PubMed]

Aoki, T.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
[Crossref] [PubMed]

Armani, A.

A. Armani, R. Kulkarni, S. Fraser, R. Flagan, and K. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783–787 (2007).
[Crossref] [PubMed]

Armani, A. M.

C. E. Soteropulos, H. K. Hunt, and A. M. Armani, “Determination of binding kinetics using whispering gallery mode microcavities,” Appl. Phys. Lett. 99, 103703 (2011).
[Crossref] [PubMed]

Arnold, S.

V. R. Dantham, S. Holler, V. Kolchenko, Z. Wan, and S. Arnold, “Taking whispering gallery-mode single virus detection and sizing to the limit,” Appl. Phys. Lett. 101, 043704 (2012).
[Crossref]

S. I. Shopova, R. Rajmangal, S. Holler, and S. Arnold, “Plasmonic enhancement of a whispering-gallery-mode biosensor for single nanoparticle detection,” Appl. Phys. Lett. 98, 243104 (2011).
[Crossref]

Avrutsky, I.

I. Avrutsky, R. Soref, and W. Buchwald, “Sub-wavelength plasmonic modes in a conductor-gap-dielectric system with a nanoscale gap,” Opt. Express 18(1), 348–363 (2010).
[Crossref] [PubMed]

I. Avrutsky, I. Salakhutdinov, J. Elser, and V. Podolskiy, “Highly confined optical modes in nanoscale metal-dielectric multilayers,” Phys. Rev. B. 75, 241402 (2007).
[Crossref]

Babin, I. A.

M. G. Gromova, L. V. Sigolaeva, M. A. Fastovets, E. G. Evtushenko, I. A. Babin, D. V. Pergushov, S. A. Amitonov, A. V. Eremenko, and I. N. Kurochkin, “Improved absorption of choline oxidase on a polyelectrolyte LBL film in the presence of iodine anions,” Soft Matter. 7, 7404–7409 (2011).
[Crossref]

Bakhshi, A. K.

A. Verma, N. Karar, A. K. Bakhshi, H. Chander, S. M. Shivaprasad, and S. A. Agnihotry, “Structural, morphological and photoluminescence characteristics of sol-gel derived nano phase CeO2 films deposited using citric acid,” J. Nanopart. Res. 9, 317–322 (2007).
[Crossref]

Balakrishnan, G.

G. Balakrishnan, S. T. Sundari, P. C. Kuppusami, P. C. Mohan, M. P. Srinivasan, E. Mohandas, V. Ganesan, and D. Sastikumar, “A study of microstructural and optical properties of nanocrystalline ceria thin films prepared by pulsed laser deposition,” Thin Solid Films 519, 2520–2526 (2011).
[Crossref]

Banaee, M. G.

M. G. Banaee and K. B. Crozier, “Mixed dimer double-resonance substrates for surface-enhanced Raman spectroscopy,” ACSNano 5(1), 307–314 (2011).

Barbillon, G.

M. Cottat, N. Lidgi-Guigui, I. Tijunelyte, G. Barbillon, F. Hamouda, P. Gogol, A. Aassime, J.-M. Lourtioz, B. Bartenlian, and M. L. de la Chapelle, “Soft UV nanoimprint lithography-designed highly sensitive substrates for SERS detection,” Nanoscale Res. Lett. 9, 623 (2014).
[Crossref]

Barrios, C. A.

V. Canalejas-Tejero, S. Herranz, A. Bellingham, M. C. Moreno-Bondi, and C. A. Barrios, “Passivated aluminium nanohole arrays for label-free biosensing applications,” ACS Appl. Mater. Interfaces 6, 1005–1010 (2013).
[Crossref]

Bartenlian, B.

M. Cottat, N. Lidgi-Guigui, I. Tijunelyte, G. Barbillon, F. Hamouda, P. Gogol, A. Aassime, J.-M. Lourtioz, B. Bartenlian, and M. L. de la Chapelle, “Soft UV nanoimprint lithography-designed highly sensitive substrates for SERS detection,” Nanoscale Res. Lett. 9, 623 (2014).
[Crossref]

Baumberg, J. J.

Bellingham, A.

V. Canalejas-Tejero, S. Herranz, A. Bellingham, M. C. Moreno-Bondi, and C. A. Barrios, “Passivated aluminium nanohole arrays for label-free biosensing applications,” ACS Appl. Mater. Interfaces 6, 1005–1010 (2013).
[Crossref]

Bi, Y.-G.

Y.-G. Bi, J. Feng, Y.-S. Liu, Y. Chen, X.-L. Zhang, X.-C. Han, and H.-B. Sun, “Surface plasmon-polariton mediated red emission from organic light-emitting devices based on metallic electrodes integrated with dual-periodic corrugation,” Sci. Rep. 4, 7108 (2014).
[Crossref] [PubMed]

Biju, V.

M. S. Kiran, T. Itoh, K. Yoshida, N. Kawashima, V. Biju, and M. Ishikawa, “Selective detection of HbA1c using surface enhanced resonance Raman spectroscopy,” Anal. Chem. 82(4), 1342–1348 (2010).
[Crossref] [PubMed]

Bjerneld, E. J.

H. Xu, E. J. Bjerneld, M. Kall, and L. Borjesson, “Spectroscopy of single hemoglobin molecules by Surface Enhanced Raman Scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (2009).
[Crossref]

Blacher, S.

F. Brouers, S. Blacher, A. N. Lagarkov, A. K. Sarychev, P. Gadenne, and V. M. Shalaev, “Theory of giant Raman scattering from semicontinuous metal films,” Phys. Rev. B 55(19), 234–245 (1997).
[Crossref]

Bloemer, M. J.

Boginskaya, I.

I. Kurochkin, I. Ryzhikov, A. Sarychev, K. Afanasiev, I. Budashov, M. Sedova, I. Boginskaya, S. Amitonov, and A. Lagarkov, “New SERS-active junction based on cerium dioxide facet dielectric films for biosensing,” Adv. Electromagn. 3(1), 57–60 (2014).
[Crossref]

Boltaseeva, A.

G. Naik, V. Shalaev, and A. Boltaseeva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25, 3264–3294 (2013).
[Crossref] [PubMed]

Borjesson, L.

H. Xu, E. J. Bjerneld, M. Kall, and L. Borjesson, “Spectroscopy of single hemoglobin molecules by Surface Enhanced Raman Scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (2009).
[Crossref]

Born, M.

M. Born and E. Wolf, Principles of Optics. Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 4th ed. (Pergamon, 1968).

Bowen, W. P.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
[Crossref] [PubMed]

Boyaci, I. H.

U. Tamer, I. H. Boyaci, E. Temur, A. Zengin, I. Dincer, and Y. Elerman, “Fabrication of magnetic gold nanorod particles for immunomagnetic separation and SERS application,” J. Nanopart. Res. 13, 3167–3176 (2011).
[Crossref]

Boyarintsev, S. O.

S. O. Boyarintsev and A. K. Sarychev, “Computer simulation of surface enhanced Raman scattering in nanostructured metamaterials,” J. Exp. Theor. Phys. 113(6), 963–971 (2011).
[Crossref]

Brolo, A. G.

M. Fan, G. F. S. Andrade, and A. G. Brolo, “A review on the fabrication of substrates for surface enhanced Raman spectroscopy and their applications in analytical chemistry,” Anal. Chim. Acta 693, 7–25 (2011).
[Crossref] [PubMed]

Brouers, F.

F. Brouers, S. Blacher, A. N. Lagarkov, A. K. Sarychev, P. Gadenne, and V. M. Shalaev, “Theory of giant Raman scattering from semicontinuous metal films,” Phys. Rev. B 55(19), 234–245 (1997).
[Crossref]

Buchwald, W.

Budashov, I.

I. Kurochkin, I. Ryzhikov, A. Sarychev, K. Afanasiev, I. Budashov, M. Sedova, I. Boginskaya, S. Amitonov, and A. Lagarkov, “New SERS-active junction based on cerium dioxide facet dielectric films for biosensing,” Adv. Electromagn. 3(1), 57–60 (2014).
[Crossref]

Buncick, M. C.

Callahan, J. M.

Canalejas-Tejero, V.

V. Canalejas-Tejero, S. Herranz, A. Bellingham, M. C. Moreno-Bondi, and C. A. Barrios, “Passivated aluminium nanohole arrays for label-free biosensing applications,” ACS Appl. Mater. Interfaces 6, 1005–1010 (2013).
[Crossref]

Cao, H.

H. Cao and J. Wiersig, “Dielectric microcavities: model systems for wave chaos and non-Hermitian physics,” Rev. Mod. Phys. 87, 61–111 (2015).
[Crossref]

Chander, H.

A. Verma, N. Karar, A. K. Bakhshi, H. Chander, S. M. Shivaprasad, and S. A. Agnihotry, “Structural, morphological and photoluminescence characteristics of sol-gel derived nano phase CeO2 films deposited using citric acid,” J. Nanopart. Res. 9, 317–322 (2007).
[Crossref]

Charlton, M. D. B.

Chen, Y.

Y.-G. Bi, J. Feng, Y.-S. Liu, Y. Chen, X.-L. Zhang, X.-C. Han, and H.-B. Sun, “Surface plasmon-polariton mediated red emission from organic light-emitting devices based on metallic electrodes integrated with dual-periodic corrugation,” Sci. Rep. 4, 7108 (2014).
[Crossref] [PubMed]

Cheney, A.

N. Zhang, L. Liu, Z. Liu, H. Song, X. Zeng, D. Ji, A. Cheney, S. Jiang, and Q. Gan, “Ultrabroadband metasurface for efficient light trapping and localization: a universal sufrace-enhanced Raman spectroscopy substrate for ’all’ excitation wavelengths,” Adv. Mater. Interfaces 2(10), 1500142 (2015).

Chou, S. Y.

Chou, T.-M.

Y. Han, R. Lupitskyy, T.-M. Chou, C. M. Stafford, H. Du, and S. Sukhishvili, “Effect of oxidation on surface-enhanced Raman scattering activity of silver nanoparticles: a quantitative correlation,” Anal. Chem. 83, 5873–5880 (2011).
[Crossref] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B. 6(12), 4370–4379 (2009).
[Crossref]

Chui, Y.-S.

J.-A. Huang, Y.-Q. Zhao, X.-J. Zhang, L.-F. He, T.-L. Wong, Y.-S. Chui, W.-J. Zhang, and S.-T. Lee, “Ordered Ag/Si nanowires array: wide-range surface-enhanced Raman spectroscopy for reproducible biomolecule detection,” Nano Lett. 13(11), 5039–5045 (2013).
[Crossref] [PubMed]

Cottat, M.

M. Cottat, N. Lidgi-Guigui, I. Tijunelyte, G. Barbillon, F. Hamouda, P. Gogol, A. Aassime, J.-M. Lourtioz, B. Bartenlian, and M. L. de la Chapelle, “Soft UV nanoimprint lithography-designed highly sensitive substrates for SERS detection,” Nanoscale Res. Lett. 9, 623 (2014).
[Crossref]

Crozier, K. B.

M. G. Banaee and K. B. Crozier, “Mixed dimer double-resonance substrates for surface-enhanced Raman spectroscopy,” ACSNano 5(1), 307–314 (2011).

D’Aguanno, G.

Dantham, V. R.

V. R. Dantham, S. Holler, V. Kolchenko, Z. Wan, and S. Arnold, “Taking whispering gallery-mode single virus detection and sizing to the limit,” Appl. Phys. Lett. 101, 043704 (2012).
[Crossref]

Dayan, B.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
[Crossref] [PubMed]

de la Chapelle, M. L.

M. Cottat, N. Lidgi-Guigui, I. Tijunelyte, G. Barbillon, F. Hamouda, P. Gogol, A. Aassime, J.-M. Lourtioz, B. Bartenlian, and M. L. de la Chapelle, “Soft UV nanoimprint lithography-designed highly sensitive substrates for SERS detection,” Nanoscale Res. Lett. 9, 623 (2014).
[Crossref]

De Luca, A.

K. V. Sreekanth, A. De Luca, and G. Strangi, “Experimental demonstration of surface and bulk plasmon polaritons in hypergratings,” Sci. Rep. 3, 3291 (2013).
[Crossref] [PubMed]

Dieringer, J. A.

A. D. McFarland, M. A. Young, J. A. Dieringer, and R. P. Van Duyne, “Wavelength-scanned surface-enhanced Raman excitation spectroscopy,” J. Phys. Chem. B 109, 11279–11285 (2005);
[Crossref]

Dincer, I.

U. Tamer, I. H. Boyaci, E. Temur, A. Zengin, I. Dincer, and Y. Elerman, “Fabrication of magnetic gold nanorod particles for immunomagnetic separation and SERS application,” J. Nanopart. Res. 13, 3167–3176 (2011).
[Crossref]

Ding, F.

Druffel, T.

K. C. Krogman, T. Druffel, and M. K. Sunkara, “Anti-reflective optical coatings incorporating nanoparticles,” Nanotechnology 16, s338–s343 (2005).
[Crossref] [PubMed]

Du, H.

Y. Han, R. Lupitskyy, T.-M. Chou, C. M. Stafford, H. Du, and S. Sukhishvili, “Effect of oxidation on surface-enhanced Raman scattering activity of silver nanoparticles: a quantitative correlation,” Anal. Chem. 83, 5873–5880 (2011).
[Crossref] [PubMed]

Elbahri, M.

M. K. Hedayati, A. U. Zillohu, T. Strunskus, F. Faupel, and M. Elbahri, “Plasmonic tunable metamaterial absorber as ultraviolet protection film,” Appl. Phys. Lett. 104, 041103 (2014).
[Crossref]

Elerman, Y.

U. Tamer, I. H. Boyaci, E. Temur, A. Zengin, I. Dincer, and Y. Elerman, “Fabrication of magnetic gold nanorod particles for immunomagnetic separation and SERS application,” J. Nanopart. Res. 13, 3167–3176 (2011).
[Crossref]

Elser, J.

I. Avrutsky, I. Salakhutdinov, J. Elser, and V. Podolskiy, “Highly confined optical modes in nanoscale metal-dielectric multilayers,” Phys. Rev. B. 75, 241402 (2007).
[Crossref]

Eremenko, A. V.

M. G. Gromova, L. V. Sigolaeva, M. A. Fastovets, E. G. Evtushenko, I. A. Babin, D. V. Pergushov, S. A. Amitonov, A. V. Eremenko, and I. N. Kurochkin, “Improved absorption of choline oxidase on a polyelectrolyte LBL film in the presence of iodine anions,” Soft Matter. 7, 7404–7409 (2011).
[Crossref]

Etchegoin, P. G.

E. C. L. Ru and P. G. Etchegoin, Principles of Surface-Enhanced Raman Spectroscopy and Related Plasmonic Effects (Elsevier, 2009).

Everitt, H. O.

Evtushenko, E. G.

M. G. Gromova, L. V. Sigolaeva, M. A. Fastovets, E. G. Evtushenko, I. A. Babin, D. V. Pergushov, S. A. Amitonov, A. V. Eremenko, and I. N. Kurochkin, “Improved absorption of choline oxidase on a polyelectrolyte LBL film in the presence of iodine anions,” Soft Matter. 7, 7404–7409 (2011).
[Crossref]

Fan, M.

M. Fan, G. F. S. Andrade, and A. G. Brolo, “A review on the fabrication of substrates for surface enhanced Raman spectroscopy and their applications in analytical chemistry,” Anal. Chim. Acta 693, 7–25 (2011).
[Crossref] [PubMed]

Fan, Z.

J. Lee, B. Hua, S. Park, M. Ha, Y. Lee, Z. Fan, and H. Ko, “Tailoring surface plasmons of high-density gold nanostar assemblies on metal films for surface-enhanced Raman spectroscopy,” Nanoscale 6, 616–623 (2014).
[Crossref]

Faryad, M.

A. Lakhtakia and M. Faryad, “Theory of optical sensing with Dyakonov-Tamm waves,” J. Nanophotonics 8, 083072 (2014).
[Crossref]

S. E. Swiontek, M. Faryad, and A. Lakhtakia, “Surface plasmonic polaritonic sensors using a dielectric columnar thin film,” J. Nanophotonics 8, 083986 (2014).
[Crossref]

Fastovets, M. A.

M. G. Gromova, L. V. Sigolaeva, M. A. Fastovets, E. G. Evtushenko, I. A. Babin, D. V. Pergushov, S. A. Amitonov, A. V. Eremenko, and I. N. Kurochkin, “Improved absorption of choline oxidase on a polyelectrolyte LBL film in the presence of iodine anions,” Soft Matter. 7, 7404–7409 (2011).
[Crossref]

Faupel, F.

M. K. Hedayati, A. U. Zillohu, T. Strunskus, F. Faupel, and M. Elbahri, “Plasmonic tunable metamaterial absorber as ultraviolet protection film,” Appl. Phys. Lett. 104, 041103 (2014).
[Crossref]

Feng, J.

Y.-G. Bi, J. Feng, Y.-S. Liu, Y. Chen, X.-L. Zhang, X.-C. Han, and H.-B. Sun, “Surface plasmon-polariton mediated red emission from organic light-emitting devices based on metallic electrodes integrated with dual-periodic corrugation,” Sci. Rep. 4, 7108 (2014).
[Crossref] [PubMed]

Flagan, R.

A. Armani, R. Kulkarni, S. Fraser, R. Flagan, and K. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783–787 (2007).
[Crossref] [PubMed]

Fleischmann, M.

M. Fleischmann, P. Hendra, and A. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
[Crossref]

Foreman, J. V.

Fraser, S.

A. Armani, R. Kulkarni, S. Fraser, R. Flagan, and K. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783–787 (2007).
[Crossref] [PubMed]

Frontiera, R. R.

B. Sharma, R. R. Frontiera, A.-I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: metamerials, applications, and the future,” Mater. Today 15(1–2), 16–25 (2012).
[Crossref]

Fu, Y. H.

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Lukyanchuk, “Magnetic light,” Sci. Rep. 2, 492–497 (2012).
[Crossref] [PubMed]

Gadenne, P.

F. Brouers, S. Blacher, A. N. Lagarkov, A. K. Sarychev, P. Gadenne, and V. M. Shalaev, “Theory of giant Raman scattering from semicontinuous metal films,” Phys. Rev. B 55(19), 234–245 (1997).
[Crossref]

Gan, Q.

K. Liu, S. Jiang, D. Ji, X. Zeng, N. Zhang, H. Song, Y. Xu, and Q. Gan, “Super absorbing ultraviolet metasurface,” IEEE Photonics Technol. Lett. 27(14), 1539–1542 (2015).
[Crossref]

N. Zhang, L. Liu, Z. Liu, H. Song, X. Zeng, D. Ji, A. Cheney, S. Jiang, and Q. Gan, “Ultrabroadband metasurface for efficient light trapping and localization: a universal sufrace-enhanced Raman spectroscopy substrate for ’all’ excitation wavelengths,” Adv. Mater. Interfaces 2(10), 1500142 (2015).

Ganesan, V.

G. Balakrishnan, S. T. Sundari, P. C. Kuppusami, P. C. Mohan, M. P. Srinivasan, E. Mohandas, V. Ganesan, and D. Sastikumar, “A study of microstructural and optical properties of nanocrystalline ceria thin films prepared by pulsed laser deposition,” Thin Solid Films 519, 2520–2526 (2011).
[Crossref]

Gerard, D.

D. Gerard and S. K. Gray, “Aluminium plasmonics,” J. Phys. D: Appl. Phys. 48(18), 1–14 (2015).

Gogol, P.

M. Cottat, N. Lidgi-Guigui, I. Tijunelyte, G. Barbillon, F. Hamouda, P. Gogol, A. Aassime, J.-M. Lourtioz, B. Bartenlian, and M. L. de la Chapelle, “Soft UV nanoimprint lithography-designed highly sensitive substrates for SERS detection,” Nanoscale Res. Lett. 9, 623 (2014).
[Crossref]

Gray, S. K.

D. Gerard and S. K. Gray, “Aluminium plasmonics,” J. Phys. D: Appl. Phys. 48(18), 1–14 (2015).

Gromova, M. G.

M. G. Gromova, L. V. Sigolaeva, M. A. Fastovets, E. G. Evtushenko, I. A. Babin, D. V. Pergushov, S. A. Amitonov, A. V. Eremenko, and I. N. Kurochkin, “Improved absorption of choline oxidase on a polyelectrolyte LBL film in the presence of iodine anions,” Soft Matter. 7, 7404–7409 (2011).
[Crossref]

Ha, M.

J. Lee, B. Hua, S. Park, M. Ha, Y. Lee, Z. Fan, and H. Ko, “Tailoring surface plasmons of high-density gold nanostar assemblies on metal films for surface-enhanced Raman spectroscopy,” Nanoscale 6, 616–623 (2014).
[Crossref]

Haile, S. M.

T.-S. Oh, Y. S. Tokpanov, Y. Hao, W. Jung, and S. M. Haile, “Determination of optical and microstructural parameters of ceria films,” J. of Appl. Phys. 112, 103535 (2012).
[Crossref]

Halas, N. J.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).
[Crossref]

Hamouda, F.

M. Cottat, N. Lidgi-Guigui, I. Tijunelyte, G. Barbillon, F. Hamouda, P. Gogol, A. Aassime, J.-M. Lourtioz, B. Bartenlian, and M. L. de la Chapelle, “Soft UV nanoimprint lithography-designed highly sensitive substrates for SERS detection,” Nanoscale Res. Lett. 9, 623 (2014).
[Crossref]

Han, X.-C.

Y.-G. Bi, J. Feng, Y.-S. Liu, Y. Chen, X.-L. Zhang, X.-C. Han, and H.-B. Sun, “Surface plasmon-polariton mediated red emission from organic light-emitting devices based on metallic electrodes integrated with dual-periodic corrugation,” Sci. Rep. 4, 7108 (2014).
[Crossref] [PubMed]

Han, Y.

Y. Han, R. Lupitskyy, T.-M. Chou, C. M. Stafford, H. Du, and S. Sukhishvili, “Effect of oxidation on surface-enhanced Raman scattering activity of silver nanoparticles: a quantitative correlation,” Anal. Chem. 83, 5873–5880 (2011).
[Crossref] [PubMed]

Hao, Y.

T.-S. Oh, Y. S. Tokpanov, Y. Hao, W. Jung, and S. M. Haile, “Determination of optical and microstructural parameters of ceria films,” J. of Appl. Phys. 112, 103535 (2012).
[Crossref]

Hayakawa, Y.

R. Murugan, G. Vijayaprasath, T. Mahalingam, Y. Hayakawa, and G. Ravi, “Effect of rf power on the properties of magnetron sputtered CeO2 thin films,” J. Mater. Sci: Mater Electron 26(5), 2800–2809 (2015).

He, L.-F.

J.-A. Huang, Y.-Q. Zhao, X.-J. Zhang, L.-F. He, T.-L. Wong, Y.-S. Chui, W.-J. Zhang, and S.-T. Lee, “Ordered Ag/Si nanowires array: wide-range surface-enhanced Raman spectroscopy for reproducible biomolecule detection,” Nano Lett. 13(11), 5039–5045 (2013).
[Crossref] [PubMed]

Hedayati, M. K.

M. K. Hedayati, A. U. Zillohu, T. Strunskus, F. Faupel, and M. Elbahri, “Plasmonic tunable metamaterial absorber as ultraviolet protection film,” Appl. Phys. Lett. 104, 041103 (2014).
[Crossref]

Hendra, P.

M. Fleischmann, P. Hendra, and A. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
[Crossref]

Henry, A.-I.

B. Sharma, R. R. Frontiera, A.-I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: metamerials, applications, and the future,” Mater. Today 15(1–2), 16–25 (2012).
[Crossref]

Herranz, S.

V. Canalejas-Tejero, S. Herranz, A. Bellingham, M. C. Moreno-Bondi, and C. A. Barrios, “Passivated aluminium nanohole arrays for label-free biosensing applications,” ACS Appl. Mater. Interfaces 6, 1005–1010 (2013).
[Crossref]

Hiller, J.

J. Turkevich, P.S. Stevenson, and J. Hiller, “A study of the nucleation and growth processes in the synthesis of colloidal gold,” Discuss. Faraday Soc. 11, 55–75 (1955).
[Crossref]

Holler, S.

V. R. Dantham, S. Holler, V. Kolchenko, Z. Wan, and S. Arnold, “Taking whispering gallery-mode single virus detection and sizing to the limit,” Appl. Phys. Lett. 101, 043704 (2012).
[Crossref]

S. I. Shopova, R. Rajmangal, S. Holler, and S. Arnold, “Plasmonic enhancement of a whispering-gallery-mode biosensor for single nanoparticle detection,” Appl. Phys. Lett. 98, 243104 (2011).
[Crossref]

Hong, M.

M. Rahmani, B. Lukiyanchuk, B. Ng, A. K. G. Tavakkoli, Y. F. Liew, and M. Hong, “Generation of pronounced Fano resonances and tuning of subwavelength spatial light distribution in plasmonic pentamers,” Opt. Express 19(6), 4952–4956 (2011).
[Crossref]

Hu, F.

F. Hu, H. Lin, Z. Zhang, F. Liao, M. Shao, Y. Lifshitz, and S.-T. Lee, “Smart liquid SERS substrates based on Fe3O4/Au nanoparticles with reversibly tunable enhancement factor for partical quantitative detection,” Sci. Rep. 4, 7204 (2014).
[Crossref]

Hu, J.

Hua, B.

J. Lee, B. Hua, S. Park, M. Ha, Y. Lee, Z. Fan, and H. Ko, “Tailoring surface plasmons of high-density gold nanostar assemblies on metal films for surface-enhanced Raman spectroscopy,” Nanoscale 6, 616–623 (2014).
[Crossref]

Huang, J.-A.

J.-A. Huang, Y.-Q. Zhao, X.-J. Zhang, L.-F. He, T.-L. Wong, Y.-S. Chui, W.-J. Zhang, and S.-T. Lee, “Ordered Ag/Si nanowires array: wide-range surface-enhanced Raman spectroscopy for reproducible biomolecule detection,” Nano Lett. 13(11), 5039–5045 (2013).
[Crossref] [PubMed]

Hunt, H. K.

C. E. Soteropulos, H. K. Hunt, and A. M. Armani, “Determination of binding kinetics using whispering gallery mode microcavities,” Appl. Phys. Lett. 99, 103703 (2011).
[Crossref] [PubMed]

Ishikawa, M.

M. S. Kiran, T. Itoh, K. Yoshida, N. Kawashima, V. Biju, and M. Ishikawa, “Selective detection of HbA1c using surface enhanced resonance Raman spectroscopy,” Anal. Chem. 82(4), 1342–1348 (2010).
[Crossref] [PubMed]

Itoh, T.

M. S. Kiran, T. Itoh, K. Yoshida, N. Kawashima, V. Biju, and M. Ishikawa, “Selective detection of HbA1c using surface enhanced resonance Raman spectroscopy,” Anal. Chem. 82(4), 1342–1348 (2010).
[Crossref] [PubMed]

Ivanov, A. V.

A. V. Ivanov, A. V. Vaskin, A. N. Lagarkov, and A. K. Sarychev, “The field enhancement and optical sensing in the array of almost adjoining metal and dielectric nanorods,” Proc. SPIE 9163, 91633C (2014).
[Crossref]

Ji, D.

N. Zhang, L. Liu, Z. Liu, H. Song, X. Zeng, D. Ji, A. Cheney, S. Jiang, and Q. Gan, “Ultrabroadband metasurface for efficient light trapping and localization: a universal sufrace-enhanced Raman spectroscopy substrate for ’all’ excitation wavelengths,” Adv. Mater. Interfaces 2(10), 1500142 (2015).

K. Liu, S. Jiang, D. Ji, X. Zeng, N. Zhang, H. Song, Y. Xu, and Q. Gan, “Super absorbing ultraviolet metasurface,” IEEE Photonics Technol. Lett. 27(14), 1539–1542 (2015).
[Crossref]

Jiang, S.

N. Zhang, L. Liu, Z. Liu, H. Song, X. Zeng, D. Ji, A. Cheney, S. Jiang, and Q. Gan, “Ultrabroadband metasurface for efficient light trapping and localization: a universal sufrace-enhanced Raman spectroscopy substrate for ’all’ excitation wavelengths,” Adv. Mater. Interfaces 2(10), 1500142 (2015).

K. Liu, S. Jiang, D. Ji, X. Zeng, N. Zhang, H. Song, Y. Xu, and Q. Gan, “Super absorbing ultraviolet metasurface,” IEEE Photonics Technol. Lett. 27(14), 1539–1542 (2015).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B. 6(12), 4370–4379 (2009).
[Crossref]

Jung, W.

T.-S. Oh, Y. S. Tokpanov, Y. Hao, W. Jung, and S. M. Haile, “Determination of optical and microstructural parameters of ceria films,” J. of Appl. Phys. 112, 103535 (2012).
[Crossref]

Kall, M.

H. Xu, E. J. Bjerneld, M. Kall, and L. Borjesson, “Spectroscopy of single hemoglobin molecules by Surface Enhanced Raman Scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (2009).
[Crossref]

Karar, N.

A. Verma, N. Karar, A. K. Bakhshi, H. Chander, S. M. Shivaprasad, and S. A. Agnihotry, “Structural, morphological and photoluminescence characteristics of sol-gel derived nano phase CeO2 films deposited using citric acid,” J. Nanopart. Res. 9, 317–322 (2007).
[Crossref]

Kawashima, N.

M. S. Kiran, T. Itoh, K. Yoshida, N. Kawashima, V. Biju, and M. Ishikawa, “Selective detection of HbA1c using surface enhanced resonance Raman spectroscopy,” Anal. Chem. 82(4), 1342–1348 (2010).
[Crossref] [PubMed]

Kimble, H. J.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
[Crossref] [PubMed]

Kippenberg, T. J.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
[Crossref] [PubMed]

Kiran, M. S.

M. S. Kiran, T. Itoh, K. Yoshida, N. Kawashima, V. Biju, and M. Ishikawa, “Selective detection of HbA1c using surface enhanced resonance Raman spectroscopy,” Anal. Chem. 82(4), 1342–1348 (2010).
[Crossref] [PubMed]

Ko, H.

J. Lee, B. Hua, S. Park, M. Ha, Y. Lee, Z. Fan, and H. Ko, “Tailoring surface plasmons of high-density gold nanostar assemblies on metal films for surface-enhanced Raman spectroscopy,” Nanoscale 6, 616–623 (2014).
[Crossref]

Kolchenko, V.

V. R. Dantham, S. Holler, V. Kolchenko, Z. Wan, and S. Arnold, “Taking whispering gallery-mode single virus detection and sizing to the limit,” Appl. Phys. Lett. 101, 043704 (2012).
[Crossref]

Krogman, K. C.

K. C. Krogman, T. Druffel, and M. K. Sunkara, “Anti-reflective optical coatings incorporating nanoparticles,” Nanotechnology 16, s338–s343 (2005).
[Crossref] [PubMed]

Kulkarni, R.

A. Armani, R. Kulkarni, S. Fraser, R. Flagan, and K. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783–787 (2007).
[Crossref] [PubMed]

Kupcov, A. H.

A. H. Kupcov and G. N. Zhizhin, The Fourier Spectra of Raman Scattering and Infrared Absorption of Polymers (Fizmatlit, 2001).

Kuppusami, P. C.

G. Balakrishnan, S. T. Sundari, P. C. Kuppusami, P. C. Mohan, M. P. Srinivasan, E. Mohandas, V. Ganesan, and D. Sastikumar, “A study of microstructural and optical properties of nanocrystalline ceria thin films prepared by pulsed laser deposition,” Thin Solid Films 519, 2520–2526 (2011).
[Crossref]

Kurochkin, I.

I. Kurochkin, I. Ryzhikov, A. Sarychev, K. Afanasiev, I. Budashov, M. Sedova, I. Boginskaya, S. Amitonov, and A. Lagarkov, “New SERS-active junction based on cerium dioxide facet dielectric films for biosensing,” Adv. Electromagn. 3(1), 57–60 (2014).
[Crossref]

Kurochkin, I. N.

M. G. Gromova, L. V. Sigolaeva, M. A. Fastovets, E. G. Evtushenko, I. A. Babin, D. V. Pergushov, S. A. Amitonov, A. V. Eremenko, and I. N. Kurochkin, “Improved absorption of choline oxidase on a polyelectrolyte LBL film in the presence of iodine anions,” Soft Matter. 7, 7404–7409 (2011).
[Crossref]

Kuznetsov, A. I.

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Lukyanchuk, “Magnetic light,” Sci. Rep. 2, 492–497 (2012).
[Crossref] [PubMed]

Lagarkov, A.

I. Kurochkin, I. Ryzhikov, A. Sarychev, K. Afanasiev, I. Budashov, M. Sedova, I. Boginskaya, S. Amitonov, and A. Lagarkov, “New SERS-active junction based on cerium dioxide facet dielectric films for biosensing,” Adv. Electromagn. 3(1), 57–60 (2014).
[Crossref]

Lagarkov, A. N.

A. V. Ivanov, A. V. Vaskin, A. N. Lagarkov, and A. K. Sarychev, “The field enhancement and optical sensing in the array of almost adjoining metal and dielectric nanorods,” Proc. SPIE 9163, 91633C (2014).
[Crossref]

F. Brouers, S. Blacher, A. N. Lagarkov, A. K. Sarychev, P. Gadenne, and V. M. Shalaev, “Theory of giant Raman scattering from semicontinuous metal films,” Phys. Rev. B 55(19), 234–245 (1997).
[Crossref]

Lakhtakia, A.

S. E. Swiontek, M. Faryad, and A. Lakhtakia, “Surface plasmonic polaritonic sensors using a dielectric columnar thin film,” J. Nanophotonics 8, 083986 (2014).
[Crossref]

A. Lakhtakia and M. Faryad, “Theory of optical sensing with Dyakonov-Tamm waves,” J. Nanophotonics 8, 083072 (2014).
[Crossref]

Lal, S.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).
[Crossref]

Lee, J.

J. Lee, B. Hua, S. Park, M. Ha, Y. Lee, Z. Fan, and H. Ko, “Tailoring surface plasmons of high-density gold nanostar assemblies on metal films for surface-enhanced Raman spectroscopy,” Nanoscale 6, 616–623 (2014).
[Crossref]

Lee, S.-T.

F. Hu, H. Lin, Z. Zhang, F. Liao, M. Shao, Y. Lifshitz, and S.-T. Lee, “Smart liquid SERS substrates based on Fe3O4/Au nanoparticles with reversibly tunable enhancement factor for partical quantitative detection,” Sci. Rep. 4, 7204 (2014).
[Crossref]

J.-A. Huang, Y.-Q. Zhao, X.-J. Zhang, L.-F. He, T.-L. Wong, Y.-S. Chui, W.-J. Zhang, and S.-T. Lee, “Ordered Ag/Si nanowires array: wide-range surface-enhanced Raman spectroscopy for reproducible biomolecule detection,” Nano Lett. 13(11), 5039–5045 (2013).
[Crossref] [PubMed]

Lee, Y.

J. Lee, B. Hua, S. Park, M. Ha, Y. Lee, Z. Fan, and H. Ko, “Tailoring surface plasmons of high-density gold nanostar assemblies on metal films for surface-enhanced Raman spectroscopy,” Nanoscale 6, 616–623 (2014).
[Crossref]

Li, W.-D.

Li, Y.

R.-M. Ma, S. Ota, Y. Li, S. Yang, and X. Zhang, “Explosives detection in a lasing plasmon nanocavity,” Nat. Nanotechnol. 9, 600–604 (2014).
[Crossref] [PubMed]

Liao, F.

F. Hu, H. Lin, Z. Zhang, F. Liao, M. Shao, Y. Lifshitz, and S.-T. Lee, “Smart liquid SERS substrates based on Fe3O4/Au nanoparticles with reversibly tunable enhancement factor for partical quantitative detection,” Sci. Rep. 4, 7204 (2014).
[Crossref]

Lidgi-Guigui, N.

M. Cottat, N. Lidgi-Guigui, I. Tijunelyte, G. Barbillon, F. Hamouda, P. Gogol, A. Aassime, J.-M. Lourtioz, B. Bartenlian, and M. L. de la Chapelle, “Soft UV nanoimprint lithography-designed highly sensitive substrates for SERS detection,” Nanoscale Res. Lett. 9, 623 (2014).
[Crossref]

Liew, Y. F.

M. Rahmani, B. Lukiyanchuk, B. Ng, A. K. G. Tavakkoli, Y. F. Liew, and M. Hong, “Generation of pronounced Fano resonances and tuning of subwavelength spatial light distribution in plasmonic pentamers,” Opt. Express 19(6), 4952–4956 (2011).
[Crossref]

Lifshitz, Y.

F. Hu, H. Lin, Z. Zhang, F. Liao, M. Shao, Y. Lifshitz, and S.-T. Lee, “Smart liquid SERS substrates based on Fe3O4/Au nanoparticles with reversibly tunable enhancement factor for partical quantitative detection,” Sci. Rep. 4, 7204 (2014).
[Crossref]

Lin, H.

F. Hu, H. Lin, Z. Zhang, F. Liao, M. Shao, Y. Lifshitz, and S.-T. Lee, “Smart liquid SERS substrates based on Fe3O4/Au nanoparticles with reversibly tunable enhancement factor for partical quantitative detection,” Sci. Rep. 4, 7204 (2014).
[Crossref]

Link, S.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).
[Crossref]

Liu, K.

K. Liu, S. Jiang, D. Ji, X. Zeng, N. Zhang, H. Song, Y. Xu, and Q. Gan, “Super absorbing ultraviolet metasurface,” IEEE Photonics Technol. Lett. 27(14), 1539–1542 (2015).
[Crossref]

Liu, L.

N. Zhang, L. Liu, Z. Liu, H. Song, X. Zeng, D. Ji, A. Cheney, S. Jiang, and Q. Gan, “Ultrabroadband metasurface for efficient light trapping and localization: a universal sufrace-enhanced Raman spectroscopy substrate for ’all’ excitation wavelengths,” Adv. Mater. Interfaces 2(10), 1500142 (2015).

Liu, Y.-S.

Y.-G. Bi, J. Feng, Y.-S. Liu, Y. Chen, X.-L. Zhang, X.-C. Han, and H.-B. Sun, “Surface plasmon-polariton mediated red emission from organic light-emitting devices based on metallic electrodes integrated with dual-periodic corrugation,” Sci. Rep. 4, 7108 (2014).
[Crossref] [PubMed]

Liu, Z.

N. Zhang, L. Liu, Z. Liu, H. Song, X. Zeng, D. Ji, A. Cheney, S. Jiang, and Q. Gan, “Ultrabroadband metasurface for efficient light trapping and localization: a universal sufrace-enhanced Raman spectroscopy substrate for ’all’ excitation wavelengths,” Adv. Mater. Interfaces 2(10), 1500142 (2015).

Logothetidis, S.

P. Patsalas, S. Logothetidis, and C. Metaxa, “Optical performance of nanocrystalline transparent ceria films,” Appl. Phys. Lett. 81(3), 466–468 (2002).
[Crossref]

Lourtioz, J.-M.

M. Cottat, N. Lidgi-Guigui, I. Tijunelyte, G. Barbillon, F. Hamouda, P. Gogol, A. Aassime, J.-M. Lourtioz, B. Bartenlian, and M. L. de la Chapelle, “Soft UV nanoimprint lithography-designed highly sensitive substrates for SERS detection,” Nanoscale Res. Lett. 9, 623 (2014).
[Crossref]

Luk’yanchuk, B. S.

M. I. Tribelsky and B. S. Luk’yanchuk, “Anomalous light scattering by small particles,” Phys. Rev. Lett. 97, 263902 (2006).
[Crossref]

Lukiyanchuk, B.

M. Rahmani, B. Lukiyanchuk, B. Ng, A. K. G. Tavakkoli, Y. F. Liew, and M. Hong, “Generation of pronounced Fano resonances and tuning of subwavelength spatial light distribution in plasmonic pentamers,” Opt. Express 19(6), 4952–4956 (2011).
[Crossref]

Lukyanchuk, B.

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Lukyanchuk, “Magnetic light,” Sci. Rep. 2, 492–497 (2012).
[Crossref] [PubMed]

Lupitskyy, R.

Y. Han, R. Lupitskyy, T.-M. Chou, C. M. Stafford, H. Du, and S. Sukhishvili, “Effect of oxidation on surface-enhanced Raman scattering activity of silver nanoparticles: a quantitative correlation,” Anal. Chem. 83, 5873–5880 (2011).
[Crossref] [PubMed]

Ma, R.-M.

R.-M. Ma, S. Ota, Y. Li, S. Yang, and X. Zhang, “Explosives detection in a lasing plasmon nanocavity,” Nat. Nanotechnol. 9, 600–604 (2014).
[Crossref] [PubMed]

Mahalingam, T.

R. Murugan, G. Vijayaprasath, T. Mahalingam, Y. Hayakawa, and G. Ravi, “Effect of rf power on the properties of magnetron sputtered CeO2 thin films,” J. Mater. Sci: Mater Electron 26(5), 2800–2809 (2015).

Mahnkopf, S.

Mansilla, C.

C. Mansilla, “Structure, microstructure and optical properties of cerium oxide thin films prepared by electron beam evaporation assisted with ion beams,” Solid State Sci. 11, 1456–1464 (2009).
[Crossref]

Mattiucci, N.

McFarland, A. D.

A. D. McFarland, M. A. Young, J. A. Dieringer, and R. P. Van Duyne, “Wavelength-scanned surface-enhanced Raman excitation spectroscopy,” J. Phys. Chem. B 109, 11279–11285 (2005);
[Crossref]

McQuillan, A.

M. Fleischmann, P. Hendra, and A. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
[Crossref]

Metaxa, C.

P. Patsalas, S. Logothetidis, and C. Metaxa, “Optical performance of nanocrystalline transparent ceria films,” Appl. Phys. Lett. 81(3), 466–468 (2002).
[Crossref]

Miroshnichenko, A. E.

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Lukyanchuk, “Magnetic light,” Sci. Rep. 2, 492–497 (2012).
[Crossref] [PubMed]

Mohan, P. C.

G. Balakrishnan, S. T. Sundari, P. C. Kuppusami, P. C. Mohan, M. P. Srinivasan, E. Mohandas, V. Ganesan, and D. Sastikumar, “A study of microstructural and optical properties of nanocrystalline ceria thin films prepared by pulsed laser deposition,” Thin Solid Films 519, 2520–2526 (2011).
[Crossref]

Mohandas, E.

G. Balakrishnan, S. T. Sundari, P. C. Kuppusami, P. C. Mohan, M. P. Srinivasan, E. Mohandas, V. Ganesan, and D. Sastikumar, “A study of microstructural and optical properties of nanocrystalline ceria thin films prepared by pulsed laser deposition,” Thin Solid Films 519, 2520–2526 (2011).
[Crossref]

Moreno-Bondi, M. C.

V. Canalejas-Tejero, S. Herranz, A. Bellingham, M. C. Moreno-Bondi, and C. A. Barrios, “Passivated aluminium nanohole arrays for label-free biosensing applications,” ACS Appl. Mater. Interfaces 6, 1005–1010 (2013).
[Crossref]

Murugan, R.

R. Murugan, G. Vijayaprasath, T. Mahalingam, Y. Hayakawa, and G. Ravi, “Effect of rf power on the properties of magnetron sputtered CeO2 thin films,” J. Mater. Sci: Mater Electron 26(5), 2800–2809 (2015).

Naik, G.

G. Naik, V. Shalaev, and A. Boltaseeva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25, 3264–3294 (2013).
[Crossref] [PubMed]

Negro, L. D.

B. Yan, A. Thubagere, W. R. Premasiri, L. D. Ziegler, L. D. Negro, and B. M. Reinhard, “Engineered SERS substrates with multiscale signal enhancement: nanoparticle cluster arrays,” ACS Nano 3(5), 1190–1202 (2009).
[Crossref] [PubMed]

Netti, C. M.

Ng, B.

M. Rahmani, B. Lukiyanchuk, B. Ng, A. K. G. Tavakkoli, Y. F. Liew, and M. Hong, “Generation of pronounced Fano resonances and tuning of subwavelength spatial light distribution in plasmonic pentamers,” Opt. Express 19(6), 4952–4956 (2011).
[Crossref]

Oh, T.-S.

T.-S. Oh, Y. S. Tokpanov, Y. Hao, W. Jung, and S. M. Haile, “Determination of optical and microstructural parameters of ceria films,” J. of Appl. Phys. 112, 103535 (2012).
[Crossref]

Ota, S.

R.-M. Ma, S. Ota, Y. Li, S. Yang, and X. Zhang, “Explosives detection in a lasing plasmon nanocavity,” Nat. Nanotechnol. 9, 600–604 (2014).
[Crossref] [PubMed]

Ozer, N.

N. Ozer, “Optical properties and electrochromic characterization of sol-gel deposited ceria films,” Sol. Energ. Mat. Sol. C. 68, 391–400 (2001).
[Crossref]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants (Elsevier Science, 1991).

Park, S.

J. Lee, B. Hua, S. Park, M. Ha, Y. Lee, Z. Fan, and H. Ko, “Tailoring surface plasmons of high-density gold nanostar assemblies on metal films for surface-enhanced Raman spectroscopy,” Nanoscale 6, 616–623 (2014).
[Crossref]

Parkins, A. S.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
[Crossref] [PubMed]

Patsalas, P.

P. Patsalas, S. Logothetidis, and C. Metaxa, “Optical performance of nanocrystalline transparent ceria films,” Appl. Phys. Lett. 81(3), 466–468 (2002).
[Crossref]

Pergushov, D. V.

M. G. Gromova, L. V. Sigolaeva, M. A. Fastovets, E. G. Evtushenko, I. A. Babin, D. V. Pergushov, S. A. Amitonov, A. V. Eremenko, and I. N. Kurochkin, “Improved absorption of choline oxidase on a polyelectrolyte LBL film in the presence of iodine anions,” Soft Matter. 7, 7404–7409 (2011).
[Crossref]

Perney, N. M. B.

Podolskiy, V.

I. Avrutsky, I. Salakhutdinov, J. Elser, and V. Podolskiy, “Highly confined optical modes in nanoscale metal-dielectric multilayers,” Phys. Rev. B. 75, 241402 (2007).
[Crossref]

Premasiri, W. R.

B. Yan, A. Thubagere, W. R. Premasiri, L. D. Ziegler, L. D. Negro, and B. M. Reinhard, “Engineered SERS substrates with multiscale signal enhancement: nanoparticle cluster arrays,” ACS Nano 3(5), 1190–1202 (2009).
[Crossref] [PubMed]

Prochazka, M.

L. Stolcova, J. Proska, and M. Prochazka, “Hexagonally ordered gold semishells as tunable SERS substrates,” in Proceedings of 4th International Conference Nanocom, (2012), pp. 1–6.

Proska, J.

L. Stolcova, J. Proska, and M. Prochazka, “Hexagonally ordered gold semishells as tunable SERS substrates,” in Proceedings of 4th International Conference Nanocom, (2012), pp. 1–6.

Rahmani, M.

M. Rahmani, B. Lukiyanchuk, B. Ng, A. K. G. Tavakkoli, Y. F. Liew, and M. Hong, “Generation of pronounced Fano resonances and tuning of subwavelength spatial light distribution in plasmonic pentamers,” Opt. Express 19(6), 4952–4956 (2011).
[Crossref]

Rajmangal, R.

S. I. Shopova, R. Rajmangal, S. Holler, and S. Arnold, “Plasmonic enhancement of a whispering-gallery-mode biosensor for single nanoparticle detection,” Appl. Phys. Lett. 98, 243104 (2011).
[Crossref]

Ravi, G.

R. Murugan, G. Vijayaprasath, T. Mahalingam, Y. Hayakawa, and G. Ravi, “Effect of rf power on the properties of magnetron sputtered CeO2 thin films,” J. Mater. Sci: Mater Electron 26(5), 2800–2809 (2015).

Reinhard, B. M.

B. Yan, A. Thubagere, W. R. Premasiri, L. D. Ziegler, L. D. Negro, and B. M. Reinhard, “Engineered SERS substrates with multiscale signal enhancement: nanoparticle cluster arrays,” ACS Nano 3(5), 1190–1202 (2009).
[Crossref] [PubMed]

Ringe, E.

B. Sharma, R. R. Frontiera, A.-I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: metamerials, applications, and the future,” Mater. Today 15(1–2), 16–25 (2012).
[Crossref]

Ru, E. C. L.

E. C. L. Ru and P. G. Etchegoin, Principles of Surface-Enhanced Raman Spectroscopy and Related Plasmonic Effects (Elsevier, 2009).

Ryzhikov, I.

I. Kurochkin, I. Ryzhikov, A. Sarychev, K. Afanasiev, I. Budashov, M. Sedova, I. Boginskaya, S. Amitonov, and A. Lagarkov, “New SERS-active junction based on cerium dioxide facet dielectric films for biosensing,” Adv. Electromagn. 3(1), 57–60 (2014).
[Crossref]

Salakhutdinov, I.

I. Avrutsky, I. Salakhutdinov, J. Elser, and V. Podolskiy, “Highly confined optical modes in nanoscale metal-dielectric multilayers,” Phys. Rev. B. 75, 241402 (2007).
[Crossref]

Sarychev, A.

I. Kurochkin, I. Ryzhikov, A. Sarychev, K. Afanasiev, I. Budashov, M. Sedova, I. Boginskaya, S. Amitonov, and A. Lagarkov, “New SERS-active junction based on cerium dioxide facet dielectric films for biosensing,” Adv. Electromagn. 3(1), 57–60 (2014).
[Crossref]

Sarychev, A. K.

A. V. Ivanov, A. V. Vaskin, A. N. Lagarkov, and A. K. Sarychev, “The field enhancement and optical sensing in the array of almost adjoining metal and dielectric nanorods,” Proc. SPIE 9163, 91633C (2014).
[Crossref]

S. O. Boyarintsev and A. K. Sarychev, “Computer simulation of surface enhanced Raman scattering in nanostructured metamaterials,” J. Exp. Theor. Phys. 113(6), 963–971 (2011).
[Crossref]

F. Brouers, S. Blacher, A. N. Lagarkov, A. K. Sarychev, P. Gadenne, and V. M. Shalaev, “Theory of giant Raman scattering from semicontinuous metal films,” Phys. Rev. B 55(19), 234–245 (1997).
[Crossref]

A. K. Sarychev and V. M. Shalaev, Electrodynamics of Metamaterials (World Scientific, 2007).

Sastikumar, D.

G. Balakrishnan, S. T. Sundari, P. C. Kuppusami, P. C. Mohan, M. P. Srinivasan, E. Mohandas, V. Ganesan, and D. Sastikumar, “A study of microstructural and optical properties of nanocrystalline ceria thin films prepared by pulsed laser deposition,” Thin Solid Films 519, 2520–2526 (2011).
[Crossref]

Sedova, M.

I. Kurochkin, I. Ryzhikov, A. Sarychev, K. Afanasiev, I. Budashov, M. Sedova, I. Boginskaya, S. Amitonov, and A. Lagarkov, “New SERS-active junction based on cerium dioxide facet dielectric films for biosensing,” Adv. Electromagn. 3(1), 57–60 (2014).
[Crossref]

Shalaev, V.

G. Naik, V. Shalaev, and A. Boltaseeva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25, 3264–3294 (2013).
[Crossref] [PubMed]

Shalaev, V. M.

F. Brouers, S. Blacher, A. N. Lagarkov, A. K. Sarychev, P. Gadenne, and V. M. Shalaev, “Theory of giant Raman scattering from semicontinuous metal films,” Phys. Rev. B 55(19), 234–245 (1997).
[Crossref]

A. K. Sarychev and V. M. Shalaev, Electrodynamics of Metamaterials (World Scientific, 2007).

Shao, M.

F. Hu, H. Lin, Z. Zhang, F. Liao, M. Shao, Y. Lifshitz, and S.-T. Lee, “Smart liquid SERS substrates based on Fe3O4/Au nanoparticles with reversibly tunable enhancement factor for partical quantitative detection,” Sci. Rep. 4, 7204 (2014).
[Crossref]

Sharma, B.

B. Sharma, R. R. Frontiera, A.-I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: metamerials, applications, and the future,” Mater. Today 15(1–2), 16–25 (2012).
[Crossref]

Shivaprasad, S. M.

A. Verma, N. Karar, A. K. Bakhshi, H. Chander, S. M. Shivaprasad, and S. A. Agnihotry, “Structural, morphological and photoluminescence characteristics of sol-gel derived nano phase CeO2 films deposited using citric acid,” J. Nanopart. Res. 9, 317–322 (2007).
[Crossref]

Shopova, S. I.

S. I. Shopova, R. Rajmangal, S. Holler, and S. Arnold, “Plasmonic enhancement of a whispering-gallery-mode biosensor for single nanoparticle detection,” Appl. Phys. Lett. 98, 243104 (2011).
[Crossref]

Sigolaeva, L. V.

M. G. Gromova, L. V. Sigolaeva, M. A. Fastovets, E. G. Evtushenko, I. A. Babin, D. V. Pergushov, S. A. Amitonov, A. V. Eremenko, and I. N. Kurochkin, “Improved absorption of choline oxidase on a polyelectrolyte LBL film in the presence of iodine anions,” Soft Matter. 7, 7404–7409 (2011).
[Crossref]

Song, H.

N. Zhang, L. Liu, Z. Liu, H. Song, X. Zeng, D. Ji, A. Cheney, S. Jiang, and Q. Gan, “Ultrabroadband metasurface for efficient light trapping and localization: a universal sufrace-enhanced Raman spectroscopy substrate for ’all’ excitation wavelengths,” Adv. Mater. Interfaces 2(10), 1500142 (2015).

K. Liu, S. Jiang, D. Ji, X. Zeng, N. Zhang, H. Song, Y. Xu, and Q. Gan, “Super absorbing ultraviolet metasurface,” IEEE Photonics Technol. Lett. 27(14), 1539–1542 (2015).
[Crossref]

Soref, R.

Soteropulos, C. E.

C. E. Soteropulos, H. K. Hunt, and A. M. Armani, “Determination of binding kinetics using whispering gallery mode microcavities,” Appl. Phys. Lett. 99, 103703 (2011).
[Crossref] [PubMed]

Sreekanth, K. V.

K. V. Sreekanth, A. De Luca, and G. Strangi, “Experimental demonstration of surface and bulk plasmon polaritons in hypergratings,” Sci. Rep. 3, 3291 (2013).
[Crossref] [PubMed]

Srinivasan, M. P.

G. Balakrishnan, S. T. Sundari, P. C. Kuppusami, P. C. Mohan, M. P. Srinivasan, E. Mohandas, V. Ganesan, and D. Sastikumar, “A study of microstructural and optical properties of nanocrystalline ceria thin films prepared by pulsed laser deposition,” Thin Solid Films 519, 2520–2526 (2011).
[Crossref]

Stafford, C. M.

Y. Han, R. Lupitskyy, T.-M. Chou, C. M. Stafford, H. Du, and S. Sukhishvili, “Effect of oxidation on surface-enhanced Raman scattering activity of silver nanoparticles: a quantitative correlation,” Anal. Chem. 83, 5873–5880 (2011).
[Crossref] [PubMed]

Stevenson, P.S.

J. Turkevich, P.S. Stevenson, and J. Hiller, “A study of the nucleation and growth processes in the synthesis of colloidal gold,” Discuss. Faraday Soc. 11, 55–75 (1955).
[Crossref]

Stolcova, L.

L. Stolcova, J. Proska, and M. Prochazka, “Hexagonally ordered gold semishells as tunable SERS substrates,” in Proceedings of 4th International Conference Nanocom, (2012), pp. 1–6.

Strangi, G.

K. V. Sreekanth, A. De Luca, and G. Strangi, “Experimental demonstration of surface and bulk plasmon polaritons in hypergratings,” Sci. Rep. 3, 3291 (2013).
[Crossref] [PubMed]

Strunskus, T.

M. K. Hedayati, A. U. Zillohu, T. Strunskus, F. Faupel, and M. Elbahri, “Plasmonic tunable metamaterial absorber as ultraviolet protection film,” Appl. Phys. Lett. 104, 041103 (2014).
[Crossref]

Sukhishvili, S.

Y. Han, R. Lupitskyy, T.-M. Chou, C. M. Stafford, H. Du, and S. Sukhishvili, “Effect of oxidation on surface-enhanced Raman scattering activity of silver nanoparticles: a quantitative correlation,” Anal. Chem. 83, 5873–5880 (2011).
[Crossref] [PubMed]

Sun, H.-B.

Y.-G. Bi, J. Feng, Y.-S. Liu, Y. Chen, X.-L. Zhang, X.-C. Han, and H.-B. Sun, “Surface plasmon-polariton mediated red emission from organic light-emitting devices based on metallic electrodes integrated with dual-periodic corrugation,” Sci. Rep. 4, 7108 (2014).
[Crossref] [PubMed]

Sundari, S. T.

G. Balakrishnan, S. T. Sundari, P. C. Kuppusami, P. C. Mohan, M. P. Srinivasan, E. Mohandas, V. Ganesan, and D. Sastikumar, “A study of microstructural and optical properties of nanocrystalline ceria thin films prepared by pulsed laser deposition,” Thin Solid Films 519, 2520–2526 (2011).
[Crossref]

Sunkara, M. K.

K. C. Krogman, T. Druffel, and M. K. Sunkara, “Anti-reflective optical coatings incorporating nanoparticles,” Nanotechnology 16, s338–s343 (2005).
[Crossref] [PubMed]

Swiontek, S. E.

S. E. Swiontek, M. Faryad, and A. Lakhtakia, “Surface plasmonic polaritonic sensors using a dielectric columnar thin film,” J. Nanophotonics 8, 083986 (2014).
[Crossref]

Tamer, U.

U. Tamer, I. H. Boyaci, E. Temur, A. Zengin, I. Dincer, and Y. Elerman, “Fabrication of magnetic gold nanorod particles for immunomagnetic separation and SERS application,” J. Nanopart. Res. 13, 3167–3176 (2011).
[Crossref]

Tavakkoli, A. K. G.

M. Rahmani, B. Lukiyanchuk, B. Ng, A. K. G. Tavakkoli, Y. F. Liew, and M. Hong, “Generation of pronounced Fano resonances and tuning of subwavelength spatial light distribution in plasmonic pentamers,” Opt. Express 19(6), 4952–4956 (2011).
[Crossref]

Temur, E.

U. Tamer, I. H. Boyaci, E. Temur, A. Zengin, I. Dincer, and Y. Elerman, “Fabrication of magnetic gold nanorod particles for immunomagnetic separation and SERS application,” J. Nanopart. Res. 13, 3167–3176 (2011).
[Crossref]

Thubagere, A.

B. Yan, A. Thubagere, W. R. Premasiri, L. D. Ziegler, L. D. Negro, and B. M. Reinhard, “Engineered SERS substrates with multiscale signal enhancement: nanoparticle cluster arrays,” ACS Nano 3(5), 1190–1202 (2009).
[Crossref] [PubMed]

Tijunelyte, I.

M. Cottat, N. Lidgi-Guigui, I. Tijunelyte, G. Barbillon, F. Hamouda, P. Gogol, A. Aassime, J.-M. Lourtioz, B. Bartenlian, and M. L. de la Chapelle, “Soft UV nanoimprint lithography-designed highly sensitive substrates for SERS detection,” Nanoscale Res. Lett. 9, 623 (2014).
[Crossref]

Tokpanov, Y. S.

T.-S. Oh, Y. S. Tokpanov, Y. Hao, W. Jung, and S. M. Haile, “Determination of optical and microstructural parameters of ceria films,” J. of Appl. Phys. 112, 103535 (2012).
[Crossref]

Tribelsky, M. I.

M. I. Tribelsky and B. S. Luk’yanchuk, “Anomalous light scattering by small particles,” Phys. Rev. Lett. 97, 263902 (2006).
[Crossref]

Turkevich, J.

J. Turkevich, P.S. Stevenson, and J. Hiller, “A study of the nucleation and growth processes in the synthesis of colloidal gold,” Discuss. Faraday Soc. 11, 55–75 (1955).
[Crossref]

Vahala, K.

A. Armani, R. Kulkarni, S. Fraser, R. Flagan, and K. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783–787 (2007).
[Crossref] [PubMed]

Vahala, K. J.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
[Crossref] [PubMed]

Van Duyne, R. P.

B. Sharma, R. R. Frontiera, A.-I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: metamerials, applications, and the future,” Mater. Today 15(1–2), 16–25 (2012).
[Crossref]

A. D. McFarland, M. A. Young, J. A. Dieringer, and R. P. Van Duyne, “Wavelength-scanned surface-enhanced Raman excitation spectroscopy,” J. Phys. Chem. B 109, 11279–11285 (2005);
[Crossref]

Vaskin, A. V.

A. V. Ivanov, A. V. Vaskin, A. N. Lagarkov, and A. K. Sarychev, “The field enhancement and optical sensing in the array of almost adjoining metal and dielectric nanorods,” Proc. SPIE 9163, 91633C (2014).
[Crossref]

Verma, A.

A. Verma, N. Karar, A. K. Bakhshi, H. Chander, S. M. Shivaprasad, and S. A. Agnihotry, “Structural, morphological and photoluminescence characteristics of sol-gel derived nano phase CeO2 films deposited using citric acid,” J. Nanopart. Res. 9, 317–322 (2007).
[Crossref]

Vijayaprasath, G.

R. Murugan, G. Vijayaprasath, T. Mahalingam, Y. Hayakawa, and G. Ravi, “Effect of rf power on the properties of magnetron sputtered CeO2 thin films,” J. Mater. Sci: Mater Electron 26(5), 2800–2809 (2015).

Wan, Z.

V. R. Dantham, S. Holler, V. Kolchenko, Z. Wan, and S. Arnold, “Taking whispering gallery-mode single virus detection and sizing to the limit,” Appl. Phys. Lett. 101, 043704 (2012).
[Crossref]

Wiersig, J.

H. Cao and J. Wiersig, “Dielectric microcavities: model systems for wave chaos and non-Hermitian physics,” Rev. Mod. Phys. 87, 61–111 (2015).
[Crossref]

Wilcut, E.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
[Crossref] [PubMed]

Wolf, E.

M. Born and E. Wolf, Principles of Optics. Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 4th ed. (Pergamon, 1968).

Wong, T.-L.

J.-A. Huang, Y.-Q. Zhao, X.-J. Zhang, L.-F. He, T.-L. Wong, Y.-S. Chui, W.-J. Zhang, and S.-T. Lee, “Ordered Ag/Si nanowires array: wide-range surface-enhanced Raman spectroscopy for reproducible biomolecule detection,” Nano Lett. 13(11), 5039–5045 (2013).
[Crossref] [PubMed]

Xu, H.

H. Xu, E. J. Bjerneld, M. Kall, and L. Borjesson, “Spectroscopy of single hemoglobin molecules by Surface Enhanced Raman Scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (2009).
[Crossref]

Xu, Y.

K. Liu, S. Jiang, D. Ji, X. Zeng, N. Zhang, H. Song, Y. Xu, and Q. Gan, “Super absorbing ultraviolet metasurface,” IEEE Photonics Technol. Lett. 27(14), 1539–1542 (2015).
[Crossref]

Yan, B.

B. Yan, A. Thubagere, W. R. Premasiri, L. D. Ziegler, L. D. Negro, and B. M. Reinhard, “Engineered SERS substrates with multiscale signal enhancement: nanoparticle cluster arrays,” ACS Nano 3(5), 1190–1202 (2009).
[Crossref] [PubMed]

Yang, S.

R.-M. Ma, S. Ota, Y. Li, S. Yang, and X. Zhang, “Explosives detection in a lasing plasmon nanocavity,” Nat. Nanotechnol. 9, 600–604 (2014).
[Crossref] [PubMed]

Yoshida, K.

M. S. Kiran, T. Itoh, K. Yoshida, N. Kawashima, V. Biju, and M. Ishikawa, “Selective detection of HbA1c using surface enhanced resonance Raman spectroscopy,” Anal. Chem. 82(4), 1342–1348 (2010).
[Crossref] [PubMed]

Young, M. A.

A. D. McFarland, M. A. Young, J. A. Dieringer, and R. P. Van Duyne, “Wavelength-scanned surface-enhanced Raman excitation spectroscopy,” J. Phys. Chem. B 109, 11279–11285 (2005);
[Crossref]

Zeng, X.

K. Liu, S. Jiang, D. Ji, X. Zeng, N. Zhang, H. Song, Y. Xu, and Q. Gan, “Super absorbing ultraviolet metasurface,” IEEE Photonics Technol. Lett. 27(14), 1539–1542 (2015).
[Crossref]

N. Zhang, L. Liu, Z. Liu, H. Song, X. Zeng, D. Ji, A. Cheney, S. Jiang, and Q. Gan, “Ultrabroadband metasurface for efficient light trapping and localization: a universal sufrace-enhanced Raman spectroscopy substrate for ’all’ excitation wavelengths,” Adv. Mater. Interfaces 2(10), 1500142 (2015).

Zengin, A.

U. Tamer, I. H. Boyaci, E. Temur, A. Zengin, I. Dincer, and Y. Elerman, “Fabrication of magnetic gold nanorod particles for immunomagnetic separation and SERS application,” J. Nanopart. Res. 13, 3167–3176 (2011).
[Crossref]

Zhang, J.

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Lukyanchuk, “Magnetic light,” Sci. Rep. 2, 492–497 (2012).
[Crossref] [PubMed]

Zhang, N.

N. Zhang, L. Liu, Z. Liu, H. Song, X. Zeng, D. Ji, A. Cheney, S. Jiang, and Q. Gan, “Ultrabroadband metasurface for efficient light trapping and localization: a universal sufrace-enhanced Raman spectroscopy substrate for ’all’ excitation wavelengths,” Adv. Mater. Interfaces 2(10), 1500142 (2015).

K. Liu, S. Jiang, D. Ji, X. Zeng, N. Zhang, H. Song, Y. Xu, and Q. Gan, “Super absorbing ultraviolet metasurface,” IEEE Photonics Technol. Lett. 27(14), 1539–1542 (2015).
[Crossref]

Zhang, W.-J.

J.-A. Huang, Y.-Q. Zhao, X.-J. Zhang, L.-F. He, T.-L. Wong, Y.-S. Chui, W.-J. Zhang, and S.-T. Lee, “Ordered Ag/Si nanowires array: wide-range surface-enhanced Raman spectroscopy for reproducible biomolecule detection,” Nano Lett. 13(11), 5039–5045 (2013).
[Crossref] [PubMed]

Zhang, X.

R.-M. Ma, S. Ota, Y. Li, S. Yang, and X. Zhang, “Explosives detection in a lasing plasmon nanocavity,” Nat. Nanotechnol. 9, 600–604 (2014).
[Crossref] [PubMed]

Zhang, X.-J.

J.-A. Huang, Y.-Q. Zhao, X.-J. Zhang, L.-F. He, T.-L. Wong, Y.-S. Chui, W.-J. Zhang, and S.-T. Lee, “Ordered Ag/Si nanowires array: wide-range surface-enhanced Raman spectroscopy for reproducible biomolecule detection,” Nano Lett. 13(11), 5039–5045 (2013).
[Crossref] [PubMed]

Zhang, X.-L.

Y.-G. Bi, J. Feng, Y.-S. Liu, Y. Chen, X.-L. Zhang, X.-C. Han, and H.-B. Sun, “Surface plasmon-polariton mediated red emission from organic light-emitting devices based on metallic electrodes integrated with dual-periodic corrugation,” Sci. Rep. 4, 7108 (2014).
[Crossref] [PubMed]

Zhang, Z.

F. Hu, H. Lin, Z. Zhang, F. Liao, M. Shao, Y. Lifshitz, and S.-T. Lee, “Smart liquid SERS substrates based on Fe3O4/Au nanoparticles with reversibly tunable enhancement factor for partical quantitative detection,” Sci. Rep. 4, 7204 (2014).
[Crossref]

Zhao, Y.-Q.

J.-A. Huang, Y.-Q. Zhao, X.-J. Zhang, L.-F. He, T.-L. Wong, Y.-S. Chui, W.-J. Zhang, and S.-T. Lee, “Ordered Ag/Si nanowires array: wide-range surface-enhanced Raman spectroscopy for reproducible biomolecule detection,” Nano Lett. 13(11), 5039–5045 (2013).
[Crossref] [PubMed]

Zhizhin, G. N.

A. H. Kupcov and G. N. Zhizhin, The Fourier Spectra of Raman Scattering and Infrared Absorption of Polymers (Fizmatlit, 2001).

Ziegler, L. D.

B. Yan, A. Thubagere, W. R. Premasiri, L. D. Ziegler, L. D. Negro, and B. M. Reinhard, “Engineered SERS substrates with multiscale signal enhancement: nanoparticle cluster arrays,” ACS Nano 3(5), 1190–1202 (2009).
[Crossref] [PubMed]

Zillohu, A. U.

M. K. Hedayati, A. U. Zillohu, T. Strunskus, F. Faupel, and M. Elbahri, “Plasmonic tunable metamaterial absorber as ultraviolet protection film,” Appl. Phys. Lett. 104, 041103 (2014).
[Crossref]

Zoorob, M. E.

ACS Appl. Mater. Interfaces (1)

V. Canalejas-Tejero, S. Herranz, A. Bellingham, M. C. Moreno-Bondi, and C. A. Barrios, “Passivated aluminium nanohole arrays for label-free biosensing applications,” ACS Appl. Mater. Interfaces 6, 1005–1010 (2013).
[Crossref]

ACS Nano (1)

B. Yan, A. Thubagere, W. R. Premasiri, L. D. Ziegler, L. D. Negro, and B. M. Reinhard, “Engineered SERS substrates with multiscale signal enhancement: nanoparticle cluster arrays,” ACS Nano 3(5), 1190–1202 (2009).
[Crossref] [PubMed]

ACSNano (1)

M. G. Banaee and K. B. Crozier, “Mixed dimer double-resonance substrates for surface-enhanced Raman spectroscopy,” ACSNano 5(1), 307–314 (2011).

Adv. Electromagn. (1)

I. Kurochkin, I. Ryzhikov, A. Sarychev, K. Afanasiev, I. Budashov, M. Sedova, I. Boginskaya, S. Amitonov, and A. Lagarkov, “New SERS-active junction based on cerium dioxide facet dielectric films for biosensing,” Adv. Electromagn. 3(1), 57–60 (2014).
[Crossref]

Adv. Mater. (1)

G. Naik, V. Shalaev, and A. Boltaseeva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25, 3264–3294 (2013).
[Crossref] [PubMed]

Adv. Mater. Interfaces (1)

N. Zhang, L. Liu, Z. Liu, H. Song, X. Zeng, D. Ji, A. Cheney, S. Jiang, and Q. Gan, “Ultrabroadband metasurface for efficient light trapping and localization: a universal sufrace-enhanced Raman spectroscopy substrate for ’all’ excitation wavelengths,” Adv. Mater. Interfaces 2(10), 1500142 (2015).

Anal. Chem. (2)

M. S. Kiran, T. Itoh, K. Yoshida, N. Kawashima, V. Biju, and M. Ishikawa, “Selective detection of HbA1c using surface enhanced resonance Raman spectroscopy,” Anal. Chem. 82(4), 1342–1348 (2010).
[Crossref] [PubMed]

Y. Han, R. Lupitskyy, T.-M. Chou, C. M. Stafford, H. Du, and S. Sukhishvili, “Effect of oxidation on surface-enhanced Raman scattering activity of silver nanoparticles: a quantitative correlation,” Anal. Chem. 83, 5873–5880 (2011).
[Crossref] [PubMed]

Anal. Chim. Acta (1)

M. Fan, G. F. S. Andrade, and A. G. Brolo, “A review on the fabrication of substrates for surface enhanced Raman spectroscopy and their applications in analytical chemistry,” Anal. Chim. Acta 693, 7–25 (2011).
[Crossref] [PubMed]

Appl. Phys. Lett. (5)

M. K. Hedayati, A. U. Zillohu, T. Strunskus, F. Faupel, and M. Elbahri, “Plasmonic tunable metamaterial absorber as ultraviolet protection film,” Appl. Phys. Lett. 104, 041103 (2014).
[Crossref]

C. E. Soteropulos, H. K. Hunt, and A. M. Armani, “Determination of binding kinetics using whispering gallery mode microcavities,” Appl. Phys. Lett. 99, 103703 (2011).
[Crossref] [PubMed]

S. I. Shopova, R. Rajmangal, S. Holler, and S. Arnold, “Plasmonic enhancement of a whispering-gallery-mode biosensor for single nanoparticle detection,” Appl. Phys. Lett. 98, 243104 (2011).
[Crossref]

V. R. Dantham, S. Holler, V. Kolchenko, Z. Wan, and S. Arnold, “Taking whispering gallery-mode single virus detection and sizing to the limit,” Appl. Phys. Lett. 101, 043704 (2012).
[Crossref]

P. Patsalas, S. Logothetidis, and C. Metaxa, “Optical performance of nanocrystalline transparent ceria films,” Appl. Phys. Lett. 81(3), 466–468 (2002).
[Crossref]

Chem. Phys. Lett. (1)

M. Fleischmann, P. Hendra, and A. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
[Crossref]

Discuss. Faraday Soc. (1)

J. Turkevich, P.S. Stevenson, and J. Hiller, “A study of the nucleation and growth processes in the synthesis of colloidal gold,” Discuss. Faraday Soc. 11, 55–75 (1955).
[Crossref]

IEEE Photonics Technol. Lett. (1)

K. Liu, S. Jiang, D. Ji, X. Zeng, N. Zhang, H. Song, Y. Xu, and Q. Gan, “Super absorbing ultraviolet metasurface,” IEEE Photonics Technol. Lett. 27(14), 1539–1542 (2015).
[Crossref]

J. Exp. Theor. Phys. (1)

S. O. Boyarintsev and A. K. Sarychev, “Computer simulation of surface enhanced Raman scattering in nanostructured metamaterials,” J. Exp. Theor. Phys. 113(6), 963–971 (2011).
[Crossref]

J. Mater. Sci: Mater Electron (1)

R. Murugan, G. Vijayaprasath, T. Mahalingam, Y. Hayakawa, and G. Ravi, “Effect of rf power on the properties of magnetron sputtered CeO2 thin films,” J. Mater. Sci: Mater Electron 26(5), 2800–2809 (2015).

J. Nanopart. Res. (2)

A. Verma, N. Karar, A. K. Bakhshi, H. Chander, S. M. Shivaprasad, and S. A. Agnihotry, “Structural, morphological and photoluminescence characteristics of sol-gel derived nano phase CeO2 films deposited using citric acid,” J. Nanopart. Res. 9, 317–322 (2007).
[Crossref]

U. Tamer, I. H. Boyaci, E. Temur, A. Zengin, I. Dincer, and Y. Elerman, “Fabrication of magnetic gold nanorod particles for immunomagnetic separation and SERS application,” J. Nanopart. Res. 13, 3167–3176 (2011).
[Crossref]

J. Nanophotonics (2)

S. E. Swiontek, M. Faryad, and A. Lakhtakia, “Surface plasmonic polaritonic sensors using a dielectric columnar thin film,” J. Nanophotonics 8, 083986 (2014).
[Crossref]

A. Lakhtakia and M. Faryad, “Theory of optical sensing with Dyakonov-Tamm waves,” J. Nanophotonics 8, 083072 (2014).
[Crossref]

J. of Appl. Phys. (1)

T.-S. Oh, Y. S. Tokpanov, Y. Hao, W. Jung, and S. M. Haile, “Determination of optical and microstructural parameters of ceria films,” J. of Appl. Phys. 112, 103535 (2012).
[Crossref]

J. Phys. Chem. B (1)

A. D. McFarland, M. A. Young, J. A. Dieringer, and R. P. Van Duyne, “Wavelength-scanned surface-enhanced Raman excitation spectroscopy,” J. Phys. Chem. B 109, 11279–11285 (2005);
[Crossref]

J. Phys. D: Appl. Phys. (1)

D. Gerard and S. K. Gray, “Aluminium plasmonics,” J. Phys. D: Appl. Phys. 48(18), 1–14 (2015).

Mater. Today (1)

B. Sharma, R. R. Frontiera, A.-I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: metamerials, applications, and the future,” Mater. Today 15(1–2), 16–25 (2012).
[Crossref]

Nano Lett. (1)

J.-A. Huang, Y.-Q. Zhao, X.-J. Zhang, L.-F. He, T.-L. Wong, Y.-S. Chui, W.-J. Zhang, and S.-T. Lee, “Ordered Ag/Si nanowires array: wide-range surface-enhanced Raman spectroscopy for reproducible biomolecule detection,” Nano Lett. 13(11), 5039–5045 (2013).
[Crossref] [PubMed]

Nanoscale (1)

J. Lee, B. Hua, S. Park, M. Ha, Y. Lee, Z. Fan, and H. Ko, “Tailoring surface plasmons of high-density gold nanostar assemblies on metal films for surface-enhanced Raman spectroscopy,” Nanoscale 6, 616–623 (2014).
[Crossref]

Nanoscale Res. Lett. (1)

M. Cottat, N. Lidgi-Guigui, I. Tijunelyte, G. Barbillon, F. Hamouda, P. Gogol, A. Aassime, J.-M. Lourtioz, B. Bartenlian, and M. L. de la Chapelle, “Soft UV nanoimprint lithography-designed highly sensitive substrates for SERS detection,” Nanoscale Res. Lett. 9, 623 (2014).
[Crossref]

Nanotechnology (1)

K. C. Krogman, T. Druffel, and M. K. Sunkara, “Anti-reflective optical coatings incorporating nanoparticles,” Nanotechnology 16, s338–s343 (2005).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

R.-M. Ma, S. Ota, Y. Li, S. Yang, and X. Zhang, “Explosives detection in a lasing plasmon nanocavity,” Nat. Nanotechnol. 9, 600–604 (2014).
[Crossref] [PubMed]

Nat. Photonics (1)

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).
[Crossref]

Nature (1)

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
[Crossref] [PubMed]

Opt. Express (5)

Phys. Rev. B (1)

F. Brouers, S. Blacher, A. N. Lagarkov, A. K. Sarychev, P. Gadenne, and V. M. Shalaev, “Theory of giant Raman scattering from semicontinuous metal films,” Phys. Rev. B 55(19), 234–245 (1997).
[Crossref]

Phys. Rev. B. (2)

I. Avrutsky, I. Salakhutdinov, J. Elser, and V. Podolskiy, “Highly confined optical modes in nanoscale metal-dielectric multilayers,” Phys. Rev. B. 75, 241402 (2007).
[Crossref]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B. 6(12), 4370–4379 (2009).
[Crossref]

Phys. Rev. Lett. (2)

H. Xu, E. J. Bjerneld, M. Kall, and L. Borjesson, “Spectroscopy of single hemoglobin molecules by Surface Enhanced Raman Scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (2009).
[Crossref]

M. I. Tribelsky and B. S. Luk’yanchuk, “Anomalous light scattering by small particles,” Phys. Rev. Lett. 97, 263902 (2006).
[Crossref]

Proc. SPIE (1)

A. V. Ivanov, A. V. Vaskin, A. N. Lagarkov, and A. K. Sarychev, “The field enhancement and optical sensing in the array of almost adjoining metal and dielectric nanorods,” Proc. SPIE 9163, 91633C (2014).
[Crossref]

Rev. Mod. Phys. (1)

H. Cao and J. Wiersig, “Dielectric microcavities: model systems for wave chaos and non-Hermitian physics,” Rev. Mod. Phys. 87, 61–111 (2015).
[Crossref]

Sci. Rep. (4)

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Lukyanchuk, “Magnetic light,” Sci. Rep. 2, 492–497 (2012).
[Crossref] [PubMed]

K. V. Sreekanth, A. De Luca, and G. Strangi, “Experimental demonstration of surface and bulk plasmon polaritons in hypergratings,” Sci. Rep. 3, 3291 (2013).
[Crossref] [PubMed]

Y.-G. Bi, J. Feng, Y.-S. Liu, Y. Chen, X.-L. Zhang, X.-C. Han, and H.-B. Sun, “Surface plasmon-polariton mediated red emission from organic light-emitting devices based on metallic electrodes integrated with dual-periodic corrugation,” Sci. Rep. 4, 7108 (2014).
[Crossref] [PubMed]

F. Hu, H. Lin, Z. Zhang, F. Liao, M. Shao, Y. Lifshitz, and S.-T. Lee, “Smart liquid SERS substrates based on Fe3O4/Au nanoparticles with reversibly tunable enhancement factor for partical quantitative detection,” Sci. Rep. 4, 7204 (2014).
[Crossref]

Science (1)

A. Armani, R. Kulkarni, S. Fraser, R. Flagan, and K. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783–787 (2007).
[Crossref] [PubMed]

Soft Matter. (1)

M. G. Gromova, L. V. Sigolaeva, M. A. Fastovets, E. G. Evtushenko, I. A. Babin, D. V. Pergushov, S. A. Amitonov, A. V. Eremenko, and I. N. Kurochkin, “Improved absorption of choline oxidase on a polyelectrolyte LBL film in the presence of iodine anions,” Soft Matter. 7, 7404–7409 (2011).
[Crossref]

Sol. Energ. Mat. Sol. C. (1)

N. Ozer, “Optical properties and electrochromic characterization of sol-gel deposited ceria films,” Sol. Energ. Mat. Sol. C. 68, 391–400 (2001).
[Crossref]

Solid State Sci. (1)

C. Mansilla, “Structure, microstructure and optical properties of cerium oxide thin films prepared by electron beam evaporation assisted with ion beams,” Solid State Sci. 11, 1456–1464 (2009).
[Crossref]

Thin Solid Films (1)

G. Balakrishnan, S. T. Sundari, P. C. Kuppusami, P. C. Mohan, M. P. Srinivasan, E. Mohandas, V. Ganesan, and D. Sastikumar, “A study of microstructural and optical properties of nanocrystalline ceria thin films prepared by pulsed laser deposition,” Thin Solid Films 519, 2520–2526 (2011).
[Crossref]

Other (6)

M. Born and E. Wolf, Principles of Optics. Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 4th ed. (Pergamon, 1968).

E. C. L. Ru and P. G. Etchegoin, Principles of Surface-Enhanced Raman Spectroscopy and Related Plasmonic Effects (Elsevier, 2009).

A. H. Kupcov and G. N. Zhizhin, The Fourier Spectra of Raman Scattering and Infrared Absorption of Polymers (Fizmatlit, 2001).

E. D. Palik, Handbook of Optical Constants (Elsevier Science, 1991).

A. K. Sarychev and V. M. Shalaev, Electrodynamics of Metamaterials (World Scientific, 2007).

L. Stolcova, J. Proska, and M. Prochazka, “Hexagonally ordered gold semishells as tunable SERS substrates,” in Proceedings of 4th International Conference Nanocom, (2012), pp. 1–6.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (18)

Fig. 1
Fig. 1

Electric field distribution Im = |E/E0|2 and Qm factor in dipole free oscillations in ceria spherical particle of radius a = 400nm; dipole directed along ”z” axis: a) Radial ”quantum” number m = 3, λ3 = 716nm; b) Radial ”quantum” number m = 4, λ4 = 507nm; c) Radial ”quantum” number m = 5, λ5 = 393nm.

Fig. 2
Fig. 2

Slotted spherical dielectric particle with an analyte.

Fig. 3
Fig. 3

Periodic dielectric bars; period of unit cell – D; parameters are: d1,2 – width, h1,2 – height, inter-bar distance – ds, E0 – incident electric field, k – wave number of incident wave.

Fig. 4
Fig. 4

Electric field distribution |E/E0| for a) λ = 0.97 µm, b) λ = 0.57 µm in the unit cell shown in Fig. 3; parameters of the material are: h1 = 0.5 µm, h2 = 0.2 µm, d1 = 0.16 µm, d2 = 0.3 µm, ds = 0.02 µm, D = 0.5 µm, ε = 5.3 + 0.02i.

Fig. 5
Fig. 5

a) Enhancement of Raman signal G. b) Reflectance R as a function of free-space wavelength λ; Parameters of structure are: h1 = 0.5 µm, h2 = 0.2 µm, d1 = 0.16 µm, d2 = 0.3 µm, ds = 0.02 µm, D = 0.5 µm, ε = 5.3 + 0.02i.

Fig. 6
Fig. 6

Periodic dielectric bars used for microwave experiment; geometric parameters are: d1 = d2 = 12mm, h1 = 6mm, h2 = 18mm, ds = 12mm, ε = 6.83 + 0.1i.

Fig. 7
Fig. 7

Simulated (orange line) and measured (red line) reflectance for glass bars placed on the metal substrate: (a) p-polarization, (b) s-polarization; the same without the metal substrate: (c) p-polarization, (d) s-polarization.

Fig. 8
Fig. 8

(a) Enhancement G for glass bars placed on metal substrate for p-polarization. (b) Electric field distribution |E/E0| (E0 – amplitude of incident field) for resonance frequencies f=6.92 GHz and f=11.14 GHz: red color corresponds to the maximum amplitude of the electric field.

Fig. 9
Fig. 9

(a) Enhancement G for glass bars without substrate for p-polarization. (b) Electric field distribution |E/E0| (E0 – amplitude of incident field) for resonance frequency f = 10.86GHz.

Fig. 10
Fig. 10

(a) Enhancement G for glass bars placed on metal substrate for s-polarization. (b) Electric field distribution |E/E0| (E0 – amplitude of incident field) for resonance frequency f=7.42 GHz.

Fig. 11
Fig. 11

(a) The electric field distribution |E/E0| (E0 - amplitude of incident field) at the resonance wavelength 785nm, p-polarization, normal incidence (φ = 0); geometric parameters are: h1 = h2 = h = 140nm, d1 = d2 = d = 500nm, ds = 100nm, n = 1.485. (b) Reflectance as function of angle of incidence (with respect to normal) and free-space wavelength λ.

Fig. 12
Fig. 12

(a) Periodic dielectric structure based on Au and PMMA. (b) Atomic force microscopy (AFM) of periodic dielectric structure: period 670680nm, Au thickness 40nm, PMMA thickness 1700nm.

Fig. 13
Fig. 13

(a) Experimental reflectance from multilayer film, which consists of Au and PMMA layers neighboring the structured area. (b) Experimental reflectance from PMMA stripe-shaped structure; blue lines p-polarization, red lines s-polarization.

Fig. 14
Fig. 14

(a) Simulated and (b) Measured reflectance for p-polarization for different angles of incidence and wavelengths; blue color corresponds to minima of reflectance.

Fig. 15
Fig. 15

Simulated (solid line) and measured (dashed line) reflectance for p- (blue) and s-(red) polarization.

Fig. 16
Fig. 16

SEM images of Au-NP-DTNB deposited on PMMA layer (a) Flat, unstructed area (b) Bar shaped PMMA metamaterial, cf. Fig. 12.

Fig. 17
Fig. 17

Raman spectrum of PMMA metamaterial; blue line corresponds to the structured area, red line corresponds to flat layer of PMMA on the gold substrate.

Fig. 18
Fig. 18

SERS signal at different Raman scattering bands from Au-NP-DTNB on the structured surface after normalization to the amount of gold nanoparticles.

Tables (1)

Tables Icon

Table 1 The intensity of Raman peaks of conjugate Au-NP-DTNB on the surface, a.u. (normalized to the amount of gold nanoparticles)

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

E s u r f a c e = 2 E 0 exp ( i d k ) / [ 1 + i n cot ( d k n ) ] ,
G = | E ω ( r ) | 2 | E ω Δ ω ( r ) | 2 | E 0 | 4 | E ω ( r ) | 4 | E 0 | 4 ,
A i z = i E 0 a sin ( u ) 2 n u a u f ( u a ) ,
H i ( u , θ ) = curl A i = i E 0 { 0 , 0 u f ( u ) 2 n f ( u a ) sin θ } ,
E i ( u , θ ) = i ε k curl H i = E 0 { u a 3 f ( u ) n 2 u 3 f ( u a ) cos θ , u a 3 [ f ( u ) + u 2 sin u ] 2 n 2 u 3 f ( u a ) sin θ , 0 } ,
A e z = E 0 a u a 2 2 u ( u a + i n ) exp [ i k ( r a ) ] ,
( u a + i n ) sin u a u a f ( u a ) [ ( u 2 1 ) u a i n ( u a 2 n 2 + 1 ) ] = 0
u m = π m π 2 1 π m 1 2 π m 2 i ( arccoth n + n + arccoth n π 2 m 2 ) ,
Q m = π ( 2 π 2 m 3 π 2 m 2 2 m 1 ) 4 [ ( π 2 m 2 + 1 ) arccoth n + n ] ,

Metrics