Abstract

We propose and demonstrate an integrated tunable optical filter which is promising for reconfigurable optical add/drop multiplexer (ROADM) targeting polarization and wavelength multiplexed signals. The proposed filter is comprised of a polarization diversity scheme and two tunable microring resonators (MRRs). The polarization scheme is implemented by two dimensional (2D) grating couplers which are functioning as signals import, output and add/drop ports, while the MRRs are signals processing units. The add/drop function can be applied on either polarization tribute or any wavelength by controlling the resonate wavelengths of ring resonators. For demonstration, dual polarizations and four-wavelength signals are experimentally added and dropped with good performance and reasonable power penalties.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Silicon based polarization insensitive filter for WDM-PDM signal processing

Yaguang Qin, Yu Yu, Jinghui Zou, Mengyuan Ye, Lei Xiang, and Xinliang Zhang
Opt. Express 21(22) 25727-25733 (2013)

On-chip data exchange for mode division multiplexed signals

Mengyuan Ye, Yu Yu, Chunlei Sun, and Xinliang Zhang
Opt. Express 24(1) 528-535 (2016)

FSR-free silicon-on-insulator microring resonator based filter with bent contra-directional couplers

Nourhan Eid, Robert Boeck, Hasitha Jayatilleka, Lukas Chrostowski, Wei Shi, and Nicolas A. F. Jaeger
Opt. Express 24(25) 29009-29021 (2016)

References

  • View by:
  • |
  • |
  • |

  1. P. N. Ji, Y. Aono, and T. Wang, “Reconfigurable Optical Add/Drop Multiplexer Based on Bidirectional Wavelength Selective Switches,” in Integrated Photonics Research, Silicon and Nanophotonics and Photonics in Switching, OSA Technical Digest (CD) (Optical Society of America, 2010), PWB1.
  2. T. Goh, T. Kitoh, M. Kohtoku, M. Ishii, T. Mizuno, and A. Kaneko, “Port Scalable PLC-Based Wavelength Selective Switch with Low Extension Loss for Multi-Degree ROADM/WXC,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), OWC6.
    [Crossref]
  3. F. Xiao, B. Juswardy, K. Alameh, and Y. T. Lee, “Novel broadband reconfigurable optical add-drop multiplexer employing custom fiber arrays and Opto-VLSI processors,” Opt. Express 16(16), 11703–11708 (2008).
    [Crossref] [PubMed]
  4. T. An Vu, Z. Wen De, R. Tucker, and S. Kai, “Reconfigurable multichannel optical add-drop multiplexers incorporating eight-port optical circulators and fiber Bragg gratings,” IEEE Photonics Technol. Lett. 13(10), 1100–1102 (2001).
    [Crossref]
  5. N. A. Riza and S. F. Yuan, “Reconfigurable wavelength add-drop filtering based on a Banyan network topology and ferroelectric liquid crystal fiber-optic switches,” J. Lightwave Technol. 17(9), 1575–1584 (1999).
    [Crossref]
  6. M. Muha, B. Chiang, and R. Schleicher, “MEMS Based Channelized ROADM Platform,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), JThA24.
    [Crossref]
  7. H. Qiu, G. Jiang, T. Hu, H. Shao, P. Yu, J. Yang, and X. Jiang, “FSR-free add-drop filter based on silicon grating-assisted contradirectional couplers,” Opt. Lett. 38(1), 1–3 (2013).
    [Crossref] [PubMed]
  8. H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Optical add-drop multiplexers based on Si-wire waveguides,” Appl. Phys. Lett. 86(19), 191107 (2005).
    [Crossref]
  9. E. J. Klein, D. H. Geuzebroek, H. Kelderman, G. Sengo, N. Baker, and A. Driessen, “Reconfigurable optical add-drop multiplexer using microring resonators,” IEEE Photonics Technol. Lett. 17(11), 2358–2360 (2005).
    [Crossref]
  10. T. Okoshi, S. Ryu, and K. Kikuchi, “Polarization-diversity receiver for heterodyne/coherent optical fiber communications,” Paper 30C3–2, IOOC 83, 386–387 (1983).
  11. T. Barwicz, M. R. Watts, M. A. Popovi, P. T. Cacute, L. Rakich, F. X. Socci, E. P. Kärtner, Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
    [Crossref]
  12. Lumerical Solutions, Inc., http://www.lumerical.com/ .
  13. Y. Qin, Y. Yu, J. Zou, M. Ye, L. Xiang, and X. Zhang, “Silicon based polarization insensitive filter for WDM-PDM signal processing,” Opt. Express 21(22), 25727–25733 (2013).
    [Crossref] [PubMed]
  14. D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. V. Daele, I. Moerman, S. Verstuyft, K. D. Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
    [Crossref]
  15. J. Zou, Y. Yu, M. Ye, L. Liu, S. Deng, and X. Zhang, “A Four-port Polarization Diversity Coupler for Vertical Fiber-Chip Coupling,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), W2A.10.
    [Crossref]

2013 (2)

2008 (1)

2007 (1)

T. Barwicz, M. R. Watts, M. A. Popovi, P. T. Cacute, L. Rakich, F. X. Socci, E. P. Kärtner, Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

2005 (2)

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Optical add-drop multiplexers based on Si-wire waveguides,” Appl. Phys. Lett. 86(19), 191107 (2005).
[Crossref]

E. J. Klein, D. H. Geuzebroek, H. Kelderman, G. Sengo, N. Baker, and A. Driessen, “Reconfigurable optical add-drop multiplexer using microring resonators,” IEEE Photonics Technol. Lett. 17(11), 2358–2360 (2005).
[Crossref]

2002 (1)

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. V. Daele, I. Moerman, S. Verstuyft, K. D. Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[Crossref]

2001 (1)

T. An Vu, Z. Wen De, R. Tucker, and S. Kai, “Reconfigurable multichannel optical add-drop multiplexers incorporating eight-port optical circulators and fiber Bragg gratings,” IEEE Photonics Technol. Lett. 13(10), 1100–1102 (2001).
[Crossref]

1999 (1)

1983 (1)

T. Okoshi, S. Ryu, and K. Kikuchi, “Polarization-diversity receiver for heterodyne/coherent optical fiber communications,” Paper 30C3–2, IOOC 83, 386–387 (1983).

Alameh, K.

An Vu, T.

T. An Vu, Z. Wen De, R. Tucker, and S. Kai, “Reconfigurable multichannel optical add-drop multiplexers incorporating eight-port optical circulators and fiber Bragg gratings,” IEEE Photonics Technol. Lett. 13(10), 1100–1102 (2001).
[Crossref]

Arakawa, Y.

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Optical add-drop multiplexers based on Si-wire waveguides,” Appl. Phys. Lett. 86(19), 191107 (2005).
[Crossref]

Baets, R.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. V. Daele, I. Moerman, S. Verstuyft, K. D. Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[Crossref]

Baker, N.

E. J. Klein, D. H. Geuzebroek, H. Kelderman, G. Sengo, N. Baker, and A. Driessen, “Reconfigurable optical add-drop multiplexer using microring resonators,” IEEE Photonics Technol. Lett. 17(11), 2358–2360 (2005).
[Crossref]

Barwicz, T.

T. Barwicz, M. R. Watts, M. A. Popovi, P. T. Cacute, L. Rakich, F. X. Socci, E. P. Kärtner, Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

Bienstman, P.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. V. Daele, I. Moerman, S. Verstuyft, K. D. Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[Crossref]

Bogaerts, W.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. V. Daele, I. Moerman, S. Verstuyft, K. D. Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[Crossref]

Cacute, P. T.

T. Barwicz, M. R. Watts, M. A. Popovi, P. T. Cacute, L. Rakich, F. X. Socci, E. P. Kärtner, Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

Chu, T.

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Optical add-drop multiplexers based on Si-wire waveguides,” Appl. Phys. Lett. 86(19), 191107 (2005).
[Crossref]

Daele, P. V.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. V. Daele, I. Moerman, S. Verstuyft, K. D. Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[Crossref]

Driessen, A.

E. J. Klein, D. H. Geuzebroek, H. Kelderman, G. Sengo, N. Baker, and A. Driessen, “Reconfigurable optical add-drop multiplexer using microring resonators,” IEEE Photonics Technol. Lett. 17(11), 2358–2360 (2005).
[Crossref]

Geuzebroek, D. H.

E. J. Klein, D. H. Geuzebroek, H. Kelderman, G. Sengo, N. Baker, and A. Driessen, “Reconfigurable optical add-drop multiplexer using microring resonators,” IEEE Photonics Technol. Lett. 17(11), 2358–2360 (2005).
[Crossref]

Hu, T.

Ippen,

T. Barwicz, M. R. Watts, M. A. Popovi, P. T. Cacute, L. Rakich, F. X. Socci, E. P. Kärtner, Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

Ishida, S.

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Optical add-drop multiplexers based on Si-wire waveguides,” Appl. Phys. Lett. 86(19), 191107 (2005).
[Crossref]

Jiang, G.

Jiang, X.

Juswardy, B.

Kai, S.

T. An Vu, Z. Wen De, R. Tucker, and S. Kai, “Reconfigurable multichannel optical add-drop multiplexers incorporating eight-port optical circulators and fiber Bragg gratings,” IEEE Photonics Technol. Lett. 13(10), 1100–1102 (2001).
[Crossref]

Kärtner, E. P.

T. Barwicz, M. R. Watts, M. A. Popovi, P. T. Cacute, L. Rakich, F. X. Socci, E. P. Kärtner, Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

Kelderman, H.

E. J. Klein, D. H. Geuzebroek, H. Kelderman, G. Sengo, N. Baker, and A. Driessen, “Reconfigurable optical add-drop multiplexer using microring resonators,” IEEE Photonics Technol. Lett. 17(11), 2358–2360 (2005).
[Crossref]

Kikuchi, K.

T. Okoshi, S. Ryu, and K. Kikuchi, “Polarization-diversity receiver for heterodyne/coherent optical fiber communications,” Paper 30C3–2, IOOC 83, 386–387 (1983).

Klein, E. J.

E. J. Klein, D. H. Geuzebroek, H. Kelderman, G. Sengo, N. Baker, and A. Driessen, “Reconfigurable optical add-drop multiplexer using microring resonators,” IEEE Photonics Technol. Lett. 17(11), 2358–2360 (2005).
[Crossref]

Krauss, T. F.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. V. Daele, I. Moerman, S. Verstuyft, K. D. Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[Crossref]

Lee, Y. T.

Mesel, K. D.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. V. Daele, I. Moerman, S. Verstuyft, K. D. Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[Crossref]

Moerman, I.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. V. Daele, I. Moerman, S. Verstuyft, K. D. Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[Crossref]

Okoshi, T.

T. Okoshi, S. Ryu, and K. Kikuchi, “Polarization-diversity receiver for heterodyne/coherent optical fiber communications,” Paper 30C3–2, IOOC 83, 386–387 (1983).

Popovi, M. A.

T. Barwicz, M. R. Watts, M. A. Popovi, P. T. Cacute, L. Rakich, F. X. Socci, E. P. Kärtner, Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

Qin, Y.

Qiu, H.

Rakich, L.

T. Barwicz, M. R. Watts, M. A. Popovi, P. T. Cacute, L. Rakich, F. X. Socci, E. P. Kärtner, Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

Riza, N. A.

Ryu, S.

T. Okoshi, S. Ryu, and K. Kikuchi, “Polarization-diversity receiver for heterodyne/coherent optical fiber communications,” Paper 30C3–2, IOOC 83, 386–387 (1983).

Sengo, G.

E. J. Klein, D. H. Geuzebroek, H. Kelderman, G. Sengo, N. Baker, and A. Driessen, “Reconfigurable optical add-drop multiplexer using microring resonators,” IEEE Photonics Technol. Lett. 17(11), 2358–2360 (2005).
[Crossref]

Shao, H.

Smith, H. I.

T. Barwicz, M. R. Watts, M. A. Popovi, P. T. Cacute, L. Rakich, F. X. Socci, E. P. Kärtner, Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

Socci, F. X.

T. Barwicz, M. R. Watts, M. A. Popovi, P. T. Cacute, L. Rakich, F. X. Socci, E. P. Kärtner, Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

Taillaert, D.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. V. Daele, I. Moerman, S. Verstuyft, K. D. Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[Crossref]

Tucker, R.

T. An Vu, Z. Wen De, R. Tucker, and S. Kai, “Reconfigurable multichannel optical add-drop multiplexers incorporating eight-port optical circulators and fiber Bragg gratings,” IEEE Photonics Technol. Lett. 13(10), 1100–1102 (2001).
[Crossref]

Verstuyft, S.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. V. Daele, I. Moerman, S. Verstuyft, K. D. Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[Crossref]

Watts, M. R.

T. Barwicz, M. R. Watts, M. A. Popovi, P. T. Cacute, L. Rakich, F. X. Socci, E. P. Kärtner, Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

Wen De, Z.

T. An Vu, Z. Wen De, R. Tucker, and S. Kai, “Reconfigurable multichannel optical add-drop multiplexers incorporating eight-port optical circulators and fiber Bragg gratings,” IEEE Photonics Technol. Lett. 13(10), 1100–1102 (2001).
[Crossref]

Xiang, L.

Xiao, F.

Yamada, H.

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Optical add-drop multiplexers based on Si-wire waveguides,” Appl. Phys. Lett. 86(19), 191107 (2005).
[Crossref]

Yang, J.

Ye, M.

Yu, P.

Yu, Y.

Yuan, S. F.

Zhang, X.

Zou, J.

Appl. Phys. Lett. (1)

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Optical add-drop multiplexers based on Si-wire waveguides,” Appl. Phys. Lett. 86(19), 191107 (2005).
[Crossref]

IEEE J. Quantum Electron. (1)

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. V. Daele, I. Moerman, S. Verstuyft, K. D. Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[Crossref]

IEEE Photonics Technol. Lett. (2)

E. J. Klein, D. H. Geuzebroek, H. Kelderman, G. Sengo, N. Baker, and A. Driessen, “Reconfigurable optical add-drop multiplexer using microring resonators,” IEEE Photonics Technol. Lett. 17(11), 2358–2360 (2005).
[Crossref]

T. An Vu, Z. Wen De, R. Tucker, and S. Kai, “Reconfigurable multichannel optical add-drop multiplexers incorporating eight-port optical circulators and fiber Bragg gratings,” IEEE Photonics Technol. Lett. 13(10), 1100–1102 (2001).
[Crossref]

J. Lightwave Technol. (1)

Nat. Photonics (1)

T. Barwicz, M. R. Watts, M. A. Popovi, P. T. Cacute, L. Rakich, F. X. Socci, E. P. Kärtner, Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Paper 30C3–2, IOOC (1)

T. Okoshi, S. Ryu, and K. Kikuchi, “Polarization-diversity receiver for heterodyne/coherent optical fiber communications,” Paper 30C3–2, IOOC 83, 386–387 (1983).

Other (5)

P. N. Ji, Y. Aono, and T. Wang, “Reconfigurable Optical Add/Drop Multiplexer Based on Bidirectional Wavelength Selective Switches,” in Integrated Photonics Research, Silicon and Nanophotonics and Photonics in Switching, OSA Technical Digest (CD) (Optical Society of America, 2010), PWB1.

T. Goh, T. Kitoh, M. Kohtoku, M. Ishii, T. Mizuno, and A. Kaneko, “Port Scalable PLC-Based Wavelength Selective Switch with Low Extension Loss for Multi-Degree ROADM/WXC,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), OWC6.
[Crossref]

Lumerical Solutions, Inc., http://www.lumerical.com/ .

M. Muha, B. Chiang, and R. Schleicher, “MEMS Based Channelized ROADM Platform,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), JThA24.
[Crossref]

J. Zou, Y. Yu, M. Ye, L. Liu, S. Deng, and X. Zhang, “A Four-port Polarization Diversity Coupler for Vertical Fiber-Chip Coupling,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), W2A.10.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

(a) Schematic configuration of the proposed filter, (b) 3D FDTD simulated electric field distribution of coupled light with different input polarization via 2D GC, (c) schematic of operation principle on both polarization and wavelength domain.

Fig. 2
Fig. 2

Optical micrographs of (a) the layout of proposed filter, the red dash boxes are the reference MRRs, (b) tunable MRR, (c) 2D GC with BGSs, and the SEM images of (d) coupling region of reference MRR, (e) air holes of 2D GC.

Fig. 3
Fig. 3

Spectral response of reference MRR when bias voltage varies from 0V to 5V, (a) through port of MRR (b) drop port of MRR.

Fig. 4
Fig. 4

The experimental setup.

Fig. 5
Fig. 5

The spectral response of dropped X-polarized signal at different sigal wavelengths: (a) wavelength 1, (b) wavelength 2, (c) wavelength 3, (d) wavelength 4; (e) the eye diagram of four signal wavelengths.

Fig. 6
Fig. 6

The spectral response of X-polarized signal after the filtering at different signal wavelengths: (a) wavelength 1, (b) wavelength 2, (c) wavelength 3, (d) wavelength 4.

Fig. 7
Fig. 7

The add functionality of X-polarizaed tributary at four signal wavelengths via bias voltage tuning, the spectral response of different signal wavelengths: (a) wavelength 1, (b) wavelength 2, (c) wavelength 3, (d) wavelength 4; (e) the eye diagram of four signal wavelengths.

Fig. 8
Fig. 8

The spectral response of dropped Y-polarized signal at different sigal wavelengths: (a) wavelength 1, (b) wavelength 2, (c) wavelength 3, (d) wavelength 4; (e) the eye diagram of four signal wavelengths.

Fig. 9
Fig. 9

The spectral response of Y-polarized signal after the filtering at different signal wavelengths: (a) wavelength 1, (b) wavelength 2, (c) wavelength 3, (d) wavelength 4.

Fig. 10
Fig. 10

The add functionality of Y-polarizaed tributary at four signal wavelengths via bias voltage tuning, the spectral response of different signal wavelengths: (a) wavelength 1, (b) wavelength 2, (c) wavelength 3, (d) wavelength 4; (e) the eye diagram of four signal wavelengths.

Fig. 11
Fig. 11

The measured power penalty.

Metrics