Abstract

We demonstrate a terahertz (THz) radiation using log-spiral-based low-temperature-grown (LTG) InGaAs photoconductive antenna (PCA) modules and a passively mode-locked 1030 nm Yb-doped fiber laser. The passively mode-locked Yb-doped fiber laser is easily implemented with nonlinear polarization rotation in the normal dispersion using a 10-nm spectral filter. The laser generates over 250 mW of the average output power with positively chirped 1.58 ps pulses, which are dechirped to 127 fs pulses using a pulse compressor outside the laser cavity. In order to obtain THz radiation, a home-made emitter and receiver constructed from log-spiral-based LTG InGaAs PCA modules were used to generate and detect THz signals, respectively. We successfully achieved absorption lines over 1.5 THz for water vapor in free space. Therefore, we confirm that a mode-locked Yb-doped fiber laser has the potential to be used as an optical source to generate THZ waves.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Control of terahertz emission in photoconductive antennas through an additional optical continuous wave

A. Bockelt, J. Palací, and B. Vidal
Opt. Lett. 38(16) 3123-3125 (2013)

Optical fiber-coupled InGaAs-based terahertz time–domain spectroscopy system

Sang-Pil Han, Hyunsung Ko, Namje Kim, Han-Cheol Ryu, Chul Wook Lee, Young Ahn Leem, Donghun Lee, Min Yong Jeon, Sam Kyu Noh, Hyang Sook Chun, and Kyung Hyun Park
Opt. Lett. 36(16) 3094-3096 (2011)

Compact fiber-pigtailed InGaAs photoconductive antenna module for terahertz-wave generation and detection

Sang-Pil Han, Namje Kim, Hyunsung Ko, Han-Cheol Ryu, Jeong-Woo Park, Young-Jong Yoon, Jun-Hwan Shin, Dong Hun Lee, Sang-Ho Park, Seok-Hwan Moon, Sung-Wook Choi, Hyang Sook Chun, and Kyung Hyun Park
Opt. Express 20(16) 18432-18439 (2012)

References

  • View by:
  • |
  • |
  • |

  1. X. Xin, H. Altan, A. Saint, D. Matten, and R. R. Alfano, “Laser micro-welding of transparent materials by a localized heat accumulation effect using a femtosecond fiber laser at 1558 nm,” Opt. Express 14, 10461–10468 (2006).
  2. S. Yavaş, M. Erdogan, K. Gürel, F. Ö. Ilday, Y. B. Eldeniz, and U. H. Tazebay, “Fiber laser-microscope system for femtosecond photodisruption of biological samples,” Biomed. Opt. Express 3(3), 605–611 (2012).
    [Crossref] [PubMed]
  3. T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2(6), 355–359 (2008).
    [Crossref]
  4. R. J. B. Dietz, R. Wilk, B. Globisch, H. Roehle, D. Stanze, S. Ullrich, S. Schumann, N. Born, M. Koch, B. Sartorius, and M. Schell, “Low temperature grown Be-doped InGaAs/InAlAs photoconductive antennas excited at 1030 nm,” J. Inf. Millimeter Waves 34(3-4), 231–237 (2013).
    [Crossref]
  5. V. L. Kalashnikov, E. Sorokin, and I. T. Sorokina, “Chirped dissipative soliton absorption spectroscopy,” Opt. Express 19(18), 17480–17492 (2011).
    [Crossref] [PubMed]
  6. F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92(21), 213902 (2004).
    [Crossref] [PubMed]
  7. W. H. Renninger, A. Chong, and F. W. Wise, “Pulse shaping and evolution in normal-dispersion mode-locked fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 18(1), 389–398 (2012).
    [Crossref] [PubMed]
  8. C. Li, G. Wang, T. Jiang, P. Li, A. Wang, and Z. Zhang, “Femtosecond amplifier similariton Yb:fiber laser at a 616 MHz repetition rate,” Opt. Lett. 39(7), 1831–1833 (2014).
    [Crossref] [PubMed]
  9. A. Chong, J. Buckley, W. Renninger, and F. Wise, “All-normal-dispersion femtosecond fiber laser,” Opt. Express 14(21), 10095–10100 (2006).
    [Crossref] [PubMed]
  10. P. Qin, Y. Song, H. Kim, J. Shin, D. Kwon, M. Hu, C. Wang, and J. Kim, “Reduction of timing jitter and intensity noise in normal-dispersion passively mode-locked fiber lasers by narrow band-pass filtering,” Opt. Express 22(23), 28276–28283 (2014).
    [Crossref] [PubMed]
  11. M. Suzuki, R. A. Ganeev, S. Yoneya, and H. Kuroda, “Generation of broadband noise-like pulse from Yb-doped fiber laser ring cavity,” Opt. Lett. 40(5), 804–807 (2015).
    [Crossref] [PubMed]
  12. Z. Q. Luo, Y. Z. Huang, J. Z. Wang, H. H. Cheng, Z. P. Cai, and C. C. Ye, “Multiwavelength dissipative-soliton generation in Yb-fiber laser using graphene-deposited fiber-taper,” IEEE Photonics Technol. Lett. 24(17), 1539–1542 (2012).
    [Crossref]
  13. A. F. J. Runge, C. Aguergaray, R. Provo, M. Erkintalo, and N. G. R. Broderick, “All-normal dispersion fiber lasers mode-locked with a nonlinear amplifying loop mirror,” Opt. Fiber Technol. 20(6), 657–665 (2014).
    [Crossref]
  14. K. Özgören and F. Ö. Ilday, “All-fiber all-normal dispersion laser with a fiber-based Lyot filter,” Opt. Lett. 35(8), 1296–1298 (2010).
    [Crossref] [PubMed]
  15. J. Wang, X. Bu, R. Wang, L. Zhang, J. Zhu, H. Teng, H. Han, and Z. Wei, “All-normal-dispersion passive harmonic mode-locking 220 fs ytterbium fiber laser,” Appl. Opt. 53(23), 5088–5091 (2014).
    [Crossref] [PubMed]
  16. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
    [Crossref]
  17. K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, “Non-destructive terahertz imaging of illicit drugs using spectral fingerprints,” Opt. Express 11(20), 2549–2554 (2003).
    [Crossref] [PubMed]
  18. T. Yasui, T. Yasuda, K. Sawanaka, and T. Araki, “Terahertz paintmeter for noncontact monitoring of thickness and drying progress in paint film,” Appl. Opt. 44(32), 6849–6856 (2005).
    [Crossref] [PubMed]
  19. J.-Y. Lu, L.-J. Chen, T.-F. Kao, H.-H. Chang, H.-W. Chen, A.-S. Liu, Y.-C. Chen, R.-B. Wu, W.-S. Liu, J.-I. Chyi, and C.-K. Sun, “Terahertz microchip for illicit drug detection,” IEEE Photonics Technol. Lett. 18(21), 2254–2256 (2006).
    [Crossref]
  20. C. Jansen, S. Wietzke, O. Peters, M. Scheller, N. Vieweg, M. Salhi, N. Krumbholz, C. Jördens, T. Hochrein, and M. Koch, “Terahertz imaging: applications and perspectives,” Appl. Opt. 49(19), E48–E57 (2010).
    [Crossref] [PubMed]
  21. M. Ashida, “Ultra-broadband terahertz wave detection using photoconductive antenna,” Jpn. J. Appl. Phys. 47(10), 8221–8225 (2008).
    [Crossref]
  22. R. J. B. Dietz, N. Vieweg, T. Puppe, A. Zach, B. Globisch, T. Göbel, P. Leisching, and M. Schell, “All fiber-coupled THz-TDS system with kHz measurement rate based on electronically controlled optical sampling,” Opt. Lett. 39(22), 6482–6485 (2014).
    [Crossref] [PubMed]
  23. B. Sartorius, H. Roehle, H. Künzel, J. Böttcher, M. Schlak, D. Stanze, H. Venghaus, and M. Schell, “All-fiber terahertz time-domain spectrometer operating at 1.5 µm telecom wavelengths,” Opt. Express 16(13), 9565–9570 (2008).
    [Crossref] [PubMed]
  24. S.-P. Han, N. Kim, H. Ko, H. C. Ryu, J. W. Park, Y. J. Yoon, J. H. Shin, D. H. Lee, S. H. Park, S. H. Moon, S. W. Choi, H. S. Chun, and K. H. Park, “Compact fiber-pigtailed InGaAs photoconductive antenna module for terahertz-wave generation and detection,” Opt. Express 20(16), 18432–18439 (2012).
    [Crossref] [PubMed]
  25. M. C. Hoffmann, K.-L. Yeh, H. Y. Hwang, T. S. Sosnowski, B. S. Prall, J. Hebling, and K. A. Nelson, “Fiber laser pumped high average power single-cycle terahertz pulse source,” Appl. Phys. Lett. 93(14), 141107 (2008).
    [Crossref]
  26. M. Nagai, E. Matsubara, M. Ashida, J. Takayanagi, and H. Ohtake, “Generation and detection of THz pulses with a bandwidth extending beyond 4 THz using a subpicosecond Yb-doped fiber laser system,” IEEE Trans. Terahertz Sci. Technol. 4(4), 440–446 (2014).
    [Crossref]
  27. S.-P. Han, H. Ko, N. Kim, H.-C. Ryu, C. W. Lee, Y. A. Leem, D. Lee, M. Y. Jeon, S. K. Noh, H. S. Chun, and K. H. Park, “Optical fiber-coupled InGaAs-based terahertz time-domain spectroscopy system,” Opt. Lett. 36(16), 3094–3096 (2011).
    [Crossref] [PubMed]
  28. J. Takayanagi, S. Kanamori, K. Suizu, M. Yamashita, T. Ouchi, S. Kasai, H. Ohtake, H. Uchida, N. Nishizawa, and K. Kawase, “Generation and detection of broadband coherent terahertz radiation using 17-fs ultrashort pulse fiber laser,” Opt. Express 16(17), 12859–12865 (2008).
    [Crossref] [PubMed]
  29. R. J. B. Dietz, B. Globisch, H. Roehle, D. Stanze, T. Göbel, and M. Schell, “Influence and adjustment of carrier lifetimes in InGaAs/InAlAs photoconductive pulsed terahertz detectors: 6 THz bandwidth and 90dB dynamic range,” Opt. Express 22(16), 19411–19422 (2014).
    [Crossref] [PubMed]
  30. G. Matthäus, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, S. Riehemann, G. Notni, and A. Tünnermann, “Large-area microlens emitters for powerful THz emission,” Appl. Phys. B 96(2-3), 233–235 (2009).
    [Crossref]
  31. K. Moon, I.-M. Lee, J.-H. Shin, E. S. Lee, N. Kim, W.-H. Lee, H. Ko, S.-P. Han, and K. H. Park, “Bias field tailored plasmonic nano-electrode for high-power terahertz photonic devices,” Sci. Rep. 5, 13817 (2015).
    [Crossref] [PubMed]
  32. G. Matthäus, B. Ortaç, J. Limpert, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, and A. Tünnermann, “Intra- cavity terahertz generation inside a high-energy ultrafast soliton fiber laser,” Appl. Phys. Lett. 93(26), 261105 (2008).
    [Crossref]
  33. G. Chang, C. J. Divin, J. Yang, M. A. Musheinish, S. L. Williamson, A. Galvanauskas, and T. B. Norris, “GaP waveguide emitters for high power broadband THz generation pumped by Yb-doped fiber lasers,” Opt. Express 15(25), 16308–16315 (2007).
    [Crossref] [PubMed]
  34. F. Liu, Y.-J. Song, Q.-R. Xing, M.-L. Hu, Y.-F. Li, C.-L. Wang, L. Chai, W.-L. Zhang, A. M. Zheltikov, and C.-Y. Wang, “Broadband terahertz pulses generated by a compact femtosecond photonic crystal fiber amplifier,” IEEE Photonics Technol. Lett. 22(11), 814–816 (2010).
    [Crossref]
  35. G. Matthäus, T. Schreiber, J. Limpert, S. Nolte, G. Torosyan, R. Beigang, S. Riehemann, G. Notni, and A. Tünnermann, “Surface-emitted THz generation using a compact ultrashort pulse fiber amplifier at 1060 nm,” Opt. Commun. 261(1), 114–117 (2006).
    [Crossref]
  36. A. Brahm, A. Wilms, R. J. B. Dietz, T. Göbel, M. Schell, G. Notni, and A. Tünnermann, “Multichannel terahertz time-domain spectroscopy system at 1030 nm excitation wavelength,” Opt. Express 22(11), 12982–12993 (2014).
    [Crossref] [PubMed]
  37. H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, “Stretched-pulse additive pulse mode-locking in fiber ring lasers: Theory and experiment,” IEEE J. Quantum Electron. 31(3), 591–598 (1995).
    [Crossref]
  38. S.-P. Han, H. Ko, N. Kim, W.-H. Lee, K. Moon, I.-M. Lee, E. S. Lee, D. H. Lee, W. Lee, S.-T. Han, S.-W. Choi, and K. H. Park, “Real-time continuous-wave terahertz line scanner based on a compact 1 × 240 InGaAs Schottky barrier diode array detector,” Opt. Express 22(23), 28977–28983 (2014).
    [Crossref] [PubMed]
  39. X. Xin, H. Altan, A. Saint, D. Matten, and R. R. Alfano, “Terahertz absorption spectrum of para and ortho water vapors at different humidities at room temperature,” J. Appl. Phys. 100(9), 094905 (2006).
    [Crossref]

2015 (2)

M. Suzuki, R. A. Ganeev, S. Yoneya, and H. Kuroda, “Generation of broadband noise-like pulse from Yb-doped fiber laser ring cavity,” Opt. Lett. 40(5), 804–807 (2015).
[Crossref] [PubMed]

K. Moon, I.-M. Lee, J.-H. Shin, E. S. Lee, N. Kim, W.-H. Lee, H. Ko, S.-P. Han, and K. H. Park, “Bias field tailored plasmonic nano-electrode for high-power terahertz photonic devices,” Sci. Rep. 5, 13817 (2015).
[Crossref] [PubMed]

2014 (9)

R. J. B. Dietz, B. Globisch, H. Roehle, D. Stanze, T. Göbel, and M. Schell, “Influence and adjustment of carrier lifetimes in InGaAs/InAlAs photoconductive pulsed terahertz detectors: 6 THz bandwidth and 90dB dynamic range,” Opt. Express 22(16), 19411–19422 (2014).
[Crossref] [PubMed]

A. Brahm, A. Wilms, R. J. B. Dietz, T. Göbel, M. Schell, G. Notni, and A. Tünnermann, “Multichannel terahertz time-domain spectroscopy system at 1030 nm excitation wavelength,” Opt. Express 22(11), 12982–12993 (2014).
[Crossref] [PubMed]

R. J. B. Dietz, N. Vieweg, T. Puppe, A. Zach, B. Globisch, T. Göbel, P. Leisching, and M. Schell, “All fiber-coupled THz-TDS system with kHz measurement rate based on electronically controlled optical sampling,” Opt. Lett. 39(22), 6482–6485 (2014).
[Crossref] [PubMed]

M. Nagai, E. Matsubara, M. Ashida, J. Takayanagi, and H. Ohtake, “Generation and detection of THz pulses with a bandwidth extending beyond 4 THz using a subpicosecond Yb-doped fiber laser system,” IEEE Trans. Terahertz Sci. Technol. 4(4), 440–446 (2014).
[Crossref]

A. F. J. Runge, C. Aguergaray, R. Provo, M. Erkintalo, and N. G. R. Broderick, “All-normal dispersion fiber lasers mode-locked with a nonlinear amplifying loop mirror,” Opt. Fiber Technol. 20(6), 657–665 (2014).
[Crossref]

J. Wang, X. Bu, R. Wang, L. Zhang, J. Zhu, H. Teng, H. Han, and Z. Wei, “All-normal-dispersion passive harmonic mode-locking 220 fs ytterbium fiber laser,” Appl. Opt. 53(23), 5088–5091 (2014).
[Crossref] [PubMed]

P. Qin, Y. Song, H. Kim, J. Shin, D. Kwon, M. Hu, C. Wang, and J. Kim, “Reduction of timing jitter and intensity noise in normal-dispersion passively mode-locked fiber lasers by narrow band-pass filtering,” Opt. Express 22(23), 28276–28283 (2014).
[Crossref] [PubMed]

C. Li, G. Wang, T. Jiang, P. Li, A. Wang, and Z. Zhang, “Femtosecond amplifier similariton Yb:fiber laser at a 616 MHz repetition rate,” Opt. Lett. 39(7), 1831–1833 (2014).
[Crossref] [PubMed]

S.-P. Han, H. Ko, N. Kim, W.-H. Lee, K. Moon, I.-M. Lee, E. S. Lee, D. H. Lee, W. Lee, S.-T. Han, S.-W. Choi, and K. H. Park, “Real-time continuous-wave terahertz line scanner based on a compact 1 × 240 InGaAs Schottky barrier diode array detector,” Opt. Express 22(23), 28977–28983 (2014).
[Crossref] [PubMed]

2013 (1)

R. J. B. Dietz, R. Wilk, B. Globisch, H. Roehle, D. Stanze, S. Ullrich, S. Schumann, N. Born, M. Koch, B. Sartorius, and M. Schell, “Low temperature grown Be-doped InGaAs/InAlAs photoconductive antennas excited at 1030 nm,” J. Inf. Millimeter Waves 34(3-4), 231–237 (2013).
[Crossref]

2012 (4)

S. Yavaş, M. Erdogan, K. Gürel, F. Ö. Ilday, Y. B. Eldeniz, and U. H. Tazebay, “Fiber laser-microscope system for femtosecond photodisruption of biological samples,” Biomed. Opt. Express 3(3), 605–611 (2012).
[Crossref] [PubMed]

W. H. Renninger, A. Chong, and F. W. Wise, “Pulse shaping and evolution in normal-dispersion mode-locked fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 18(1), 389–398 (2012).
[Crossref] [PubMed]

Z. Q. Luo, Y. Z. Huang, J. Z. Wang, H. H. Cheng, Z. P. Cai, and C. C. Ye, “Multiwavelength dissipative-soliton generation in Yb-fiber laser using graphene-deposited fiber-taper,” IEEE Photonics Technol. Lett. 24(17), 1539–1542 (2012).
[Crossref]

S.-P. Han, N. Kim, H. Ko, H. C. Ryu, J. W. Park, Y. J. Yoon, J. H. Shin, D. H. Lee, S. H. Park, S. H. Moon, S. W. Choi, H. S. Chun, and K. H. Park, “Compact fiber-pigtailed InGaAs photoconductive antenna module for terahertz-wave generation and detection,” Opt. Express 20(16), 18432–18439 (2012).
[Crossref] [PubMed]

2011 (2)

2010 (3)

K. Özgören and F. Ö. Ilday, “All-fiber all-normal dispersion laser with a fiber-based Lyot filter,” Opt. Lett. 35(8), 1296–1298 (2010).
[Crossref] [PubMed]

C. Jansen, S. Wietzke, O. Peters, M. Scheller, N. Vieweg, M. Salhi, N. Krumbholz, C. Jördens, T. Hochrein, and M. Koch, “Terahertz imaging: applications and perspectives,” Appl. Opt. 49(19), E48–E57 (2010).
[Crossref] [PubMed]

F. Liu, Y.-J. Song, Q.-R. Xing, M.-L. Hu, Y.-F. Li, C.-L. Wang, L. Chai, W.-L. Zhang, A. M. Zheltikov, and C.-Y. Wang, “Broadband terahertz pulses generated by a compact femtosecond photonic crystal fiber amplifier,” IEEE Photonics Technol. Lett. 22(11), 814–816 (2010).
[Crossref]

2009 (1)

G. Matthäus, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, S. Riehemann, G. Notni, and A. Tünnermann, “Large-area microlens emitters for powerful THz emission,” Appl. Phys. B 96(2-3), 233–235 (2009).
[Crossref]

2008 (6)

G. Matthäus, B. Ortaç, J. Limpert, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, and A. Tünnermann, “Intra- cavity terahertz generation inside a high-energy ultrafast soliton fiber laser,” Appl. Phys. Lett. 93(26), 261105 (2008).
[Crossref]

M. Ashida, “Ultra-broadband terahertz wave detection using photoconductive antenna,” Jpn. J. Appl. Phys. 47(10), 8221–8225 (2008).
[Crossref]

B. Sartorius, H. Roehle, H. Künzel, J. Böttcher, M. Schlak, D. Stanze, H. Venghaus, and M. Schell, “All-fiber terahertz time-domain spectrometer operating at 1.5 µm telecom wavelengths,” Opt. Express 16(13), 9565–9570 (2008).
[Crossref] [PubMed]

J. Takayanagi, S. Kanamori, K. Suizu, M. Yamashita, T. Ouchi, S. Kasai, H. Ohtake, H. Uchida, N. Nishizawa, and K. Kawase, “Generation and detection of broadband coherent terahertz radiation using 17-fs ultrashort pulse fiber laser,” Opt. Express 16(17), 12859–12865 (2008).
[Crossref] [PubMed]

M. C. Hoffmann, K.-L. Yeh, H. Y. Hwang, T. S. Sosnowski, B. S. Prall, J. Hebling, and K. A. Nelson, “Fiber laser pumped high average power single-cycle terahertz pulse source,” Appl. Phys. Lett. 93(14), 141107 (2008).
[Crossref]

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2(6), 355–359 (2008).
[Crossref]

2007 (2)

2006 (5)

G. Matthäus, T. Schreiber, J. Limpert, S. Nolte, G. Torosyan, R. Beigang, S. Riehemann, G. Notni, and A. Tünnermann, “Surface-emitted THz generation using a compact ultrashort pulse fiber amplifier at 1060 nm,” Opt. Commun. 261(1), 114–117 (2006).
[Crossref]

X. Xin, H. Altan, A. Saint, D. Matten, and R. R. Alfano, “Laser micro-welding of transparent materials by a localized heat accumulation effect using a femtosecond fiber laser at 1558 nm,” Opt. Express 14, 10461–10468 (2006).

A. Chong, J. Buckley, W. Renninger, and F. Wise, “All-normal-dispersion femtosecond fiber laser,” Opt. Express 14(21), 10095–10100 (2006).
[Crossref] [PubMed]

X. Xin, H. Altan, A. Saint, D. Matten, and R. R. Alfano, “Terahertz absorption spectrum of para and ortho water vapors at different humidities at room temperature,” J. Appl. Phys. 100(9), 094905 (2006).
[Crossref]

J.-Y. Lu, L.-J. Chen, T.-F. Kao, H.-H. Chang, H.-W. Chen, A.-S. Liu, Y.-C. Chen, R.-B. Wu, W.-S. Liu, J.-I. Chyi, and C.-K. Sun, “Terahertz microchip for illicit drug detection,” IEEE Photonics Technol. Lett. 18(21), 2254–2256 (2006).
[Crossref]

2005 (1)

2004 (1)

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92(21), 213902 (2004).
[Crossref] [PubMed]

2003 (1)

1995 (1)

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, “Stretched-pulse additive pulse mode-locking in fiber ring lasers: Theory and experiment,” IEEE J. Quantum Electron. 31(3), 591–598 (1995).
[Crossref]

Aguergaray, C.

A. F. J. Runge, C. Aguergaray, R. Provo, M. Erkintalo, and N. G. R. Broderick, “All-normal dispersion fiber lasers mode-locked with a nonlinear amplifying loop mirror,” Opt. Fiber Technol. 20(6), 657–665 (2014).
[Crossref]

Alfano, R. R.

X. Xin, H. Altan, A. Saint, D. Matten, and R. R. Alfano, “Laser micro-welding of transparent materials by a localized heat accumulation effect using a femtosecond fiber laser at 1558 nm,” Opt. Express 14, 10461–10468 (2006).

X. Xin, H. Altan, A. Saint, D. Matten, and R. R. Alfano, “Terahertz absorption spectrum of para and ortho water vapors at different humidities at room temperature,” J. Appl. Phys. 100(9), 094905 (2006).
[Crossref]

Altan, H.

X. Xin, H. Altan, A. Saint, D. Matten, and R. R. Alfano, “Terahertz absorption spectrum of para and ortho water vapors at different humidities at room temperature,” J. Appl. Phys. 100(9), 094905 (2006).
[Crossref]

X. Xin, H. Altan, A. Saint, D. Matten, and R. R. Alfano, “Laser micro-welding of transparent materials by a localized heat accumulation effect using a femtosecond fiber laser at 1558 nm,” Opt. Express 14, 10461–10468 (2006).

Araki, T.

Ashida, M.

M. Nagai, E. Matsubara, M. Ashida, J. Takayanagi, and H. Ohtake, “Generation and detection of THz pulses with a bandwidth extending beyond 4 THz using a subpicosecond Yb-doped fiber laser system,” IEEE Trans. Terahertz Sci. Technol. 4(4), 440–446 (2014).
[Crossref]

M. Ashida, “Ultra-broadband terahertz wave detection using photoconductive antenna,” Jpn. J. Appl. Phys. 47(10), 8221–8225 (2008).
[Crossref]

Beigang, R.

G. Matthäus, T. Schreiber, J. Limpert, S. Nolte, G. Torosyan, R. Beigang, S. Riehemann, G. Notni, and A. Tünnermann, “Surface-emitted THz generation using a compact ultrashort pulse fiber amplifier at 1060 nm,” Opt. Commun. 261(1), 114–117 (2006).
[Crossref]

Born, N.

R. J. B. Dietz, R. Wilk, B. Globisch, H. Roehle, D. Stanze, S. Ullrich, S. Schumann, N. Born, M. Koch, B. Sartorius, and M. Schell, “Low temperature grown Be-doped InGaAs/InAlAs photoconductive antennas excited at 1030 nm,” J. Inf. Millimeter Waves 34(3-4), 231–237 (2013).
[Crossref]

Böttcher, J.

Brahm, A.

Broderick, N. G. R.

A. F. J. Runge, C. Aguergaray, R. Provo, M. Erkintalo, and N. G. R. Broderick, “All-normal dispersion fiber lasers mode-locked with a nonlinear amplifying loop mirror,” Opt. Fiber Technol. 20(6), 657–665 (2014).
[Crossref]

Bu, X.

Buckley, J.

Buckley, J. R.

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92(21), 213902 (2004).
[Crossref] [PubMed]

Cai, Z. P.

Z. Q. Luo, Y. Z. Huang, J. Z. Wang, H. H. Cheng, Z. P. Cai, and C. C. Ye, “Multiwavelength dissipative-soliton generation in Yb-fiber laser using graphene-deposited fiber-taper,” IEEE Photonics Technol. Lett. 24(17), 1539–1542 (2012).
[Crossref]

Chai, L.

F. Liu, Y.-J. Song, Q.-R. Xing, M.-L. Hu, Y.-F. Li, C.-L. Wang, L. Chai, W.-L. Zhang, A. M. Zheltikov, and C.-Y. Wang, “Broadband terahertz pulses generated by a compact femtosecond photonic crystal fiber amplifier,” IEEE Photonics Technol. Lett. 22(11), 814–816 (2010).
[Crossref]

Chang, G.

Chang, H.-H.

J.-Y. Lu, L.-J. Chen, T.-F. Kao, H.-H. Chang, H.-W. Chen, A.-S. Liu, Y.-C. Chen, R.-B. Wu, W.-S. Liu, J.-I. Chyi, and C.-K. Sun, “Terahertz microchip for illicit drug detection,” IEEE Photonics Technol. Lett. 18(21), 2254–2256 (2006).
[Crossref]

Chen, H.-W.

J.-Y. Lu, L.-J. Chen, T.-F. Kao, H.-H. Chang, H.-W. Chen, A.-S. Liu, Y.-C. Chen, R.-B. Wu, W.-S. Liu, J.-I. Chyi, and C.-K. Sun, “Terahertz microchip for illicit drug detection,” IEEE Photonics Technol. Lett. 18(21), 2254–2256 (2006).
[Crossref]

Chen, L.-J.

J.-Y. Lu, L.-J. Chen, T.-F. Kao, H.-H. Chang, H.-W. Chen, A.-S. Liu, Y.-C. Chen, R.-B. Wu, W.-S. Liu, J.-I. Chyi, and C.-K. Sun, “Terahertz microchip for illicit drug detection,” IEEE Photonics Technol. Lett. 18(21), 2254–2256 (2006).
[Crossref]

Chen, Y.-C.

J.-Y. Lu, L.-J. Chen, T.-F. Kao, H.-H. Chang, H.-W. Chen, A.-S. Liu, Y.-C. Chen, R.-B. Wu, W.-S. Liu, J.-I. Chyi, and C.-K. Sun, “Terahertz microchip for illicit drug detection,” IEEE Photonics Technol. Lett. 18(21), 2254–2256 (2006).
[Crossref]

Cheng, H. H.

Z. Q. Luo, Y. Z. Huang, J. Z. Wang, H. H. Cheng, Z. P. Cai, and C. C. Ye, “Multiwavelength dissipative-soliton generation in Yb-fiber laser using graphene-deposited fiber-taper,” IEEE Photonics Technol. Lett. 24(17), 1539–1542 (2012).
[Crossref]

Choi, S. W.

Choi, S.-W.

Chong, A.

W. H. Renninger, A. Chong, and F. W. Wise, “Pulse shaping and evolution in normal-dispersion mode-locked fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 18(1), 389–398 (2012).
[Crossref] [PubMed]

A. Chong, J. Buckley, W. Renninger, and F. Wise, “All-normal-dispersion femtosecond fiber laser,” Opt. Express 14(21), 10095–10100 (2006).
[Crossref] [PubMed]

Chun, H. S.

Chyi, J.-I.

J.-Y. Lu, L.-J. Chen, T.-F. Kao, H.-H. Chang, H.-W. Chen, A.-S. Liu, Y.-C. Chen, R.-B. Wu, W.-S. Liu, J.-I. Chyi, and C.-K. Sun, “Terahertz microchip for illicit drug detection,” IEEE Photonics Technol. Lett. 18(21), 2254–2256 (2006).
[Crossref]

Clark, W. G.

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92(21), 213902 (2004).
[Crossref] [PubMed]

Dietz, R. J. B.

Divin, C. J.

Eldeniz, Y. B.

Erdogan, M.

Erkintalo, M.

A. F. J. Runge, C. Aguergaray, R. Provo, M. Erkintalo, and N. G. R. Broderick, “All-normal dispersion fiber lasers mode-locked with a nonlinear amplifying loop mirror,” Opt. Fiber Technol. 20(6), 657–665 (2014).
[Crossref]

Fermann, M. E.

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2(6), 355–359 (2008).
[Crossref]

Galvanauskas, A.

Ganeev, R. A.

Globisch, B.

Göbel, T.

Gürel, K.

Han, H.

Han, S.-P.

Han, S.-T.

Hartl, I.

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2(6), 355–359 (2008).
[Crossref]

Haus, H. A.

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, “Stretched-pulse additive pulse mode-locking in fiber ring lasers: Theory and experiment,” IEEE J. Quantum Electron. 31(3), 591–598 (1995).
[Crossref]

Hebling, J.

M. C. Hoffmann, K.-L. Yeh, H. Y. Hwang, T. S. Sosnowski, B. S. Prall, J. Hebling, and K. A. Nelson, “Fiber laser pumped high average power single-cycle terahertz pulse source,” Appl. Phys. Lett. 93(14), 141107 (2008).
[Crossref]

Hochrein, T.

Hoffmann, M. C.

M. C. Hoffmann, K.-L. Yeh, H. Y. Hwang, T. S. Sosnowski, B. S. Prall, J. Hebling, and K. A. Nelson, “Fiber laser pumped high average power single-cycle terahertz pulse source,” Appl. Phys. Lett. 93(14), 141107 (2008).
[Crossref]

Hohmuth, R.

G. Matthäus, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, S. Riehemann, G. Notni, and A. Tünnermann, “Large-area microlens emitters for powerful THz emission,” Appl. Phys. B 96(2-3), 233–235 (2009).
[Crossref]

G. Matthäus, B. Ortaç, J. Limpert, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, and A. Tünnermann, “Intra- cavity terahertz generation inside a high-energy ultrafast soliton fiber laser,” Appl. Phys. Lett. 93(26), 261105 (2008).
[Crossref]

Hu, M.

Hu, M.-L.

F. Liu, Y.-J. Song, Q.-R. Xing, M.-L. Hu, Y.-F. Li, C.-L. Wang, L. Chai, W.-L. Zhang, A. M. Zheltikov, and C.-Y. Wang, “Broadband terahertz pulses generated by a compact femtosecond photonic crystal fiber amplifier,” IEEE Photonics Technol. Lett. 22(11), 814–816 (2010).
[Crossref]

Huang, Y. Z.

Z. Q. Luo, Y. Z. Huang, J. Z. Wang, H. H. Cheng, Z. P. Cai, and C. C. Ye, “Multiwavelength dissipative-soliton generation in Yb-fiber laser using graphene-deposited fiber-taper,” IEEE Photonics Technol. Lett. 24(17), 1539–1542 (2012).
[Crossref]

Hwang, H. Y.

M. C. Hoffmann, K.-L. Yeh, H. Y. Hwang, T. S. Sosnowski, B. S. Prall, J. Hebling, and K. A. Nelson, “Fiber laser pumped high average power single-cycle terahertz pulse source,” Appl. Phys. Lett. 93(14), 141107 (2008).
[Crossref]

Ilday, F. Ö.

Inoue, H.

Ippen, E. P.

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, “Stretched-pulse additive pulse mode-locking in fiber ring lasers: Theory and experiment,” IEEE J. Quantum Electron. 31(3), 591–598 (1995).
[Crossref]

Jansen, C.

Jeon, M. Y.

Jiang, T.

Jördens, C.

Kalashnikov, V. L.

Kanamori, S.

Kao, T.-F.

J.-Y. Lu, L.-J. Chen, T.-F. Kao, H.-H. Chang, H.-W. Chen, A.-S. Liu, Y.-C. Chen, R.-B. Wu, W.-S. Liu, J.-I. Chyi, and C.-K. Sun, “Terahertz microchip for illicit drug detection,” IEEE Photonics Technol. Lett. 18(21), 2254–2256 (2006).
[Crossref]

Kasai, S.

Kawase, K.

Kim, H.

Kim, J.

Kim, N.

Ko, H.

Koch, M.

R. J. B. Dietz, R. Wilk, B. Globisch, H. Roehle, D. Stanze, S. Ullrich, S. Schumann, N. Born, M. Koch, B. Sartorius, and M. Schell, “Low temperature grown Be-doped InGaAs/InAlAs photoconductive antennas excited at 1030 nm,” J. Inf. Millimeter Waves 34(3-4), 231–237 (2013).
[Crossref]

C. Jansen, S. Wietzke, O. Peters, M. Scheller, N. Vieweg, M. Salhi, N. Krumbholz, C. Jördens, T. Hochrein, and M. Koch, “Terahertz imaging: applications and perspectives,” Appl. Opt. 49(19), E48–E57 (2010).
[Crossref] [PubMed]

Krumbholz, N.

Künzel, H.

Kuroda, H.

Kwon, D.

Lee, C. W.

Lee, D.

Lee, D. H.

Lee, E. S.

Lee, I.-M.

Lee, W.

Lee, W.-H.

Leem, Y. A.

Leisching, P.

Li, C.

Li, P.

Li, Y.-F.

F. Liu, Y.-J. Song, Q.-R. Xing, M.-L. Hu, Y.-F. Li, C.-L. Wang, L. Chai, W.-L. Zhang, A. M. Zheltikov, and C.-Y. Wang, “Broadband terahertz pulses generated by a compact femtosecond photonic crystal fiber amplifier,” IEEE Photonics Technol. Lett. 22(11), 814–816 (2010).
[Crossref]

Limpert, J.

G. Matthäus, B. Ortaç, J. Limpert, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, and A. Tünnermann, “Intra- cavity terahertz generation inside a high-energy ultrafast soliton fiber laser,” Appl. Phys. Lett. 93(26), 261105 (2008).
[Crossref]

G. Matthäus, T. Schreiber, J. Limpert, S. Nolte, G. Torosyan, R. Beigang, S. Riehemann, G. Notni, and A. Tünnermann, “Surface-emitted THz generation using a compact ultrashort pulse fiber amplifier at 1060 nm,” Opt. Commun. 261(1), 114–117 (2006).
[Crossref]

Liu, A.-S.

J.-Y. Lu, L.-J. Chen, T.-F. Kao, H.-H. Chang, H.-W. Chen, A.-S. Liu, Y.-C. Chen, R.-B. Wu, W.-S. Liu, J.-I. Chyi, and C.-K. Sun, “Terahertz microchip for illicit drug detection,” IEEE Photonics Technol. Lett. 18(21), 2254–2256 (2006).
[Crossref]

Liu, F.

F. Liu, Y.-J. Song, Q.-R. Xing, M.-L. Hu, Y.-F. Li, C.-L. Wang, L. Chai, W.-L. Zhang, A. M. Zheltikov, and C.-Y. Wang, “Broadband terahertz pulses generated by a compact femtosecond photonic crystal fiber amplifier,” IEEE Photonics Technol. Lett. 22(11), 814–816 (2010).
[Crossref]

Liu, W.-S.

J.-Y. Lu, L.-J. Chen, T.-F. Kao, H.-H. Chang, H.-W. Chen, A.-S. Liu, Y.-C. Chen, R.-B. Wu, W.-S. Liu, J.-I. Chyi, and C.-K. Sun, “Terahertz microchip for illicit drug detection,” IEEE Photonics Technol. Lett. 18(21), 2254–2256 (2006).
[Crossref]

Lu, J.-Y.

J.-Y. Lu, L.-J. Chen, T.-F. Kao, H.-H. Chang, H.-W. Chen, A.-S. Liu, Y.-C. Chen, R.-B. Wu, W.-S. Liu, J.-I. Chyi, and C.-K. Sun, “Terahertz microchip for illicit drug detection,” IEEE Photonics Technol. Lett. 18(21), 2254–2256 (2006).
[Crossref]

Luo, Z. Q.

Z. Q. Luo, Y. Z. Huang, J. Z. Wang, H. H. Cheng, Z. P. Cai, and C. C. Ye, “Multiwavelength dissipative-soliton generation in Yb-fiber laser using graphene-deposited fiber-taper,” IEEE Photonics Technol. Lett. 24(17), 1539–1542 (2012).
[Crossref]

Marcinkevicius, A.

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2(6), 355–359 (2008).
[Crossref]

Martin, M. J.

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2(6), 355–359 (2008).
[Crossref]

Matsubara, E.

M. Nagai, E. Matsubara, M. Ashida, J. Takayanagi, and H. Ohtake, “Generation and detection of THz pulses with a bandwidth extending beyond 4 THz using a subpicosecond Yb-doped fiber laser system,” IEEE Trans. Terahertz Sci. Technol. 4(4), 440–446 (2014).
[Crossref]

Matten, D.

X. Xin, H. Altan, A. Saint, D. Matten, and R. R. Alfano, “Terahertz absorption spectrum of para and ortho water vapors at different humidities at room temperature,” J. Appl. Phys. 100(9), 094905 (2006).
[Crossref]

X. Xin, H. Altan, A. Saint, D. Matten, and R. R. Alfano, “Laser micro-welding of transparent materials by a localized heat accumulation effect using a femtosecond fiber laser at 1558 nm,” Opt. Express 14, 10461–10468 (2006).

Matthäus, G.

G. Matthäus, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, S. Riehemann, G. Notni, and A. Tünnermann, “Large-area microlens emitters for powerful THz emission,” Appl. Phys. B 96(2-3), 233–235 (2009).
[Crossref]

G. Matthäus, B. Ortaç, J. Limpert, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, and A. Tünnermann, “Intra- cavity terahertz generation inside a high-energy ultrafast soliton fiber laser,” Appl. Phys. Lett. 93(26), 261105 (2008).
[Crossref]

G. Matthäus, T. Schreiber, J. Limpert, S. Nolte, G. Torosyan, R. Beigang, S. Riehemann, G. Notni, and A. Tünnermann, “Surface-emitted THz generation using a compact ultrashort pulse fiber amplifier at 1060 nm,” Opt. Commun. 261(1), 114–117 (2006).
[Crossref]

Moon, K.

Moon, S. H.

Musheinish, M. A.

Nagai, M.

M. Nagai, E. Matsubara, M. Ashida, J. Takayanagi, and H. Ohtake, “Generation and detection of THz pulses with a bandwidth extending beyond 4 THz using a subpicosecond Yb-doped fiber laser system,” IEEE Trans. Terahertz Sci. Technol. 4(4), 440–446 (2014).
[Crossref]

Nelson, K. A.

M. C. Hoffmann, K.-L. Yeh, H. Y. Hwang, T. S. Sosnowski, B. S. Prall, J. Hebling, and K. A. Nelson, “Fiber laser pumped high average power single-cycle terahertz pulse source,” Appl. Phys. Lett. 93(14), 141107 (2008).
[Crossref]

Nelson, L. E.

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, “Stretched-pulse additive pulse mode-locking in fiber ring lasers: Theory and experiment,” IEEE J. Quantum Electron. 31(3), 591–598 (1995).
[Crossref]

Nishizawa, N.

Noh, S. K.

Nolte, S.

G. Matthäus, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, S. Riehemann, G. Notni, and A. Tünnermann, “Large-area microlens emitters for powerful THz emission,” Appl. Phys. B 96(2-3), 233–235 (2009).
[Crossref]

G. Matthäus, B. Ortaç, J. Limpert, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, and A. Tünnermann, “Intra- cavity terahertz generation inside a high-energy ultrafast soliton fiber laser,” Appl. Phys. Lett. 93(26), 261105 (2008).
[Crossref]

G. Matthäus, T. Schreiber, J. Limpert, S. Nolte, G. Torosyan, R. Beigang, S. Riehemann, G. Notni, and A. Tünnermann, “Surface-emitted THz generation using a compact ultrashort pulse fiber amplifier at 1060 nm,” Opt. Commun. 261(1), 114–117 (2006).
[Crossref]

Norris, T. B.

Notni, G.

A. Brahm, A. Wilms, R. J. B. Dietz, T. Göbel, M. Schell, G. Notni, and A. Tünnermann, “Multichannel terahertz time-domain spectroscopy system at 1030 nm excitation wavelength,” Opt. Express 22(11), 12982–12993 (2014).
[Crossref] [PubMed]

G. Matthäus, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, S. Riehemann, G. Notni, and A. Tünnermann, “Large-area microlens emitters for powerful THz emission,” Appl. Phys. B 96(2-3), 233–235 (2009).
[Crossref]

G. Matthäus, T. Schreiber, J. Limpert, S. Nolte, G. Torosyan, R. Beigang, S. Riehemann, G. Notni, and A. Tünnermann, “Surface-emitted THz generation using a compact ultrashort pulse fiber amplifier at 1060 nm,” Opt. Commun. 261(1), 114–117 (2006).
[Crossref]

Ogawa, Y.

Ohtake, H.

M. Nagai, E. Matsubara, M. Ashida, J. Takayanagi, and H. Ohtake, “Generation and detection of THz pulses with a bandwidth extending beyond 4 THz using a subpicosecond Yb-doped fiber laser system,” IEEE Trans. Terahertz Sci. Technol. 4(4), 440–446 (2014).
[Crossref]

J. Takayanagi, S. Kanamori, K. Suizu, M. Yamashita, T. Ouchi, S. Kasai, H. Ohtake, H. Uchida, N. Nishizawa, and K. Kawase, “Generation and detection of broadband coherent terahertz radiation using 17-fs ultrashort pulse fiber laser,” Opt. Express 16(17), 12859–12865 (2008).
[Crossref] [PubMed]

Ortaç, B.

G. Matthäus, B. Ortaç, J. Limpert, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, and A. Tünnermann, “Intra- cavity terahertz generation inside a high-energy ultrafast soliton fiber laser,” Appl. Phys. Lett. 93(26), 261105 (2008).
[Crossref]

Ouchi, T.

Özgören, K.

Park, J. W.

Park, K. H.

Park, S. H.

Peters, O.

Pradarutti, B.

G. Matthäus, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, S. Riehemann, G. Notni, and A. Tünnermann, “Large-area microlens emitters for powerful THz emission,” Appl. Phys. B 96(2-3), 233–235 (2009).
[Crossref]

G. Matthäus, B. Ortaç, J. Limpert, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, and A. Tünnermann, “Intra- cavity terahertz generation inside a high-energy ultrafast soliton fiber laser,” Appl. Phys. Lett. 93(26), 261105 (2008).
[Crossref]

Prall, B. S.

M. C. Hoffmann, K.-L. Yeh, H. Y. Hwang, T. S. Sosnowski, B. S. Prall, J. Hebling, and K. A. Nelson, “Fiber laser pumped high average power single-cycle terahertz pulse source,” Appl. Phys. Lett. 93(14), 141107 (2008).
[Crossref]

Provo, R.

A. F. J. Runge, C. Aguergaray, R. Provo, M. Erkintalo, and N. G. R. Broderick, “All-normal dispersion fiber lasers mode-locked with a nonlinear amplifying loop mirror,” Opt. Fiber Technol. 20(6), 657–665 (2014).
[Crossref]

Puppe, T.

Qin, P.

Renninger, W.

Renninger, W. H.

W. H. Renninger, A. Chong, and F. W. Wise, “Pulse shaping and evolution in normal-dispersion mode-locked fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 18(1), 389–398 (2012).
[Crossref] [PubMed]

Richter, W.

G. Matthäus, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, S. Riehemann, G. Notni, and A. Tünnermann, “Large-area microlens emitters for powerful THz emission,” Appl. Phys. B 96(2-3), 233–235 (2009).
[Crossref]

G. Matthäus, B. Ortaç, J. Limpert, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, and A. Tünnermann, “Intra- cavity terahertz generation inside a high-energy ultrafast soliton fiber laser,” Appl. Phys. Lett. 93(26), 261105 (2008).
[Crossref]

Riehemann, S.

G. Matthäus, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, S. Riehemann, G. Notni, and A. Tünnermann, “Large-area microlens emitters for powerful THz emission,” Appl. Phys. B 96(2-3), 233–235 (2009).
[Crossref]

G. Matthäus, T. Schreiber, J. Limpert, S. Nolte, G. Torosyan, R. Beigang, S. Riehemann, G. Notni, and A. Tünnermann, “Surface-emitted THz generation using a compact ultrashort pulse fiber amplifier at 1060 nm,” Opt. Commun. 261(1), 114–117 (2006).
[Crossref]

Roehle, H.

Runge, A. F. J.

A. F. J. Runge, C. Aguergaray, R. Provo, M. Erkintalo, and N. G. R. Broderick, “All-normal dispersion fiber lasers mode-locked with a nonlinear amplifying loop mirror,” Opt. Fiber Technol. 20(6), 657–665 (2014).
[Crossref]

Ryu, H. C.

Ryu, H.-C.

Saint, A.

X. Xin, H. Altan, A. Saint, D. Matten, and R. R. Alfano, “Terahertz absorption spectrum of para and ortho water vapors at different humidities at room temperature,” J. Appl. Phys. 100(9), 094905 (2006).
[Crossref]

X. Xin, H. Altan, A. Saint, D. Matten, and R. R. Alfano, “Laser micro-welding of transparent materials by a localized heat accumulation effect using a femtosecond fiber laser at 1558 nm,” Opt. Express 14, 10461–10468 (2006).

Salhi, M.

Sartorius, B.

R. J. B. Dietz, R. Wilk, B. Globisch, H. Roehle, D. Stanze, S. Ullrich, S. Schumann, N. Born, M. Koch, B. Sartorius, and M. Schell, “Low temperature grown Be-doped InGaAs/InAlAs photoconductive antennas excited at 1030 nm,” J. Inf. Millimeter Waves 34(3-4), 231–237 (2013).
[Crossref]

B. Sartorius, H. Roehle, H. Künzel, J. Böttcher, M. Schlak, D. Stanze, H. Venghaus, and M. Schell, “All-fiber terahertz time-domain spectrometer operating at 1.5 µm telecom wavelengths,” Opt. Express 16(13), 9565–9570 (2008).
[Crossref] [PubMed]

Sawanaka, K.

Schell, M.

Scheller, M.

Schibli, T. R.

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2(6), 355–359 (2008).
[Crossref]

Schlak, M.

Schreiber, T.

G. Matthäus, T. Schreiber, J. Limpert, S. Nolte, G. Torosyan, R. Beigang, S. Riehemann, G. Notni, and A. Tünnermann, “Surface-emitted THz generation using a compact ultrashort pulse fiber amplifier at 1060 nm,” Opt. Commun. 261(1), 114–117 (2006).
[Crossref]

Schumann, S.

R. J. B. Dietz, R. Wilk, B. Globisch, H. Roehle, D. Stanze, S. Ullrich, S. Schumann, N. Born, M. Koch, B. Sartorius, and M. Schell, “Low temperature grown Be-doped InGaAs/InAlAs photoconductive antennas excited at 1030 nm,” J. Inf. Millimeter Waves 34(3-4), 231–237 (2013).
[Crossref]

Shin, J.

Shin, J. H.

Shin, J.-H.

K. Moon, I.-M. Lee, J.-H. Shin, E. S. Lee, N. Kim, W.-H. Lee, H. Ko, S.-P. Han, and K. H. Park, “Bias field tailored plasmonic nano-electrode for high-power terahertz photonic devices,” Sci. Rep. 5, 13817 (2015).
[Crossref] [PubMed]

Song, Y.

Song, Y.-J.

F. Liu, Y.-J. Song, Q.-R. Xing, M.-L. Hu, Y.-F. Li, C.-L. Wang, L. Chai, W.-L. Zhang, A. M. Zheltikov, and C.-Y. Wang, “Broadband terahertz pulses generated by a compact femtosecond photonic crystal fiber amplifier,” IEEE Photonics Technol. Lett. 22(11), 814–816 (2010).
[Crossref]

Sorokin, E.

Sorokina, I. T.

Sosnowski, T. S.

M. C. Hoffmann, K.-L. Yeh, H. Y. Hwang, T. S. Sosnowski, B. S. Prall, J. Hebling, and K. A. Nelson, “Fiber laser pumped high average power single-cycle terahertz pulse source,” Appl. Phys. Lett. 93(14), 141107 (2008).
[Crossref]

Stanze, D.

Suizu, K.

Sun, C.-K.

J.-Y. Lu, L.-J. Chen, T.-F. Kao, H.-H. Chang, H.-W. Chen, A.-S. Liu, Y.-C. Chen, R.-B. Wu, W.-S. Liu, J.-I. Chyi, and C.-K. Sun, “Terahertz microchip for illicit drug detection,” IEEE Photonics Technol. Lett. 18(21), 2254–2256 (2006).
[Crossref]

Suzuki, M.

Takayanagi, J.

M. Nagai, E. Matsubara, M. Ashida, J. Takayanagi, and H. Ohtake, “Generation and detection of THz pulses with a bandwidth extending beyond 4 THz using a subpicosecond Yb-doped fiber laser system,” IEEE Trans. Terahertz Sci. Technol. 4(4), 440–446 (2014).
[Crossref]

J. Takayanagi, S. Kanamori, K. Suizu, M. Yamashita, T. Ouchi, S. Kasai, H. Ohtake, H. Uchida, N. Nishizawa, and K. Kawase, “Generation and detection of broadband coherent terahertz radiation using 17-fs ultrashort pulse fiber laser,” Opt. Express 16(17), 12859–12865 (2008).
[Crossref] [PubMed]

Tamura, K.

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, “Stretched-pulse additive pulse mode-locking in fiber ring lasers: Theory and experiment,” IEEE J. Quantum Electron. 31(3), 591–598 (1995).
[Crossref]

Tazebay, U. H.

Teng, H.

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Torosyan, G.

G. Matthäus, T. Schreiber, J. Limpert, S. Nolte, G. Torosyan, R. Beigang, S. Riehemann, G. Notni, and A. Tünnermann, “Surface-emitted THz generation using a compact ultrashort pulse fiber amplifier at 1060 nm,” Opt. Commun. 261(1), 114–117 (2006).
[Crossref]

Tünnermann, A.

A. Brahm, A. Wilms, R. J. B. Dietz, T. Göbel, M. Schell, G. Notni, and A. Tünnermann, “Multichannel terahertz time-domain spectroscopy system at 1030 nm excitation wavelength,” Opt. Express 22(11), 12982–12993 (2014).
[Crossref] [PubMed]

G. Matthäus, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, S. Riehemann, G. Notni, and A. Tünnermann, “Large-area microlens emitters for powerful THz emission,” Appl. Phys. B 96(2-3), 233–235 (2009).
[Crossref]

G. Matthäus, B. Ortaç, J. Limpert, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, and A. Tünnermann, “Intra- cavity terahertz generation inside a high-energy ultrafast soliton fiber laser,” Appl. Phys. Lett. 93(26), 261105 (2008).
[Crossref]

G. Matthäus, T. Schreiber, J. Limpert, S. Nolte, G. Torosyan, R. Beigang, S. Riehemann, G. Notni, and A. Tünnermann, “Surface-emitted THz generation using a compact ultrashort pulse fiber amplifier at 1060 nm,” Opt. Commun. 261(1), 114–117 (2006).
[Crossref]

Uchida, H.

Ullrich, S.

R. J. B. Dietz, R. Wilk, B. Globisch, H. Roehle, D. Stanze, S. Ullrich, S. Schumann, N. Born, M. Koch, B. Sartorius, and M. Schell, “Low temperature grown Be-doped InGaAs/InAlAs photoconductive antennas excited at 1030 nm,” J. Inf. Millimeter Waves 34(3-4), 231–237 (2013).
[Crossref]

Venghaus, H.

Vieweg, N.

Voitsch, M.

G. Matthäus, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, S. Riehemann, G. Notni, and A. Tünnermann, “Large-area microlens emitters for powerful THz emission,” Appl. Phys. B 96(2-3), 233–235 (2009).
[Crossref]

G. Matthäus, B. Ortaç, J. Limpert, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, and A. Tünnermann, “Intra- cavity terahertz generation inside a high-energy ultrafast soliton fiber laser,” Appl. Phys. Lett. 93(26), 261105 (2008).
[Crossref]

Wang, A.

Wang, C.

Wang, C.-L.

F. Liu, Y.-J. Song, Q.-R. Xing, M.-L. Hu, Y.-F. Li, C.-L. Wang, L. Chai, W.-L. Zhang, A. M. Zheltikov, and C.-Y. Wang, “Broadband terahertz pulses generated by a compact femtosecond photonic crystal fiber amplifier,” IEEE Photonics Technol. Lett. 22(11), 814–816 (2010).
[Crossref]

Wang, C.-Y.

F. Liu, Y.-J. Song, Q.-R. Xing, M.-L. Hu, Y.-F. Li, C.-L. Wang, L. Chai, W.-L. Zhang, A. M. Zheltikov, and C.-Y. Wang, “Broadband terahertz pulses generated by a compact femtosecond photonic crystal fiber amplifier,” IEEE Photonics Technol. Lett. 22(11), 814–816 (2010).
[Crossref]

Wang, G.

Wang, J.

Wang, J. Z.

Z. Q. Luo, Y. Z. Huang, J. Z. Wang, H. H. Cheng, Z. P. Cai, and C. C. Ye, “Multiwavelength dissipative-soliton generation in Yb-fiber laser using graphene-deposited fiber-taper,” IEEE Photonics Technol. Lett. 24(17), 1539–1542 (2012).
[Crossref]

Wang, R.

Watanabe, Y.

Wei, Z.

Wietzke, S.

Wilk, R.

R. J. B. Dietz, R. Wilk, B. Globisch, H. Roehle, D. Stanze, S. Ullrich, S. Schumann, N. Born, M. Koch, B. Sartorius, and M. Schell, “Low temperature grown Be-doped InGaAs/InAlAs photoconductive antennas excited at 1030 nm,” J. Inf. Millimeter Waves 34(3-4), 231–237 (2013).
[Crossref]

Williamson, S. L.

Wilms, A.

Wise, F.

Wise, F. W.

W. H. Renninger, A. Chong, and F. W. Wise, “Pulse shaping and evolution in normal-dispersion mode-locked fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 18(1), 389–398 (2012).
[Crossref] [PubMed]

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92(21), 213902 (2004).
[Crossref] [PubMed]

Wu, R.-B.

J.-Y. Lu, L.-J. Chen, T.-F. Kao, H.-H. Chang, H.-W. Chen, A.-S. Liu, Y.-C. Chen, R.-B. Wu, W.-S. Liu, J.-I. Chyi, and C.-K. Sun, “Terahertz microchip for illicit drug detection,” IEEE Photonics Technol. Lett. 18(21), 2254–2256 (2006).
[Crossref]

Xin, X.

X. Xin, H. Altan, A. Saint, D. Matten, and R. R. Alfano, “Laser micro-welding of transparent materials by a localized heat accumulation effect using a femtosecond fiber laser at 1558 nm,” Opt. Express 14, 10461–10468 (2006).

X. Xin, H. Altan, A. Saint, D. Matten, and R. R. Alfano, “Terahertz absorption spectrum of para and ortho water vapors at different humidities at room temperature,” J. Appl. Phys. 100(9), 094905 (2006).
[Crossref]

Xing, Q.-R.

F. Liu, Y.-J. Song, Q.-R. Xing, M.-L. Hu, Y.-F. Li, C.-L. Wang, L. Chai, W.-L. Zhang, A. M. Zheltikov, and C.-Y. Wang, “Broadband terahertz pulses generated by a compact femtosecond photonic crystal fiber amplifier,” IEEE Photonics Technol. Lett. 22(11), 814–816 (2010).
[Crossref]

Yamashita, M.

Yang, J.

Yasuda, T.

Yasui, T.

Yavas, S.

Ye, C. C.

Z. Q. Luo, Y. Z. Huang, J. Z. Wang, H. H. Cheng, Z. P. Cai, and C. C. Ye, “Multiwavelength dissipative-soliton generation in Yb-fiber laser using graphene-deposited fiber-taper,” IEEE Photonics Technol. Lett. 24(17), 1539–1542 (2012).
[Crossref]

Ye, J.

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2(6), 355–359 (2008).
[Crossref]

Yeh, K.-L.

M. C. Hoffmann, K.-L. Yeh, H. Y. Hwang, T. S. Sosnowski, B. S. Prall, J. Hebling, and K. A. Nelson, “Fiber laser pumped high average power single-cycle terahertz pulse source,” Appl. Phys. Lett. 93(14), 141107 (2008).
[Crossref]

Yoneya, S.

Yoon, Y. J.

Yost, D. C.

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2(6), 355–359 (2008).
[Crossref]

Zach, A.

Zhang, L.

Zhang, W.-L.

F. Liu, Y.-J. Song, Q.-R. Xing, M.-L. Hu, Y.-F. Li, C.-L. Wang, L. Chai, W.-L. Zhang, A. M. Zheltikov, and C.-Y. Wang, “Broadband terahertz pulses generated by a compact femtosecond photonic crystal fiber amplifier,” IEEE Photonics Technol. Lett. 22(11), 814–816 (2010).
[Crossref]

Zhang, Z.

Zheltikov, A. M.

F. Liu, Y.-J. Song, Q.-R. Xing, M.-L. Hu, Y.-F. Li, C.-L. Wang, L. Chai, W.-L. Zhang, A. M. Zheltikov, and C.-Y. Wang, “Broadband terahertz pulses generated by a compact femtosecond photonic crystal fiber amplifier,” IEEE Photonics Technol. Lett. 22(11), 814–816 (2010).
[Crossref]

Zhu, J.

Appl. Opt. (3)

Appl. Phys. B (1)

G. Matthäus, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, S. Riehemann, G. Notni, and A. Tünnermann, “Large-area microlens emitters for powerful THz emission,” Appl. Phys. B 96(2-3), 233–235 (2009).
[Crossref]

Appl. Phys. Lett. (2)

M. C. Hoffmann, K.-L. Yeh, H. Y. Hwang, T. S. Sosnowski, B. S. Prall, J. Hebling, and K. A. Nelson, “Fiber laser pumped high average power single-cycle terahertz pulse source,” Appl. Phys. Lett. 93(14), 141107 (2008).
[Crossref]

G. Matthäus, B. Ortaç, J. Limpert, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, and A. Tünnermann, “Intra- cavity terahertz generation inside a high-energy ultrafast soliton fiber laser,” Appl. Phys. Lett. 93(26), 261105 (2008).
[Crossref]

Biomed. Opt. Express (1)

IEEE J. Quantum Electron. (1)

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, “Stretched-pulse additive pulse mode-locking in fiber ring lasers: Theory and experiment,” IEEE J. Quantum Electron. 31(3), 591–598 (1995).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

W. H. Renninger, A. Chong, and F. W. Wise, “Pulse shaping and evolution in normal-dispersion mode-locked fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 18(1), 389–398 (2012).
[Crossref] [PubMed]

IEEE Photonics Technol. Lett. (3)

J.-Y. Lu, L.-J. Chen, T.-F. Kao, H.-H. Chang, H.-W. Chen, A.-S. Liu, Y.-C. Chen, R.-B. Wu, W.-S. Liu, J.-I. Chyi, and C.-K. Sun, “Terahertz microchip for illicit drug detection,” IEEE Photonics Technol. Lett. 18(21), 2254–2256 (2006).
[Crossref]

Z. Q. Luo, Y. Z. Huang, J. Z. Wang, H. H. Cheng, Z. P. Cai, and C. C. Ye, “Multiwavelength dissipative-soliton generation in Yb-fiber laser using graphene-deposited fiber-taper,” IEEE Photonics Technol. Lett. 24(17), 1539–1542 (2012).
[Crossref]

F. Liu, Y.-J. Song, Q.-R. Xing, M.-L. Hu, Y.-F. Li, C.-L. Wang, L. Chai, W.-L. Zhang, A. M. Zheltikov, and C.-Y. Wang, “Broadband terahertz pulses generated by a compact femtosecond photonic crystal fiber amplifier,” IEEE Photonics Technol. Lett. 22(11), 814–816 (2010).
[Crossref]

IEEE Trans. Terahertz Sci. Technol. (1)

M. Nagai, E. Matsubara, M. Ashida, J. Takayanagi, and H. Ohtake, “Generation and detection of THz pulses with a bandwidth extending beyond 4 THz using a subpicosecond Yb-doped fiber laser system,” IEEE Trans. Terahertz Sci. Technol. 4(4), 440–446 (2014).
[Crossref]

J. Appl. Phys. (1)

X. Xin, H. Altan, A. Saint, D. Matten, and R. R. Alfano, “Terahertz absorption spectrum of para and ortho water vapors at different humidities at room temperature,” J. Appl. Phys. 100(9), 094905 (2006).
[Crossref]

J. Inf. Millimeter Waves (1)

R. J. B. Dietz, R. Wilk, B. Globisch, H. Roehle, D. Stanze, S. Ullrich, S. Schumann, N. Born, M. Koch, B. Sartorius, and M. Schell, “Low temperature grown Be-doped InGaAs/InAlAs photoconductive antennas excited at 1030 nm,” J. Inf. Millimeter Waves 34(3-4), 231–237 (2013).
[Crossref]

Jpn. J. Appl. Phys. (1)

M. Ashida, “Ultra-broadband terahertz wave detection using photoconductive antenna,” Jpn. J. Appl. Phys. 47(10), 8221–8225 (2008).
[Crossref]

Nat. Photonics (2)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2(6), 355–359 (2008).
[Crossref]

Opt. Commun. (1)

G. Matthäus, T. Schreiber, J. Limpert, S. Nolte, G. Torosyan, R. Beigang, S. Riehemann, G. Notni, and A. Tünnermann, “Surface-emitted THz generation using a compact ultrashort pulse fiber amplifier at 1060 nm,” Opt. Commun. 261(1), 114–117 (2006).
[Crossref]

Opt. Express (12)

A. Brahm, A. Wilms, R. J. B. Dietz, T. Göbel, M. Schell, G. Notni, and A. Tünnermann, “Multichannel terahertz time-domain spectroscopy system at 1030 nm excitation wavelength,” Opt. Express 22(11), 12982–12993 (2014).
[Crossref] [PubMed]

G. Chang, C. J. Divin, J. Yang, M. A. Musheinish, S. L. Williamson, A. Galvanauskas, and T. B. Norris, “GaP waveguide emitters for high power broadband THz generation pumped by Yb-doped fiber lasers,” Opt. Express 15(25), 16308–16315 (2007).
[Crossref] [PubMed]

X. Xin, H. Altan, A. Saint, D. Matten, and R. R. Alfano, “Laser micro-welding of transparent materials by a localized heat accumulation effect using a femtosecond fiber laser at 1558 nm,” Opt. Express 14, 10461–10468 (2006).

S.-P. Han, H. Ko, N. Kim, W.-H. Lee, K. Moon, I.-M. Lee, E. S. Lee, D. H. Lee, W. Lee, S.-T. Han, S.-W. Choi, and K. H. Park, “Real-time continuous-wave terahertz line scanner based on a compact 1 × 240 InGaAs Schottky barrier diode array detector,” Opt. Express 22(23), 28977–28983 (2014).
[Crossref] [PubMed]

B. Sartorius, H. Roehle, H. Künzel, J. Böttcher, M. Schlak, D. Stanze, H. Venghaus, and M. Schell, “All-fiber terahertz time-domain spectrometer operating at 1.5 µm telecom wavelengths,” Opt. Express 16(13), 9565–9570 (2008).
[Crossref] [PubMed]

S.-P. Han, N. Kim, H. Ko, H. C. Ryu, J. W. Park, Y. J. Yoon, J. H. Shin, D. H. Lee, S. H. Park, S. H. Moon, S. W. Choi, H. S. Chun, and K. H. Park, “Compact fiber-pigtailed InGaAs photoconductive antenna module for terahertz-wave generation and detection,” Opt. Express 20(16), 18432–18439 (2012).
[Crossref] [PubMed]

J. Takayanagi, S. Kanamori, K. Suizu, M. Yamashita, T. Ouchi, S. Kasai, H. Ohtake, H. Uchida, N. Nishizawa, and K. Kawase, “Generation and detection of broadband coherent terahertz radiation using 17-fs ultrashort pulse fiber laser,” Opt. Express 16(17), 12859–12865 (2008).
[Crossref] [PubMed]

R. J. B. Dietz, B. Globisch, H. Roehle, D. Stanze, T. Göbel, and M. Schell, “Influence and adjustment of carrier lifetimes in InGaAs/InAlAs photoconductive pulsed terahertz detectors: 6 THz bandwidth and 90dB dynamic range,” Opt. Express 22(16), 19411–19422 (2014).
[Crossref] [PubMed]

V. L. Kalashnikov, E. Sorokin, and I. T. Sorokina, “Chirped dissipative soliton absorption spectroscopy,” Opt. Express 19(18), 17480–17492 (2011).
[Crossref] [PubMed]

A. Chong, J. Buckley, W. Renninger, and F. Wise, “All-normal-dispersion femtosecond fiber laser,” Opt. Express 14(21), 10095–10100 (2006).
[Crossref] [PubMed]

P. Qin, Y. Song, H. Kim, J. Shin, D. Kwon, M. Hu, C. Wang, and J. Kim, “Reduction of timing jitter and intensity noise in normal-dispersion passively mode-locked fiber lasers by narrow band-pass filtering,” Opt. Express 22(23), 28276–28283 (2014).
[Crossref] [PubMed]

K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, “Non-destructive terahertz imaging of illicit drugs using spectral fingerprints,” Opt. Express 11(20), 2549–2554 (2003).
[Crossref] [PubMed]

Opt. Fiber Technol. (1)

A. F. J. Runge, C. Aguergaray, R. Provo, M. Erkintalo, and N. G. R. Broderick, “All-normal dispersion fiber lasers mode-locked with a nonlinear amplifying loop mirror,” Opt. Fiber Technol. 20(6), 657–665 (2014).
[Crossref]

Opt. Lett. (5)

Phys. Rev. Lett. (1)

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92(21), 213902 (2004).
[Crossref] [PubMed]

Sci. Rep. (1)

K. Moon, I.-M. Lee, J.-H. Shin, E. S. Lee, N. Kim, W.-H. Lee, H. Ko, S.-P. Han, and K. H. Park, “Bias field tailored plasmonic nano-electrode for high-power terahertz photonic devices,” Sci. Rep. 5, 13817 (2015).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the all-normal dispersion passively mode-locked Yb-doped fiber laser. (Pump LD; pump laser diode, WDM coupler; wavelength division multiplexing coupler, YDF; Yb-doped fiber, QWP; quarter wave plate, HWP; half wave plate, PBS; polarizing beam splitter, SMF; single mode fiber)

Fig. 2
Fig. 2

(a) Optical spectrum, (b) autocorrelation trace of the all-normal dispersion passively mode-locked Yb-doped fiber laser, and (c) measured output power with respect to pump power.

Fig. 3
Fig. 3

Schematic of the optical pulse compressor.

Fig. 4
Fig. 4

Auto-correlation trace of the dechirped pulse.

Fig. 5
Fig. 5

Experimental setup for THz-TDS system based on the passively mode-locked Yb-doped fiber laser.

Fig. 6
Fig. 6

(a) THz pulse trace of free space and (b) its FFT amplitude spectrum. (Insets: water vapor dips in free space)

Metrics