Abstract

We investigate hollow-core fibers for fiber delivery of high power ultrashort laser pulses. We use numerical techniques to design an anti-resonant hollow-core fiber having one layer of non-touching tubes to determine which structures offer the best optical properties for the delivery of high power picosecond pulses. A novel fiber with 7 tubes and a core of 30µm was fabricated and it is here described and characterized, showing remarkable low loss, low bend loss, and good mode quality. Its optical properties are compared to both a 10µm and a 18µm core diameter photonic band gap hollow-core fiber. The three fibers are characterized experimentally for the delivery of 22 picosecond pulses at 1032nm. We demonstrate flexible, diffraction limited beam delivery with output average powers in excess of 70W.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Picosecond and nanosecond pulse delivery through a hollow-core Negative Curvature Fiber for micro-machining applications

Piotr Jaworski, Fei Yu, Robert R.J. Maier, William J. Wadsworth, Jonathan C. Knight, Jonathan D. Shephard, and Duncan P. Hand
Opt. Express 21(19) 22742-22753 (2013)

Nested antiresonant nodeless hollow core fiber

Francesco Poletti
Opt. Express 22(20) 23807-23828 (2014)

Hollow core photonic crystal fibers for beam delivery

G. Humbert, J. C. Knight, G. Bouwmans, P. St. J. Russell, D. P. Williams, P. J. Roberts, and B. J. Mangan
Opt. Express 12(8) 1477-1484 (2004)

References

  • View by:
  • |
  • |
  • |

  1. F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
    [Crossref] [PubMed]
  2. N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. S. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106, 203901 (2011).
    [Crossref] [PubMed]
  3. F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. NumkamFokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7, 279–284 (2013).
    [Crossref]
  4. T. Takekoshi and R. J. Knize, “Optical guiding of atoms through a hollow-core photonic band-gap fiber,” Phys. Rev. Lett. 98, 210404 (2007).
    [Crossref] [PubMed]
  5. P. Jaworski, F. Yu, R. R. J. Maier, W. J. Wadsworth, J. C. Knight, J. D. Shephard, and D. P. Hand, “Picosecond and nanosecond pulse delivery through a hollow-core negative curvature fiber for micro-machining applications,” Opt. Express 21, 22742–22753 (2013).
    [Crossref] [PubMed]
  6. D.G. A. Ouzounov, F.R. Ahmad, D. Müller, N. Venkataraman, M.T. Gallagher, M.G. Thomas, J. Silcox, K.W. Koch, and Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301, 1702–1704 (2003).
    [Crossref] [PubMed]
  7. F. Emaury, C. J. Saraceno, B. Debord, D. Ghosh, A. Diebold, F. Gèrôme, T. Südmeyer, F. Benabid, and U. Keller, “Efficient spectral broadening in the 100-W average power regime using gas-filled kagome HC-PCF and pulse compression,” Opt. Lett. 39, 6843–6846 (2014).
    [Crossref] [PubMed]
  8. D. C. Jones, C. R. Bennett, M. a. Smith, and a. M. Scott, “High-power beam transport through a hollow-core photonic bandgap fiber,” Opt. Lett. 39, 3122–3125 (2014).
    [Crossref] [PubMed]
  9. T. P. Hansen, J. Broeng, C. Jakobsen, G. Vienne, H. R. Simonsen, M. D. Nielsen, P. M. W. Skovgaard, J. R. Folkenberg, and A. Bjarklev, “Air-guiding photonic bandgap fibers: spectral properties, macrobending loss, and practical handling,” J. Light. Technol. 22, 11–15 (2004).
    [Crossref]
  10. M. Michieletto, J. K. Lyngsø, J. Lægsgaard, and O. Bang, “Cladding defects in hollow core fibers for surface mode suppression and improved birefringence,” Opt. Express 22, 23324–23332 (2014).
    [Crossref] [PubMed]
  11. J. K. Lyngsø, C. Jakobsen, H. R. Simonsen, and J. Broeng, “Truly single-mode polarization maintaining hollow core PCF,” Proc. SPIE 8421, 84210C (2012).
    [Crossref]
  12. A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, and E. M. Dianov, “Demonstration of a waveguide regime for a silica hollow–core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5 µ m,” Opt. Express 19, 1441–1448 (2011).
    [Crossref] [PubMed]
  13. W. Belardi and J. C. Knight, “Hollow antiresonant fibers with low bending loss,” Opt. Express 22, 10091–10096 (2014).
    [Crossref] [PubMed]
  14. F. Poletti, M. N. Petrovich, and D. J. Richardson, “Hollow-core photonic bandgap fibers: technology and applications,” Nanophotonics 2, 315–340 (2013).
    [Crossref]
  15. F. Poletti, “Nested antiresonant nodeless hollow core fiber,” Opt. Express 22, 23807–23828 (2014).
    [Crossref] [PubMed]
  16. M. S. Habib, O. Bang, and M. Bache, “Low-loss hollow-core silica fibers with adjacent nested anti-resonant tubes,” Opt. Express 23, 17394–17406 (2015).
    [Crossref] [PubMed]
  17. J. M. Fini, J. W. Nicholson, B. Mangan, L. Meng, R. S. Windeler, E. M. Monberg, A. DeSantolo, F. V. DiMarcello, and K. Mukasa, “Polarization maintaining single-mode low-loss hollow-core fibres,” Nat. Commun. 5, 5085 (2014).
    [Crossref] [PubMed]
  18. L. Vincetti and V. Setti, “Waveguiding mechanism in tube lattice fibers,” Opt. Express 18, 23133–23146 (2010).
    [Crossref] [PubMed]
  19. C. Wei, R. A. Kuis, F. Chenard, C. R. Menyuk, and J. Hu, “Higher-order mode suppression in chalcogenide negative curvature fibers,” Opt. Express 23, 15824–15832 (2015).
    [Crossref] [PubMed]
  20. M. C. Günendi, P. Uebel, M. H. Frosz, and P. S. J. Russell, “Broad-band robustly single-mode hollow-core PCF by resonant filtering of higher order modes,” http://arxiv.org/abs/1508.06747 (2015).
  21. J. Y. Lee and D. Y. Kim, “Versatile chromatic dispersion measurement of a single mode fiber using spectral white light interferometry,” Opt. Express 14, 11608–11615 (2006).
    [Crossref] [PubMed]
  22. F. Yu and J. C. Knight, “Negative curvature hollow-core optical fiber,” IEEE J. Sel. Top. Quantum Electron. 22, 4400610 (2016).
    [Crossref]
  23. M. Alharbi, T. Bradley, B. Debord, C. Fourcade-Dutin, D. Ghosh, L. Vincetti, F. Gérôme, and F. Benabid, “Hypocycloid-shaped hollow-core photonic crystal fiber Part II: cladding effect on confinement and bend loss,” Opt. Express 21, 28597–28608 (2013).
    [Crossref]
  24. K. Saitoh, N. Mortensen, and M. Koshiba, “Air-core photonic band-gap fibers: the impact of surface modes,” Opt. Express 12, 394–400 (2004).
    [Crossref] [PubMed]
  25. P. Roberts, F. Couny, H. Sabert, B. Mangan, D. Williams, L. Farr, M. Mason, A. Tomlinson, T. Birks, J. Knight, and P. StJ Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13, 236–244 (2005).
    [Crossref] [PubMed]
  26. M. M. Johansen, M. Laurila, M. D. Maack, D. Noordegraaf, C. Jakobsen, T. T. Alkeskjold, and J. Lægsgaard, “Frequency resolved transverse mode instability in rod fiber amplifiers,” Opt. Express 21, 21847–21856 (2013).
    [Crossref] [PubMed]
  27. M. D. Skeldon and R. Bahr, “Stimulated rotational Raman scattering in air with a high-power broadband laser,” Opt. Lett. 16, 366–368 (1991).
    [Crossref] [PubMed]

2016 (1)

F. Yu and J. C. Knight, “Negative curvature hollow-core optical fiber,” IEEE J. Sel. Top. Quantum Electron. 22, 4400610 (2016).
[Crossref]

2015 (2)

2014 (6)

2013 (5)

2012 (1)

J. K. Lyngsø, C. Jakobsen, H. R. Simonsen, and J. Broeng, “Truly single-mode polarization maintaining hollow core PCF,” Proc. SPIE 8421, 84210C (2012).
[Crossref]

2011 (2)

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. S. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106, 203901 (2011).
[Crossref] [PubMed]

A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, and E. M. Dianov, “Demonstration of a waveguide regime for a silica hollow–core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5 µ m,” Opt. Express 19, 1441–1448 (2011).
[Crossref] [PubMed]

2010 (1)

2007 (1)

T. Takekoshi and R. J. Knize, “Optical guiding of atoms through a hollow-core photonic band-gap fiber,” Phys. Rev. Lett. 98, 210404 (2007).
[Crossref] [PubMed]

2006 (1)

2005 (1)

2004 (2)

K. Saitoh, N. Mortensen, and M. Koshiba, “Air-core photonic band-gap fibers: the impact of surface modes,” Opt. Express 12, 394–400 (2004).
[Crossref] [PubMed]

T. P. Hansen, J. Broeng, C. Jakobsen, G. Vienne, H. R. Simonsen, M. D. Nielsen, P. M. W. Skovgaard, J. R. Folkenberg, and A. Bjarklev, “Air-guiding photonic bandgap fibers: spectral properties, macrobending loss, and practical handling,” J. Light. Technol. 22, 11–15 (2004).
[Crossref]

2003 (1)

D.G. A. Ouzounov, F.R. Ahmad, D. Müller, N. Venkataraman, M.T. Gallagher, M.G. Thomas, J. Silcox, K.W. Koch, and Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301, 1702–1704 (2003).
[Crossref] [PubMed]

2002 (1)

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
[Crossref] [PubMed]

1991 (1)

A. Ouzounov, D.G.

D.G. A. Ouzounov, F.R. Ahmad, D. Müller, N. Venkataraman, M.T. Gallagher, M.G. Thomas, J. Silcox, K.W. Koch, and Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301, 1702–1704 (2003).
[Crossref] [PubMed]

Ahmad, F.R.

D.G. A. Ouzounov, F.R. Ahmad, D. Müller, N. Venkataraman, M.T. Gallagher, M.G. Thomas, J. Silcox, K.W. Koch, and Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301, 1702–1704 (2003).
[Crossref] [PubMed]

Alharbi, M.

Alkeskjold, T. T.

Antonopoulos, G.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
[Crossref] [PubMed]

Bache, M.

Baddela, N.

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. NumkamFokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7, 279–284 (2013).
[Crossref]

Bahr, R.

Bang, O.

Belardi, W.

Benabid, F.

Bennett, C. R.

Biancalana, F.

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. S. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106, 203901 (2011).
[Crossref] [PubMed]

Biriukov, A. S.

Birks, T.

Bjarklev, A.

T. P. Hansen, J. Broeng, C. Jakobsen, G. Vienne, H. R. Simonsen, M. D. Nielsen, P. M. W. Skovgaard, J. R. Folkenberg, and A. Bjarklev, “Air-guiding photonic bandgap fibers: spectral properties, macrobending loss, and practical handling,” J. Light. Technol. 22, 11–15 (2004).
[Crossref]

Bradley, T.

Broeng, J.

J. K. Lyngsø, C. Jakobsen, H. R. Simonsen, and J. Broeng, “Truly single-mode polarization maintaining hollow core PCF,” Proc. SPIE 8421, 84210C (2012).
[Crossref]

T. P. Hansen, J. Broeng, C. Jakobsen, G. Vienne, H. R. Simonsen, M. D. Nielsen, P. M. W. Skovgaard, J. R. Folkenberg, and A. Bjarklev, “Air-guiding photonic bandgap fibers: spectral properties, macrobending loss, and practical handling,” J. Light. Technol. 22, 11–15 (2004).
[Crossref]

Chang, W.

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. S. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106, 203901 (2011).
[Crossref] [PubMed]

Chenard, F.

Couny, F.

Debord, B.

DeSantolo, A.

J. M. Fini, J. W. Nicholson, B. Mangan, L. Meng, R. S. Windeler, E. M. Monberg, A. DeSantolo, F. V. DiMarcello, and K. Mukasa, “Polarization maintaining single-mode low-loss hollow-core fibres,” Nat. Commun. 5, 5085 (2014).
[Crossref] [PubMed]

Dianov, E. M.

Diebold, A.

DiMarcello, F. V.

J. M. Fini, J. W. Nicholson, B. Mangan, L. Meng, R. S. Windeler, E. M. Monberg, A. DeSantolo, F. V. DiMarcello, and K. Mukasa, “Polarization maintaining single-mode low-loss hollow-core fibres,” Nat. Commun. 5, 5085 (2014).
[Crossref] [PubMed]

Emaury, F.

Farr, L.

Fini, J. M.

J. M. Fini, J. W. Nicholson, B. Mangan, L. Meng, R. S. Windeler, E. M. Monberg, A. DeSantolo, F. V. DiMarcello, and K. Mukasa, “Polarization maintaining single-mode low-loss hollow-core fibres,” Nat. Commun. 5, 5085 (2014).
[Crossref] [PubMed]

Folkenberg, J. R.

T. P. Hansen, J. Broeng, C. Jakobsen, G. Vienne, H. R. Simonsen, M. D. Nielsen, P. M. W. Skovgaard, J. R. Folkenberg, and A. Bjarklev, “Air-guiding photonic bandgap fibers: spectral properties, macrobending loss, and practical handling,” J. Light. Technol. 22, 11–15 (2004).
[Crossref]

Fourcade-Dutin, C.

Gaeta,

D.G. A. Ouzounov, F.R. Ahmad, D. Müller, N. Venkataraman, M.T. Gallagher, M.G. Thomas, J. Silcox, K.W. Koch, and Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301, 1702–1704 (2003).
[Crossref] [PubMed]

Gallagher, M.T.

D.G. A. Ouzounov, F.R. Ahmad, D. Müller, N. Venkataraman, M.T. Gallagher, M.G. Thomas, J. Silcox, K.W. Koch, and Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301, 1702–1704 (2003).
[Crossref] [PubMed]

Gérôme, F.

Gèrôme, F.

Ghosh, D.

Gray, D. R.

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. NumkamFokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7, 279–284 (2013).
[Crossref]

Habib, M. S.

Hand, D. P.

Hansen, T. P.

T. P. Hansen, J. Broeng, C. Jakobsen, G. Vienne, H. R. Simonsen, M. D. Nielsen, P. M. W. Skovgaard, J. R. Folkenberg, and A. Bjarklev, “Air-guiding photonic bandgap fibers: spectral properties, macrobending loss, and practical handling,” J. Light. Technol. 22, 11–15 (2004).
[Crossref]

Hayes, J. R.

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. NumkamFokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7, 279–284 (2013).
[Crossref]

Hölzer, P.

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. S. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106, 203901 (2011).
[Crossref] [PubMed]

Hu, J.

Jakobsen, C.

M. M. Johansen, M. Laurila, M. D. Maack, D. Noordegraaf, C. Jakobsen, T. T. Alkeskjold, and J. Lægsgaard, “Frequency resolved transverse mode instability in rod fiber amplifiers,” Opt. Express 21, 21847–21856 (2013).
[Crossref] [PubMed]

J. K. Lyngsø, C. Jakobsen, H. R. Simonsen, and J. Broeng, “Truly single-mode polarization maintaining hollow core PCF,” Proc. SPIE 8421, 84210C (2012).
[Crossref]

T. P. Hansen, J. Broeng, C. Jakobsen, G. Vienne, H. R. Simonsen, M. D. Nielsen, P. M. W. Skovgaard, J. R. Folkenberg, and A. Bjarklev, “Air-guiding photonic bandgap fibers: spectral properties, macrobending loss, and practical handling,” J. Light. Technol. 22, 11–15 (2004).
[Crossref]

Jaworski, P.

Johansen, M. M.

Joly, N. Y.

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. S. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106, 203901 (2011).
[Crossref] [PubMed]

Jones, D. C.

Keller, U.

Kim, D. Y.

Knight, J.

Knight, J. C.

F. Yu and J. C. Knight, “Negative curvature hollow-core optical fiber,” IEEE J. Sel. Top. Quantum Electron. 22, 4400610 (2016).
[Crossref]

W. Belardi and J. C. Knight, “Hollow antiresonant fibers with low bending loss,” Opt. Express 22, 10091–10096 (2014).
[Crossref] [PubMed]

P. Jaworski, F. Yu, R. R. J. Maier, W. J. Wadsworth, J. C. Knight, J. D. Shephard, and D. P. Hand, “Picosecond and nanosecond pulse delivery through a hollow-core negative curvature fiber for micro-machining applications,” Opt. Express 21, 22742–22753 (2013).
[Crossref] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
[Crossref] [PubMed]

Knize, R. J.

T. Takekoshi and R. J. Knize, “Optical guiding of atoms through a hollow-core photonic band-gap fiber,” Phys. Rev. Lett. 98, 210404 (2007).
[Crossref] [PubMed]

Koch, K.W.

D.G. A. Ouzounov, F.R. Ahmad, D. Müller, N. Venkataraman, M.T. Gallagher, M.G. Thomas, J. Silcox, K.W. Koch, and Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301, 1702–1704 (2003).
[Crossref] [PubMed]

Koshiba, M.

Kosolapov, A. F.

Kuis, R. A.

Lægsgaard, J.

Laurila, M.

Lee, J. Y.

Li, Z.

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. NumkamFokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7, 279–284 (2013).
[Crossref]

Lyngsø, J. K.

M. Michieletto, J. K. Lyngsø, J. Lægsgaard, and O. Bang, “Cladding defects in hollow core fibers for surface mode suppression and improved birefringence,” Opt. Express 22, 23324–23332 (2014).
[Crossref] [PubMed]

J. K. Lyngsø, C. Jakobsen, H. R. Simonsen, and J. Broeng, “Truly single-mode polarization maintaining hollow core PCF,” Proc. SPIE 8421, 84210C (2012).
[Crossref]

Maack, M. D.

Maier, R. R. J.

Mangan, B.

J. M. Fini, J. W. Nicholson, B. Mangan, L. Meng, R. S. Windeler, E. M. Monberg, A. DeSantolo, F. V. DiMarcello, and K. Mukasa, “Polarization maintaining single-mode low-loss hollow-core fibres,” Nat. Commun. 5, 5085 (2014).
[Crossref] [PubMed]

P. Roberts, F. Couny, H. Sabert, B. Mangan, D. Williams, L. Farr, M. Mason, A. Tomlinson, T. Birks, J. Knight, and P. StJ Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13, 236–244 (2005).
[Crossref] [PubMed]

Mason, M.

Meng, L.

J. M. Fini, J. W. Nicholson, B. Mangan, L. Meng, R. S. Windeler, E. M. Monberg, A. DeSantolo, F. V. DiMarcello, and K. Mukasa, “Polarization maintaining single-mode low-loss hollow-core fibres,” Nat. Commun. 5, 5085 (2014).
[Crossref] [PubMed]

Menyuk, C. R.

Michieletto, M.

Monberg, E. M.

J. M. Fini, J. W. Nicholson, B. Mangan, L. Meng, R. S. Windeler, E. M. Monberg, A. DeSantolo, F. V. DiMarcello, and K. Mukasa, “Polarization maintaining single-mode low-loss hollow-core fibres,” Nat. Commun. 5, 5085 (2014).
[Crossref] [PubMed]

Mortensen, N.

Mukasa, K.

J. M. Fini, J. W. Nicholson, B. Mangan, L. Meng, R. S. Windeler, E. M. Monberg, A. DeSantolo, F. V. DiMarcello, and K. Mukasa, “Polarization maintaining single-mode low-loss hollow-core fibres,” Nat. Commun. 5, 5085 (2014).
[Crossref] [PubMed]

Müller, D.

D.G. A. Ouzounov, F.R. Ahmad, D. Müller, N. Venkataraman, M.T. Gallagher, M.G. Thomas, J. Silcox, K.W. Koch, and Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301, 1702–1704 (2003).
[Crossref] [PubMed]

Nazarkin, A.

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. S. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106, 203901 (2011).
[Crossref] [PubMed]

Nicholson, J. W.

J. M. Fini, J. W. Nicholson, B. Mangan, L. Meng, R. S. Windeler, E. M. Monberg, A. DeSantolo, F. V. DiMarcello, and K. Mukasa, “Polarization maintaining single-mode low-loss hollow-core fibres,” Nat. Commun. 5, 5085 (2014).
[Crossref] [PubMed]

Nielsen, M. D.

T. P. Hansen, J. Broeng, C. Jakobsen, G. Vienne, H. R. Simonsen, M. D. Nielsen, P. M. W. Skovgaard, J. R. Folkenberg, and A. Bjarklev, “Air-guiding photonic bandgap fibers: spectral properties, macrobending loss, and practical handling,” J. Light. Technol. 22, 11–15 (2004).
[Crossref]

Nold, J.

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. S. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106, 203901 (2011).
[Crossref] [PubMed]

Noordegraaf, D.

NumkamFokoua, E.

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. NumkamFokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7, 279–284 (2013).
[Crossref]

Petrovich, M. N.

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. NumkamFokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7, 279–284 (2013).
[Crossref]

F. Poletti, M. N. Petrovich, and D. J. Richardson, “Hollow-core photonic bandgap fibers: technology and applications,” Nanophotonics 2, 315–340 (2013).
[Crossref]

Plotnichenko, V. G.

Poletti, F.

F. Poletti, “Nested antiresonant nodeless hollow core fiber,” Opt. Express 22, 23807–23828 (2014).
[Crossref] [PubMed]

F. Poletti, M. N. Petrovich, and D. J. Richardson, “Hollow-core photonic bandgap fibers: technology and applications,” Nanophotonics 2, 315–340 (2013).
[Crossref]

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. NumkamFokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7, 279–284 (2013).
[Crossref]

Pryamikov, A. D.

Richardson, D. J.

F. Poletti, M. N. Petrovich, and D. J. Richardson, “Hollow-core photonic bandgap fibers: technology and applications,” Nanophotonics 2, 315–340 (2013).
[Crossref]

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. NumkamFokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7, 279–284 (2013).
[Crossref]

Roberts, P.

Russell, P. S. J.

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. S. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106, 203901 (2011).
[Crossref] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
[Crossref] [PubMed]

Sabert, H.

Saitoh, K.

Saraceno, C. J.

Scott, a. M.

Semjonov, S. L.

Setti, V.

Shephard, J. D.

Silcox, J.

D.G. A. Ouzounov, F.R. Ahmad, D. Müller, N. Venkataraman, M.T. Gallagher, M.G. Thomas, J. Silcox, K.W. Koch, and Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301, 1702–1704 (2003).
[Crossref] [PubMed]

Simonsen, H. R.

J. K. Lyngsø, C. Jakobsen, H. R. Simonsen, and J. Broeng, “Truly single-mode polarization maintaining hollow core PCF,” Proc. SPIE 8421, 84210C (2012).
[Crossref]

T. P. Hansen, J. Broeng, C. Jakobsen, G. Vienne, H. R. Simonsen, M. D. Nielsen, P. M. W. Skovgaard, J. R. Folkenberg, and A. Bjarklev, “Air-guiding photonic bandgap fibers: spectral properties, macrobending loss, and practical handling,” J. Light. Technol. 22, 11–15 (2004).
[Crossref]

Skeldon, M. D.

Skovgaard, P. M. W.

T. P. Hansen, J. Broeng, C. Jakobsen, G. Vienne, H. R. Simonsen, M. D. Nielsen, P. M. W. Skovgaard, J. R. Folkenberg, and A. Bjarklev, “Air-guiding photonic bandgap fibers: spectral properties, macrobending loss, and practical handling,” J. Light. Technol. 22, 11–15 (2004).
[Crossref]

Slavík, R.

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. NumkamFokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7, 279–284 (2013).
[Crossref]

Smith, M. a.

StJ Russell, P.

Südmeyer, T.

Takekoshi, T.

T. Takekoshi and R. J. Knize, “Optical guiding of atoms through a hollow-core photonic band-gap fiber,” Phys. Rev. Lett. 98, 210404 (2007).
[Crossref] [PubMed]

Thomas, M.G.

D.G. A. Ouzounov, F.R. Ahmad, D. Müller, N. Venkataraman, M.T. Gallagher, M.G. Thomas, J. Silcox, K.W. Koch, and Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301, 1702–1704 (2003).
[Crossref] [PubMed]

Tomlinson, A.

Venkataraman, N.

D.G. A. Ouzounov, F.R. Ahmad, D. Müller, N. Venkataraman, M.T. Gallagher, M.G. Thomas, J. Silcox, K.W. Koch, and Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301, 1702–1704 (2003).
[Crossref] [PubMed]

Vienne, G.

T. P. Hansen, J. Broeng, C. Jakobsen, G. Vienne, H. R. Simonsen, M. D. Nielsen, P. M. W. Skovgaard, J. R. Folkenberg, and A. Bjarklev, “Air-guiding photonic bandgap fibers: spectral properties, macrobending loss, and practical handling,” J. Light. Technol. 22, 11–15 (2004).
[Crossref]

Vincetti, L.

Wadsworth, W. J.

Wei, C.

Wheeler, N. V.

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. NumkamFokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7, 279–284 (2013).
[Crossref]

Williams, D.

Windeler, R. S.

J. M. Fini, J. W. Nicholson, B. Mangan, L. Meng, R. S. Windeler, E. M. Monberg, A. DeSantolo, F. V. DiMarcello, and K. Mukasa, “Polarization maintaining single-mode low-loss hollow-core fibres,” Nat. Commun. 5, 5085 (2014).
[Crossref] [PubMed]

Wong, G. K. L.

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. S. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106, 203901 (2011).
[Crossref] [PubMed]

Yu, F.

IEEE J. Sel. Top. Quantum Electron. (1)

F. Yu and J. C. Knight, “Negative curvature hollow-core optical fiber,” IEEE J. Sel. Top. Quantum Electron. 22, 4400610 (2016).
[Crossref]

J. Light. Technol. (1)

T. P. Hansen, J. Broeng, C. Jakobsen, G. Vienne, H. R. Simonsen, M. D. Nielsen, P. M. W. Skovgaard, J. R. Folkenberg, and A. Bjarklev, “Air-guiding photonic bandgap fibers: spectral properties, macrobending loss, and practical handling,” J. Light. Technol. 22, 11–15 (2004).
[Crossref]

Nanophotonics (1)

F. Poletti, M. N. Petrovich, and D. J. Richardson, “Hollow-core photonic bandgap fibers: technology and applications,” Nanophotonics 2, 315–340 (2013).
[Crossref]

Nat. Commun. (1)

J. M. Fini, J. W. Nicholson, B. Mangan, L. Meng, R. S. Windeler, E. M. Monberg, A. DeSantolo, F. V. DiMarcello, and K. Mukasa, “Polarization maintaining single-mode low-loss hollow-core fibres,” Nat. Commun. 5, 5085 (2014).
[Crossref] [PubMed]

Nat. Photonics (1)

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. NumkamFokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7, 279–284 (2013).
[Crossref]

Opt. Express (13)

P. Jaworski, F. Yu, R. R. J. Maier, W. J. Wadsworth, J. C. Knight, J. D. Shephard, and D. P. Hand, “Picosecond and nanosecond pulse delivery through a hollow-core negative curvature fiber for micro-machining applications,” Opt. Express 21, 22742–22753 (2013).
[Crossref] [PubMed]

L. Vincetti and V. Setti, “Waveguiding mechanism in tube lattice fibers,” Opt. Express 18, 23133–23146 (2010).
[Crossref] [PubMed]

C. Wei, R. A. Kuis, F. Chenard, C. R. Menyuk, and J. Hu, “Higher-order mode suppression in chalcogenide negative curvature fibers,” Opt. Express 23, 15824–15832 (2015).
[Crossref] [PubMed]

M. Michieletto, J. K. Lyngsø, J. Lægsgaard, and O. Bang, “Cladding defects in hollow core fibers for surface mode suppression and improved birefringence,” Opt. Express 22, 23324–23332 (2014).
[Crossref] [PubMed]

A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, and E. M. Dianov, “Demonstration of a waveguide regime for a silica hollow–core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5 µ m,” Opt. Express 19, 1441–1448 (2011).
[Crossref] [PubMed]

W. Belardi and J. C. Knight, “Hollow antiresonant fibers with low bending loss,” Opt. Express 22, 10091–10096 (2014).
[Crossref] [PubMed]

F. Poletti, “Nested antiresonant nodeless hollow core fiber,” Opt. Express 22, 23807–23828 (2014).
[Crossref] [PubMed]

M. S. Habib, O. Bang, and M. Bache, “Low-loss hollow-core silica fibers with adjacent nested anti-resonant tubes,” Opt. Express 23, 17394–17406 (2015).
[Crossref] [PubMed]

J. Y. Lee and D. Y. Kim, “Versatile chromatic dispersion measurement of a single mode fiber using spectral white light interferometry,” Opt. Express 14, 11608–11615 (2006).
[Crossref] [PubMed]

M. Alharbi, T. Bradley, B. Debord, C. Fourcade-Dutin, D. Ghosh, L. Vincetti, F. Gérôme, and F. Benabid, “Hypocycloid-shaped hollow-core photonic crystal fiber Part II: cladding effect on confinement and bend loss,” Opt. Express 21, 28597–28608 (2013).
[Crossref]

K. Saitoh, N. Mortensen, and M. Koshiba, “Air-core photonic band-gap fibers: the impact of surface modes,” Opt. Express 12, 394–400 (2004).
[Crossref] [PubMed]

P. Roberts, F. Couny, H. Sabert, B. Mangan, D. Williams, L. Farr, M. Mason, A. Tomlinson, T. Birks, J. Knight, and P. StJ Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13, 236–244 (2005).
[Crossref] [PubMed]

M. M. Johansen, M. Laurila, M. D. Maack, D. Noordegraaf, C. Jakobsen, T. T. Alkeskjold, and J. Lægsgaard, “Frequency resolved transverse mode instability in rod fiber amplifiers,” Opt. Express 21, 21847–21856 (2013).
[Crossref] [PubMed]

Opt. Lett. (3)

Phys. Rev. Lett. (2)

T. Takekoshi and R. J. Knize, “Optical guiding of atoms through a hollow-core photonic band-gap fiber,” Phys. Rev. Lett. 98, 210404 (2007).
[Crossref] [PubMed]

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. S. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106, 203901 (2011).
[Crossref] [PubMed]

Proc. SPIE (1)

J. K. Lyngsø, C. Jakobsen, H. R. Simonsen, and J. Broeng, “Truly single-mode polarization maintaining hollow core PCF,” Proc. SPIE 8421, 84210C (2012).
[Crossref]

Science (2)

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
[Crossref] [PubMed]

D.G. A. Ouzounov, F.R. Ahmad, D. Müller, N. Venkataraman, M.T. Gallagher, M.G. Thomas, J. Silcox, K.W. Koch, and Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301, 1702–1704 (2003).
[Crossref] [PubMed]

Other (1)

M. C. Günendi, P. Uebel, M. H. Frosz, and P. S. J. Russell, “Broad-band robustly single-mode hollow-core PCF by resonant filtering of higher order modes,” http://arxiv.org/abs/1508.06747 (2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

(a) Drawing of AR-HC fiber with 7 tubes and the relevant structural parameters. (b) Amplitude of the electric field of the fundamental mode.

Fig. 2
Fig. 2

Results of simulations with constant D=30µm and t=750nm for two AR-HC fiber designs with 6 tubes (red curves) and 7 tubes (green curves). (a) Modes effective indices vs ratio d/D. The effective indices of the cladding modes are the same for the two fiber and represented by blue bands. The upper band correspond to a number of HE11-like modes localized in the tubes, while the lower band correspond to TM01, TE01, and HE21-like modes. (b) Corresponding mode confinement loss vs d/D.

Fig. 3
Fig. 3

Results of simulations with constant D=30µm and t=750nm for two AR-HC fiber designs with 6 tubes (red curves) and 7 tubes (green curves). (a) HOM extinction ratio vs ratio d/D. (b) Confinement loss of the fundamental mode vs d/D for a straight fiber and a bent fiber. (c) Confinement loss of the fundamental mode vs bend radius for d/D=0.7. (d) 7 tube AR-HC spectral confinement loss of the fundamental mode and lower loss HOMs.

Fig. 4
Fig. 4

Vector representation of the calculated transverse electric field of one HE11 and both HE31modes (arrows) with 3dB contour lines of the amplitude of the electric field. Upper row is for a 6-tube AR-HC fiber, lower row is for a 7-tube AR-HC fiber.

Fig. 5
Fig. 5

Results of simulations with constant D=30µm and t=750nm for two AR-HC fiber designs with 6 tubes (red curves) and 7 tubes (green curves). (a) Confinement loss of the fundamental mode vs bend radius for d/D=0.7. (b) 7 tube AR-HC spectral confinement loss of the fundamental mode and lower loss HOMs.

Fig. 6
Fig. 6

Left: Microscope image of the fiber structure and measured near field profile at 1064nm, Right: Measured loss (blue curves) and dispersion (green curves) as continuous lines, calculated confinement loss and dispersion as dashed lines.

Fig. 7
Fig. 7

Measured near-field output beam profiles versus misalignment of input beam for a straight (left) and coiled (right) 7-tube AR-HC fiber, showing bend-induced suppression of HOMs. Bending was performed with 2 coils with 3 cm bend radius.

Fig. 8
Fig. 8

Green box: Comparison between the measured near field output profile for a 1 m fiber with ~20µm misalignment of the input beam, showing a LP31-like mode (top) and the corresponding simulated amplitude of the electric field (bottom) for a 1m fiber. Red box: On the top part, measured near field profile in 8cm FUT, coupling input beam to one of the cladding tube. In the bottom part the corresponding simulated amplitude of the electric field. (b) LP02-like mode, (c) LP21-like mode. The white arrows point at the excited cladding tube.

Fig. 9
Fig. 9

Top: Near field profile of the fiber at different bend radii at 1064nm. The fiber had three coils; Bottom left: Induced bend loss measured at different bend radii. The measurements across the blue and green dashed lines are plotted on the right; Bottom right: Comparison between the measured and simulated bend induced loss at two different wavelengths.

Fig. 10
Fig. 10

PBG-HC-1: (a) Simulated structure (top) compared with microscope image of the fabricated fiber (bottom). (b) Simulated mode amplitude (top) compared with measured near field profile in logarithmic scale (bottom) at 1064nm. (c) Measured loss and dispersion as continuous lines, simulated dispersion as dashed line. (d) PER measured for unperturbed fiber, upon bending (5cm radius) and twisting (>90 over 20cm).

Fig. 11
Fig. 11

PBG-HC-2 : (a) Microscope image of the fabricated fiber (b) Near field profile measured at 1032nm (c) Measured loss of the fiber used in the delivery experiment (d) Typical 1m transmission and measured loss that can be achieved with this fiber design.

Fig. 12
Fig. 12

Schematics of the optical set up for pulse delivery. L1 to L5 are lenses, HWP is half wave plate, PBS is polarizing beam splitter. M1 and M2 are adjustable mirrors. S1 and S2 are wedges. OSA stands for optical spectrum analyzer.

Fig. 13
Fig. 13

(a) Transmission efficiency. Fiber facet microscope image and near field for (b) PBG-HC-1 fiber at 59W (c) PBG-HC-1 fiber after damage at low power (d) PBG-HC-2 fiber at 76W and (e) 7 tube AR-HC fiber at 70W.

Fig. 14
Fig. 14

Measured spectra for: (a) 5 meters PBG-HC-1 fiber showing no spectral broadening, (b) 42 meters PBG-HC-2 fiber showing stimulated Raman scattering from nitrogen and (c) 5 meters 7-tube AR-HC fiber showing no spectral broadening. (a) and (b) were measured for 22ps pulses at 40MHz repetition rate, (c) was measured for 22ps pulses at 10MHz repetition rate.

Tables (3)

Tables Icon

Table 1 Measured M2, Astigmatism and Asymmetry

Tables Icon

Table 2 Summary of Fiber Properties

Tables Icon

Table 3 Summary of the Lenses Used for the Different Fibers

Metrics