Abstract

We present a catadioptric beacon localization system that can provide mobile network nodes with omnidirectional situational awareness of neighboring nodes. In this system, a receiver composed of a hyperboloidal mirror and camera is used to estimate the azimuth, elevation, and range of an LED beacon. We provide a general framework for understanding the propagation of error in the angle-of-arrival estimation and then present an experimental realization of such a system. The situational awareness provided by the proposed system can enable the alignment of communication nodes in an optical wireless network, which may be particularly useful in addressing RF-denied environments.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Design of dual-link (wide- and narrow-beam) LED communication systems

Thomas C. Shen, Robert J. Drost, Christopher C. Davis, and Brian M. Sadler
Opt. Express 22(9) 11107-11118 (2014)

Angle-of-arrival reception for optical wireless location technology

Ahmed Arafa, Sumant Dalmiya, Richard Klukas, and Jonathan F. Holzman
Opt. Express 23(6) 7755-7766 (2015)

Exploring the effect of diffuse reflection on indoor localization systems based on RSSI-VLC

Nazmi A. Mohammed and Mohammed Abd Elkarim
Opt. Express 23(16) 20297-20313 (2015)

References

  • View by:
  • |
  • |
  • |

  1. D.K. Borah, A.C. Boucouvalas, C.C. Davis, S. Hranilovic, and K. Yiannopoulos, “A review of communication-oriented optical wireless systems,” EURASIP Journal on Wireless Communications and Networking 2012(1), 1–28 (2012).
    [Crossref]
  2. M. Wolf and D. Kress, “Short-range wireless infrared transmission: the link budget compared to RF,” IEEE Wireless Communications 10(2), 8–14 (2003).
    [Crossref]
  3. S. Pimputkar, J.S. Speck, S.P. DenBaars, and S. Nakamura, “Prospects for LED lighting,” Nature Photonics 3(4), 180–182 (2009).
    [Crossref]
  4. T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Transactions on Consumer Electronics 50(1), 100–107 (2004).
    [Crossref]
  5. N. Kumar, D. Terra, N. Lourenço, L.N. Alves, and R.L. Aguiar, “Visible light communication for intelligent transportation in road safety applications,” in Proceedings of IEEE Wireless Communications and Mobile Computing Conference (IEEE, 2011), pp. 1513–1518.
  6. K.D. Langer and J. Grubor, “Recent developments in optical wireless communications using infrared and visible light,” in Proceedings of IEEE International Conference on Transparent Optical Networks, (IEEE, 2007) pp. 146–151.
  7. S.S. Muhammad, T. Plank, E. Leitgeb, A. Friedl, K. Zettl, J. Tomaž, and N. Schmitt, “Challenges in establishing free space optical communications between flying vehicles,” in Proceedings of IEEE International Symposium on Communication Systems, Networks and Digital Signal Processing (IEEE2008), pp.82–86.
  8. H. Henniger and O. Wilfert, “An introduction to free-space optical communications,” Radioengineering 19(2), 203–212 (2010).
  9. S. Das, H. Henniger, B. Epple, C.I. Moore, W. Rabinovich, R. Sova, and D. Young, “Requirements and challenges for tactical free-space lasercomm,” in Proceedings of Military Communications Conference (IEEE, 2008), pp. 1–10.
  10. S. Bloom, E. Korevaar, J. Schuster, and H. Willebrand, “Understanding the performance of free-space optics,” Journal of Optical Networking 2(6), 178–200 (2003).
  11. H.A. Willebrand and B.S. Ghuman, “Fiber optics without fiber,” IEEE Spectrum 38(8), 40–45 (2001).
    [Crossref]
  12. J. Rzasa, M.C. Ertem, and C.C. Davis, “Pointing, acquisition, and tracking considerations for mobile directional wireless communications systems,” Proc. SPIE 8874, 88740 (2013).
    [Crossref]
  13. B. Epple, “Using a GPS-aided inertial system for coarse-pointing of free-space optical communication terminals,” Proc. SPIE 6304, 630418 (2006).
    [Crossref]
  14. S. Milner, J. Llorca, and C.C. Davis, “Autonomous reconfiguration and control in directional mobile ad hoc networks,” IEEE Circuits and Systems Magazine 9(2), 10–26 (2009).
    [Crossref]
  15. G. Lu, Y. Lu, T.P. Deng, and H. Liu, “Automatic alignment of optical-beam-based GPS for free-space laser communication system,” Proc. SPIE 5160, 432–438 (2004).
    [Crossref]
  16. W.L. Saw, H.H. Refai, and J.J. Sluss, “Free space optical alignment system using GPS,” Proc. SPIE 5712, 101–109 (2005).
    [Crossref]
  17. T.H. Ho, S. Trisno, I. Smolyaninov, S.D. Milner, and C.C. Davis, “Studies of pointing, acquisition, and tracking of agile optical wireless transceivers for free-space optical communication networks,” Proc. SPIE 5237, 147–158 (2004).
    [Crossref]
  18. T.C. Shen, R.J. Drost, C.C. Davis, and B.M. Sadler, “Design of dual-link (wide- and narrow-beam) LED communication systems,” Optics Express 22(9), 11107–11118 (2014).
    [Crossref] [PubMed]
  19. K. Yamazawa, Y. Yagi, and M. Yachida, “Omnidirectional imaging with hyperboloidal projection,” in Proceedings of IEEE International Conference on Intelligent Robots and Systems (IEEE, 1993), pp. 1029–1034.
  20. T.C. Shen, R.J. Drost, J. Rzasa, B.M. Sadler, and C.C Davis, “Panoramic alignment system for optical wireless communication systems,” Proc. SPIE 9354, 93540M (2015).
    [Crossref]
  21. T.J. Ho, S.D. Milner, and C.C. Davis, “Fully optical real-time pointing, acquisition, and tracking system for free space optical link,” Proc. SPIE 5712, 81–92 (2005).
    [Crossref]
  22. H. Ishiguro, M. Yamamoto, and S. Tsuji, “Omni-directional stereo for making global map,” in Proceedings of IEEE Third International Conference on Computer Vision (IEEE, 1990), pp. 540–547.
  23. K.B. Sarachik, “Characterising an indoor environment with a mobile robot and uncalibrated stereo,” in Proceedings of IEEE International Conference on Robotics and Automation (IEEE, 1989), pp. 984–989.
  24. M. Doniec, C. Detweiler, I. Vasilescu, and D. Rus, “Using optical communication for remote underwater robot operation,” in Proceedings of IEEE International Conference on Intelligent Robots and Systems (IEEE, 2010), pp. 4017–4022.
  25. I.C. Rust and H.H Asada, “A dual-use visible light approach to integrated communication and localization of underwater robots with application to non-destructive nuclear reactor inspection,” in Proceedings of IEEE International Conference on Robotics and Automation (IEEE, 2012), pp. 2445–2450.
  26. S. Lee and S. Jung, “Location awareness using angle-of-arrival based circular-PD-array for visible light communication,” in Proceedings of IEEE Asia-Pacific Conference on Communications (IEEE, 2012), pp. 480–485.
  27. D. Zheng, K. Cui, B. Bai, G. Chen, and J.A. Farrell, “Indoor localization based on LEDs,” in Proceedings of International Conference on Control Applications (IEEE, 2011), pp. 573–578.
  28. S. Baker and S.K. Nayar, “A theory of single-viewpoint catadioptric image formation,” International Journal of Computer Vision 35(2), 175–196 (1999).
    [Crossref]
  29. M. Fiala and A. Basu, “Robot navigation using panoramic tracking,” Pattern Recognition 37(11), 2195–2215 (2004).
    [Crossref]
  30. Y. Yagi, W. Nishii, K. Yamazawa, and M. Yachida, “Rolling motion estimation for mobile robot by using omnidirectional image sensor hyperomnivision,” in Proceedings of the IEEE International Conference on Pattern Recognition (IEEE, 1996), pp. 946–950.
  31. K. Yamazawa, Y. Yagi, and M. Yachida, “Obstacle detection with omnidirectional image sensor hyperomni vision,” in Proceedings of IEEE International Conference on Robotics and Automation (IEEE, 1995), pp. 1062–1067.
  32. J. Kim and Y. Suga, “An omnidirectional vision-based moving obstacle detection in mobile robot,” International Journal of Control Automation and Systems 5(6), 663–673 (2007).
  33. L. Matthies and S.A. Shafer, “Error modeling in stereo navigation,” IEEE Journal of Robotics and Automation 3(3), 239–248 (1987).
    [Crossref]
  34. R.J. Muirhead, Aspects of Multivariate Statistical Theory(John Wiley & Sons, 2009).
  35. D.V. Hinkley, “On the ratio of two correlated normal random variables,” Biometrika 56(3), 635–639 (1969).
    [Crossref]
  36. P. Dharmawansa, N. Rajatheva, and C. Tellambura, “Envelope and phase distribution of two correlated gaussian variables,” IEEE Transactions on Communications 57(4), 915–921 (2009).
    [Crossref]
  37. http://www.neovision.cz/prods/panoramic/h3s.html .
  38. https://www.alliedvision.com/en/products/cameras/detail/Prosilica%20GC/1600H.html .
  39. http://www.ledsupply.com/leds/luxeon-rebel-color-leds .
  40. Y.Y. Chen, K.M. Lan, H.I. Pai, J.H. Chuang, and C.Y. Yuan, “Robust light objects recognition based on computer vision,” in IEEE International Symposium on Pervasive Systems, Algorithms, and Networks (IEEE, 2009), pp. 508–514.
  41. G.K.H. Pang and H.H.S Liu, “LED location beacon system based on processing of digital images,” IEEE Transactions on Intelligent Transportation Systems 2(3), 135–150 (2001).
    [Crossref]
  42. D. Zheng, G. Chen, and J.A Farrell, “Navigation using linear photo detector arrays,” in Proceedings of IEEE International Conference on Control Applications (IEEE, 2013), pp. 533–538.
  43. M.P. Wernet and A. Pline, “Particle displacement tracking technique and Cramer-Rao lower bound error in centroid estimates from CCD imagery,” Experiments in Fluids 15(4), 295–307 (1993).
  44. N. Bobroff, “Position measurement with a resolution and noise-limited instrument,” Review of Scientific Instruments 57(6), 1152–1157 (1986).
    [Crossref]
  45. J.S. Morgan, D.C. Slater, J.G. Timothy, and E.B. Jenkins, “Centroid position measurements and subpixel sensitivity variations with the MAMA detector,” Applied Optics 28(6), 1178–1192 (1989).
    [Crossref] [PubMed]
  46. R.H. Stanton, J.W. Alexander, E.W. Dennison, T.A. Glavich, and L.F. Hovland, “Optical tracking using charge-coupled devices,” Optical Engineering 26(9), 269930 (1987).
    [Crossref]
  47. B.F. Alexander and K.C. Ng, “Elimination of systematic error in subpixel accuracy centroid,” Optical Engineering 30(9), 1320–1331 (1991).
    [Crossref]
  48. S. Lee, “Pointing accuracy improvement using model-based noise reduction method,” Proc. SPIE 4635, 65–71 (2002).
    [Crossref]

2015 (1)

T.C. Shen, R.J. Drost, J. Rzasa, B.M. Sadler, and C.C Davis, “Panoramic alignment system for optical wireless communication systems,” Proc. SPIE 9354, 93540M (2015).
[Crossref]

2014 (1)

T.C. Shen, R.J. Drost, C.C. Davis, and B.M. Sadler, “Design of dual-link (wide- and narrow-beam) LED communication systems,” Optics Express 22(9), 11107–11118 (2014).
[Crossref] [PubMed]

2013 (1)

J. Rzasa, M.C. Ertem, and C.C. Davis, “Pointing, acquisition, and tracking considerations for mobile directional wireless communications systems,” Proc. SPIE 8874, 88740 (2013).
[Crossref]

2012 (1)

D.K. Borah, A.C. Boucouvalas, C.C. Davis, S. Hranilovic, and K. Yiannopoulos, “A review of communication-oriented optical wireless systems,” EURASIP Journal on Wireless Communications and Networking 2012(1), 1–28 (2012).
[Crossref]

2010 (1)

H. Henniger and O. Wilfert, “An introduction to free-space optical communications,” Radioengineering 19(2), 203–212 (2010).

2009 (3)

S. Pimputkar, J.S. Speck, S.P. DenBaars, and S. Nakamura, “Prospects for LED lighting,” Nature Photonics 3(4), 180–182 (2009).
[Crossref]

S. Milner, J. Llorca, and C.C. Davis, “Autonomous reconfiguration and control in directional mobile ad hoc networks,” IEEE Circuits and Systems Magazine 9(2), 10–26 (2009).
[Crossref]

P. Dharmawansa, N. Rajatheva, and C. Tellambura, “Envelope and phase distribution of two correlated gaussian variables,” IEEE Transactions on Communications 57(4), 915–921 (2009).
[Crossref]

2007 (1)

J. Kim and Y. Suga, “An omnidirectional vision-based moving obstacle detection in mobile robot,” International Journal of Control Automation and Systems 5(6), 663–673 (2007).

2006 (1)

B. Epple, “Using a GPS-aided inertial system for coarse-pointing of free-space optical communication terminals,” Proc. SPIE 6304, 630418 (2006).
[Crossref]

2005 (2)

W.L. Saw, H.H. Refai, and J.J. Sluss, “Free space optical alignment system using GPS,” Proc. SPIE 5712, 101–109 (2005).
[Crossref]

T.J. Ho, S.D. Milner, and C.C. Davis, “Fully optical real-time pointing, acquisition, and tracking system for free space optical link,” Proc. SPIE 5712, 81–92 (2005).
[Crossref]

2004 (4)

M. Fiala and A. Basu, “Robot navigation using panoramic tracking,” Pattern Recognition 37(11), 2195–2215 (2004).
[Crossref]

T.H. Ho, S. Trisno, I. Smolyaninov, S.D. Milner, and C.C. Davis, “Studies of pointing, acquisition, and tracking of agile optical wireless transceivers for free-space optical communication networks,” Proc. SPIE 5237, 147–158 (2004).
[Crossref]

G. Lu, Y. Lu, T.P. Deng, and H. Liu, “Automatic alignment of optical-beam-based GPS for free-space laser communication system,” Proc. SPIE 5160, 432–438 (2004).
[Crossref]

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Transactions on Consumer Electronics 50(1), 100–107 (2004).
[Crossref]

2003 (2)

M. Wolf and D. Kress, “Short-range wireless infrared transmission: the link budget compared to RF,” IEEE Wireless Communications 10(2), 8–14 (2003).
[Crossref]

S. Bloom, E. Korevaar, J. Schuster, and H. Willebrand, “Understanding the performance of free-space optics,” Journal of Optical Networking 2(6), 178–200 (2003).

2002 (1)

S. Lee, “Pointing accuracy improvement using model-based noise reduction method,” Proc. SPIE 4635, 65–71 (2002).
[Crossref]

2001 (2)

G.K.H. Pang and H.H.S Liu, “LED location beacon system based on processing of digital images,” IEEE Transactions on Intelligent Transportation Systems 2(3), 135–150 (2001).
[Crossref]

H.A. Willebrand and B.S. Ghuman, “Fiber optics without fiber,” IEEE Spectrum 38(8), 40–45 (2001).
[Crossref]

1999 (1)

S. Baker and S.K. Nayar, “A theory of single-viewpoint catadioptric image formation,” International Journal of Computer Vision 35(2), 175–196 (1999).
[Crossref]

1993 (1)

M.P. Wernet and A. Pline, “Particle displacement tracking technique and Cramer-Rao lower bound error in centroid estimates from CCD imagery,” Experiments in Fluids 15(4), 295–307 (1993).

1991 (1)

B.F. Alexander and K.C. Ng, “Elimination of systematic error in subpixel accuracy centroid,” Optical Engineering 30(9), 1320–1331 (1991).
[Crossref]

1989 (1)

J.S. Morgan, D.C. Slater, J.G. Timothy, and E.B. Jenkins, “Centroid position measurements and subpixel sensitivity variations with the MAMA detector,” Applied Optics 28(6), 1178–1192 (1989).
[Crossref] [PubMed]

1987 (2)

R.H. Stanton, J.W. Alexander, E.W. Dennison, T.A. Glavich, and L.F. Hovland, “Optical tracking using charge-coupled devices,” Optical Engineering 26(9), 269930 (1987).
[Crossref]

L. Matthies and S.A. Shafer, “Error modeling in stereo navigation,” IEEE Journal of Robotics and Automation 3(3), 239–248 (1987).
[Crossref]

1986 (1)

N. Bobroff, “Position measurement with a resolution and noise-limited instrument,” Review of Scientific Instruments 57(6), 1152–1157 (1986).
[Crossref]

1969 (1)

D.V. Hinkley, “On the ratio of two correlated normal random variables,” Biometrika 56(3), 635–639 (1969).
[Crossref]

Aguiar, R.L.

N. Kumar, D. Terra, N. Lourenço, L.N. Alves, and R.L. Aguiar, “Visible light communication for intelligent transportation in road safety applications,” in Proceedings of IEEE Wireless Communications and Mobile Computing Conference (IEEE, 2011), pp. 1513–1518.

Alexander, B.F.

B.F. Alexander and K.C. Ng, “Elimination of systematic error in subpixel accuracy centroid,” Optical Engineering 30(9), 1320–1331 (1991).
[Crossref]

Alexander, J.W.

R.H. Stanton, J.W. Alexander, E.W. Dennison, T.A. Glavich, and L.F. Hovland, “Optical tracking using charge-coupled devices,” Optical Engineering 26(9), 269930 (1987).
[Crossref]

Alves, L.N.

N. Kumar, D. Terra, N. Lourenço, L.N. Alves, and R.L. Aguiar, “Visible light communication for intelligent transportation in road safety applications,” in Proceedings of IEEE Wireless Communications and Mobile Computing Conference (IEEE, 2011), pp. 1513–1518.

Asada, H.H

I.C. Rust and H.H Asada, “A dual-use visible light approach to integrated communication and localization of underwater robots with application to non-destructive nuclear reactor inspection,” in Proceedings of IEEE International Conference on Robotics and Automation (IEEE, 2012), pp. 2445–2450.

Bai, B.

D. Zheng, K. Cui, B. Bai, G. Chen, and J.A. Farrell, “Indoor localization based on LEDs,” in Proceedings of International Conference on Control Applications (IEEE, 2011), pp. 573–578.

Baker, S.

S. Baker and S.K. Nayar, “A theory of single-viewpoint catadioptric image formation,” International Journal of Computer Vision 35(2), 175–196 (1999).
[Crossref]

Basu, A.

M. Fiala and A. Basu, “Robot navigation using panoramic tracking,” Pattern Recognition 37(11), 2195–2215 (2004).
[Crossref]

Bloom, S.

S. Bloom, E. Korevaar, J. Schuster, and H. Willebrand, “Understanding the performance of free-space optics,” Journal of Optical Networking 2(6), 178–200 (2003).

Bobroff, N.

N. Bobroff, “Position measurement with a resolution and noise-limited instrument,” Review of Scientific Instruments 57(6), 1152–1157 (1986).
[Crossref]

Borah, D.K.

D.K. Borah, A.C. Boucouvalas, C.C. Davis, S. Hranilovic, and K. Yiannopoulos, “A review of communication-oriented optical wireless systems,” EURASIP Journal on Wireless Communications and Networking 2012(1), 1–28 (2012).
[Crossref]

Boucouvalas, A.C.

D.K. Borah, A.C. Boucouvalas, C.C. Davis, S. Hranilovic, and K. Yiannopoulos, “A review of communication-oriented optical wireless systems,” EURASIP Journal on Wireless Communications and Networking 2012(1), 1–28 (2012).
[Crossref]

Chen, G.

D. Zheng, G. Chen, and J.A Farrell, “Navigation using linear photo detector arrays,” in Proceedings of IEEE International Conference on Control Applications (IEEE, 2013), pp. 533–538.

D. Zheng, K. Cui, B. Bai, G. Chen, and J.A. Farrell, “Indoor localization based on LEDs,” in Proceedings of International Conference on Control Applications (IEEE, 2011), pp. 573–578.

Chen, Y.Y.

Y.Y. Chen, K.M. Lan, H.I. Pai, J.H. Chuang, and C.Y. Yuan, “Robust light objects recognition based on computer vision,” in IEEE International Symposium on Pervasive Systems, Algorithms, and Networks (IEEE, 2009), pp. 508–514.

Chuang, J.H.

Y.Y. Chen, K.M. Lan, H.I. Pai, J.H. Chuang, and C.Y. Yuan, “Robust light objects recognition based on computer vision,” in IEEE International Symposium on Pervasive Systems, Algorithms, and Networks (IEEE, 2009), pp. 508–514.

Cui, K.

D. Zheng, K. Cui, B. Bai, G. Chen, and J.A. Farrell, “Indoor localization based on LEDs,” in Proceedings of International Conference on Control Applications (IEEE, 2011), pp. 573–578.

Das, S.

S. Das, H. Henniger, B. Epple, C.I. Moore, W. Rabinovich, R. Sova, and D. Young, “Requirements and challenges for tactical free-space lasercomm,” in Proceedings of Military Communications Conference (IEEE, 2008), pp. 1–10.

Davis, C.C

T.C. Shen, R.J. Drost, J. Rzasa, B.M. Sadler, and C.C Davis, “Panoramic alignment system for optical wireless communication systems,” Proc. SPIE 9354, 93540M (2015).
[Crossref]

Davis, C.C.

T.C. Shen, R.J. Drost, C.C. Davis, and B.M. Sadler, “Design of dual-link (wide- and narrow-beam) LED communication systems,” Optics Express 22(9), 11107–11118 (2014).
[Crossref] [PubMed]

J. Rzasa, M.C. Ertem, and C.C. Davis, “Pointing, acquisition, and tracking considerations for mobile directional wireless communications systems,” Proc. SPIE 8874, 88740 (2013).
[Crossref]

D.K. Borah, A.C. Boucouvalas, C.C. Davis, S. Hranilovic, and K. Yiannopoulos, “A review of communication-oriented optical wireless systems,” EURASIP Journal on Wireless Communications and Networking 2012(1), 1–28 (2012).
[Crossref]

S. Milner, J. Llorca, and C.C. Davis, “Autonomous reconfiguration and control in directional mobile ad hoc networks,” IEEE Circuits and Systems Magazine 9(2), 10–26 (2009).
[Crossref]

T.J. Ho, S.D. Milner, and C.C. Davis, “Fully optical real-time pointing, acquisition, and tracking system for free space optical link,” Proc. SPIE 5712, 81–92 (2005).
[Crossref]

T.H. Ho, S. Trisno, I. Smolyaninov, S.D. Milner, and C.C. Davis, “Studies of pointing, acquisition, and tracking of agile optical wireless transceivers for free-space optical communication networks,” Proc. SPIE 5237, 147–158 (2004).
[Crossref]

DenBaars, S.P.

S. Pimputkar, J.S. Speck, S.P. DenBaars, and S. Nakamura, “Prospects for LED lighting,” Nature Photonics 3(4), 180–182 (2009).
[Crossref]

Deng, T.P.

G. Lu, Y. Lu, T.P. Deng, and H. Liu, “Automatic alignment of optical-beam-based GPS for free-space laser communication system,” Proc. SPIE 5160, 432–438 (2004).
[Crossref]

Dennison, E.W.

R.H. Stanton, J.W. Alexander, E.W. Dennison, T.A. Glavich, and L.F. Hovland, “Optical tracking using charge-coupled devices,” Optical Engineering 26(9), 269930 (1987).
[Crossref]

Detweiler, C.

M. Doniec, C. Detweiler, I. Vasilescu, and D. Rus, “Using optical communication for remote underwater robot operation,” in Proceedings of IEEE International Conference on Intelligent Robots and Systems (IEEE, 2010), pp. 4017–4022.

Dharmawansa, P.

P. Dharmawansa, N. Rajatheva, and C. Tellambura, “Envelope and phase distribution of two correlated gaussian variables,” IEEE Transactions on Communications 57(4), 915–921 (2009).
[Crossref]

Doniec, M.

M. Doniec, C. Detweiler, I. Vasilescu, and D. Rus, “Using optical communication for remote underwater robot operation,” in Proceedings of IEEE International Conference on Intelligent Robots and Systems (IEEE, 2010), pp. 4017–4022.

Drost, R.J.

T.C. Shen, R.J. Drost, J. Rzasa, B.M. Sadler, and C.C Davis, “Panoramic alignment system for optical wireless communication systems,” Proc. SPIE 9354, 93540M (2015).
[Crossref]

T.C. Shen, R.J. Drost, C.C. Davis, and B.M. Sadler, “Design of dual-link (wide- and narrow-beam) LED communication systems,” Optics Express 22(9), 11107–11118 (2014).
[Crossref] [PubMed]

Epple, B.

B. Epple, “Using a GPS-aided inertial system for coarse-pointing of free-space optical communication terminals,” Proc. SPIE 6304, 630418 (2006).
[Crossref]

S. Das, H. Henniger, B. Epple, C.I. Moore, W. Rabinovich, R. Sova, and D. Young, “Requirements and challenges for tactical free-space lasercomm,” in Proceedings of Military Communications Conference (IEEE, 2008), pp. 1–10.

Ertem, M.C.

J. Rzasa, M.C. Ertem, and C.C. Davis, “Pointing, acquisition, and tracking considerations for mobile directional wireless communications systems,” Proc. SPIE 8874, 88740 (2013).
[Crossref]

Farrell, J.A

D. Zheng, G. Chen, and J.A Farrell, “Navigation using linear photo detector arrays,” in Proceedings of IEEE International Conference on Control Applications (IEEE, 2013), pp. 533–538.

Farrell, J.A.

D. Zheng, K. Cui, B. Bai, G. Chen, and J.A. Farrell, “Indoor localization based on LEDs,” in Proceedings of International Conference on Control Applications (IEEE, 2011), pp. 573–578.

Fiala, M.

M. Fiala and A. Basu, “Robot navigation using panoramic tracking,” Pattern Recognition 37(11), 2195–2215 (2004).
[Crossref]

Friedl, A.

S.S. Muhammad, T. Plank, E. Leitgeb, A. Friedl, K. Zettl, J. Tomaž, and N. Schmitt, “Challenges in establishing free space optical communications between flying vehicles,” in Proceedings of IEEE International Symposium on Communication Systems, Networks and Digital Signal Processing (IEEE2008), pp.82–86.

Ghuman, B.S.

H.A. Willebrand and B.S. Ghuman, “Fiber optics without fiber,” IEEE Spectrum 38(8), 40–45 (2001).
[Crossref]

Glavich, T.A.

R.H. Stanton, J.W. Alexander, E.W. Dennison, T.A. Glavich, and L.F. Hovland, “Optical tracking using charge-coupled devices,” Optical Engineering 26(9), 269930 (1987).
[Crossref]

Grubor, J.

K.D. Langer and J. Grubor, “Recent developments in optical wireless communications using infrared and visible light,” in Proceedings of IEEE International Conference on Transparent Optical Networks, (IEEE, 2007) pp. 146–151.

Henniger, H.

H. Henniger and O. Wilfert, “An introduction to free-space optical communications,” Radioengineering 19(2), 203–212 (2010).

S. Das, H. Henniger, B. Epple, C.I. Moore, W. Rabinovich, R. Sova, and D. Young, “Requirements and challenges for tactical free-space lasercomm,” in Proceedings of Military Communications Conference (IEEE, 2008), pp. 1–10.

Hinkley, D.V.

D.V. Hinkley, “On the ratio of two correlated normal random variables,” Biometrika 56(3), 635–639 (1969).
[Crossref]

Ho, T.H.

T.H. Ho, S. Trisno, I. Smolyaninov, S.D. Milner, and C.C. Davis, “Studies of pointing, acquisition, and tracking of agile optical wireless transceivers for free-space optical communication networks,” Proc. SPIE 5237, 147–158 (2004).
[Crossref]

Ho, T.J.

T.J. Ho, S.D. Milner, and C.C. Davis, “Fully optical real-time pointing, acquisition, and tracking system for free space optical link,” Proc. SPIE 5712, 81–92 (2005).
[Crossref]

Hovland, L.F.

R.H. Stanton, J.W. Alexander, E.W. Dennison, T.A. Glavich, and L.F. Hovland, “Optical tracking using charge-coupled devices,” Optical Engineering 26(9), 269930 (1987).
[Crossref]

Hranilovic, S.

D.K. Borah, A.C. Boucouvalas, C.C. Davis, S. Hranilovic, and K. Yiannopoulos, “A review of communication-oriented optical wireless systems,” EURASIP Journal on Wireless Communications and Networking 2012(1), 1–28 (2012).
[Crossref]

Ishiguro, H.

H. Ishiguro, M. Yamamoto, and S. Tsuji, “Omni-directional stereo for making global map,” in Proceedings of IEEE Third International Conference on Computer Vision (IEEE, 1990), pp. 540–547.

Jenkins, E.B.

J.S. Morgan, D.C. Slater, J.G. Timothy, and E.B. Jenkins, “Centroid position measurements and subpixel sensitivity variations with the MAMA detector,” Applied Optics 28(6), 1178–1192 (1989).
[Crossref] [PubMed]

Jung, S.

S. Lee and S. Jung, “Location awareness using angle-of-arrival based circular-PD-array for visible light communication,” in Proceedings of IEEE Asia-Pacific Conference on Communications (IEEE, 2012), pp. 480–485.

Kim, J.

J. Kim and Y. Suga, “An omnidirectional vision-based moving obstacle detection in mobile robot,” International Journal of Control Automation and Systems 5(6), 663–673 (2007).

Komine, T.

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Transactions on Consumer Electronics 50(1), 100–107 (2004).
[Crossref]

Korevaar, E.

S. Bloom, E. Korevaar, J. Schuster, and H. Willebrand, “Understanding the performance of free-space optics,” Journal of Optical Networking 2(6), 178–200 (2003).

Kress, D.

M. Wolf and D. Kress, “Short-range wireless infrared transmission: the link budget compared to RF,” IEEE Wireless Communications 10(2), 8–14 (2003).
[Crossref]

Kumar, N.

N. Kumar, D. Terra, N. Lourenço, L.N. Alves, and R.L. Aguiar, “Visible light communication for intelligent transportation in road safety applications,” in Proceedings of IEEE Wireless Communications and Mobile Computing Conference (IEEE, 2011), pp. 1513–1518.

Lan, K.M.

Y.Y. Chen, K.M. Lan, H.I. Pai, J.H. Chuang, and C.Y. Yuan, “Robust light objects recognition based on computer vision,” in IEEE International Symposium on Pervasive Systems, Algorithms, and Networks (IEEE, 2009), pp. 508–514.

Langer, K.D.

K.D. Langer and J. Grubor, “Recent developments in optical wireless communications using infrared and visible light,” in Proceedings of IEEE International Conference on Transparent Optical Networks, (IEEE, 2007) pp. 146–151.

Lee, S.

S. Lee, “Pointing accuracy improvement using model-based noise reduction method,” Proc. SPIE 4635, 65–71 (2002).
[Crossref]

S. Lee and S. Jung, “Location awareness using angle-of-arrival based circular-PD-array for visible light communication,” in Proceedings of IEEE Asia-Pacific Conference on Communications (IEEE, 2012), pp. 480–485.

Leitgeb, E.

S.S. Muhammad, T. Plank, E. Leitgeb, A. Friedl, K. Zettl, J. Tomaž, and N. Schmitt, “Challenges in establishing free space optical communications between flying vehicles,” in Proceedings of IEEE International Symposium on Communication Systems, Networks and Digital Signal Processing (IEEE2008), pp.82–86.

Liu, H.

G. Lu, Y. Lu, T.P. Deng, and H. Liu, “Automatic alignment of optical-beam-based GPS for free-space laser communication system,” Proc. SPIE 5160, 432–438 (2004).
[Crossref]

Liu, H.H.S

G.K.H. Pang and H.H.S Liu, “LED location beacon system based on processing of digital images,” IEEE Transactions on Intelligent Transportation Systems 2(3), 135–150 (2001).
[Crossref]

Llorca, J.

S. Milner, J. Llorca, and C.C. Davis, “Autonomous reconfiguration and control in directional mobile ad hoc networks,” IEEE Circuits and Systems Magazine 9(2), 10–26 (2009).
[Crossref]

Lourenço, N.

N. Kumar, D. Terra, N. Lourenço, L.N. Alves, and R.L. Aguiar, “Visible light communication for intelligent transportation in road safety applications,” in Proceedings of IEEE Wireless Communications and Mobile Computing Conference (IEEE, 2011), pp. 1513–1518.

Lu, G.

G. Lu, Y. Lu, T.P. Deng, and H. Liu, “Automatic alignment of optical-beam-based GPS for free-space laser communication system,” Proc. SPIE 5160, 432–438 (2004).
[Crossref]

Lu, Y.

G. Lu, Y. Lu, T.P. Deng, and H. Liu, “Automatic alignment of optical-beam-based GPS for free-space laser communication system,” Proc. SPIE 5160, 432–438 (2004).
[Crossref]

Matthies, L.

L. Matthies and S.A. Shafer, “Error modeling in stereo navigation,” IEEE Journal of Robotics and Automation 3(3), 239–248 (1987).
[Crossref]

Milner, S.

S. Milner, J. Llorca, and C.C. Davis, “Autonomous reconfiguration and control in directional mobile ad hoc networks,” IEEE Circuits and Systems Magazine 9(2), 10–26 (2009).
[Crossref]

Milner, S.D.

T.J. Ho, S.D. Milner, and C.C. Davis, “Fully optical real-time pointing, acquisition, and tracking system for free space optical link,” Proc. SPIE 5712, 81–92 (2005).
[Crossref]

T.H. Ho, S. Trisno, I. Smolyaninov, S.D. Milner, and C.C. Davis, “Studies of pointing, acquisition, and tracking of agile optical wireless transceivers for free-space optical communication networks,” Proc. SPIE 5237, 147–158 (2004).
[Crossref]

Moore, C.I.

S. Das, H. Henniger, B. Epple, C.I. Moore, W. Rabinovich, R. Sova, and D. Young, “Requirements and challenges for tactical free-space lasercomm,” in Proceedings of Military Communications Conference (IEEE, 2008), pp. 1–10.

Morgan, J.S.

J.S. Morgan, D.C. Slater, J.G. Timothy, and E.B. Jenkins, “Centroid position measurements and subpixel sensitivity variations with the MAMA detector,” Applied Optics 28(6), 1178–1192 (1989).
[Crossref] [PubMed]

Muhammad, S.S.

S.S. Muhammad, T. Plank, E. Leitgeb, A. Friedl, K. Zettl, J. Tomaž, and N. Schmitt, “Challenges in establishing free space optical communications between flying vehicles,” in Proceedings of IEEE International Symposium on Communication Systems, Networks and Digital Signal Processing (IEEE2008), pp.82–86.

Muirhead, R.J.

R.J. Muirhead, Aspects of Multivariate Statistical Theory(John Wiley & Sons, 2009).

Nakagawa, M.

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Transactions on Consumer Electronics 50(1), 100–107 (2004).
[Crossref]

Nakamura, S.

S. Pimputkar, J.S. Speck, S.P. DenBaars, and S. Nakamura, “Prospects for LED lighting,” Nature Photonics 3(4), 180–182 (2009).
[Crossref]

Nayar, S.K.

S. Baker and S.K. Nayar, “A theory of single-viewpoint catadioptric image formation,” International Journal of Computer Vision 35(2), 175–196 (1999).
[Crossref]

Ng, K.C.

B.F. Alexander and K.C. Ng, “Elimination of systematic error in subpixel accuracy centroid,” Optical Engineering 30(9), 1320–1331 (1991).
[Crossref]

Nishii, W.

Y. Yagi, W. Nishii, K. Yamazawa, and M. Yachida, “Rolling motion estimation for mobile robot by using omnidirectional image sensor hyperomnivision,” in Proceedings of the IEEE International Conference on Pattern Recognition (IEEE, 1996), pp. 946–950.

Pai, H.I.

Y.Y. Chen, K.M. Lan, H.I. Pai, J.H. Chuang, and C.Y. Yuan, “Robust light objects recognition based on computer vision,” in IEEE International Symposium on Pervasive Systems, Algorithms, and Networks (IEEE, 2009), pp. 508–514.

Pang, G.K.H.

G.K.H. Pang and H.H.S Liu, “LED location beacon system based on processing of digital images,” IEEE Transactions on Intelligent Transportation Systems 2(3), 135–150 (2001).
[Crossref]

Pimputkar, S.

S. Pimputkar, J.S. Speck, S.P. DenBaars, and S. Nakamura, “Prospects for LED lighting,” Nature Photonics 3(4), 180–182 (2009).
[Crossref]

Plank, T.

S.S. Muhammad, T. Plank, E. Leitgeb, A. Friedl, K. Zettl, J. Tomaž, and N. Schmitt, “Challenges in establishing free space optical communications between flying vehicles,” in Proceedings of IEEE International Symposium on Communication Systems, Networks and Digital Signal Processing (IEEE2008), pp.82–86.

Pline, A.

M.P. Wernet and A. Pline, “Particle displacement tracking technique and Cramer-Rao lower bound error in centroid estimates from CCD imagery,” Experiments in Fluids 15(4), 295–307 (1993).

Rabinovich, W.

S. Das, H. Henniger, B. Epple, C.I. Moore, W. Rabinovich, R. Sova, and D. Young, “Requirements and challenges for tactical free-space lasercomm,” in Proceedings of Military Communications Conference (IEEE, 2008), pp. 1–10.

Rajatheva, N.

P. Dharmawansa, N. Rajatheva, and C. Tellambura, “Envelope and phase distribution of two correlated gaussian variables,” IEEE Transactions on Communications 57(4), 915–921 (2009).
[Crossref]

Refai, H.H.

W.L. Saw, H.H. Refai, and J.J. Sluss, “Free space optical alignment system using GPS,” Proc. SPIE 5712, 101–109 (2005).
[Crossref]

Rus, D.

M. Doniec, C. Detweiler, I. Vasilescu, and D. Rus, “Using optical communication for remote underwater robot operation,” in Proceedings of IEEE International Conference on Intelligent Robots and Systems (IEEE, 2010), pp. 4017–4022.

Rust, I.C.

I.C. Rust and H.H Asada, “A dual-use visible light approach to integrated communication and localization of underwater robots with application to non-destructive nuclear reactor inspection,” in Proceedings of IEEE International Conference on Robotics and Automation (IEEE, 2012), pp. 2445–2450.

Rzasa, J.

T.C. Shen, R.J. Drost, J. Rzasa, B.M. Sadler, and C.C Davis, “Panoramic alignment system for optical wireless communication systems,” Proc. SPIE 9354, 93540M (2015).
[Crossref]

J. Rzasa, M.C. Ertem, and C.C. Davis, “Pointing, acquisition, and tracking considerations for mobile directional wireless communications systems,” Proc. SPIE 8874, 88740 (2013).
[Crossref]

Sadler, B.M.

T.C. Shen, R.J. Drost, J. Rzasa, B.M. Sadler, and C.C Davis, “Panoramic alignment system for optical wireless communication systems,” Proc. SPIE 9354, 93540M (2015).
[Crossref]

T.C. Shen, R.J. Drost, C.C. Davis, and B.M. Sadler, “Design of dual-link (wide- and narrow-beam) LED communication systems,” Optics Express 22(9), 11107–11118 (2014).
[Crossref] [PubMed]

Sarachik, K.B.

K.B. Sarachik, “Characterising an indoor environment with a mobile robot and uncalibrated stereo,” in Proceedings of IEEE International Conference on Robotics and Automation (IEEE, 1989), pp. 984–989.

Saw, W.L.

W.L. Saw, H.H. Refai, and J.J. Sluss, “Free space optical alignment system using GPS,” Proc. SPIE 5712, 101–109 (2005).
[Crossref]

Schmitt, N.

S.S. Muhammad, T. Plank, E. Leitgeb, A. Friedl, K. Zettl, J. Tomaž, and N. Schmitt, “Challenges in establishing free space optical communications between flying vehicles,” in Proceedings of IEEE International Symposium on Communication Systems, Networks and Digital Signal Processing (IEEE2008), pp.82–86.

Schuster, J.

S. Bloom, E. Korevaar, J. Schuster, and H. Willebrand, “Understanding the performance of free-space optics,” Journal of Optical Networking 2(6), 178–200 (2003).

Shafer, S.A.

L. Matthies and S.A. Shafer, “Error modeling in stereo navigation,” IEEE Journal of Robotics and Automation 3(3), 239–248 (1987).
[Crossref]

Shen, T.C.

T.C. Shen, R.J. Drost, J. Rzasa, B.M. Sadler, and C.C Davis, “Panoramic alignment system for optical wireless communication systems,” Proc. SPIE 9354, 93540M (2015).
[Crossref]

T.C. Shen, R.J. Drost, C.C. Davis, and B.M. Sadler, “Design of dual-link (wide- and narrow-beam) LED communication systems,” Optics Express 22(9), 11107–11118 (2014).
[Crossref] [PubMed]

Slater, D.C.

J.S. Morgan, D.C. Slater, J.G. Timothy, and E.B. Jenkins, “Centroid position measurements and subpixel sensitivity variations with the MAMA detector,” Applied Optics 28(6), 1178–1192 (1989).
[Crossref] [PubMed]

Sluss, J.J.

W.L. Saw, H.H. Refai, and J.J. Sluss, “Free space optical alignment system using GPS,” Proc. SPIE 5712, 101–109 (2005).
[Crossref]

Smolyaninov, I.

T.H. Ho, S. Trisno, I. Smolyaninov, S.D. Milner, and C.C. Davis, “Studies of pointing, acquisition, and tracking of agile optical wireless transceivers for free-space optical communication networks,” Proc. SPIE 5237, 147–158 (2004).
[Crossref]

Sova, R.

S. Das, H. Henniger, B. Epple, C.I. Moore, W. Rabinovich, R. Sova, and D. Young, “Requirements and challenges for tactical free-space lasercomm,” in Proceedings of Military Communications Conference (IEEE, 2008), pp. 1–10.

Speck, J.S.

S. Pimputkar, J.S. Speck, S.P. DenBaars, and S. Nakamura, “Prospects for LED lighting,” Nature Photonics 3(4), 180–182 (2009).
[Crossref]

Stanton, R.H.

R.H. Stanton, J.W. Alexander, E.W. Dennison, T.A. Glavich, and L.F. Hovland, “Optical tracking using charge-coupled devices,” Optical Engineering 26(9), 269930 (1987).
[Crossref]

Suga, Y.

J. Kim and Y. Suga, “An omnidirectional vision-based moving obstacle detection in mobile robot,” International Journal of Control Automation and Systems 5(6), 663–673 (2007).

Tellambura, C.

P. Dharmawansa, N. Rajatheva, and C. Tellambura, “Envelope and phase distribution of two correlated gaussian variables,” IEEE Transactions on Communications 57(4), 915–921 (2009).
[Crossref]

Terra, D.

N. Kumar, D. Terra, N. Lourenço, L.N. Alves, and R.L. Aguiar, “Visible light communication for intelligent transportation in road safety applications,” in Proceedings of IEEE Wireless Communications and Mobile Computing Conference (IEEE, 2011), pp. 1513–1518.

Timothy, J.G.

J.S. Morgan, D.C. Slater, J.G. Timothy, and E.B. Jenkins, “Centroid position measurements and subpixel sensitivity variations with the MAMA detector,” Applied Optics 28(6), 1178–1192 (1989).
[Crossref] [PubMed]

Tomaž, J.

S.S. Muhammad, T. Plank, E. Leitgeb, A. Friedl, K. Zettl, J. Tomaž, and N. Schmitt, “Challenges in establishing free space optical communications between flying vehicles,” in Proceedings of IEEE International Symposium on Communication Systems, Networks and Digital Signal Processing (IEEE2008), pp.82–86.

Trisno, S.

T.H. Ho, S. Trisno, I. Smolyaninov, S.D. Milner, and C.C. Davis, “Studies of pointing, acquisition, and tracking of agile optical wireless transceivers for free-space optical communication networks,” Proc. SPIE 5237, 147–158 (2004).
[Crossref]

Tsuji, S.

H. Ishiguro, M. Yamamoto, and S. Tsuji, “Omni-directional stereo for making global map,” in Proceedings of IEEE Third International Conference on Computer Vision (IEEE, 1990), pp. 540–547.

Vasilescu, I.

M. Doniec, C. Detweiler, I. Vasilescu, and D. Rus, “Using optical communication for remote underwater robot operation,” in Proceedings of IEEE International Conference on Intelligent Robots and Systems (IEEE, 2010), pp. 4017–4022.

Wernet, M.P.

M.P. Wernet and A. Pline, “Particle displacement tracking technique and Cramer-Rao lower bound error in centroid estimates from CCD imagery,” Experiments in Fluids 15(4), 295–307 (1993).

Wilfert, O.

H. Henniger and O. Wilfert, “An introduction to free-space optical communications,” Radioengineering 19(2), 203–212 (2010).

Willebrand, H.

S. Bloom, E. Korevaar, J. Schuster, and H. Willebrand, “Understanding the performance of free-space optics,” Journal of Optical Networking 2(6), 178–200 (2003).

Willebrand, H.A.

H.A. Willebrand and B.S. Ghuman, “Fiber optics without fiber,” IEEE Spectrum 38(8), 40–45 (2001).
[Crossref]

Wolf, M.

M. Wolf and D. Kress, “Short-range wireless infrared transmission: the link budget compared to RF,” IEEE Wireless Communications 10(2), 8–14 (2003).
[Crossref]

Yachida, M.

K. Yamazawa, Y. Yagi, and M. Yachida, “Omnidirectional imaging with hyperboloidal projection,” in Proceedings of IEEE International Conference on Intelligent Robots and Systems (IEEE, 1993), pp. 1029–1034.

K. Yamazawa, Y. Yagi, and M. Yachida, “Obstacle detection with omnidirectional image sensor hyperomni vision,” in Proceedings of IEEE International Conference on Robotics and Automation (IEEE, 1995), pp. 1062–1067.

Y. Yagi, W. Nishii, K. Yamazawa, and M. Yachida, “Rolling motion estimation for mobile robot by using omnidirectional image sensor hyperomnivision,” in Proceedings of the IEEE International Conference on Pattern Recognition (IEEE, 1996), pp. 946–950.

Yagi, Y.

Y. Yagi, W. Nishii, K. Yamazawa, and M. Yachida, “Rolling motion estimation for mobile robot by using omnidirectional image sensor hyperomnivision,” in Proceedings of the IEEE International Conference on Pattern Recognition (IEEE, 1996), pp. 946–950.

K. Yamazawa, Y. Yagi, and M. Yachida, “Obstacle detection with omnidirectional image sensor hyperomni vision,” in Proceedings of IEEE International Conference on Robotics and Automation (IEEE, 1995), pp. 1062–1067.

K. Yamazawa, Y. Yagi, and M. Yachida, “Omnidirectional imaging with hyperboloidal projection,” in Proceedings of IEEE International Conference on Intelligent Robots and Systems (IEEE, 1993), pp. 1029–1034.

Yamamoto, M.

H. Ishiguro, M. Yamamoto, and S. Tsuji, “Omni-directional stereo for making global map,” in Proceedings of IEEE Third International Conference on Computer Vision (IEEE, 1990), pp. 540–547.

Yamazawa, K.

K. Yamazawa, Y. Yagi, and M. Yachida, “Obstacle detection with omnidirectional image sensor hyperomni vision,” in Proceedings of IEEE International Conference on Robotics and Automation (IEEE, 1995), pp. 1062–1067.

Y. Yagi, W. Nishii, K. Yamazawa, and M. Yachida, “Rolling motion estimation for mobile robot by using omnidirectional image sensor hyperomnivision,” in Proceedings of the IEEE International Conference on Pattern Recognition (IEEE, 1996), pp. 946–950.

K. Yamazawa, Y. Yagi, and M. Yachida, “Omnidirectional imaging with hyperboloidal projection,” in Proceedings of IEEE International Conference on Intelligent Robots and Systems (IEEE, 1993), pp. 1029–1034.

Yiannopoulos, K.

D.K. Borah, A.C. Boucouvalas, C.C. Davis, S. Hranilovic, and K. Yiannopoulos, “A review of communication-oriented optical wireless systems,” EURASIP Journal on Wireless Communications and Networking 2012(1), 1–28 (2012).
[Crossref]

Young, D.

S. Das, H. Henniger, B. Epple, C.I. Moore, W. Rabinovich, R. Sova, and D. Young, “Requirements and challenges for tactical free-space lasercomm,” in Proceedings of Military Communications Conference (IEEE, 2008), pp. 1–10.

Yuan, C.Y.

Y.Y. Chen, K.M. Lan, H.I. Pai, J.H. Chuang, and C.Y. Yuan, “Robust light objects recognition based on computer vision,” in IEEE International Symposium on Pervasive Systems, Algorithms, and Networks (IEEE, 2009), pp. 508–514.

Zettl, K.

S.S. Muhammad, T. Plank, E. Leitgeb, A. Friedl, K. Zettl, J. Tomaž, and N. Schmitt, “Challenges in establishing free space optical communications between flying vehicles,” in Proceedings of IEEE International Symposium on Communication Systems, Networks and Digital Signal Processing (IEEE2008), pp.82–86.

Zheng, D.

D. Zheng, G. Chen, and J.A Farrell, “Navigation using linear photo detector arrays,” in Proceedings of IEEE International Conference on Control Applications (IEEE, 2013), pp. 533–538.

D. Zheng, K. Cui, B. Bai, G. Chen, and J.A. Farrell, “Indoor localization based on LEDs,” in Proceedings of International Conference on Control Applications (IEEE, 2011), pp. 573–578.

Applied Optics (1)

J.S. Morgan, D.C. Slater, J.G. Timothy, and E.B. Jenkins, “Centroid position measurements and subpixel sensitivity variations with the MAMA detector,” Applied Optics 28(6), 1178–1192 (1989).
[Crossref] [PubMed]

Biometrika (1)

D.V. Hinkley, “On the ratio of two correlated normal random variables,” Biometrika 56(3), 635–639 (1969).
[Crossref]

EURASIP Journal on Wireless Communications and Networking (1)

D.K. Borah, A.C. Boucouvalas, C.C. Davis, S. Hranilovic, and K. Yiannopoulos, “A review of communication-oriented optical wireless systems,” EURASIP Journal on Wireless Communications and Networking 2012(1), 1–28 (2012).
[Crossref]

Experiments in Fluids (1)

M.P. Wernet and A. Pline, “Particle displacement tracking technique and Cramer-Rao lower bound error in centroid estimates from CCD imagery,” Experiments in Fluids 15(4), 295–307 (1993).

IEEE Circuits and Systems Magazine (1)

S. Milner, J. Llorca, and C.C. Davis, “Autonomous reconfiguration and control in directional mobile ad hoc networks,” IEEE Circuits and Systems Magazine 9(2), 10–26 (2009).
[Crossref]

IEEE Journal of Robotics and Automation (1)

L. Matthies and S.A. Shafer, “Error modeling in stereo navigation,” IEEE Journal of Robotics and Automation 3(3), 239–248 (1987).
[Crossref]

IEEE Spectrum (1)

H.A. Willebrand and B.S. Ghuman, “Fiber optics without fiber,” IEEE Spectrum 38(8), 40–45 (2001).
[Crossref]

IEEE Transactions on Communications (1)

P. Dharmawansa, N. Rajatheva, and C. Tellambura, “Envelope and phase distribution of two correlated gaussian variables,” IEEE Transactions on Communications 57(4), 915–921 (2009).
[Crossref]

IEEE Transactions on Consumer Electronics (1)

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Transactions on Consumer Electronics 50(1), 100–107 (2004).
[Crossref]

IEEE Transactions on Intelligent Transportation Systems (1)

G.K.H. Pang and H.H.S Liu, “LED location beacon system based on processing of digital images,” IEEE Transactions on Intelligent Transportation Systems 2(3), 135–150 (2001).
[Crossref]

IEEE Wireless Communications (1)

M. Wolf and D. Kress, “Short-range wireless infrared transmission: the link budget compared to RF,” IEEE Wireless Communications 10(2), 8–14 (2003).
[Crossref]

International Journal of Computer Vision (1)

S. Baker and S.K. Nayar, “A theory of single-viewpoint catadioptric image formation,” International Journal of Computer Vision 35(2), 175–196 (1999).
[Crossref]

International Journal of Control Automation and Systems (1)

J. Kim and Y. Suga, “An omnidirectional vision-based moving obstacle detection in mobile robot,” International Journal of Control Automation and Systems 5(6), 663–673 (2007).

Journal of Optical Networking (1)

S. Bloom, E. Korevaar, J. Schuster, and H. Willebrand, “Understanding the performance of free-space optics,” Journal of Optical Networking 2(6), 178–200 (2003).

Nature Photonics (1)

S. Pimputkar, J.S. Speck, S.P. DenBaars, and S. Nakamura, “Prospects for LED lighting,” Nature Photonics 3(4), 180–182 (2009).
[Crossref]

Optical Engineering (2)

R.H. Stanton, J.W. Alexander, E.W. Dennison, T.A. Glavich, and L.F. Hovland, “Optical tracking using charge-coupled devices,” Optical Engineering 26(9), 269930 (1987).
[Crossref]

B.F. Alexander and K.C. Ng, “Elimination of systematic error in subpixel accuracy centroid,” Optical Engineering 30(9), 1320–1331 (1991).
[Crossref]

Optics Express (1)

T.C. Shen, R.J. Drost, C.C. Davis, and B.M. Sadler, “Design of dual-link (wide- and narrow-beam) LED communication systems,” Optics Express 22(9), 11107–11118 (2014).
[Crossref] [PubMed]

Pattern Recognition (1)

M. Fiala and A. Basu, “Robot navigation using panoramic tracking,” Pattern Recognition 37(11), 2195–2215 (2004).
[Crossref]

Proc. SPIE (8)

T.C. Shen, R.J. Drost, J. Rzasa, B.M. Sadler, and C.C Davis, “Panoramic alignment system for optical wireless communication systems,” Proc. SPIE 9354, 93540M (2015).
[Crossref]

T.J. Ho, S.D. Milner, and C.C. Davis, “Fully optical real-time pointing, acquisition, and tracking system for free space optical link,” Proc. SPIE 5712, 81–92 (2005).
[Crossref]

J. Rzasa, M.C. Ertem, and C.C. Davis, “Pointing, acquisition, and tracking considerations for mobile directional wireless communications systems,” Proc. SPIE 8874, 88740 (2013).
[Crossref]

B. Epple, “Using a GPS-aided inertial system for coarse-pointing of free-space optical communication terminals,” Proc. SPIE 6304, 630418 (2006).
[Crossref]

G. Lu, Y. Lu, T.P. Deng, and H. Liu, “Automatic alignment of optical-beam-based GPS for free-space laser communication system,” Proc. SPIE 5160, 432–438 (2004).
[Crossref]

W.L. Saw, H.H. Refai, and J.J. Sluss, “Free space optical alignment system using GPS,” Proc. SPIE 5712, 101–109 (2005).
[Crossref]

T.H. Ho, S. Trisno, I. Smolyaninov, S.D. Milner, and C.C. Davis, “Studies of pointing, acquisition, and tracking of agile optical wireless transceivers for free-space optical communication networks,” Proc. SPIE 5237, 147–158 (2004).
[Crossref]

S. Lee, “Pointing accuracy improvement using model-based noise reduction method,” Proc. SPIE 4635, 65–71 (2002).
[Crossref]

Radioengineering (1)

H. Henniger and O. Wilfert, “An introduction to free-space optical communications,” Radioengineering 19(2), 203–212 (2010).

Review of Scientific Instruments (1)

N. Bobroff, “Position measurement with a resolution and noise-limited instrument,” Review of Scientific Instruments 57(6), 1152–1157 (1986).
[Crossref]

Other (19)

D. Zheng, G. Chen, and J.A Farrell, “Navigation using linear photo detector arrays,” in Proceedings of IEEE International Conference on Control Applications (IEEE, 2013), pp. 533–538.

http://www.neovision.cz/prods/panoramic/h3s.html .

https://www.alliedvision.com/en/products/cameras/detail/Prosilica%20GC/1600H.html .

http://www.ledsupply.com/leds/luxeon-rebel-color-leds .

Y.Y. Chen, K.M. Lan, H.I. Pai, J.H. Chuang, and C.Y. Yuan, “Robust light objects recognition based on computer vision,” in IEEE International Symposium on Pervasive Systems, Algorithms, and Networks (IEEE, 2009), pp. 508–514.

S. Das, H. Henniger, B. Epple, C.I. Moore, W. Rabinovich, R. Sova, and D. Young, “Requirements and challenges for tactical free-space lasercomm,” in Proceedings of Military Communications Conference (IEEE, 2008), pp. 1–10.

N. Kumar, D. Terra, N. Lourenço, L.N. Alves, and R.L. Aguiar, “Visible light communication for intelligent transportation in road safety applications,” in Proceedings of IEEE Wireless Communications and Mobile Computing Conference (IEEE, 2011), pp. 1513–1518.

K.D. Langer and J. Grubor, “Recent developments in optical wireless communications using infrared and visible light,” in Proceedings of IEEE International Conference on Transparent Optical Networks, (IEEE, 2007) pp. 146–151.

S.S. Muhammad, T. Plank, E. Leitgeb, A. Friedl, K. Zettl, J. Tomaž, and N. Schmitt, “Challenges in establishing free space optical communications between flying vehicles,” in Proceedings of IEEE International Symposium on Communication Systems, Networks and Digital Signal Processing (IEEE2008), pp.82–86.

K. Yamazawa, Y. Yagi, and M. Yachida, “Omnidirectional imaging with hyperboloidal projection,” in Proceedings of IEEE International Conference on Intelligent Robots and Systems (IEEE, 1993), pp. 1029–1034.

H. Ishiguro, M. Yamamoto, and S. Tsuji, “Omni-directional stereo for making global map,” in Proceedings of IEEE Third International Conference on Computer Vision (IEEE, 1990), pp. 540–547.

K.B. Sarachik, “Characterising an indoor environment with a mobile robot and uncalibrated stereo,” in Proceedings of IEEE International Conference on Robotics and Automation (IEEE, 1989), pp. 984–989.

M. Doniec, C. Detweiler, I. Vasilescu, and D. Rus, “Using optical communication for remote underwater robot operation,” in Proceedings of IEEE International Conference on Intelligent Robots and Systems (IEEE, 2010), pp. 4017–4022.

I.C. Rust and H.H Asada, “A dual-use visible light approach to integrated communication and localization of underwater robots with application to non-destructive nuclear reactor inspection,” in Proceedings of IEEE International Conference on Robotics and Automation (IEEE, 2012), pp. 2445–2450.

S. Lee and S. Jung, “Location awareness using angle-of-arrival based circular-PD-array for visible light communication,” in Proceedings of IEEE Asia-Pacific Conference on Communications (IEEE, 2012), pp. 480–485.

D. Zheng, K. Cui, B. Bai, G. Chen, and J.A. Farrell, “Indoor localization based on LEDs,” in Proceedings of International Conference on Control Applications (IEEE, 2011), pp. 573–578.

Y. Yagi, W. Nishii, K. Yamazawa, and M. Yachida, “Rolling motion estimation for mobile robot by using omnidirectional image sensor hyperomnivision,” in Proceedings of the IEEE International Conference on Pattern Recognition (IEEE, 1996), pp. 946–950.

K. Yamazawa, Y. Yagi, and M. Yachida, “Obstacle detection with omnidirectional image sensor hyperomni vision,” in Proceedings of IEEE International Conference on Robotics and Automation (IEEE, 1995), pp. 1062–1067.

R.J. Muirhead, Aspects of Multivariate Statistical Theory(John Wiley & Sons, 2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

The hyperboloidal-mirror-camera system: (a) side view, defining the elevation angle θ, and (b) top view, defining the azimuth angle ϕ. The beacon is located at the point S, while the foci Fm and Fc are located at (0,0,c) and (0,0,−c), respectively.

Fig. 2
Fig. 2

Elevation angle θ as a function of r, as given by Eq. (3). In this figure, we assume a = 23.4125 mm, b = 28.095 mm, and f = 8 mm, where these values were chosen as being consistent with the experimental system that we present in Section 4. An elevation angle of 0° corresponds to a horizontal vector pointing radially outward from Fm (see Fig. 1), while an elevation angle of 90° corresponds to a vector pointed towards Fc from Fm. The lower limit of observable elevation angle using this particular mirror is θ = −16°.

Fig. 3
Fig. 3

Experimental system, mounted onto a gimbal.

Fig. 4
Fig. 4

Example of experimental difference image, where the beacon image region is enclosed in a white square and the inset is a mesh plot of the beacon image region. The radius r is used to calculate the elevation angle θ, which is approximately 0° in this example. The azimuth angle ϕ is approximately 40°.

Fig. 5
Fig. 5

Histogram of the dark pixel intensities of the difference image in Fig. 4. Dark pixels are those not illuminated by the beacon.

Fig. 6
Fig. 6

Sample standard deviations in angle-of-arrival estimates of azimuth ϕ and elevation θ as a function of range. Here, σ ^ ϕ and σ ^ θ are sample standard deviations that result directly from the estimation algorithm; σ ^ ϕ and σ ^ θ are standard deviations in angle estimates that result from taking the distribution of measurements in the image plane to be a circular Gaussian with variance σ σ ^ x 2 + σ ^ y 2.

Fig. 7
Fig. 7

The top inset is a semilog plot of the mean signal strength v ¯ i as a function of range. The bottom inset plots Δ v i / v ¯ i as a function of range.

Tables (1)

Tables Icon

Table 1 Uncertainty in range estimations.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

x 2 + y 2 a 2 z 2 b 2 = 1 , z > 0.
ϕ = { tan 1 ( y / x ) if x 0 π + tan 1 ( y / x ) if x < 0.
θ = tan 1 ( b 2 + c 2 ) sin γ c 2 b c ( b 2 c 2 ) cos γ c ,
γ c = tan 1 f x 2 + y 2
f X ( x ) = 1 σ 2 π e ( x μ x ) 2 2 σ 2
f Y ( y ) = 1 σ 2 π e ( y μ y ) 2 2 σ 2 .
f Φ ( ϕ ) = f W ( w ) d w d ϕ
f Θ ( θ ) = f R ( r ) d r d θ .
f W ( w ) = b ( w ) c ( w ) a 3 ( w ) 1 2 π σ 2 [ 2 Φ ( a ( w ) b ( w ) ) 1 ] + 1 a 2 ( w ) π σ 2 exp [ 1 2 ( μ x 2 + μ y 2 σ 2 ) ]
a ( w ) = w 2 + 1 σ 2
b ( w ) = μ y w + μ x σ 2
c ( w ) = exp { 1 2 [ b 2 ( w ) a 2 ( w ) ( μ x 2 + μ y 2 σ 2 ) ] }
Φ ( w ) = w 1 2 π exp ( 1 2 u 2 ) d u .
f Φ ( ϕ ) = f W ( w ) | d w d ϕ | .
f R ( r ) = r σ 2 exp ( μ x 2 + μ y 2 + r 2 2 σ 2 ) I 0 ( r μ x 2 + μ y 2 σ 2 )
f Θ ( θ ) = f R ( r ) | d r d θ | ,
f Θ ( θ ) = f R ( r ) | d θ d r | 1 .
x ^ = j = 1 M i = 1 N a i j x i j j = 1 M i = 1 N a i j
s i = ( | v ¯ i v ¯ i 1 r i r i 1 | + | v ¯ i v ¯ i + 1 r i r i + 1 | ) / 2

Metrics