Abstract

We report on lenses that operate over the visible wavelength band from 450 nm to beyond 700 nm, and other lenses that operate over a wide region in the near-infrared from 650 nm to beyond 1000 nm. Lenses were recorded in liquid crystal polymer layers only a few micrometers thick, using laser-based photoalignment and UV photopolymerization. Waveplate lenses allowed focusing and defocusing laser beams depending on the sign of the circularity of laser beam polarization. Diffraction efficiency of recorded waveplate lenses was up to 90% and contrast ratio was up to 500:1.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Thin waveplate lenses of switchable focal length - new generation in optics

Nelson V. Tabiryan, Svetlana V. Serak, David E. Roberts, Diane M. Steeves, and Brian R. Kimball
Opt. Express 23(20) 25783-25794 (2015)

Diffractive waveplate arrays [Invited]

Svetlana V. Serak, David E. Roberts, Jeoung-Yeon Hwang, Sarik R. Nersisyan, Nelson V. Tabiryan, Timothy J. Bunning, Diane M. Steeves, and Brian R. Kimball
J. Opt. Soc. Am. B 34(5) B56-B63 (2017)

Digital polarization holography advancing geometrical phase optics

Luciano De Sio, David E. Roberts, Zhi Liao, Sarik Nersisyan, Olena Uskova, Lloyd Wickboldt, Nelson Tabiryan, Diane M. Steeves, and Brian R. Kimball
Opt. Express 24(16) 18297-18306 (2016)

References

  • View by:
  • |
  • |
  • |

  1. L. Nikolova and P. S. Ramanujam, Polarization Holography (Cambridge University, 2009).
  2. S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater. 18(01), 1–47 (2009).
    [Crossref]
  3. N. V. Tabiryan, S. R. Nersisyan, D. M. Steeves, and B. R. Kimball, “The promise of diffractive waveplates,” Opt. Photonics News 21(3), 41–45 (2010).
  4. L. Marrucci, C. Manzo, and D. Paparo, “Pancharatnam-Berry phase optical elements for wave front shaping in the visible domain: Switchable helical mode generation,” Appl. Phys. Lett. 88(22), 221102 (2006).
    [Crossref]
  5. H. Sarkissian, B. Park, N. V. Tabirian, and B. Ya. Zeldovich, “Periodically aligned liquid crystal: potential application for projection displays,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 451(1), 1–19 (2006).
    [Crossref]
  6. H. Sarkissian, S. V. Serak, N. V. Tabiryan, L. B. Glebov, V. Rotar, and B. Ya. Zeldovich, “Polarization-controlled switching between diffraction orders in transverse-periodically aligned nematic liquid crystals,” Opt. Lett. 31(15), 2248–2250 (2006).
    [Crossref] [PubMed]
  7. G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98(12), 123102 (2005).
    [Crossref]
  8. S. Serak, N. Tabiryan, and B. Zeldovich, “High-efficiency 1.5 µm thick optical axis grating and its use for laser beam combining,” Opt. Lett. 32(2), 169–171 (2007).
    [Crossref] [PubMed]
  9. S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “The principles of laser beam control with polarization gratings introduced as diffractive waveplates,” Proc. SPIE 7775, 77750U, 77750U-10 (2010).
    [Crossref]
  10. S. R. Nersisyan, N. V. Tabiryan, L. Hoke, D. M. Steeves, and B. R. Kimball, “Polarization insensitive imaging through polarization gratings,” Opt. Express 17(3), 1817–1830 (2009).
    [Crossref] [PubMed]
  11. U. Hrozhyk, S. Nersisyan, S. Serak, N. Tabiryan, L. Hoke, D. M. Steeves, and B. R. Kimball, “Optical switching of liquid-crystal polarization gratings with nanosecond pulses,” Opt. Lett. 34(17), 2554–2556 (2009).
    [Crossref] [PubMed]
  12. N. V. Tabiryan, S. R. Nersisyan, T. J. White, T. J. Bunning, D. M. Steeves, and B. R. Kimball, “Transparent thin film polarizing and optical control systems,” AIP Adv. 1(2), 022153 (2011).
    [Crossref]
  13. S. V. Serak, R. S. Hakobyan, S. R. Nersisyan, N. V. Tabiryan, T. J. White, T. J. Bunning, D. M. Steeves, and B. R. Kimball, “All-optical diffractive/transmissive switch based on coupled cycloidal diffractive waveplates,” Opt. Express 20(5), 5460–5469 (2012).
    [Crossref] [PubMed]
  14. E. Karimi, S. Slussarenko, B. Piccirillo, L. Marrucci, and E. Santamato, “Polarization-controlled evolution of light transverse modes and associated Pancharatnam geometric phase in orbital angular momentum,” Phys. Rev. A 81(5), 053813 (2010).
    [Crossref]
  15. N. V. Tabiryan, S. R. Nersisyan, H. Xianyu, and E. Serabyn, “Fabricating vector vortex waveplates for coronagraphy,” in Proceedings of 2012 IEEE Aerospace Conference (IEEE, 2012), pp. 1–12.
    [Crossref]
  16. S. R. Nersisyan, N. V. Tabiryan, D. Mawet, and E. Serabyn, “Improving vector vortex waveplates for high-contrast coronagraphy,” Opt. Express 21(7), 8205–8213 (2013).
    [Crossref] [PubMed]
  17. N. V. Tabiryan, H. Xianyu, and E. Serabyn, “Liquid crystal polymer vector vortex waveplates with sub-micrometer singularity,” in Proceedings of 2015 IEEE Aerospace Conference (IEEE, 2015), pp. 1–10.
    [Crossref]
  18. N. Tabirian, S. V. Serak, D. M. Steeves, and B. R. Kimball, “Waveplate lenses and methods for their fabrication,” U.S. Provisional Patent Application No. 61/801,251, March 15, 2013; N. Tabirian, S. V. Serak, D. M. Steeves, and B. R. Kimball, “Waveplate lenses and methods for their fabrication,” U.S. Patent Application No. 14/214,375, March 14, 2014 (to be published).
  19. N. V. Tabiryan, S. V. Serak, D. E. Roberts, E. Serabyn, D. M. Steeves, and B. R. Kimball, “Ultralight and inexpensive telescope technology for deep space optical communication,” 12th Mediterranean Workshop and Topical Meeting on Novel Optical Materials and Applications (NOMA 2015), Cetraro, Italy, June 7–13, 2015.
  20. N. V. Tabiryan, S. V. Serak, D. E. Roberts, E. Serabyn, D. M. Steeves, and B. R. Kimball, “Novel opportunities for controlling light with liquid crystals,” Gordon Research Conference, Liquid Crystallinity in Soft Matter at and Beyond Equilibrium, Biddeford, Maine, June 21–26, 2015.
  21. N. V. Tabiryan, S. V. Serak, D. E. Roberts, D. M. Steeves, and B. R. Kimball, “Thin waveplate lenses of switchable focal length--new generation in optics,” Opt. Express 23(20), 25783–25794 (2015).
    [Crossref] [PubMed]
  22. N. V. Tabiryan, S. V. Serak, D. E. Roberts, D. M. Steeves, and B. R. Kimball, “Thin waveplate lenses: new generation in optics,” Proc. SPIE 9565, 956512 (2015).
    [Crossref] [PubMed]
  23. K. Gao, H. H. Cheng, A. K. Bhowmik, and P. J. Bos, “Thin-film Pancharatnam lens with low f-number and high quality,” Opt. Express 23(20), 26086–26094 (2015).
    [Crossref] [PubMed]
  24. J. Kim, Y. Li, M. N. Miskiewicz, C. Oh, M. W. Kudenov, and M. J. Escuti, “Fabrication of ideal geometric-phase holograms with arbitrary wavefronts,” Optica 2(11), 958–964 (2015).
    [Crossref]
  25. A. M. W. Tam, F. Fan, H. S. Chen, D. Tao, V. G. Chigrinov, H. S. Kwok, and Y. S. Lin, “Continuous Nanoscale Patterned Photoalignment for Thin Film Pancharatnam-Berry Phase Diffractive Lens,” SID Symposium Digest of Technical Papers 46(S1), p. 8 (2015).
    [Crossref]
  26. S. Pancharatnam, “Achromatic combinations of birefringent plates,” Proc. Indian Acad. Sci. Sec. A 41(4), 130–144 (1955).
  27. H. Seiberle, C. Benecke, and T. Bachels, “Photo-aligned anisotropic optical thin films,” J. Soc. Inf. Disp. 12(1), 87–92 (2004).
    [Crossref]
  28. S. Shen, J. She, and T. Tao, “Optimal design of achromatic true zero-order waveplates using twisted nematic liquid crystal,” J. Opt. Soc. Am. A 22(5), 961–965 (2005).
    [Crossref] [PubMed]
  29. C. Oh and M. J. Escuti, “Achromatic diffraction from polarization gratings with high efficiency,” Opt. Lett. 33(20), 2287–2289 (2008).
    [Crossref] [PubMed]
  30. B. R. Kimball, D. M. Steeves, L. Hoke, R. M. Osgood, J. Carlson, L. Belton, N. V. Tabiryan, S. R. Nersisyan, S. V. Serak, U. A. Hrozhyk, M. Geis, and T. M. Lyszczarz, “Advances in anisotropic materials for optical switching,” in Proceedings of the 27th Army Science Conference (DTIC, 2010), pp. 1–7.
  31. BEAM Co, Web page http://www.beamco.com/Photoalignment-materials
  32. M. Ye, B. Wang, and S. Sato, “Liquid-crystal lens with a focal length that is variable in a wide range,” Appl. Opt. 43(35), 6407–6412 (2004).
  33. H. Ren, Y.-H. Fan, S. Gauza, and S.-T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
    [Crossref]
  34. L.-C. Lin, H.-C. Jau, T.-H. Lin, and A. Y.-G. Fuh, “Highly efficient and polarization-independent Fresnel lens based on dye-doped liquid crystal,” Opt. Express 15(6), 2900–2906 (2007).
    [Crossref] [PubMed]
  35. K. Asatryan, V. Presnyakov, A. Tork, A. Zohrabyan, A. Bagramyan, and T. Galstian, “Optical lens with electrically variable focus using an optically hidden dielectric structure,” Opt. Express 18(13), 13981–13992 (2010).
    [Crossref] [PubMed]
  36. E. Hasman, V. Kleiner, G. Biener, and A. Niv, “Polarization dependent focusing lens by use of quantized Pancharatnam–Berry phase diffractive optics,” Appl. Phys. Lett. 82(3), 328–330 (2003).
    [Crossref]
  37. N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
    [Crossref] [PubMed]
  38. J. Sun, M. I. Shalaev, and N. M. Litchinitser, “Experimental demonstration of a non-resonant hyperlens in the visible spectral range,” Nat. Commun. 6, 7201 (2015).
    [Crossref] [PubMed]
  39. A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
    [Crossref] [PubMed]
  40. X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, G. Jin, C.-W. Qiu, S. Zhang, T. Zentgraf, and Q. Tan, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
    [Crossref] [PubMed]
  41. A. A. Yanik and X. Zhu, “Plasmonic nanolenses and metasurfaces for sorting single bacterial cells,” SPIE Newsroom, http://spie.org/newsroom/technical-articles/6054-plasmonic-nanolenses-and-metasurfaces-for-sorting-single-bacterial-cells?ArticleID=x116724 (2016).
  42. P. Wang, N. Mohammad, and R. Menon, “Chromatic-aberration-corrected diffractive lenses for ultra-broadband focusing,” Sci. Rep. 6, 21545 (2016).
    [Crossref] [PubMed]
  43. J. Yang, Z. Wang, F. Wang, R. Xu, J. Tao, S. Zhang, Q. Qin, B. Luther-Davies, C. Jagadish, Z. Yu, and Y. Lu, “Atomically thin optical lenses and gratings,” Light Sci. Appl. 5(3), e16046 (2016).
    [Crossref]

2016 (2)

P. Wang, N. Mohammad, and R. Menon, “Chromatic-aberration-corrected diffractive lenses for ultra-broadband focusing,” Sci. Rep. 6, 21545 (2016).
[Crossref] [PubMed]

J. Yang, Z. Wang, F. Wang, R. Xu, J. Tao, S. Zhang, Q. Qin, B. Luther-Davies, C. Jagadish, Z. Yu, and Y. Lu, “Atomically thin optical lenses and gratings,” Light Sci. Appl. 5(3), e16046 (2016).
[Crossref]

2015 (5)

2014 (1)

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

2013 (2)

2012 (2)

2011 (1)

N. V. Tabiryan, S. R. Nersisyan, T. J. White, T. J. Bunning, D. M. Steeves, and B. R. Kimball, “Transparent thin film polarizing and optical control systems,” AIP Adv. 1(2), 022153 (2011).
[Crossref]

2010 (4)

E. Karimi, S. Slussarenko, B. Piccirillo, L. Marrucci, and E. Santamato, “Polarization-controlled evolution of light transverse modes and associated Pancharatnam geometric phase in orbital angular momentum,” Phys. Rev. A 81(5), 053813 (2010).
[Crossref]

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “The principles of laser beam control with polarization gratings introduced as diffractive waveplates,” Proc. SPIE 7775, 77750U, 77750U-10 (2010).
[Crossref]

N. V. Tabiryan, S. R. Nersisyan, D. M. Steeves, and B. R. Kimball, “The promise of diffractive waveplates,” Opt. Photonics News 21(3), 41–45 (2010).

K. Asatryan, V. Presnyakov, A. Tork, A. Zohrabyan, A. Bagramyan, and T. Galstian, “Optical lens with electrically variable focus using an optically hidden dielectric structure,” Opt. Express 18(13), 13981–13992 (2010).
[Crossref] [PubMed]

2009 (3)

2008 (1)

2007 (2)

2006 (3)

H. Sarkissian, S. V. Serak, N. V. Tabiryan, L. B. Glebov, V. Rotar, and B. Ya. Zeldovich, “Polarization-controlled switching between diffraction orders in transverse-periodically aligned nematic liquid crystals,” Opt. Lett. 31(15), 2248–2250 (2006).
[Crossref] [PubMed]

L. Marrucci, C. Manzo, and D. Paparo, “Pancharatnam-Berry phase optical elements for wave front shaping in the visible domain: Switchable helical mode generation,” Appl. Phys. Lett. 88(22), 221102 (2006).
[Crossref]

H. Sarkissian, B. Park, N. V. Tabirian, and B. Ya. Zeldovich, “Periodically aligned liquid crystal: potential application for projection displays,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 451(1), 1–19 (2006).
[Crossref]

2005 (2)

G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98(12), 123102 (2005).
[Crossref]

S. Shen, J. She, and T. Tao, “Optimal design of achromatic true zero-order waveplates using twisted nematic liquid crystal,” J. Opt. Soc. Am. A 22(5), 961–965 (2005).
[Crossref] [PubMed]

2004 (3)

M. Ye, B. Wang, and S. Sato, “Liquid-crystal lens with a focal length that is variable in a wide range,” Appl. Opt. 43(35), 6407–6412 (2004).

H. Seiberle, C. Benecke, and T. Bachels, “Photo-aligned anisotropic optical thin films,” J. Soc. Inf. Disp. 12(1), 87–92 (2004).
[Crossref]

H. Ren, Y.-H. Fan, S. Gauza, and S.-T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
[Crossref]

2003 (1)

E. Hasman, V. Kleiner, G. Biener, and A. Niv, “Polarization dependent focusing lens by use of quantized Pancharatnam–Berry phase diffractive optics,” Appl. Phys. Lett. 82(3), 328–330 (2003).
[Crossref]

1955 (1)

S. Pancharatnam, “Achromatic combinations of birefringent plates,” Proc. Indian Acad. Sci. Sec. A 41(4), 130–144 (1955).

Asatryan, K.

Bachels, T.

H. Seiberle, C. Benecke, and T. Bachels, “Photo-aligned anisotropic optical thin films,” J. Soc. Inf. Disp. 12(1), 87–92 (2004).
[Crossref]

Bagramyan, A.

Bai, B.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, G. Jin, C.-W. Qiu, S. Zhang, T. Zentgraf, and Q. Tan, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref] [PubMed]

Belton, L.

B. R. Kimball, D. M. Steeves, L. Hoke, R. M. Osgood, J. Carlson, L. Belton, N. V. Tabiryan, S. R. Nersisyan, S. V. Serak, U. A. Hrozhyk, M. Geis, and T. M. Lyszczarz, “Advances in anisotropic materials for optical switching,” in Proceedings of the 27th Army Science Conference (DTIC, 2010), pp. 1–7.

Benecke, C.

H. Seiberle, C. Benecke, and T. Bachels, “Photo-aligned anisotropic optical thin films,” J. Soc. Inf. Disp. 12(1), 87–92 (2004).
[Crossref]

Bhowmik, A. K.

Biener, G.

E. Hasman, V. Kleiner, G. Biener, and A. Niv, “Polarization dependent focusing lens by use of quantized Pancharatnam–Berry phase diffractive optics,” Appl. Phys. Lett. 82(3), 328–330 (2003).
[Crossref]

Boltasseva, A.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref] [PubMed]

Bos, P. J.

Bunning, T. J.

Callan-Jones, A.

G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98(12), 123102 (2005).
[Crossref]

Capasso, F.

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

Carlson, J.

B. R. Kimball, D. M. Steeves, L. Hoke, R. M. Osgood, J. Carlson, L. Belton, N. V. Tabiryan, S. R. Nersisyan, S. V. Serak, U. A. Hrozhyk, M. Geis, and T. M. Lyszczarz, “Advances in anisotropic materials for optical switching,” in Proceedings of the 27th Army Science Conference (DTIC, 2010), pp. 1–7.

Chen, X.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, G. Jin, C.-W. Qiu, S. Zhang, T. Zentgraf, and Q. Tan, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref] [PubMed]

Cheng, H. H.

Crawford, G. P.

G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98(12), 123102 (2005).
[Crossref]

Eakin, J. N.

G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98(12), 123102 (2005).
[Crossref]

Escuti, M. J.

Fan, Y.-H.

H. Ren, Y.-H. Fan, S. Gauza, and S.-T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
[Crossref]

Fuh, A. Y.-G.

Galstian, T.

Gao, K.

Gauza, S.

H. Ren, Y.-H. Fan, S. Gauza, and S.-T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
[Crossref]

Geis, M.

B. R. Kimball, D. M. Steeves, L. Hoke, R. M. Osgood, J. Carlson, L. Belton, N. V. Tabiryan, S. R. Nersisyan, S. V. Serak, U. A. Hrozhyk, M. Geis, and T. M. Lyszczarz, “Advances in anisotropic materials for optical switching,” in Proceedings of the 27th Army Science Conference (DTIC, 2010), pp. 1–7.

Glebov, L. B.

Hakobyan, R. S.

Hasman, E.

E. Hasman, V. Kleiner, G. Biener, and A. Niv, “Polarization dependent focusing lens by use of quantized Pancharatnam–Berry phase diffractive optics,” Appl. Phys. Lett. 82(3), 328–330 (2003).
[Crossref]

Hoke, L.

U. Hrozhyk, S. Nersisyan, S. Serak, N. Tabiryan, L. Hoke, D. M. Steeves, and B. R. Kimball, “Optical switching of liquid-crystal polarization gratings with nanosecond pulses,” Opt. Lett. 34(17), 2554–2556 (2009).
[Crossref] [PubMed]

S. R. Nersisyan, N. V. Tabiryan, L. Hoke, D. M. Steeves, and B. R. Kimball, “Polarization insensitive imaging through polarization gratings,” Opt. Express 17(3), 1817–1830 (2009).
[Crossref] [PubMed]

B. R. Kimball, D. M. Steeves, L. Hoke, R. M. Osgood, J. Carlson, L. Belton, N. V. Tabiryan, S. R. Nersisyan, S. V. Serak, U. A. Hrozhyk, M. Geis, and T. M. Lyszczarz, “Advances in anisotropic materials for optical switching,” in Proceedings of the 27th Army Science Conference (DTIC, 2010), pp. 1–7.

Hrozhyk, U.

Hrozhyk, U. A.

B. R. Kimball, D. M. Steeves, L. Hoke, R. M. Osgood, J. Carlson, L. Belton, N. V. Tabiryan, S. R. Nersisyan, S. V. Serak, U. A. Hrozhyk, M. Geis, and T. M. Lyszczarz, “Advances in anisotropic materials for optical switching,” in Proceedings of the 27th Army Science Conference (DTIC, 2010), pp. 1–7.

Huang, L.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, G. Jin, C.-W. Qiu, S. Zhang, T. Zentgraf, and Q. Tan, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref] [PubMed]

Jagadish, C.

J. Yang, Z. Wang, F. Wang, R. Xu, J. Tao, S. Zhang, Q. Qin, B. Luther-Davies, C. Jagadish, Z. Yu, and Y. Lu, “Atomically thin optical lenses and gratings,” Light Sci. Appl. 5(3), e16046 (2016).
[Crossref]

Jau, H.-C.

Jin, G.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, G. Jin, C.-W. Qiu, S. Zhang, T. Zentgraf, and Q. Tan, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref] [PubMed]

Karimi, E.

E. Karimi, S. Slussarenko, B. Piccirillo, L. Marrucci, and E. Santamato, “Polarization-controlled evolution of light transverse modes and associated Pancharatnam geometric phase in orbital angular momentum,” Phys. Rev. A 81(5), 053813 (2010).
[Crossref]

Kildishev, A. V.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref] [PubMed]

Kim, J.

Kimball, B. R.

N. V. Tabiryan, S. V. Serak, D. E. Roberts, D. M. Steeves, and B. R. Kimball, “Thin waveplate lenses of switchable focal length--new generation in optics,” Opt. Express 23(20), 25783–25794 (2015).
[Crossref] [PubMed]

N. V. Tabiryan, S. V. Serak, D. E. Roberts, D. M. Steeves, and B. R. Kimball, “Thin waveplate lenses: new generation in optics,” Proc. SPIE 9565, 956512 (2015).
[Crossref] [PubMed]

S. V. Serak, R. S. Hakobyan, S. R. Nersisyan, N. V. Tabiryan, T. J. White, T. J. Bunning, D. M. Steeves, and B. R. Kimball, “All-optical diffractive/transmissive switch based on coupled cycloidal diffractive waveplates,” Opt. Express 20(5), 5460–5469 (2012).
[Crossref] [PubMed]

N. V. Tabiryan, S. R. Nersisyan, T. J. White, T. J. Bunning, D. M. Steeves, and B. R. Kimball, “Transparent thin film polarizing and optical control systems,” AIP Adv. 1(2), 022153 (2011).
[Crossref]

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “The principles of laser beam control with polarization gratings introduced as diffractive waveplates,” Proc. SPIE 7775, 77750U, 77750U-10 (2010).
[Crossref]

N. V. Tabiryan, S. R. Nersisyan, D. M. Steeves, and B. R. Kimball, “The promise of diffractive waveplates,” Opt. Photonics News 21(3), 41–45 (2010).

S. R. Nersisyan, N. V. Tabiryan, L. Hoke, D. M. Steeves, and B. R. Kimball, “Polarization insensitive imaging through polarization gratings,” Opt. Express 17(3), 1817–1830 (2009).
[Crossref] [PubMed]

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater. 18(01), 1–47 (2009).
[Crossref]

U. Hrozhyk, S. Nersisyan, S. Serak, N. Tabiryan, L. Hoke, D. M. Steeves, and B. R. Kimball, “Optical switching of liquid-crystal polarization gratings with nanosecond pulses,” Opt. Lett. 34(17), 2554–2556 (2009).
[Crossref] [PubMed]

B. R. Kimball, D. M. Steeves, L. Hoke, R. M. Osgood, J. Carlson, L. Belton, N. V. Tabiryan, S. R. Nersisyan, S. V. Serak, U. A. Hrozhyk, M. Geis, and T. M. Lyszczarz, “Advances in anisotropic materials for optical switching,” in Proceedings of the 27th Army Science Conference (DTIC, 2010), pp. 1–7.

N. V. Tabiryan, S. V. Serak, D. E. Roberts, E. Serabyn, D. M. Steeves, and B. R. Kimball, “Novel opportunities for controlling light with liquid crystals,” Gordon Research Conference, Liquid Crystallinity in Soft Matter at and Beyond Equilibrium, Biddeford, Maine, June 21–26, 2015.

N. V. Tabiryan, S. V. Serak, D. E. Roberts, E. Serabyn, D. M. Steeves, and B. R. Kimball, “Ultralight and inexpensive telescope technology for deep space optical communication,” 12th Mediterranean Workshop and Topical Meeting on Novel Optical Materials and Applications (NOMA 2015), Cetraro, Italy, June 7–13, 2015.

Kleiner, V.

E. Hasman, V. Kleiner, G. Biener, and A. Niv, “Polarization dependent focusing lens by use of quantized Pancharatnam–Berry phase diffractive optics,” Appl. Phys. Lett. 82(3), 328–330 (2003).
[Crossref]

Kudenov, M. W.

Li, G.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, G. Jin, C.-W. Qiu, S. Zhang, T. Zentgraf, and Q. Tan, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref] [PubMed]

Li, Y.

Lin, L.-C.

Lin, T.-H.

Litchinitser, N. M.

J. Sun, M. I. Shalaev, and N. M. Litchinitser, “Experimental demonstration of a non-resonant hyperlens in the visible spectral range,” Nat. Commun. 6, 7201 (2015).
[Crossref] [PubMed]

Lu, Y.

J. Yang, Z. Wang, F. Wang, R. Xu, J. Tao, S. Zhang, Q. Qin, B. Luther-Davies, C. Jagadish, Z. Yu, and Y. Lu, “Atomically thin optical lenses and gratings,” Light Sci. Appl. 5(3), e16046 (2016).
[Crossref]

Luther-Davies, B.

J. Yang, Z. Wang, F. Wang, R. Xu, J. Tao, S. Zhang, Q. Qin, B. Luther-Davies, C. Jagadish, Z. Yu, and Y. Lu, “Atomically thin optical lenses and gratings,” Light Sci. Appl. 5(3), e16046 (2016).
[Crossref]

Lyszczarz, T. M.

B. R. Kimball, D. M. Steeves, L. Hoke, R. M. Osgood, J. Carlson, L. Belton, N. V. Tabiryan, S. R. Nersisyan, S. V. Serak, U. A. Hrozhyk, M. Geis, and T. M. Lyszczarz, “Advances in anisotropic materials for optical switching,” in Proceedings of the 27th Army Science Conference (DTIC, 2010), pp. 1–7.

Manzo, C.

L. Marrucci, C. Manzo, and D. Paparo, “Pancharatnam-Berry phase optical elements for wave front shaping in the visible domain: Switchable helical mode generation,” Appl. Phys. Lett. 88(22), 221102 (2006).
[Crossref]

Marrucci, L.

E. Karimi, S. Slussarenko, B. Piccirillo, L. Marrucci, and E. Santamato, “Polarization-controlled evolution of light transverse modes and associated Pancharatnam geometric phase in orbital angular momentum,” Phys. Rev. A 81(5), 053813 (2010).
[Crossref]

L. Marrucci, C. Manzo, and D. Paparo, “Pancharatnam-Berry phase optical elements for wave front shaping in the visible domain: Switchable helical mode generation,” Appl. Phys. Lett. 88(22), 221102 (2006).
[Crossref]

Mawet, D.

Menon, R.

P. Wang, N. Mohammad, and R. Menon, “Chromatic-aberration-corrected diffractive lenses for ultra-broadband focusing,” Sci. Rep. 6, 21545 (2016).
[Crossref] [PubMed]

Miskiewicz, M. N.

Mohammad, N.

P. Wang, N. Mohammad, and R. Menon, “Chromatic-aberration-corrected diffractive lenses for ultra-broadband focusing,” Sci. Rep. 6, 21545 (2016).
[Crossref] [PubMed]

Mühlenbernd, H.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, G. Jin, C.-W. Qiu, S. Zhang, T. Zentgraf, and Q. Tan, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref] [PubMed]

Nersisyan, S.

Nersisyan, S. R.

S. R. Nersisyan, N. V. Tabiryan, D. Mawet, and E. Serabyn, “Improving vector vortex waveplates for high-contrast coronagraphy,” Opt. Express 21(7), 8205–8213 (2013).
[Crossref] [PubMed]

S. V. Serak, R. S. Hakobyan, S. R. Nersisyan, N. V. Tabiryan, T. J. White, T. J. Bunning, D. M. Steeves, and B. R. Kimball, “All-optical diffractive/transmissive switch based on coupled cycloidal diffractive waveplates,” Opt. Express 20(5), 5460–5469 (2012).
[Crossref] [PubMed]

N. V. Tabiryan, S. R. Nersisyan, T. J. White, T. J. Bunning, D. M. Steeves, and B. R. Kimball, “Transparent thin film polarizing and optical control systems,” AIP Adv. 1(2), 022153 (2011).
[Crossref]

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “The principles of laser beam control with polarization gratings introduced as diffractive waveplates,” Proc. SPIE 7775, 77750U, 77750U-10 (2010).
[Crossref]

N. V. Tabiryan, S. R. Nersisyan, D. M. Steeves, and B. R. Kimball, “The promise of diffractive waveplates,” Opt. Photonics News 21(3), 41–45 (2010).

S. R. Nersisyan, N. V. Tabiryan, L. Hoke, D. M. Steeves, and B. R. Kimball, “Polarization insensitive imaging through polarization gratings,” Opt. Express 17(3), 1817–1830 (2009).
[Crossref] [PubMed]

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater. 18(01), 1–47 (2009).
[Crossref]

B. R. Kimball, D. M. Steeves, L. Hoke, R. M. Osgood, J. Carlson, L. Belton, N. V. Tabiryan, S. R. Nersisyan, S. V. Serak, U. A. Hrozhyk, M. Geis, and T. M. Lyszczarz, “Advances in anisotropic materials for optical switching,” in Proceedings of the 27th Army Science Conference (DTIC, 2010), pp. 1–7.

N. V. Tabiryan, S. R. Nersisyan, H. Xianyu, and E. Serabyn, “Fabricating vector vortex waveplates for coronagraphy,” in Proceedings of 2012 IEEE Aerospace Conference (IEEE, 2012), pp. 1–12.
[Crossref]

Niv, A.

E. Hasman, V. Kleiner, G. Biener, and A. Niv, “Polarization dependent focusing lens by use of quantized Pancharatnam–Berry phase diffractive optics,” Appl. Phys. Lett. 82(3), 328–330 (2003).
[Crossref]

Oh, C.

Osgood, R. M.

B. R. Kimball, D. M. Steeves, L. Hoke, R. M. Osgood, J. Carlson, L. Belton, N. V. Tabiryan, S. R. Nersisyan, S. V. Serak, U. A. Hrozhyk, M. Geis, and T. M. Lyszczarz, “Advances in anisotropic materials for optical switching,” in Proceedings of the 27th Army Science Conference (DTIC, 2010), pp. 1–7.

Pancharatnam, S.

S. Pancharatnam, “Achromatic combinations of birefringent plates,” Proc. Indian Acad. Sci. Sec. A 41(4), 130–144 (1955).

Paparo, D.

L. Marrucci, C. Manzo, and D. Paparo, “Pancharatnam-Berry phase optical elements for wave front shaping in the visible domain: Switchable helical mode generation,” Appl. Phys. Lett. 88(22), 221102 (2006).
[Crossref]

Park, B.

H. Sarkissian, B. Park, N. V. Tabirian, and B. Ya. Zeldovich, “Periodically aligned liquid crystal: potential application for projection displays,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 451(1), 1–19 (2006).
[Crossref]

Pelcovits, R. A.

G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98(12), 123102 (2005).
[Crossref]

Piccirillo, B.

E. Karimi, S. Slussarenko, B. Piccirillo, L. Marrucci, and E. Santamato, “Polarization-controlled evolution of light transverse modes and associated Pancharatnam geometric phase in orbital angular momentum,” Phys. Rev. A 81(5), 053813 (2010).
[Crossref]

Presnyakov, V.

Qin, Q.

J. Yang, Z. Wang, F. Wang, R. Xu, J. Tao, S. Zhang, Q. Qin, B. Luther-Davies, C. Jagadish, Z. Yu, and Y. Lu, “Atomically thin optical lenses and gratings,” Light Sci. Appl. 5(3), e16046 (2016).
[Crossref]

Qiu, C.-W.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, G. Jin, C.-W. Qiu, S. Zhang, T. Zentgraf, and Q. Tan, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref] [PubMed]

Radcliffe, M. D.

G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98(12), 123102 (2005).
[Crossref]

Ren, H.

H. Ren, Y.-H. Fan, S. Gauza, and S.-T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
[Crossref]

Roberts, D. E.

N. V. Tabiryan, S. V. Serak, D. E. Roberts, D. M. Steeves, and B. R. Kimball, “Thin waveplate lenses: new generation in optics,” Proc. SPIE 9565, 956512 (2015).
[Crossref] [PubMed]

N. V. Tabiryan, S. V. Serak, D. E. Roberts, D. M. Steeves, and B. R. Kimball, “Thin waveplate lenses of switchable focal length--new generation in optics,” Opt. Express 23(20), 25783–25794 (2015).
[Crossref] [PubMed]

N. V. Tabiryan, S. V. Serak, D. E. Roberts, E. Serabyn, D. M. Steeves, and B. R. Kimball, “Novel opportunities for controlling light with liquid crystals,” Gordon Research Conference, Liquid Crystallinity in Soft Matter at and Beyond Equilibrium, Biddeford, Maine, June 21–26, 2015.

N. V. Tabiryan, S. V. Serak, D. E. Roberts, E. Serabyn, D. M. Steeves, and B. R. Kimball, “Ultralight and inexpensive telescope technology for deep space optical communication,” 12th Mediterranean Workshop and Topical Meeting on Novel Optical Materials and Applications (NOMA 2015), Cetraro, Italy, June 7–13, 2015.

Rotar, V.

Santamato, E.

E. Karimi, S. Slussarenko, B. Piccirillo, L. Marrucci, and E. Santamato, “Polarization-controlled evolution of light transverse modes and associated Pancharatnam geometric phase in orbital angular momentum,” Phys. Rev. A 81(5), 053813 (2010).
[Crossref]

Sarkissian, H.

H. Sarkissian, B. Park, N. V. Tabirian, and B. Ya. Zeldovich, “Periodically aligned liquid crystal: potential application for projection displays,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 451(1), 1–19 (2006).
[Crossref]

H. Sarkissian, S. V. Serak, N. V. Tabiryan, L. B. Glebov, V. Rotar, and B. Ya. Zeldovich, “Polarization-controlled switching between diffraction orders in transverse-periodically aligned nematic liquid crystals,” Opt. Lett. 31(15), 2248–2250 (2006).
[Crossref] [PubMed]

Sato, S.

Seiberle, H.

H. Seiberle, C. Benecke, and T. Bachels, “Photo-aligned anisotropic optical thin films,” J. Soc. Inf. Disp. 12(1), 87–92 (2004).
[Crossref]

Serabyn, E.

S. R. Nersisyan, N. V. Tabiryan, D. Mawet, and E. Serabyn, “Improving vector vortex waveplates for high-contrast coronagraphy,” Opt. Express 21(7), 8205–8213 (2013).
[Crossref] [PubMed]

N. V. Tabiryan, S. V. Serak, D. E. Roberts, E. Serabyn, D. M. Steeves, and B. R. Kimball, “Ultralight and inexpensive telescope technology for deep space optical communication,” 12th Mediterranean Workshop and Topical Meeting on Novel Optical Materials and Applications (NOMA 2015), Cetraro, Italy, June 7–13, 2015.

N. V. Tabiryan, S. R. Nersisyan, H. Xianyu, and E. Serabyn, “Fabricating vector vortex waveplates for coronagraphy,” in Proceedings of 2012 IEEE Aerospace Conference (IEEE, 2012), pp. 1–12.
[Crossref]

N. V. Tabiryan, S. V. Serak, D. E. Roberts, E. Serabyn, D. M. Steeves, and B. R. Kimball, “Novel opportunities for controlling light with liquid crystals,” Gordon Research Conference, Liquid Crystallinity in Soft Matter at and Beyond Equilibrium, Biddeford, Maine, June 21–26, 2015.

N. V. Tabiryan, H. Xianyu, and E. Serabyn, “Liquid crystal polymer vector vortex waveplates with sub-micrometer singularity,” in Proceedings of 2015 IEEE Aerospace Conference (IEEE, 2015), pp. 1–10.
[Crossref]

Serak, S.

Serak, S. V.

N. V. Tabiryan, S. V. Serak, D. E. Roberts, D. M. Steeves, and B. R. Kimball, “Thin waveplate lenses: new generation in optics,” Proc. SPIE 9565, 956512 (2015).
[Crossref] [PubMed]

N. V. Tabiryan, S. V. Serak, D. E. Roberts, D. M. Steeves, and B. R. Kimball, “Thin waveplate lenses of switchable focal length--new generation in optics,” Opt. Express 23(20), 25783–25794 (2015).
[Crossref] [PubMed]

S. V. Serak, R. S. Hakobyan, S. R. Nersisyan, N. V. Tabiryan, T. J. White, T. J. Bunning, D. M. Steeves, and B. R. Kimball, “All-optical diffractive/transmissive switch based on coupled cycloidal diffractive waveplates,” Opt. Express 20(5), 5460–5469 (2012).
[Crossref] [PubMed]

H. Sarkissian, S. V. Serak, N. V. Tabiryan, L. B. Glebov, V. Rotar, and B. Ya. Zeldovich, “Polarization-controlled switching between diffraction orders in transverse-periodically aligned nematic liquid crystals,” Opt. Lett. 31(15), 2248–2250 (2006).
[Crossref] [PubMed]

N. V. Tabiryan, S. V. Serak, D. E. Roberts, E. Serabyn, D. M. Steeves, and B. R. Kimball, “Novel opportunities for controlling light with liquid crystals,” Gordon Research Conference, Liquid Crystallinity in Soft Matter at and Beyond Equilibrium, Biddeford, Maine, June 21–26, 2015.

B. R. Kimball, D. M. Steeves, L. Hoke, R. M. Osgood, J. Carlson, L. Belton, N. V. Tabiryan, S. R. Nersisyan, S. V. Serak, U. A. Hrozhyk, M. Geis, and T. M. Lyszczarz, “Advances in anisotropic materials for optical switching,” in Proceedings of the 27th Army Science Conference (DTIC, 2010), pp. 1–7.

N. V. Tabiryan, S. V. Serak, D. E. Roberts, E. Serabyn, D. M. Steeves, and B. R. Kimball, “Ultralight and inexpensive telescope technology for deep space optical communication,” 12th Mediterranean Workshop and Topical Meeting on Novel Optical Materials and Applications (NOMA 2015), Cetraro, Italy, June 7–13, 2015.

Shalaev, M. I.

J. Sun, M. I. Shalaev, and N. M. Litchinitser, “Experimental demonstration of a non-resonant hyperlens in the visible spectral range,” Nat. Commun. 6, 7201 (2015).
[Crossref] [PubMed]

Shalaev, V. M.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref] [PubMed]

She, J.

Shen, S.

Slussarenko, S.

E. Karimi, S. Slussarenko, B. Piccirillo, L. Marrucci, and E. Santamato, “Polarization-controlled evolution of light transverse modes and associated Pancharatnam geometric phase in orbital angular momentum,” Phys. Rev. A 81(5), 053813 (2010).
[Crossref]

Steeves, D. M.

N. V. Tabiryan, S. V. Serak, D. E. Roberts, D. M. Steeves, and B. R. Kimball, “Thin waveplate lenses: new generation in optics,” Proc. SPIE 9565, 956512 (2015).
[Crossref] [PubMed]

N. V. Tabiryan, S. V. Serak, D. E. Roberts, D. M. Steeves, and B. R. Kimball, “Thin waveplate lenses of switchable focal length--new generation in optics,” Opt. Express 23(20), 25783–25794 (2015).
[Crossref] [PubMed]

S. V. Serak, R. S. Hakobyan, S. R. Nersisyan, N. V. Tabiryan, T. J. White, T. J. Bunning, D. M. Steeves, and B. R. Kimball, “All-optical diffractive/transmissive switch based on coupled cycloidal diffractive waveplates,” Opt. Express 20(5), 5460–5469 (2012).
[Crossref] [PubMed]

N. V. Tabiryan, S. R. Nersisyan, T. J. White, T. J. Bunning, D. M. Steeves, and B. R. Kimball, “Transparent thin film polarizing and optical control systems,” AIP Adv. 1(2), 022153 (2011).
[Crossref]

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “The principles of laser beam control with polarization gratings introduced as diffractive waveplates,” Proc. SPIE 7775, 77750U, 77750U-10 (2010).
[Crossref]

N. V. Tabiryan, S. R. Nersisyan, D. M. Steeves, and B. R. Kimball, “The promise of diffractive waveplates,” Opt. Photonics News 21(3), 41–45 (2010).

S. R. Nersisyan, N. V. Tabiryan, L. Hoke, D. M. Steeves, and B. R. Kimball, “Polarization insensitive imaging through polarization gratings,” Opt. Express 17(3), 1817–1830 (2009).
[Crossref] [PubMed]

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater. 18(01), 1–47 (2009).
[Crossref]

U. Hrozhyk, S. Nersisyan, S. Serak, N. Tabiryan, L. Hoke, D. M. Steeves, and B. R. Kimball, “Optical switching of liquid-crystal polarization gratings with nanosecond pulses,” Opt. Lett. 34(17), 2554–2556 (2009).
[Crossref] [PubMed]

B. R. Kimball, D. M. Steeves, L. Hoke, R. M. Osgood, J. Carlson, L. Belton, N. V. Tabiryan, S. R. Nersisyan, S. V. Serak, U. A. Hrozhyk, M. Geis, and T. M. Lyszczarz, “Advances in anisotropic materials for optical switching,” in Proceedings of the 27th Army Science Conference (DTIC, 2010), pp. 1–7.

N. V. Tabiryan, S. V. Serak, D. E. Roberts, E. Serabyn, D. M. Steeves, and B. R. Kimball, “Novel opportunities for controlling light with liquid crystals,” Gordon Research Conference, Liquid Crystallinity in Soft Matter at and Beyond Equilibrium, Biddeford, Maine, June 21–26, 2015.

N. V. Tabiryan, S. V. Serak, D. E. Roberts, E. Serabyn, D. M. Steeves, and B. R. Kimball, “Ultralight and inexpensive telescope technology for deep space optical communication,” 12th Mediterranean Workshop and Topical Meeting on Novel Optical Materials and Applications (NOMA 2015), Cetraro, Italy, June 7–13, 2015.

Sun, J.

J. Sun, M. I. Shalaev, and N. M. Litchinitser, “Experimental demonstration of a non-resonant hyperlens in the visible spectral range,” Nat. Commun. 6, 7201 (2015).
[Crossref] [PubMed]

Tabirian, N. V.

H. Sarkissian, B. Park, N. V. Tabirian, and B. Ya. Zeldovich, “Periodically aligned liquid crystal: potential application for projection displays,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 451(1), 1–19 (2006).
[Crossref]

Tabiryan, N.

Tabiryan, N. V.

N. V. Tabiryan, S. V. Serak, D. E. Roberts, D. M. Steeves, and B. R. Kimball, “Thin waveplate lenses: new generation in optics,” Proc. SPIE 9565, 956512 (2015).
[Crossref] [PubMed]

N. V. Tabiryan, S. V. Serak, D. E. Roberts, D. M. Steeves, and B. R. Kimball, “Thin waveplate lenses of switchable focal length--new generation in optics,” Opt. Express 23(20), 25783–25794 (2015).
[Crossref] [PubMed]

S. R. Nersisyan, N. V. Tabiryan, D. Mawet, and E. Serabyn, “Improving vector vortex waveplates for high-contrast coronagraphy,” Opt. Express 21(7), 8205–8213 (2013).
[Crossref] [PubMed]

S. V. Serak, R. S. Hakobyan, S. R. Nersisyan, N. V. Tabiryan, T. J. White, T. J. Bunning, D. M. Steeves, and B. R. Kimball, “All-optical diffractive/transmissive switch based on coupled cycloidal diffractive waveplates,” Opt. Express 20(5), 5460–5469 (2012).
[Crossref] [PubMed]

N. V. Tabiryan, S. R. Nersisyan, T. J. White, T. J. Bunning, D. M. Steeves, and B. R. Kimball, “Transparent thin film polarizing and optical control systems,” AIP Adv. 1(2), 022153 (2011).
[Crossref]

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “The principles of laser beam control with polarization gratings introduced as diffractive waveplates,” Proc. SPIE 7775, 77750U, 77750U-10 (2010).
[Crossref]

N. V. Tabiryan, S. R. Nersisyan, D. M. Steeves, and B. R. Kimball, “The promise of diffractive waveplates,” Opt. Photonics News 21(3), 41–45 (2010).

S. R. Nersisyan, N. V. Tabiryan, L. Hoke, D. M. Steeves, and B. R. Kimball, “Polarization insensitive imaging through polarization gratings,” Opt. Express 17(3), 1817–1830 (2009).
[Crossref] [PubMed]

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater. 18(01), 1–47 (2009).
[Crossref]

H. Sarkissian, S. V. Serak, N. V. Tabiryan, L. B. Glebov, V. Rotar, and B. Ya. Zeldovich, “Polarization-controlled switching between diffraction orders in transverse-periodically aligned nematic liquid crystals,” Opt. Lett. 31(15), 2248–2250 (2006).
[Crossref] [PubMed]

N. V. Tabiryan, S. V. Serak, D. E. Roberts, E. Serabyn, D. M. Steeves, and B. R. Kimball, “Novel opportunities for controlling light with liquid crystals,” Gordon Research Conference, Liquid Crystallinity in Soft Matter at and Beyond Equilibrium, Biddeford, Maine, June 21–26, 2015.

N. V. Tabiryan, H. Xianyu, and E. Serabyn, “Liquid crystal polymer vector vortex waveplates with sub-micrometer singularity,” in Proceedings of 2015 IEEE Aerospace Conference (IEEE, 2015), pp. 1–10.
[Crossref]

B. R. Kimball, D. M. Steeves, L. Hoke, R. M. Osgood, J. Carlson, L. Belton, N. V. Tabiryan, S. R. Nersisyan, S. V. Serak, U. A. Hrozhyk, M. Geis, and T. M. Lyszczarz, “Advances in anisotropic materials for optical switching,” in Proceedings of the 27th Army Science Conference (DTIC, 2010), pp. 1–7.

N. V. Tabiryan, S. R. Nersisyan, H. Xianyu, and E. Serabyn, “Fabricating vector vortex waveplates for coronagraphy,” in Proceedings of 2012 IEEE Aerospace Conference (IEEE, 2012), pp. 1–12.
[Crossref]

N. V. Tabiryan, S. V. Serak, D. E. Roberts, E. Serabyn, D. M. Steeves, and B. R. Kimball, “Ultralight and inexpensive telescope technology for deep space optical communication,” 12th Mediterranean Workshop and Topical Meeting on Novel Optical Materials and Applications (NOMA 2015), Cetraro, Italy, June 7–13, 2015.

Tan, Q.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, G. Jin, C.-W. Qiu, S. Zhang, T. Zentgraf, and Q. Tan, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref] [PubMed]

Tao, J.

J. Yang, Z. Wang, F. Wang, R. Xu, J. Tao, S. Zhang, Q. Qin, B. Luther-Davies, C. Jagadish, Z. Yu, and Y. Lu, “Atomically thin optical lenses and gratings,” Light Sci. Appl. 5(3), e16046 (2016).
[Crossref]

Tao, T.

Tork, A.

Wang, B.

Wang, F.

J. Yang, Z. Wang, F. Wang, R. Xu, J. Tao, S. Zhang, Q. Qin, B. Luther-Davies, C. Jagadish, Z. Yu, and Y. Lu, “Atomically thin optical lenses and gratings,” Light Sci. Appl. 5(3), e16046 (2016).
[Crossref]

Wang, P.

P. Wang, N. Mohammad, and R. Menon, “Chromatic-aberration-corrected diffractive lenses for ultra-broadband focusing,” Sci. Rep. 6, 21545 (2016).
[Crossref] [PubMed]

Wang, Z.

J. Yang, Z. Wang, F. Wang, R. Xu, J. Tao, S. Zhang, Q. Qin, B. Luther-Davies, C. Jagadish, Z. Yu, and Y. Lu, “Atomically thin optical lenses and gratings,” Light Sci. Appl. 5(3), e16046 (2016).
[Crossref]

White, T. J.

Wu, S.-T.

H. Ren, Y.-H. Fan, S. Gauza, and S.-T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
[Crossref]

Xianyu, H.

N. V. Tabiryan, S. R. Nersisyan, H. Xianyu, and E. Serabyn, “Fabricating vector vortex waveplates for coronagraphy,” in Proceedings of 2012 IEEE Aerospace Conference (IEEE, 2012), pp. 1–12.
[Crossref]

N. V. Tabiryan, H. Xianyu, and E. Serabyn, “Liquid crystal polymer vector vortex waveplates with sub-micrometer singularity,” in Proceedings of 2015 IEEE Aerospace Conference (IEEE, 2015), pp. 1–10.
[Crossref]

Xu, R.

J. Yang, Z. Wang, F. Wang, R. Xu, J. Tao, S. Zhang, Q. Qin, B. Luther-Davies, C. Jagadish, Z. Yu, and Y. Lu, “Atomically thin optical lenses and gratings,” Light Sci. Appl. 5(3), e16046 (2016).
[Crossref]

Yang, J.

J. Yang, Z. Wang, F. Wang, R. Xu, J. Tao, S. Zhang, Q. Qin, B. Luther-Davies, C. Jagadish, Z. Yu, and Y. Lu, “Atomically thin optical lenses and gratings,” Light Sci. Appl. 5(3), e16046 (2016).
[Crossref]

Ye, M.

Yu, N.

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

Yu, Z.

J. Yang, Z. Wang, F. Wang, R. Xu, J. Tao, S. Zhang, Q. Qin, B. Luther-Davies, C. Jagadish, Z. Yu, and Y. Lu, “Atomically thin optical lenses and gratings,” Light Sci. Appl. 5(3), e16046 (2016).
[Crossref]

Zeldovich, B.

Zeldovich, B. Ya.

H. Sarkissian, B. Park, N. V. Tabirian, and B. Ya. Zeldovich, “Periodically aligned liquid crystal: potential application for projection displays,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 451(1), 1–19 (2006).
[Crossref]

H. Sarkissian, S. V. Serak, N. V. Tabiryan, L. B. Glebov, V. Rotar, and B. Ya. Zeldovich, “Polarization-controlled switching between diffraction orders in transverse-periodically aligned nematic liquid crystals,” Opt. Lett. 31(15), 2248–2250 (2006).
[Crossref] [PubMed]

Zentgraf, T.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, G. Jin, C.-W. Qiu, S. Zhang, T. Zentgraf, and Q. Tan, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref] [PubMed]

Zhang, S.

J. Yang, Z. Wang, F. Wang, R. Xu, J. Tao, S. Zhang, Q. Qin, B. Luther-Davies, C. Jagadish, Z. Yu, and Y. Lu, “Atomically thin optical lenses and gratings,” Light Sci. Appl. 5(3), e16046 (2016).
[Crossref]

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, G. Jin, C.-W. Qiu, S. Zhang, T. Zentgraf, and Q. Tan, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref] [PubMed]

Zohrabyan, A.

AIP Adv. (1)

N. V. Tabiryan, S. R. Nersisyan, T. J. White, T. J. Bunning, D. M. Steeves, and B. R. Kimball, “Transparent thin film polarizing and optical control systems,” AIP Adv. 1(2), 022153 (2011).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

E. Hasman, V. Kleiner, G. Biener, and A. Niv, “Polarization dependent focusing lens by use of quantized Pancharatnam–Berry phase diffractive optics,” Appl. Phys. Lett. 82(3), 328–330 (2003).
[Crossref]

L. Marrucci, C. Manzo, and D. Paparo, “Pancharatnam-Berry phase optical elements for wave front shaping in the visible domain: Switchable helical mode generation,” Appl. Phys. Lett. 88(22), 221102 (2006).
[Crossref]

H. Ren, Y.-H. Fan, S. Gauza, and S.-T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
[Crossref]

J. Appl. Phys. (1)

G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98(12), 123102 (2005).
[Crossref]

J. Nonlinear Opt. Phys. Mater. (1)

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater. 18(01), 1–47 (2009).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Soc. Inf. Disp. (1)

H. Seiberle, C. Benecke, and T. Bachels, “Photo-aligned anisotropic optical thin films,” J. Soc. Inf. Disp. 12(1), 87–92 (2004).
[Crossref]

Light Sci. Appl. (1)

J. Yang, Z. Wang, F. Wang, R. Xu, J. Tao, S. Zhang, Q. Qin, B. Luther-Davies, C. Jagadish, Z. Yu, and Y. Lu, “Atomically thin optical lenses and gratings,” Light Sci. Appl. 5(3), e16046 (2016).
[Crossref]

Mol. Cryst. Liq. Cryst. (Phila. Pa.) (1)

H. Sarkissian, B. Park, N. V. Tabirian, and B. Ya. Zeldovich, “Periodically aligned liquid crystal: potential application for projection displays,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 451(1), 1–19 (2006).
[Crossref]

Nat. Commun. (2)

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, G. Jin, C.-W. Qiu, S. Zhang, T. Zentgraf, and Q. Tan, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref] [PubMed]

J. Sun, M. I. Shalaev, and N. M. Litchinitser, “Experimental demonstration of a non-resonant hyperlens in the visible spectral range,” Nat. Commun. 6, 7201 (2015).
[Crossref] [PubMed]

Nat. Mater. (1)

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

Opt. Express (7)

L.-C. Lin, H.-C. Jau, T.-H. Lin, and A. Y.-G. Fuh, “Highly efficient and polarization-independent Fresnel lens based on dye-doped liquid crystal,” Opt. Express 15(6), 2900–2906 (2007).
[Crossref] [PubMed]

S. R. Nersisyan, N. V. Tabiryan, L. Hoke, D. M. Steeves, and B. R. Kimball, “Polarization insensitive imaging through polarization gratings,” Opt. Express 17(3), 1817–1830 (2009).
[Crossref] [PubMed]

K. Asatryan, V. Presnyakov, A. Tork, A. Zohrabyan, A. Bagramyan, and T. Galstian, “Optical lens with electrically variable focus using an optically hidden dielectric structure,” Opt. Express 18(13), 13981–13992 (2010).
[Crossref] [PubMed]

S. V. Serak, R. S. Hakobyan, S. R. Nersisyan, N. V. Tabiryan, T. J. White, T. J. Bunning, D. M. Steeves, and B. R. Kimball, “All-optical diffractive/transmissive switch based on coupled cycloidal diffractive waveplates,” Opt. Express 20(5), 5460–5469 (2012).
[Crossref] [PubMed]

S. R. Nersisyan, N. V. Tabiryan, D. Mawet, and E. Serabyn, “Improving vector vortex waveplates for high-contrast coronagraphy,” Opt. Express 21(7), 8205–8213 (2013).
[Crossref] [PubMed]

N. V. Tabiryan, S. V. Serak, D. E. Roberts, D. M. Steeves, and B. R. Kimball, “Thin waveplate lenses of switchable focal length--new generation in optics,” Opt. Express 23(20), 25783–25794 (2015).
[Crossref] [PubMed]

K. Gao, H. H. Cheng, A. K. Bhowmik, and P. J. Bos, “Thin-film Pancharatnam lens with low f-number and high quality,” Opt. Express 23(20), 26086–26094 (2015).
[Crossref] [PubMed]

Opt. Lett. (4)

Opt. Photonics News (1)

N. V. Tabiryan, S. R. Nersisyan, D. M. Steeves, and B. R. Kimball, “The promise of diffractive waveplates,” Opt. Photonics News 21(3), 41–45 (2010).

Optica (1)

Phys. Rev. A (1)

E. Karimi, S. Slussarenko, B. Piccirillo, L. Marrucci, and E. Santamato, “Polarization-controlled evolution of light transverse modes and associated Pancharatnam geometric phase in orbital angular momentum,” Phys. Rev. A 81(5), 053813 (2010).
[Crossref]

Proc. Indian Acad. Sci. Sec. A (1)

S. Pancharatnam, “Achromatic combinations of birefringent plates,” Proc. Indian Acad. Sci. Sec. A 41(4), 130–144 (1955).

Proc. SPIE (2)

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “The principles of laser beam control with polarization gratings introduced as diffractive waveplates,” Proc. SPIE 7775, 77750U, 77750U-10 (2010).
[Crossref]

N. V. Tabiryan, S. V. Serak, D. E. Roberts, D. M. Steeves, and B. R. Kimball, “Thin waveplate lenses: new generation in optics,” Proc. SPIE 9565, 956512 (2015).
[Crossref] [PubMed]

Sci. Rep. (1)

P. Wang, N. Mohammad, and R. Menon, “Chromatic-aberration-corrected diffractive lenses for ultra-broadband focusing,” Sci. Rep. 6, 21545 (2016).
[Crossref] [PubMed]

Science (1)

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref] [PubMed]

Other (10)

B. R. Kimball, D. M. Steeves, L. Hoke, R. M. Osgood, J. Carlson, L. Belton, N. V. Tabiryan, S. R. Nersisyan, S. V. Serak, U. A. Hrozhyk, M. Geis, and T. M. Lyszczarz, “Advances in anisotropic materials for optical switching,” in Proceedings of the 27th Army Science Conference (DTIC, 2010), pp. 1–7.

BEAM Co, Web page http://www.beamco.com/Photoalignment-materials

A. A. Yanik and X. Zhu, “Plasmonic nanolenses and metasurfaces for sorting single bacterial cells,” SPIE Newsroom, http://spie.org/newsroom/technical-articles/6054-plasmonic-nanolenses-and-metasurfaces-for-sorting-single-bacterial-cells?ArticleID=x116724 (2016).

L. Nikolova and P. S. Ramanujam, Polarization Holography (Cambridge University, 2009).

N. V. Tabiryan, S. R. Nersisyan, H. Xianyu, and E. Serabyn, “Fabricating vector vortex waveplates for coronagraphy,” in Proceedings of 2012 IEEE Aerospace Conference (IEEE, 2012), pp. 1–12.
[Crossref]

N. V. Tabiryan, H. Xianyu, and E. Serabyn, “Liquid crystal polymer vector vortex waveplates with sub-micrometer singularity,” in Proceedings of 2015 IEEE Aerospace Conference (IEEE, 2015), pp. 1–10.
[Crossref]

N. Tabirian, S. V. Serak, D. M. Steeves, and B. R. Kimball, “Waveplate lenses and methods for their fabrication,” U.S. Provisional Patent Application No. 61/801,251, March 15, 2013; N. Tabirian, S. V. Serak, D. M. Steeves, and B. R. Kimball, “Waveplate lenses and methods for their fabrication,” U.S. Patent Application No. 14/214,375, March 14, 2014 (to be published).

N. V. Tabiryan, S. V. Serak, D. E. Roberts, E. Serabyn, D. M. Steeves, and B. R. Kimball, “Ultralight and inexpensive telescope technology for deep space optical communication,” 12th Mediterranean Workshop and Topical Meeting on Novel Optical Materials and Applications (NOMA 2015), Cetraro, Italy, June 7–13, 2015.

N. V. Tabiryan, S. V. Serak, D. E. Roberts, E. Serabyn, D. M. Steeves, and B. R. Kimball, “Novel opportunities for controlling light with liquid crystals,” Gordon Research Conference, Liquid Crystallinity in Soft Matter at and Beyond Equilibrium, Biddeford, Maine, June 21–26, 2015.

A. M. W. Tam, F. Fan, H. S. Chen, D. Tao, V. G. Chigrinov, H. S. Kwok, and Y. S. Lin, “Continuous Nanoscale Patterned Photoalignment for Thin Film Pancharatnam-Berry Phase Diffractive Lens,” SID Symposium Digest of Technical Papers 46(S1), p. 8 (2015).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Optical characteristics of PAAD-72 photoalignment material. (a) Absorbance spectrum of a 1% solution of PAAD-72 in DMF with 10 μm cell thickness. (b) Optical transmission vs. time through an LC cell between polarizers with PAAD-72 on one inner surface. Inset of (b) illustrates optical axis orientation at the two planar boundaries of the liquid crystal (1) before laser illumination, and (2) after laser illumination. Cell thickness was 10 μm, liquid crystal was E7, laser wavelength was 488 nm.

Fig. 2
Fig. 2

Simulation of optical anisotropy axis orientation patterns in waveplate lens. (a) Desired optical axis pattern near the center of the lens. Continuous lines are tangential to local optical axis orientation. Short line segments illustrate local molecular axis orientation. (b) Optical axis pattern of argon laser beam used to orient the photoalignment layer for a 25 mm diameter waveplate lens; modulation of the direction of linear polarization is visualized by viewing the pattern through a polarizer.

Fig. 3
Fig. 3

Photos of achromatic waveplate lens between parallel (a) and crossed (b-e) linear polarizers. Photographs were taken with 10X Olympus objective in several areas of the lens. Spacing period on the edge of the lens was Λ = 20 µm.

Fig. 4
Fig. 4

(a) Transmission spectra of chromatic and achromatic waveplate lenses between circular polarizers. (b) Zero-order leakage through a single waveplate lens and a pair of anti-symmetric waveplate lenses. In (a), “achromatic” means two-layer structure with approximately 70° of optical axis twist in each layer in the axial direction, and “633 nm” means a single-layer coating with no axial variation of optical axis orientation, and 1/2 wave of retardation at a wavelength of 633 nm.

Fig. 5
Fig. 5

Photos of beams on screen for white light source, HeNe (633 nm) and argon laser beams (514, 488 and 457 nm): (a) no waveplate lenses; (b, c) chromatic waveplate lenses; (d, e) achromatic waveplate lenses.

Fig. 6
Fig. 6

Dependence of focal length of waveplate lens on wavelength.

Fig. 7
Fig. 7

Photos of a screen illuminated by 633 nm light that has passed through the edge of an achromatic LCP waveplate lens: (a) RHCP light; (b) LHCP light. Zeroth diffracted order at center of photos had low intensity.

Fig. 8
Fig. 8

Dependence of transmission for focused beam on angular setting of QWP.

Fig. 9
Fig. 9

Measured and modeled zero-order leakage through a waveplate lens.

Fig. 10
Fig. 10

Achromatic LCP waveplate lens optimized for near-IR spectral region. Entire lens was photographed (a) between two parallel linear polarizers, and (b) between two crossed linear polarizers. Expanded views are shown between crossed polarizers (c) at the center of the lens and (d) near the edge of the lens. (e) Zero-order leakage of this lens as a function of wavelength immediately after fabrication and after 26 months.

Tables (1)

Tables Icon

Table 1 Transmission of LCP Waveplate Lens for Four Wavelengths

Metrics