Abstract

This paper proposes a method to enhance terahertz reflection tomographic imaging by interference cancellation between layers. When the gap between layers is small, the signal reflected on the upper layer interferes with that on the lower layer, which degrades the quality of the reconstructed tomographic image in the lower layer. The proposed method estimates the upper-layer reflection signal by system modeling, which is then eliminated from the acquired signal. In this way, it can provide the correct lower-layer reflection signal, thereby improving the quality of the lower-layer tomographic image. The performance of the proposed method was confirmed using computer simulation data and real terahertz reflection data.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fast terahertz reflection tomography using block-based compressed sensing

Sang-Heum Cho, Sang-Hun Lee, Chan Nam-Gung, Seoung-Jun Oh, Joo-Hiuk Son, Hochong Park, and Chang-Beom Ahn
Opt. Express 19(17) 16401-16409 (2011)

Terahertz wide aperture reflection tomography

Jeremy Pearce, Hyeokho Choi, Daniel M. Mittleman, Jeff White, and David Zimdars
Opt. Lett. 30(13) 1653-1655 (2005)

High-speed terahertz reflection three-dimensional imaging for nondestructive evaluation

Kyong Hwan Jin, Young-Gil Kim, Seung Hyun Cho, Jong Chul Ye, and Dae-Su Yee
Opt. Express 20(23) 25432-25440 (2012)

References

  • View by:
  • |
  • |
  • |

  1. B. B. Hu and M. C. Nuss, “Imaging with terahertz waves,” Opt. Lett. 20(16), 1716–1718 (1995).
    [Crossref] [PubMed]
  2. D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss, “T-ray imaging,” IEEE J. Sel. Top. Quantum Electron. 2(3), 679–692 (1996).
    [Crossref]
  3. D. M. Mittleman, S. Hunsche, L. Boivin, and M. C. Nuss, “T-ray tomography,” Opt. Lett. 22(12), 904–906 (1997).
    [Crossref] [PubMed]
  4. J.-H. Son, “Terahertz electromagnetic interactions with biological matter and their applications,” J. Appl. Phys. 105(10), 102033 (2009).
    [Crossref]
  5. S. J. Oh, J. Kang, I. Maeng, J.-S. Suh, Y.-M. Huh, S. Haam, and J.-H. Son, “Nanoparticle-enabled terahertz imaging for cancer diagnosis,” Opt. Express 17(5), 3469–3475 (2009).
    [Crossref] [PubMed]
  6. S. J. Oh, J. Choi, I. Maeng, J. Y. Park, K. Lee, Y.-M. Huh, J.-S. Suh, S. Haam, and J.-H. Son, “Molecular imaging with terahertz waves,” Opt. Express 19(5), 4009–4016 (2011).
    [Crossref] [PubMed]
  7. J. Y. Park, H. J. Choi, G.-E. Nam, K.-S. Cho, and J.-H. Son, “In vivo dual-modality terahertz/magnetic resonance imaging using superparamagnetic iron oxide nanoparticles as a dual contrast agent,” IEEE Trans. Terahertz Sci. Technol. 2(1), 93–98 (2012).
    [Crossref]
  8. S.-H. Cho, S.-H. Lee, C. Nam-Gung, S. J. Oh, J.-H. Son, H. Park, and C.-B. Ahn, “Fast terahertz reflection tomography using block-based compressed sensing,” Opt. Express 19(17), 16401–16409 (2011).
    [Crossref] [PubMed]
  9. K. Kim, D.-G. Lee, W.-G. Ham, J. Ku, S.-H. Lee, C.-B. Ahn, J.-H. Son, and H. Park, “Adaptive compressed sensing for the fast terahertz reflection tomography,” IEEE Trans. Terahertz Sci. Technol. 3(4), 395–401 (2013).
    [Crossref] [PubMed]
  10. B. Widrow and S. D. Stearns, Adaptive Signal Processing (Prentice-Hall, 1985).

2013 (1)

K. Kim, D.-G. Lee, W.-G. Ham, J. Ku, S.-H. Lee, C.-B. Ahn, J.-H. Son, and H. Park, “Adaptive compressed sensing for the fast terahertz reflection tomography,” IEEE Trans. Terahertz Sci. Technol. 3(4), 395–401 (2013).
[Crossref] [PubMed]

2012 (1)

J. Y. Park, H. J. Choi, G.-E. Nam, K.-S. Cho, and J.-H. Son, “In vivo dual-modality terahertz/magnetic resonance imaging using superparamagnetic iron oxide nanoparticles as a dual contrast agent,” IEEE Trans. Terahertz Sci. Technol. 2(1), 93–98 (2012).
[Crossref]

2011 (2)

2009 (2)

J.-H. Son, “Terahertz electromagnetic interactions with biological matter and their applications,” J. Appl. Phys. 105(10), 102033 (2009).
[Crossref]

S. J. Oh, J. Kang, I. Maeng, J.-S. Suh, Y.-M. Huh, S. Haam, and J.-H. Son, “Nanoparticle-enabled terahertz imaging for cancer diagnosis,” Opt. Express 17(5), 3469–3475 (2009).
[Crossref] [PubMed]

1997 (1)

1996 (1)

D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss, “T-ray imaging,” IEEE J. Sel. Top. Quantum Electron. 2(3), 679–692 (1996).
[Crossref]

1995 (1)

Ahn, C.-B.

K. Kim, D.-G. Lee, W.-G. Ham, J. Ku, S.-H. Lee, C.-B. Ahn, J.-H. Son, and H. Park, “Adaptive compressed sensing for the fast terahertz reflection tomography,” IEEE Trans. Terahertz Sci. Technol. 3(4), 395–401 (2013).
[Crossref] [PubMed]

S.-H. Cho, S.-H. Lee, C. Nam-Gung, S. J. Oh, J.-H. Son, H. Park, and C.-B. Ahn, “Fast terahertz reflection tomography using block-based compressed sensing,” Opt. Express 19(17), 16401–16409 (2011).
[Crossref] [PubMed]

Boivin, L.

Cho, K.-S.

J. Y. Park, H. J. Choi, G.-E. Nam, K.-S. Cho, and J.-H. Son, “In vivo dual-modality terahertz/magnetic resonance imaging using superparamagnetic iron oxide nanoparticles as a dual contrast agent,” IEEE Trans. Terahertz Sci. Technol. 2(1), 93–98 (2012).
[Crossref]

Cho, S.-H.

Choi, H. J.

J. Y. Park, H. J. Choi, G.-E. Nam, K.-S. Cho, and J.-H. Son, “In vivo dual-modality terahertz/magnetic resonance imaging using superparamagnetic iron oxide nanoparticles as a dual contrast agent,” IEEE Trans. Terahertz Sci. Technol. 2(1), 93–98 (2012).
[Crossref]

Choi, J.

Haam, S.

Ham, W.-G.

K. Kim, D.-G. Lee, W.-G. Ham, J. Ku, S.-H. Lee, C.-B. Ahn, J.-H. Son, and H. Park, “Adaptive compressed sensing for the fast terahertz reflection tomography,” IEEE Trans. Terahertz Sci. Technol. 3(4), 395–401 (2013).
[Crossref] [PubMed]

Hu, B. B.

Huh, Y.-M.

Hunsche, S.

Jacobsen, R. H.

D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss, “T-ray imaging,” IEEE J. Sel. Top. Quantum Electron. 2(3), 679–692 (1996).
[Crossref]

Kang, J.

Kim, K.

K. Kim, D.-G. Lee, W.-G. Ham, J. Ku, S.-H. Lee, C.-B. Ahn, J.-H. Son, and H. Park, “Adaptive compressed sensing for the fast terahertz reflection tomography,” IEEE Trans. Terahertz Sci. Technol. 3(4), 395–401 (2013).
[Crossref] [PubMed]

Ku, J.

K. Kim, D.-G. Lee, W.-G. Ham, J. Ku, S.-H. Lee, C.-B. Ahn, J.-H. Son, and H. Park, “Adaptive compressed sensing for the fast terahertz reflection tomography,” IEEE Trans. Terahertz Sci. Technol. 3(4), 395–401 (2013).
[Crossref] [PubMed]

Lee, D.-G.

K. Kim, D.-G. Lee, W.-G. Ham, J. Ku, S.-H. Lee, C.-B. Ahn, J.-H. Son, and H. Park, “Adaptive compressed sensing for the fast terahertz reflection tomography,” IEEE Trans. Terahertz Sci. Technol. 3(4), 395–401 (2013).
[Crossref] [PubMed]

Lee, K.

Lee, S.-H.

K. Kim, D.-G. Lee, W.-G. Ham, J. Ku, S.-H. Lee, C.-B. Ahn, J.-H. Son, and H. Park, “Adaptive compressed sensing for the fast terahertz reflection tomography,” IEEE Trans. Terahertz Sci. Technol. 3(4), 395–401 (2013).
[Crossref] [PubMed]

S.-H. Cho, S.-H. Lee, C. Nam-Gung, S. J. Oh, J.-H. Son, H. Park, and C.-B. Ahn, “Fast terahertz reflection tomography using block-based compressed sensing,” Opt. Express 19(17), 16401–16409 (2011).
[Crossref] [PubMed]

Maeng, I.

Mittleman, D. M.

D. M. Mittleman, S. Hunsche, L. Boivin, and M. C. Nuss, “T-ray tomography,” Opt. Lett. 22(12), 904–906 (1997).
[Crossref] [PubMed]

D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss, “T-ray imaging,” IEEE J. Sel. Top. Quantum Electron. 2(3), 679–692 (1996).
[Crossref]

Nam, G.-E.

J. Y. Park, H. J. Choi, G.-E. Nam, K.-S. Cho, and J.-H. Son, “In vivo dual-modality terahertz/magnetic resonance imaging using superparamagnetic iron oxide nanoparticles as a dual contrast agent,” IEEE Trans. Terahertz Sci. Technol. 2(1), 93–98 (2012).
[Crossref]

Nam-Gung, C.

Nuss, M. C.

Oh, S. J.

Park, H.

K. Kim, D.-G. Lee, W.-G. Ham, J. Ku, S.-H. Lee, C.-B. Ahn, J.-H. Son, and H. Park, “Adaptive compressed sensing for the fast terahertz reflection tomography,” IEEE Trans. Terahertz Sci. Technol. 3(4), 395–401 (2013).
[Crossref] [PubMed]

S.-H. Cho, S.-H. Lee, C. Nam-Gung, S. J. Oh, J.-H. Son, H. Park, and C.-B. Ahn, “Fast terahertz reflection tomography using block-based compressed sensing,” Opt. Express 19(17), 16401–16409 (2011).
[Crossref] [PubMed]

Park, J. Y.

J. Y. Park, H. J. Choi, G.-E. Nam, K.-S. Cho, and J.-H. Son, “In vivo dual-modality terahertz/magnetic resonance imaging using superparamagnetic iron oxide nanoparticles as a dual contrast agent,” IEEE Trans. Terahertz Sci. Technol. 2(1), 93–98 (2012).
[Crossref]

S. J. Oh, J. Choi, I. Maeng, J. Y. Park, K. Lee, Y.-M. Huh, J.-S. Suh, S. Haam, and J.-H. Son, “Molecular imaging with terahertz waves,” Opt. Express 19(5), 4009–4016 (2011).
[Crossref] [PubMed]

Son, J.-H.

K. Kim, D.-G. Lee, W.-G. Ham, J. Ku, S.-H. Lee, C.-B. Ahn, J.-H. Son, and H. Park, “Adaptive compressed sensing for the fast terahertz reflection tomography,” IEEE Trans. Terahertz Sci. Technol. 3(4), 395–401 (2013).
[Crossref] [PubMed]

J. Y. Park, H. J. Choi, G.-E. Nam, K.-S. Cho, and J.-H. Son, “In vivo dual-modality terahertz/magnetic resonance imaging using superparamagnetic iron oxide nanoparticles as a dual contrast agent,” IEEE Trans. Terahertz Sci. Technol. 2(1), 93–98 (2012).
[Crossref]

S.-H. Cho, S.-H. Lee, C. Nam-Gung, S. J. Oh, J.-H. Son, H. Park, and C.-B. Ahn, “Fast terahertz reflection tomography using block-based compressed sensing,” Opt. Express 19(17), 16401–16409 (2011).
[Crossref] [PubMed]

S. J. Oh, J. Choi, I. Maeng, J. Y. Park, K. Lee, Y.-M. Huh, J.-S. Suh, S. Haam, and J.-H. Son, “Molecular imaging with terahertz waves,” Opt. Express 19(5), 4009–4016 (2011).
[Crossref] [PubMed]

S. J. Oh, J. Kang, I. Maeng, J.-S. Suh, Y.-M. Huh, S. Haam, and J.-H. Son, “Nanoparticle-enabled terahertz imaging for cancer diagnosis,” Opt. Express 17(5), 3469–3475 (2009).
[Crossref] [PubMed]

J.-H. Son, “Terahertz electromagnetic interactions with biological matter and their applications,” J. Appl. Phys. 105(10), 102033 (2009).
[Crossref]

Suh, J.-S.

IEEE J. Sel. Top. Quantum Electron. (1)

D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss, “T-ray imaging,” IEEE J. Sel. Top. Quantum Electron. 2(3), 679–692 (1996).
[Crossref]

IEEE Trans. Terahertz Sci. Technol. (2)

J. Y. Park, H. J. Choi, G.-E. Nam, K.-S. Cho, and J.-H. Son, “In vivo dual-modality terahertz/magnetic resonance imaging using superparamagnetic iron oxide nanoparticles as a dual contrast agent,” IEEE Trans. Terahertz Sci. Technol. 2(1), 93–98 (2012).
[Crossref]

K. Kim, D.-G. Lee, W.-G. Ham, J. Ku, S.-H. Lee, C.-B. Ahn, J.-H. Son, and H. Park, “Adaptive compressed sensing for the fast terahertz reflection tomography,” IEEE Trans. Terahertz Sci. Technol. 3(4), 395–401 (2013).
[Crossref] [PubMed]

J. Appl. Phys. (1)

J.-H. Son, “Terahertz electromagnetic interactions with biological matter and their applications,” J. Appl. Phys. 105(10), 102033 (2009).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Other (1)

B. Widrow and S. D. Stearns, Adaptive Signal Processing (Prentice-Hall, 1985).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Acquisition of reflected signal in THz reflection tomography system for object with two layers.

Fig. 2
Fig. 2

Acquired reflection signal on L1 for THz reflection tomography system.

Fig. 3
Fig. 3

Block diagram for system modeling. (a) Conventional block diagram for general system modeling. (b) Block diagram for modeling reflection on L1 in the proposed method.

Fig. 4
Fig. 4

Determination of Ri for reflection modeling. (a) Input THz pulse p(t) and the time gap Q between the start and the positive peak positions. (b) R1 and R2 determined from x(t).

Fig. 5
Fig. 5

Computer simulation data used in the performance analysis. (a) Test object used to generate computer simulation data. (b) System impulse response h0(t) used to model the reflection. (c) Simulated reflection signal on each layer, u1(t) and u2(t). (d) Acquired signal, x(t) = u1(t) + u2(t). (e) Estimated reflection signal, u1′(t) and u2′(t), by the proposed method.

Fig. 6
Fig. 6

Tomographic image of L2 reconstructed by the conventional method and by the proposed method when the layer gap is 15 samples. (a) 1% noise addition to h0(t). (b) 10% noise addition to h0(t).

Fig. 7
Fig. 7

Performance of the proposed method measured in terms of PSNR(dB) for computer simulation data. (a) 1% noise addition to h0(t). (b) 10% noise addition to h0(t).

Fig. 8
Fig. 8

Performance analysis for real THz reflection data. (a) Test object used to acquire the reflected signal. (b) x(t) in position with strong reflection on L2 . (c) x(t) in position with strong reflection on L3. (d) Estimated reflection signal, u1′(t) and u2′(t), for x(t) in (b) by the proposed method.

Fig. 9
Fig. 9

Tomographic image reconstructed by the conventional method and by the proposed method for real THz reflection data. (a) L2. (b) L3. (c) L4.

Tables (1)

Tables Icon

Table 1 Performance of the Proposed Method Measured in Terms of PSNR(dB) for Real THz Reflection Data

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E(g)= t= R 1 R 2 1 ( x(t)y(t) ) 2 = t= R 1 R 2 1 ( x(t)p(t)g(t) ) 2 = t= R 1 R 2 1 ( x(t) m=0 K g(m)p(tm) ) 2
E(g) g(k) = g(k) t= R 1 R 2 1 ( x(t) m=0 K g(m)p(tm) ) 2 =2 t= R 1 R 2 1 [ ( x(t) m=0 K g(m)p(tm) )p(tk) ]
g(k)g(k)+μ t= R 1 R 2 1 [ ( x(t) m=0 K g(m)p(tm) )p(tk) ] , k=0,,K

Metrics