Abstract

We demonstrate an implementation of a centre-of-mass method (CMM) incorporating background subtraction for use in multifocal fluorescence lifetime imaging microscopy to accurately determine fluorescence lifetime in live cell imaging using the Megaframe camera. The inclusion of background subtraction solves one of the major issues associated with centre-of-mass approaches, namely the sensitivity of the algorithm to background signal. The algorithm, which is predominantly implemented in hardware, provides real-time lifetime output and allows the user to effectively condense large amounts of photon data. Instead of requiring the transfer of thousands of photon arrival times, the lifetime is simply represented by one value which allows the system to collect data up to limit of pulse pile-up without any limitations on data transfer rates. In order to evaluate the performance of this new CMM algorithm with existing techniques (i.e. rapid lifetime determination and Levenburg-Marquardt), we imaged live MCF-7 human breast carcinoma cells transiently transfected with FRET standards. We show that, it offers significant advantages in terms of lifetime accuracy and insensitivity to variability in dark count rate (DCR) between Megaframe camera pixels. Unlike other algorithms no prior knowledge of the expected lifetime is required to perform lifetime determination. The ability of this technique to provide real-time lifetime readout makes it extremely useful for a number of applications.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
A high speed multifocal multiphoton fluorescence lifetime imaging microscope for live-cell FRET imaging

Simon P. Poland, Nikola Krstajić, James Monypenny, Simao Coelho, David Tyndall, Richard J. Walker, Viviane Devauges, Justin Richardson, Neale Dutton, Paul Barber, David Day-Uei Li, Klaus Suhling, Tony Ng, Robert K. Henderson, and Simon M. Ameer-Beg
Biomed. Opt. Express 6(2) 277-296 (2015)

Hardware implementation and calibration of background noise for an integration-based fluorescence lifetime sensing algorithm

Day-Uei Li, Richard Walker, Justin Richardson, Bruce Rae, Alex Buts, David Renshaw, and Robert Henderson
J. Opt. Soc. Am. A 26(4) 804-814 (2009)

Real-time fluorescence lifetime imaging system with a 32 × 32 0.13μm CMOS low dark-count single-photon avalanche diode array

Day-Uei Li, Jochen Arlt, Justin Richardson, Richard Walker, Alex Buts, David Stoppa, Edoardo Charbon, and Robert Henderson
Opt. Express 18(10) 10257-10269 (2010)

References

  • View by:
  • |
  • |
  • |

  1. J. R. Morris, C. Boutell, M. Keppler, R. Densham, D. Weekes, A. Alamshah, L. Butler, Y. Galanty, L. Pangon, T. Kiuchi, T. Ng, and E. Solomon, “The SUMO modification pathway is involved in the BRCA1 response to genotoxic stress,” Nature 462(7275), 886–890 (2009).
    [Crossref] [PubMed]
  2. M. Peter, S. M. Ameer-Beg, M. K. Hughes, M. D. Keppler, S. Prag, M. Marsh, B. Vojnovic, and T. Ng, “Multiphoton-FLIM quantification of the EGFP-mRFP1 FRET pair for localization of membrane receptor-kinase interactions,” Biophys. J. 88(2), 1224–1237 (2005).
    [Crossref] [PubMed]
  3. T. Ng, A. Squire, G. Hansra, F. Bornancin, C. Prevostel, A. Hanby, W. Harris, D. Barnes, S. Schmidt, H. Mellor, P. I. H. Bastiaens, and P. J. Parker, “Imaging protein kinase Calpha activation in cells,” Science 283(5410), 2085–2089 (1999).
    [Crossref] [PubMed]
  4. E. Gratton, S. Breusegem, J. Sutin, Q. Ruan, and N. Barry, “Fluorescence lifetime imaging for the two-photon microscope: time-domain and frequency-domain methods,” J. Biomed. Opt. 8(3), 381–390 (2003).
    [Crossref] [PubMed]
  5. A. Esposito, H. C. Gerritsen, and F. S. Wouters, “Optimizing frequency-domain fluorescence lifetime sensing for high-throughput applications: photon economy and acquisition speed,” J. Opt. Soc. Am. A 24(10), 3261–3273 (2007).
    [Crossref] [PubMed]
  6. D. M. Grant, J. McGinty, E. J. McGhee, T. D. Bunney, D. M. Owen, C. B. Talbot, W. Zhang, S. Kumar, I. Munro, P. M. P. Lanigan, G. T. Kennedy, C. Dunsby, A. I. Magee, P. Courtney, M. Katan, M. A. A. Neil, and P. M. W. French, “High speed optically sectioned fluorescence lifetime imaging permits study of live cell signaling events,” Opt. Express 15(24), 15656–15673 (2007).
    [Crossref] [PubMed]
  7. T. Omer, L. Zhao, X. Intes, and J. Hahn, “Reduced temporal sampling effect on accuracy of time-domain fluorescence lifetime Förster resonance energy transfer,” J. Biomed. Opt. 19(8), 086023 (2014).
    [Crossref] [PubMed]
  8. A. Leray, S. Padilla-Parra, J. Roul, L. Héliot, and M. Tramier, “Spatio-Temporal Quantification of FRET in living cells by fast time-domain FLIM: a comparative study of non-fitting methods [corrected],” PLoS One 8(7), e69335 (2013).
    [Crossref] [PubMed]
  9. A. C. Mitchell, J. E. Wall, J. G. Murray, and C. G. Morgan, “Measurement of nanosecond time-resolved fluorescence with a directly gated interline CCD camera,” J. Microsc. 206(3), 233–238 (2002).
    [Crossref] [PubMed]
  10. A. Miyawaki, O. Griesbeck, R. Heim, and R. Y. Tsien, “Dynamic and quantitative Ca2+ measurements using improved cameleons,” Proc. Natl. Acad. Sci. U.S.A. 96(5), 2135–2140 (1999).
    [Crossref] [PubMed]
  11. Q. S. Hanley, V. Subramaniam, D. J. Arndt-Jovin, and T. M. Jovin, “Fluorescence lifetime imaging: multi-point calibration, minimum resolvable differences, and artifact suppression,” Cytometry 43(4), 248–260 (2001).
    [Crossref] [PubMed]
  12. R. A. Colyer, G. Scalia, I. Rech, A. Gulinatti, M. Ghioni, S. Cova, S. Weiss, and X. Michalet, “High-throughput FCS using an LCOS spatial light modulator and an 8 × 1 SPAD array,” Biomed. Opt. Express 1(5), 1408–1431 (2010).
    [Crossref] [PubMed]
  13. X. Michalet, R. A. Colyer, G. Scalia, A. Ingargiola, R. Lin, J. E. Millaud, S. Weiss, O. H. Siegmund, A. S. Tremsin, J. V. Vallerga, A. Cheng, M. Levi, D. Aharoni, K. Arisaka, F. Villa, F. Guerrieri, F. Panzeri, I. Rech, A. Gulinatti, F. Zappa, M. Ghioni, and S. Cova, “Development of new photon-counting detectors for single-molecule fluorescence microscopy,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 368(1611), 20120035 (2012).
    [Crossref] [PubMed]
  14. S. P. Poland, N. Krstajić, S. Coelho, D. Tyndall, R. J. Walker, V. Devauges, P. E. Morton, N. S. Nicholas, J. Richardson, D. D.-U. Li, K. Suhling, C. M. Wells, M. Parsons, R. K. Henderson, and S. M. Ameer-Beg, “Time-resolved multifocal multiphoton microscope for high speed FRET imaging in vivo,” Opt. Lett. 39(20), 6013–6016 (2014).
    [Crossref] [PubMed]
  15. S. P. Poland, N. Krstajić, J. Monypenny, S. Coelho, D. Tyndall, R. J. Walker, V. Devauges, J. Richardson, N. Dutton, P. Barber, D. D. Li, K. Suhling, T. Ng, R. K. Henderson, and S. M. Ameer-Beg, “A high speed multifocal multiphoton fluorescence lifetime imaging microscope for live-cell FRET imaging,” Biomed. Opt. Express 6(2), 277–296 (2015).
    [Crossref] [PubMed]
  16. J. Richardson, R. Walker, L. Grant, D. Stoppa, F. Borghetti, E. Charbon, M. Gersbach, and R. K. Henderson, “A 32x32 50ps Resolution 10 bit Time to Digital Converter Array in 130nm CMOS for Time Correlated Imaging,” IEEE Cust. Integr. Cir. 9, 77–80 (2009).
  17. D.-U. Li, B. Rae, R. Andrews, J. Arlt, and R. Henderson, “Hardware implementation algorithm and error analysis of high-speed fluorescence lifetime sensing systems using center-of-mass method,” J. Biomed. Opt. 15, 017006 (2010).
  18. L. Marcu, “Fluorescence lifetime techniques in medical applications,” Ann. Biomed. Eng. 40(2), 304–331 (2012).
    [Crossref] [PubMed]
  19. J. Nedbal, V. Visitkul, E. Ortiz-Zapater, G. Weitsman, P. Chana, D. R. Matthews, T. Ng, and S. M. Ameer-Beg, “Time-domain microfluidic fluorescence lifetime flow cytometry for high-throughput Förster resonance energy transfer screening,” Cytometry A 87(2), 104–118 (2015).
    [Crossref] [PubMed]
  20. V. C. Abraham, D. L. Taylor, and J. R. Haskins, “High content screening applied to large-scale cell biology,” Trends Biotechnol. 22(1), 15–22 (2004).
    [Crossref] [PubMed]
  21. D. R. Matthews, G. O. Fruhwirth, G. Weitsman, L. M. Carlin, E. Ofo, M. Keppler, P. R. Barber, I. D. Tullis, B. Vojnovic, T. Ng, and S. M. Ameer-Beg, “A multi-functional imaging approach to high-content protein interaction screening,” PLoS One 7(4), e33231 (2012).
    [Crossref] [PubMed]
  22. R. M. Ballew and J. Demas, “An error analysis of the rapid lifetime determination method for the evaluation of single exponential decays,” Anal. Chem. 61(1), 30–33 (1989).
    [Crossref]
  23. K. K. Sharman, A. Periasamy, H. Ashworth, and J. N. Demas, “Error analysis of the rapid lifetime determination method for double-exponential decays and new windowing schemes,” Anal. Chem. 71(5), 947–952 (1999).
    [Crossref] [PubMed]
  24. S. P. Chan, Z. J. Fuller, J. N. Demas, and B. A. DeGraff, “Optimized gating scheme for rapid lifetime determinations of single-exponential luminescence lifetimes,” Anal. Chem. 73(18), 4486–4490 (2001).
    [Crossref] [PubMed]
  25. C. Moore, S. P. Chan, J. N. Demas, and B. A. DeGraff, “Comparison of methods for rapid evaluation of lifetimes of exponential decays,” Appl. Spectrosc. 58(5), 603–607 (2004).
    [Crossref] [PubMed]
  26. I. Munro, J. McGinty, N. Galletly, J. Requejo-Isidro, P. M. Lanigan, D. S. Elson, C. Dunsby, M. A. Neil, M. J. Lever, and G. W. Stamp, “Toward the clinical application of time-domain fluorescence lifetime imaging,” J. Biomed. Opt. 10, 051403 (2005).
  27. A. C. Mitchell, J. E. Wall, J. G. Murray, and C. G. Morgan, “Measurement of nanosecond time-resolved fluorescence with a directly gated interline CCD camera,” J. Microsc. 206(3), 233–238 (2002).
    [Crossref] [PubMed]
  28. R. A. Colyer, O. H. Siegmund, A. S. Tremsin, J. V. Vallerga, S. Weiss, and X. Michalet, “Phasor imaging with a widefield photon-counting detector,” J. Biomed. Opt. 17(1), 016008 (2012).
    [Crossref] [PubMed]
  29. D. D.-U. Li, J. Arlt, D. Tyndall, R. Walker, J. Richardson, D. Stoppa, E. Charbon, and R. K. Henderson, “Video-rate fluorescence lifetime imaging camera with CMOS single-photon avalanche diode arrays and high-speed imaging algorithm,” J. Biomed. Opt. 16, 096012 (2011).
  30. D. D. U. Li, S. Ameer-Beg, J. Arlt, D. Tyndall, R. Walker, D. R. Matthews, V. Visitkul, J. Richardson, and R. K. Henderson, “Time-Domain Fluorescence Lifetime Imaging Techniques Suitable for Solid-State Imaging Sensor Arrays,” Sensors (Basel) 12(5), 5650–5669 (2012).
    [Crossref] [PubMed]
  31. D. D.-U. Li, H. Yu, and Y. Chen, “Fast bi-exponential fluorescence lifetime imaging analysis methods,” Opt. Lett. 40(3), 336–339 (2015).
    [Crossref] [PubMed]
  32. N. Krstajić, J. Levitt, S. Poland, S. Ameer-Beg, and R. Henderson, “256 × 2 SPAD line sensor for time resolved fluorescence spectroscopy,” Opt. Express 23(5), 5653–5669 (2015).
    [Crossref] [PubMed]
  33. S. P. Poland, N. Krstajić, R. D. Knight, R. K. Henderson, and S. M. Ameer-Beg, “Development of a doubly weighted Gerchberg-Saxton algorithm for use in multibeam imaging applications,” Opt. Lett. 39(8), 2431–2434 (2014).
    [Crossref] [PubMed]
  34. G. C. Spalding, J. Courtial, and R. Leonardo, “Structured Light and its Applications,” in Holographic Optical Tweezers (Academic Press, 2008), pp. 139–168.
  35. “Opal Kelly XEM 3050 user manual,” (2006), http://assets00.opalkelly.com/library/XEM3050-UM.pdf .
  36. P. Barber, S. Ameer-Beg, J. Gilbey, L. Carlin, M. Keppler, T. Ng, and B. Vojnovic, “Multiphoton time-domain fluorescence lifetime imaging microscopy: practical application to protein–protein interactions using global analysis,” J. R. Soc. Interface 6(Suppl_1), S93–S105 (2009).
    [Crossref]
  37. D. R. Matthews, G. O. Fruhwirth, G. Weitsman, L. M. Carlin, E. Ofo, M. Keppler, P. R. Barber, I. D. Tullis, B. Vojnovic, T. Ng, and S. M. Ameer-Beg, “A multi-functional imaging approach to high-content protein interaction screening,” PLoS One 7(4), e33231 (2012).
    [Crossref] [PubMed]
  38. H. D. Soule, J. Vazguez, A. Long, S. Albert, and M. Brennan, “A human cell line from a pleural effusion derived from a breast carcinoma,” J. Natl. Cancer Inst. 51(5), 1409–1416 (1973).
    [PubMed]
  39. T. A. Masters, R. J. Marsh, D. A. Armoogum, N. Nicolaou, B. Larijani, and A. J. Bain, “Restricted State Selection in Fluorescent Protein Förster Resonance Energy Transfer,” J. Am. Chem. Soc. 135(21), 7883–7890 (2013).
    [Crossref] [PubMed]

2015 (4)

2014 (3)

2013 (2)

A. Leray, S. Padilla-Parra, J. Roul, L. Héliot, and M. Tramier, “Spatio-Temporal Quantification of FRET in living cells by fast time-domain FLIM: a comparative study of non-fitting methods [corrected],” PLoS One 8(7), e69335 (2013).
[Crossref] [PubMed]

T. A. Masters, R. J. Marsh, D. A. Armoogum, N. Nicolaou, B. Larijani, and A. J. Bain, “Restricted State Selection in Fluorescent Protein Förster Resonance Energy Transfer,” J. Am. Chem. Soc. 135(21), 7883–7890 (2013).
[Crossref] [PubMed]

2012 (6)

D. D. U. Li, S. Ameer-Beg, J. Arlt, D. Tyndall, R. Walker, D. R. Matthews, V. Visitkul, J. Richardson, and R. K. Henderson, “Time-Domain Fluorescence Lifetime Imaging Techniques Suitable for Solid-State Imaging Sensor Arrays,” Sensors (Basel) 12(5), 5650–5669 (2012).
[Crossref] [PubMed]

D. R. Matthews, G. O. Fruhwirth, G. Weitsman, L. M. Carlin, E. Ofo, M. Keppler, P. R. Barber, I. D. Tullis, B. Vojnovic, T. Ng, and S. M. Ameer-Beg, “A multi-functional imaging approach to high-content protein interaction screening,” PLoS One 7(4), e33231 (2012).
[Crossref] [PubMed]

X. Michalet, R. A. Colyer, G. Scalia, A. Ingargiola, R. Lin, J. E. Millaud, S. Weiss, O. H. Siegmund, A. S. Tremsin, J. V. Vallerga, A. Cheng, M. Levi, D. Aharoni, K. Arisaka, F. Villa, F. Guerrieri, F. Panzeri, I. Rech, A. Gulinatti, F. Zappa, M. Ghioni, and S. Cova, “Development of new photon-counting detectors for single-molecule fluorescence microscopy,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 368(1611), 20120035 (2012).
[Crossref] [PubMed]

R. A. Colyer, O. H. Siegmund, A. S. Tremsin, J. V. Vallerga, S. Weiss, and X. Michalet, “Phasor imaging with a widefield photon-counting detector,” J. Biomed. Opt. 17(1), 016008 (2012).
[Crossref] [PubMed]

D. R. Matthews, G. O. Fruhwirth, G. Weitsman, L. M. Carlin, E. Ofo, M. Keppler, P. R. Barber, I. D. Tullis, B. Vojnovic, T. Ng, and S. M. Ameer-Beg, “A multi-functional imaging approach to high-content protein interaction screening,” PLoS One 7(4), e33231 (2012).
[Crossref] [PubMed]

L. Marcu, “Fluorescence lifetime techniques in medical applications,” Ann. Biomed. Eng. 40(2), 304–331 (2012).
[Crossref] [PubMed]

2011 (1)

D. D.-U. Li, J. Arlt, D. Tyndall, R. Walker, J. Richardson, D. Stoppa, E. Charbon, and R. K. Henderson, “Video-rate fluorescence lifetime imaging camera with CMOS single-photon avalanche diode arrays and high-speed imaging algorithm,” J. Biomed. Opt. 16, 096012 (2011).

2010 (2)

R. A. Colyer, G. Scalia, I. Rech, A. Gulinatti, M. Ghioni, S. Cova, S. Weiss, and X. Michalet, “High-throughput FCS using an LCOS spatial light modulator and an 8 × 1 SPAD array,” Biomed. Opt. Express 1(5), 1408–1431 (2010).
[Crossref] [PubMed]

D.-U. Li, B. Rae, R. Andrews, J. Arlt, and R. Henderson, “Hardware implementation algorithm and error analysis of high-speed fluorescence lifetime sensing systems using center-of-mass method,” J. Biomed. Opt. 15, 017006 (2010).

2009 (3)

J. Richardson, R. Walker, L. Grant, D. Stoppa, F. Borghetti, E. Charbon, M. Gersbach, and R. K. Henderson, “A 32x32 50ps Resolution 10 bit Time to Digital Converter Array in 130nm CMOS for Time Correlated Imaging,” IEEE Cust. Integr. Cir. 9, 77–80 (2009).

J. R. Morris, C. Boutell, M. Keppler, R. Densham, D. Weekes, A. Alamshah, L. Butler, Y. Galanty, L. Pangon, T. Kiuchi, T. Ng, and E. Solomon, “The SUMO modification pathway is involved in the BRCA1 response to genotoxic stress,” Nature 462(7275), 886–890 (2009).
[Crossref] [PubMed]

P. Barber, S. Ameer-Beg, J. Gilbey, L. Carlin, M. Keppler, T. Ng, and B. Vojnovic, “Multiphoton time-domain fluorescence lifetime imaging microscopy: practical application to protein–protein interactions using global analysis,” J. R. Soc. Interface 6(Suppl_1), S93–S105 (2009).
[Crossref]

2007 (2)

2005 (2)

M. Peter, S. M. Ameer-Beg, M. K. Hughes, M. D. Keppler, S. Prag, M. Marsh, B. Vojnovic, and T. Ng, “Multiphoton-FLIM quantification of the EGFP-mRFP1 FRET pair for localization of membrane receptor-kinase interactions,” Biophys. J. 88(2), 1224–1237 (2005).
[Crossref] [PubMed]

I. Munro, J. McGinty, N. Galletly, J. Requejo-Isidro, P. M. Lanigan, D. S. Elson, C. Dunsby, M. A. Neil, M. J. Lever, and G. W. Stamp, “Toward the clinical application of time-domain fluorescence lifetime imaging,” J. Biomed. Opt. 10, 051403 (2005).

2004 (2)

C. Moore, S. P. Chan, J. N. Demas, and B. A. DeGraff, “Comparison of methods for rapid evaluation of lifetimes of exponential decays,” Appl. Spectrosc. 58(5), 603–607 (2004).
[Crossref] [PubMed]

V. C. Abraham, D. L. Taylor, and J. R. Haskins, “High content screening applied to large-scale cell biology,” Trends Biotechnol. 22(1), 15–22 (2004).
[Crossref] [PubMed]

2003 (1)

E. Gratton, S. Breusegem, J. Sutin, Q. Ruan, and N. Barry, “Fluorescence lifetime imaging for the two-photon microscope: time-domain and frequency-domain methods,” J. Biomed. Opt. 8(3), 381–390 (2003).
[Crossref] [PubMed]

2002 (2)

A. C. Mitchell, J. E. Wall, J. G. Murray, and C. G. Morgan, “Measurement of nanosecond time-resolved fluorescence with a directly gated interline CCD camera,” J. Microsc. 206(3), 233–238 (2002).
[Crossref] [PubMed]

A. C. Mitchell, J. E. Wall, J. G. Murray, and C. G. Morgan, “Measurement of nanosecond time-resolved fluorescence with a directly gated interline CCD camera,” J. Microsc. 206(3), 233–238 (2002).
[Crossref] [PubMed]

2001 (2)

S. P. Chan, Z. J. Fuller, J. N. Demas, and B. A. DeGraff, “Optimized gating scheme for rapid lifetime determinations of single-exponential luminescence lifetimes,” Anal. Chem. 73(18), 4486–4490 (2001).
[Crossref] [PubMed]

Q. S. Hanley, V. Subramaniam, D. J. Arndt-Jovin, and T. M. Jovin, “Fluorescence lifetime imaging: multi-point calibration, minimum resolvable differences, and artifact suppression,” Cytometry 43(4), 248–260 (2001).
[Crossref] [PubMed]

1999 (3)

A. Miyawaki, O. Griesbeck, R. Heim, and R. Y. Tsien, “Dynamic and quantitative Ca2+ measurements using improved cameleons,” Proc. Natl. Acad. Sci. U.S.A. 96(5), 2135–2140 (1999).
[Crossref] [PubMed]

T. Ng, A. Squire, G. Hansra, F. Bornancin, C. Prevostel, A. Hanby, W. Harris, D. Barnes, S. Schmidt, H. Mellor, P. I. H. Bastiaens, and P. J. Parker, “Imaging protein kinase Calpha activation in cells,” Science 283(5410), 2085–2089 (1999).
[Crossref] [PubMed]

K. K. Sharman, A. Periasamy, H. Ashworth, and J. N. Demas, “Error analysis of the rapid lifetime determination method for double-exponential decays and new windowing schemes,” Anal. Chem. 71(5), 947–952 (1999).
[Crossref] [PubMed]

1989 (1)

R. M. Ballew and J. Demas, “An error analysis of the rapid lifetime determination method for the evaluation of single exponential decays,” Anal. Chem. 61(1), 30–33 (1989).
[Crossref]

1973 (1)

H. D. Soule, J. Vazguez, A. Long, S. Albert, and M. Brennan, “A human cell line from a pleural effusion derived from a breast carcinoma,” J. Natl. Cancer Inst. 51(5), 1409–1416 (1973).
[PubMed]

Abraham, V. C.

V. C. Abraham, D. L. Taylor, and J. R. Haskins, “High content screening applied to large-scale cell biology,” Trends Biotechnol. 22(1), 15–22 (2004).
[Crossref] [PubMed]

Aharoni, D.

X. Michalet, R. A. Colyer, G. Scalia, A. Ingargiola, R. Lin, J. E. Millaud, S. Weiss, O. H. Siegmund, A. S. Tremsin, J. V. Vallerga, A. Cheng, M. Levi, D. Aharoni, K. Arisaka, F. Villa, F. Guerrieri, F. Panzeri, I. Rech, A. Gulinatti, F. Zappa, M. Ghioni, and S. Cova, “Development of new photon-counting detectors for single-molecule fluorescence microscopy,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 368(1611), 20120035 (2012).
[Crossref] [PubMed]

Alamshah, A.

J. R. Morris, C. Boutell, M. Keppler, R. Densham, D. Weekes, A. Alamshah, L. Butler, Y. Galanty, L. Pangon, T. Kiuchi, T. Ng, and E. Solomon, “The SUMO modification pathway is involved in the BRCA1 response to genotoxic stress,” Nature 462(7275), 886–890 (2009).
[Crossref] [PubMed]

Albert, S.

H. D. Soule, J. Vazguez, A. Long, S. Albert, and M. Brennan, “A human cell line from a pleural effusion derived from a breast carcinoma,” J. Natl. Cancer Inst. 51(5), 1409–1416 (1973).
[PubMed]

Ameer-Beg, S.

N. Krstajić, J. Levitt, S. Poland, S. Ameer-Beg, and R. Henderson, “256 × 2 SPAD line sensor for time resolved fluorescence spectroscopy,” Opt. Express 23(5), 5653–5669 (2015).
[Crossref] [PubMed]

D. D. U. Li, S. Ameer-Beg, J. Arlt, D. Tyndall, R. Walker, D. R. Matthews, V. Visitkul, J. Richardson, and R. K. Henderson, “Time-Domain Fluorescence Lifetime Imaging Techniques Suitable for Solid-State Imaging Sensor Arrays,” Sensors (Basel) 12(5), 5650–5669 (2012).
[Crossref] [PubMed]

P. Barber, S. Ameer-Beg, J. Gilbey, L. Carlin, M. Keppler, T. Ng, and B. Vojnovic, “Multiphoton time-domain fluorescence lifetime imaging microscopy: practical application to protein–protein interactions using global analysis,” J. R. Soc. Interface 6(Suppl_1), S93–S105 (2009).
[Crossref]

Ameer-Beg, S. M.

S. P. Poland, N. Krstajić, J. Monypenny, S. Coelho, D. Tyndall, R. J. Walker, V. Devauges, J. Richardson, N. Dutton, P. Barber, D. D. Li, K. Suhling, T. Ng, R. K. Henderson, and S. M. Ameer-Beg, “A high speed multifocal multiphoton fluorescence lifetime imaging microscope for live-cell FRET imaging,” Biomed. Opt. Express 6(2), 277–296 (2015).
[Crossref] [PubMed]

J. Nedbal, V. Visitkul, E. Ortiz-Zapater, G. Weitsman, P. Chana, D. R. Matthews, T. Ng, and S. M. Ameer-Beg, “Time-domain microfluidic fluorescence lifetime flow cytometry for high-throughput Förster resonance energy transfer screening,” Cytometry A 87(2), 104–118 (2015).
[Crossref] [PubMed]

S. P. Poland, N. Krstajić, R. D. Knight, R. K. Henderson, and S. M. Ameer-Beg, “Development of a doubly weighted Gerchberg-Saxton algorithm for use in multibeam imaging applications,” Opt. Lett. 39(8), 2431–2434 (2014).
[Crossref] [PubMed]

S. P. Poland, N. Krstajić, S. Coelho, D. Tyndall, R. J. Walker, V. Devauges, P. E. Morton, N. S. Nicholas, J. Richardson, D. D.-U. Li, K. Suhling, C. M. Wells, M. Parsons, R. K. Henderson, and S. M. Ameer-Beg, “Time-resolved multifocal multiphoton microscope for high speed FRET imaging in vivo,” Opt. Lett. 39(20), 6013–6016 (2014).
[Crossref] [PubMed]

D. R. Matthews, G. O. Fruhwirth, G. Weitsman, L. M. Carlin, E. Ofo, M. Keppler, P. R. Barber, I. D. Tullis, B. Vojnovic, T. Ng, and S. M. Ameer-Beg, “A multi-functional imaging approach to high-content protein interaction screening,” PLoS One 7(4), e33231 (2012).
[Crossref] [PubMed]

D. R. Matthews, G. O. Fruhwirth, G. Weitsman, L. M. Carlin, E. Ofo, M. Keppler, P. R. Barber, I. D. Tullis, B. Vojnovic, T. Ng, and S. M. Ameer-Beg, “A multi-functional imaging approach to high-content protein interaction screening,” PLoS One 7(4), e33231 (2012).
[Crossref] [PubMed]

M. Peter, S. M. Ameer-Beg, M. K. Hughes, M. D. Keppler, S. Prag, M. Marsh, B. Vojnovic, and T. Ng, “Multiphoton-FLIM quantification of the EGFP-mRFP1 FRET pair for localization of membrane receptor-kinase interactions,” Biophys. J. 88(2), 1224–1237 (2005).
[Crossref] [PubMed]

Andrews, R.

D.-U. Li, B. Rae, R. Andrews, J. Arlt, and R. Henderson, “Hardware implementation algorithm and error analysis of high-speed fluorescence lifetime sensing systems using center-of-mass method,” J. Biomed. Opt. 15, 017006 (2010).

Arisaka, K.

X. Michalet, R. A. Colyer, G. Scalia, A. Ingargiola, R. Lin, J. E. Millaud, S. Weiss, O. H. Siegmund, A. S. Tremsin, J. V. Vallerga, A. Cheng, M. Levi, D. Aharoni, K. Arisaka, F. Villa, F. Guerrieri, F. Panzeri, I. Rech, A. Gulinatti, F. Zappa, M. Ghioni, and S. Cova, “Development of new photon-counting detectors for single-molecule fluorescence microscopy,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 368(1611), 20120035 (2012).
[Crossref] [PubMed]

Arlt, J.

D. D. U. Li, S. Ameer-Beg, J. Arlt, D. Tyndall, R. Walker, D. R. Matthews, V. Visitkul, J. Richardson, and R. K. Henderson, “Time-Domain Fluorescence Lifetime Imaging Techniques Suitable for Solid-State Imaging Sensor Arrays,” Sensors (Basel) 12(5), 5650–5669 (2012).
[Crossref] [PubMed]

D. D.-U. Li, J. Arlt, D. Tyndall, R. Walker, J. Richardson, D. Stoppa, E. Charbon, and R. K. Henderson, “Video-rate fluorescence lifetime imaging camera with CMOS single-photon avalanche diode arrays and high-speed imaging algorithm,” J. Biomed. Opt. 16, 096012 (2011).

D.-U. Li, B. Rae, R. Andrews, J. Arlt, and R. Henderson, “Hardware implementation algorithm and error analysis of high-speed fluorescence lifetime sensing systems using center-of-mass method,” J. Biomed. Opt. 15, 017006 (2010).

Armoogum, D. A.

T. A. Masters, R. J. Marsh, D. A. Armoogum, N. Nicolaou, B. Larijani, and A. J. Bain, “Restricted State Selection in Fluorescent Protein Förster Resonance Energy Transfer,” J. Am. Chem. Soc. 135(21), 7883–7890 (2013).
[Crossref] [PubMed]

Arndt-Jovin, D. J.

Q. S. Hanley, V. Subramaniam, D. J. Arndt-Jovin, and T. M. Jovin, “Fluorescence lifetime imaging: multi-point calibration, minimum resolvable differences, and artifact suppression,” Cytometry 43(4), 248–260 (2001).
[Crossref] [PubMed]

Ashworth, H.

K. K. Sharman, A. Periasamy, H. Ashworth, and J. N. Demas, “Error analysis of the rapid lifetime determination method for double-exponential decays and new windowing schemes,” Anal. Chem. 71(5), 947–952 (1999).
[Crossref] [PubMed]

Bain, A. J.

T. A. Masters, R. J. Marsh, D. A. Armoogum, N. Nicolaou, B. Larijani, and A. J. Bain, “Restricted State Selection in Fluorescent Protein Förster Resonance Energy Transfer,” J. Am. Chem. Soc. 135(21), 7883–7890 (2013).
[Crossref] [PubMed]

Ballew, R. M.

R. M. Ballew and J. Demas, “An error analysis of the rapid lifetime determination method for the evaluation of single exponential decays,” Anal. Chem. 61(1), 30–33 (1989).
[Crossref]

Barber, P.

S. P. Poland, N. Krstajić, J. Monypenny, S. Coelho, D. Tyndall, R. J. Walker, V. Devauges, J. Richardson, N. Dutton, P. Barber, D. D. Li, K. Suhling, T. Ng, R. K. Henderson, and S. M. Ameer-Beg, “A high speed multifocal multiphoton fluorescence lifetime imaging microscope for live-cell FRET imaging,” Biomed. Opt. Express 6(2), 277–296 (2015).
[Crossref] [PubMed]

P. Barber, S. Ameer-Beg, J. Gilbey, L. Carlin, M. Keppler, T. Ng, and B. Vojnovic, “Multiphoton time-domain fluorescence lifetime imaging microscopy: practical application to protein–protein interactions using global analysis,” J. R. Soc. Interface 6(Suppl_1), S93–S105 (2009).
[Crossref]

Barber, P. R.

D. R. Matthews, G. O. Fruhwirth, G. Weitsman, L. M. Carlin, E. Ofo, M. Keppler, P. R. Barber, I. D. Tullis, B. Vojnovic, T. Ng, and S. M. Ameer-Beg, “A multi-functional imaging approach to high-content protein interaction screening,” PLoS One 7(4), e33231 (2012).
[Crossref] [PubMed]

D. R. Matthews, G. O. Fruhwirth, G. Weitsman, L. M. Carlin, E. Ofo, M. Keppler, P. R. Barber, I. D. Tullis, B. Vojnovic, T. Ng, and S. M. Ameer-Beg, “A multi-functional imaging approach to high-content protein interaction screening,” PLoS One 7(4), e33231 (2012).
[Crossref] [PubMed]

Barnes, D.

T. Ng, A. Squire, G. Hansra, F. Bornancin, C. Prevostel, A. Hanby, W. Harris, D. Barnes, S. Schmidt, H. Mellor, P. I. H. Bastiaens, and P. J. Parker, “Imaging protein kinase Calpha activation in cells,” Science 283(5410), 2085–2089 (1999).
[Crossref] [PubMed]

Barry, N.

E. Gratton, S. Breusegem, J. Sutin, Q. Ruan, and N. Barry, “Fluorescence lifetime imaging for the two-photon microscope: time-domain and frequency-domain methods,” J. Biomed. Opt. 8(3), 381–390 (2003).
[Crossref] [PubMed]

Bastiaens, P. I. H.

T. Ng, A. Squire, G. Hansra, F. Bornancin, C. Prevostel, A. Hanby, W. Harris, D. Barnes, S. Schmidt, H. Mellor, P. I. H. Bastiaens, and P. J. Parker, “Imaging protein kinase Calpha activation in cells,” Science 283(5410), 2085–2089 (1999).
[Crossref] [PubMed]

Borghetti, F.

J. Richardson, R. Walker, L. Grant, D. Stoppa, F. Borghetti, E. Charbon, M. Gersbach, and R. K. Henderson, “A 32x32 50ps Resolution 10 bit Time to Digital Converter Array in 130nm CMOS for Time Correlated Imaging,” IEEE Cust. Integr. Cir. 9, 77–80 (2009).

Bornancin, F.

T. Ng, A. Squire, G. Hansra, F. Bornancin, C. Prevostel, A. Hanby, W. Harris, D. Barnes, S. Schmidt, H. Mellor, P. I. H. Bastiaens, and P. J. Parker, “Imaging protein kinase Calpha activation in cells,” Science 283(5410), 2085–2089 (1999).
[Crossref] [PubMed]

Boutell, C.

J. R. Morris, C. Boutell, M. Keppler, R. Densham, D. Weekes, A. Alamshah, L. Butler, Y. Galanty, L. Pangon, T. Kiuchi, T. Ng, and E. Solomon, “The SUMO modification pathway is involved in the BRCA1 response to genotoxic stress,” Nature 462(7275), 886–890 (2009).
[Crossref] [PubMed]

Brennan, M.

H. D. Soule, J. Vazguez, A. Long, S. Albert, and M. Brennan, “A human cell line from a pleural effusion derived from a breast carcinoma,” J. Natl. Cancer Inst. 51(5), 1409–1416 (1973).
[PubMed]

Breusegem, S.

E. Gratton, S. Breusegem, J. Sutin, Q. Ruan, and N. Barry, “Fluorescence lifetime imaging for the two-photon microscope: time-domain and frequency-domain methods,” J. Biomed. Opt. 8(3), 381–390 (2003).
[Crossref] [PubMed]

Bunney, T. D.

Butler, L.

J. R. Morris, C. Boutell, M. Keppler, R. Densham, D. Weekes, A. Alamshah, L. Butler, Y. Galanty, L. Pangon, T. Kiuchi, T. Ng, and E. Solomon, “The SUMO modification pathway is involved in the BRCA1 response to genotoxic stress,” Nature 462(7275), 886–890 (2009).
[Crossref] [PubMed]

Carlin, L.

P. Barber, S. Ameer-Beg, J. Gilbey, L. Carlin, M. Keppler, T. Ng, and B. Vojnovic, “Multiphoton time-domain fluorescence lifetime imaging microscopy: practical application to protein–protein interactions using global analysis,” J. R. Soc. Interface 6(Suppl_1), S93–S105 (2009).
[Crossref]

Carlin, L. M.

D. R. Matthews, G. O. Fruhwirth, G. Weitsman, L. M. Carlin, E. Ofo, M. Keppler, P. R. Barber, I. D. Tullis, B. Vojnovic, T. Ng, and S. M. Ameer-Beg, “A multi-functional imaging approach to high-content protein interaction screening,” PLoS One 7(4), e33231 (2012).
[Crossref] [PubMed]

D. R. Matthews, G. O. Fruhwirth, G. Weitsman, L. M. Carlin, E. Ofo, M. Keppler, P. R. Barber, I. D. Tullis, B. Vojnovic, T. Ng, and S. M. Ameer-Beg, “A multi-functional imaging approach to high-content protein interaction screening,” PLoS One 7(4), e33231 (2012).
[Crossref] [PubMed]

Chan, S. P.

C. Moore, S. P. Chan, J. N. Demas, and B. A. DeGraff, “Comparison of methods for rapid evaluation of lifetimes of exponential decays,” Appl. Spectrosc. 58(5), 603–607 (2004).
[Crossref] [PubMed]

S. P. Chan, Z. J. Fuller, J. N. Demas, and B. A. DeGraff, “Optimized gating scheme for rapid lifetime determinations of single-exponential luminescence lifetimes,” Anal. Chem. 73(18), 4486–4490 (2001).
[Crossref] [PubMed]

Chana, P.

J. Nedbal, V. Visitkul, E. Ortiz-Zapater, G. Weitsman, P. Chana, D. R. Matthews, T. Ng, and S. M. Ameer-Beg, “Time-domain microfluidic fluorescence lifetime flow cytometry for high-throughput Förster resonance energy transfer screening,” Cytometry A 87(2), 104–118 (2015).
[Crossref] [PubMed]

Charbon, E.

D. D.-U. Li, J. Arlt, D. Tyndall, R. Walker, J. Richardson, D. Stoppa, E. Charbon, and R. K. Henderson, “Video-rate fluorescence lifetime imaging camera with CMOS single-photon avalanche diode arrays and high-speed imaging algorithm,” J. Biomed. Opt. 16, 096012 (2011).

J. Richardson, R. Walker, L. Grant, D. Stoppa, F. Borghetti, E. Charbon, M. Gersbach, and R. K. Henderson, “A 32x32 50ps Resolution 10 bit Time to Digital Converter Array in 130nm CMOS for Time Correlated Imaging,” IEEE Cust. Integr. Cir. 9, 77–80 (2009).

Chen, Y.

Cheng, A.

X. Michalet, R. A. Colyer, G. Scalia, A. Ingargiola, R. Lin, J. E. Millaud, S. Weiss, O. H. Siegmund, A. S. Tremsin, J. V. Vallerga, A. Cheng, M. Levi, D. Aharoni, K. Arisaka, F. Villa, F. Guerrieri, F. Panzeri, I. Rech, A. Gulinatti, F. Zappa, M. Ghioni, and S. Cova, “Development of new photon-counting detectors for single-molecule fluorescence microscopy,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 368(1611), 20120035 (2012).
[Crossref] [PubMed]

Coelho, S.

Colyer, R. A.

X. Michalet, R. A. Colyer, G. Scalia, A. Ingargiola, R. Lin, J. E. Millaud, S. Weiss, O. H. Siegmund, A. S. Tremsin, J. V. Vallerga, A. Cheng, M. Levi, D. Aharoni, K. Arisaka, F. Villa, F. Guerrieri, F. Panzeri, I. Rech, A. Gulinatti, F. Zappa, M. Ghioni, and S. Cova, “Development of new photon-counting detectors for single-molecule fluorescence microscopy,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 368(1611), 20120035 (2012).
[Crossref] [PubMed]

R. A. Colyer, O. H. Siegmund, A. S. Tremsin, J. V. Vallerga, S. Weiss, and X. Michalet, “Phasor imaging with a widefield photon-counting detector,” J. Biomed. Opt. 17(1), 016008 (2012).
[Crossref] [PubMed]

R. A. Colyer, G. Scalia, I. Rech, A. Gulinatti, M. Ghioni, S. Cova, S. Weiss, and X. Michalet, “High-throughput FCS using an LCOS spatial light modulator and an 8 × 1 SPAD array,” Biomed. Opt. Express 1(5), 1408–1431 (2010).
[Crossref] [PubMed]

Courtney, P.

Cova, S.

X. Michalet, R. A. Colyer, G. Scalia, A. Ingargiola, R. Lin, J. E. Millaud, S. Weiss, O. H. Siegmund, A. S. Tremsin, J. V. Vallerga, A. Cheng, M. Levi, D. Aharoni, K. Arisaka, F. Villa, F. Guerrieri, F. Panzeri, I. Rech, A. Gulinatti, F. Zappa, M. Ghioni, and S. Cova, “Development of new photon-counting detectors for single-molecule fluorescence microscopy,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 368(1611), 20120035 (2012).
[Crossref] [PubMed]

R. A. Colyer, G. Scalia, I. Rech, A. Gulinatti, M. Ghioni, S. Cova, S. Weiss, and X. Michalet, “High-throughput FCS using an LCOS spatial light modulator and an 8 × 1 SPAD array,” Biomed. Opt. Express 1(5), 1408–1431 (2010).
[Crossref] [PubMed]

DeGraff, B. A.

C. Moore, S. P. Chan, J. N. Demas, and B. A. DeGraff, “Comparison of methods for rapid evaluation of lifetimes of exponential decays,” Appl. Spectrosc. 58(5), 603–607 (2004).
[Crossref] [PubMed]

S. P. Chan, Z. J. Fuller, J. N. Demas, and B. A. DeGraff, “Optimized gating scheme for rapid lifetime determinations of single-exponential luminescence lifetimes,” Anal. Chem. 73(18), 4486–4490 (2001).
[Crossref] [PubMed]

Demas, J.

R. M. Ballew and J. Demas, “An error analysis of the rapid lifetime determination method for the evaluation of single exponential decays,” Anal. Chem. 61(1), 30–33 (1989).
[Crossref]

Demas, J. N.

C. Moore, S. P. Chan, J. N. Demas, and B. A. DeGraff, “Comparison of methods for rapid evaluation of lifetimes of exponential decays,” Appl. Spectrosc. 58(5), 603–607 (2004).
[Crossref] [PubMed]

S. P. Chan, Z. J. Fuller, J. N. Demas, and B. A. DeGraff, “Optimized gating scheme for rapid lifetime determinations of single-exponential luminescence lifetimes,” Anal. Chem. 73(18), 4486–4490 (2001).
[Crossref] [PubMed]

K. K. Sharman, A. Periasamy, H. Ashworth, and J. N. Demas, “Error analysis of the rapid lifetime determination method for double-exponential decays and new windowing schemes,” Anal. Chem. 71(5), 947–952 (1999).
[Crossref] [PubMed]

Densham, R.

J. R. Morris, C. Boutell, M. Keppler, R. Densham, D. Weekes, A. Alamshah, L. Butler, Y. Galanty, L. Pangon, T. Kiuchi, T. Ng, and E. Solomon, “The SUMO modification pathway is involved in the BRCA1 response to genotoxic stress,” Nature 462(7275), 886–890 (2009).
[Crossref] [PubMed]

Devauges, V.

Dunsby, C.

Dutton, N.

Elson, D. S.

I. Munro, J. McGinty, N. Galletly, J. Requejo-Isidro, P. M. Lanigan, D. S. Elson, C. Dunsby, M. A. Neil, M. J. Lever, and G. W. Stamp, “Toward the clinical application of time-domain fluorescence lifetime imaging,” J. Biomed. Opt. 10, 051403 (2005).

Esposito, A.

French, P. M. W.

Fruhwirth, G. O.

D. R. Matthews, G. O. Fruhwirth, G. Weitsman, L. M. Carlin, E. Ofo, M. Keppler, P. R. Barber, I. D. Tullis, B. Vojnovic, T. Ng, and S. M. Ameer-Beg, “A multi-functional imaging approach to high-content protein interaction screening,” PLoS One 7(4), e33231 (2012).
[Crossref] [PubMed]

D. R. Matthews, G. O. Fruhwirth, G. Weitsman, L. M. Carlin, E. Ofo, M. Keppler, P. R. Barber, I. D. Tullis, B. Vojnovic, T. Ng, and S. M. Ameer-Beg, “A multi-functional imaging approach to high-content protein interaction screening,” PLoS One 7(4), e33231 (2012).
[Crossref] [PubMed]

Fuller, Z. J.

S. P. Chan, Z. J. Fuller, J. N. Demas, and B. A. DeGraff, “Optimized gating scheme for rapid lifetime determinations of single-exponential luminescence lifetimes,” Anal. Chem. 73(18), 4486–4490 (2001).
[Crossref] [PubMed]

Galanty, Y.

J. R. Morris, C. Boutell, M. Keppler, R. Densham, D. Weekes, A. Alamshah, L. Butler, Y. Galanty, L. Pangon, T. Kiuchi, T. Ng, and E. Solomon, “The SUMO modification pathway is involved in the BRCA1 response to genotoxic stress,” Nature 462(7275), 886–890 (2009).
[Crossref] [PubMed]

Galletly, N.

I. Munro, J. McGinty, N. Galletly, J. Requejo-Isidro, P. M. Lanigan, D. S. Elson, C. Dunsby, M. A. Neil, M. J. Lever, and G. W. Stamp, “Toward the clinical application of time-domain fluorescence lifetime imaging,” J. Biomed. Opt. 10, 051403 (2005).

Gerritsen, H. C.

Gersbach, M.

J. Richardson, R. Walker, L. Grant, D. Stoppa, F. Borghetti, E. Charbon, M. Gersbach, and R. K. Henderson, “A 32x32 50ps Resolution 10 bit Time to Digital Converter Array in 130nm CMOS for Time Correlated Imaging,” IEEE Cust. Integr. Cir. 9, 77–80 (2009).

Ghioni, M.

X. Michalet, R. A. Colyer, G. Scalia, A. Ingargiola, R. Lin, J. E. Millaud, S. Weiss, O. H. Siegmund, A. S. Tremsin, J. V. Vallerga, A. Cheng, M. Levi, D. Aharoni, K. Arisaka, F. Villa, F. Guerrieri, F. Panzeri, I. Rech, A. Gulinatti, F. Zappa, M. Ghioni, and S. Cova, “Development of new photon-counting detectors for single-molecule fluorescence microscopy,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 368(1611), 20120035 (2012).
[Crossref] [PubMed]

R. A. Colyer, G. Scalia, I. Rech, A. Gulinatti, M. Ghioni, S. Cova, S. Weiss, and X. Michalet, “High-throughput FCS using an LCOS spatial light modulator and an 8 × 1 SPAD array,” Biomed. Opt. Express 1(5), 1408–1431 (2010).
[Crossref] [PubMed]

Gilbey, J.

P. Barber, S. Ameer-Beg, J. Gilbey, L. Carlin, M. Keppler, T. Ng, and B. Vojnovic, “Multiphoton time-domain fluorescence lifetime imaging microscopy: practical application to protein–protein interactions using global analysis,” J. R. Soc. Interface 6(Suppl_1), S93–S105 (2009).
[Crossref]

Grant, D. M.

Grant, L.

J. Richardson, R. Walker, L. Grant, D. Stoppa, F. Borghetti, E. Charbon, M. Gersbach, and R. K. Henderson, “A 32x32 50ps Resolution 10 bit Time to Digital Converter Array in 130nm CMOS for Time Correlated Imaging,” IEEE Cust. Integr. Cir. 9, 77–80 (2009).

Gratton, E.

E. Gratton, S. Breusegem, J. Sutin, Q. Ruan, and N. Barry, “Fluorescence lifetime imaging for the two-photon microscope: time-domain and frequency-domain methods,” J. Biomed. Opt. 8(3), 381–390 (2003).
[Crossref] [PubMed]

Griesbeck, O.

A. Miyawaki, O. Griesbeck, R. Heim, and R. Y. Tsien, “Dynamic and quantitative Ca2+ measurements using improved cameleons,” Proc. Natl. Acad. Sci. U.S.A. 96(5), 2135–2140 (1999).
[Crossref] [PubMed]

Guerrieri, F.

X. Michalet, R. A. Colyer, G. Scalia, A. Ingargiola, R. Lin, J. E. Millaud, S. Weiss, O. H. Siegmund, A. S. Tremsin, J. V. Vallerga, A. Cheng, M. Levi, D. Aharoni, K. Arisaka, F. Villa, F. Guerrieri, F. Panzeri, I. Rech, A. Gulinatti, F. Zappa, M. Ghioni, and S. Cova, “Development of new photon-counting detectors for single-molecule fluorescence microscopy,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 368(1611), 20120035 (2012).
[Crossref] [PubMed]

Gulinatti, A.

X. Michalet, R. A. Colyer, G. Scalia, A. Ingargiola, R. Lin, J. E. Millaud, S. Weiss, O. H. Siegmund, A. S. Tremsin, J. V. Vallerga, A. Cheng, M. Levi, D. Aharoni, K. Arisaka, F. Villa, F. Guerrieri, F. Panzeri, I. Rech, A. Gulinatti, F. Zappa, M. Ghioni, and S. Cova, “Development of new photon-counting detectors for single-molecule fluorescence microscopy,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 368(1611), 20120035 (2012).
[Crossref] [PubMed]

R. A. Colyer, G. Scalia, I. Rech, A. Gulinatti, M. Ghioni, S. Cova, S. Weiss, and X. Michalet, “High-throughput FCS using an LCOS spatial light modulator and an 8 × 1 SPAD array,” Biomed. Opt. Express 1(5), 1408–1431 (2010).
[Crossref] [PubMed]

Hahn, J.

T. Omer, L. Zhao, X. Intes, and J. Hahn, “Reduced temporal sampling effect on accuracy of time-domain fluorescence lifetime Förster resonance energy transfer,” J. Biomed. Opt. 19(8), 086023 (2014).
[Crossref] [PubMed]

Hanby, A.

T. Ng, A. Squire, G. Hansra, F. Bornancin, C. Prevostel, A. Hanby, W. Harris, D. Barnes, S. Schmidt, H. Mellor, P. I. H. Bastiaens, and P. J. Parker, “Imaging protein kinase Calpha activation in cells,” Science 283(5410), 2085–2089 (1999).
[Crossref] [PubMed]

Hanley, Q. S.

Q. S. Hanley, V. Subramaniam, D. J. Arndt-Jovin, and T. M. Jovin, “Fluorescence lifetime imaging: multi-point calibration, minimum resolvable differences, and artifact suppression,” Cytometry 43(4), 248–260 (2001).
[Crossref] [PubMed]

Hansra, G.

T. Ng, A. Squire, G. Hansra, F. Bornancin, C. Prevostel, A. Hanby, W. Harris, D. Barnes, S. Schmidt, H. Mellor, P. I. H. Bastiaens, and P. J. Parker, “Imaging protein kinase Calpha activation in cells,” Science 283(5410), 2085–2089 (1999).
[Crossref] [PubMed]

Harris, W.

T. Ng, A. Squire, G. Hansra, F. Bornancin, C. Prevostel, A. Hanby, W. Harris, D. Barnes, S. Schmidt, H. Mellor, P. I. H. Bastiaens, and P. J. Parker, “Imaging protein kinase Calpha activation in cells,” Science 283(5410), 2085–2089 (1999).
[Crossref] [PubMed]

Haskins, J. R.

V. C. Abraham, D. L. Taylor, and J. R. Haskins, “High content screening applied to large-scale cell biology,” Trends Biotechnol. 22(1), 15–22 (2004).
[Crossref] [PubMed]

Heim, R.

A. Miyawaki, O. Griesbeck, R. Heim, and R. Y. Tsien, “Dynamic and quantitative Ca2+ measurements using improved cameleons,” Proc. Natl. Acad. Sci. U.S.A. 96(5), 2135–2140 (1999).
[Crossref] [PubMed]

Héliot, L.

A. Leray, S. Padilla-Parra, J. Roul, L. Héliot, and M. Tramier, “Spatio-Temporal Quantification of FRET in living cells by fast time-domain FLIM: a comparative study of non-fitting methods [corrected],” PLoS One 8(7), e69335 (2013).
[Crossref] [PubMed]

Henderson, R.

N. Krstajić, J. Levitt, S. Poland, S. Ameer-Beg, and R. Henderson, “256 × 2 SPAD line sensor for time resolved fluorescence spectroscopy,” Opt. Express 23(5), 5653–5669 (2015).
[Crossref] [PubMed]

D.-U. Li, B. Rae, R. Andrews, J. Arlt, and R. Henderson, “Hardware implementation algorithm and error analysis of high-speed fluorescence lifetime sensing systems using center-of-mass method,” J. Biomed. Opt. 15, 017006 (2010).

Henderson, R. K.

S. P. Poland, N. Krstajić, J. Monypenny, S. Coelho, D. Tyndall, R. J. Walker, V. Devauges, J. Richardson, N. Dutton, P. Barber, D. D. Li, K. Suhling, T. Ng, R. K. Henderson, and S. M. Ameer-Beg, “A high speed multifocal multiphoton fluorescence lifetime imaging microscope for live-cell FRET imaging,” Biomed. Opt. Express 6(2), 277–296 (2015).
[Crossref] [PubMed]

S. P. Poland, N. Krstajić, R. D. Knight, R. K. Henderson, and S. M. Ameer-Beg, “Development of a doubly weighted Gerchberg-Saxton algorithm for use in multibeam imaging applications,” Opt. Lett. 39(8), 2431–2434 (2014).
[Crossref] [PubMed]

S. P. Poland, N. Krstajić, S. Coelho, D. Tyndall, R. J. Walker, V. Devauges, P. E. Morton, N. S. Nicholas, J. Richardson, D. D.-U. Li, K. Suhling, C. M. Wells, M. Parsons, R. K. Henderson, and S. M. Ameer-Beg, “Time-resolved multifocal multiphoton microscope for high speed FRET imaging in vivo,” Opt. Lett. 39(20), 6013–6016 (2014).
[Crossref] [PubMed]

D. D. U. Li, S. Ameer-Beg, J. Arlt, D. Tyndall, R. Walker, D. R. Matthews, V. Visitkul, J. Richardson, and R. K. Henderson, “Time-Domain Fluorescence Lifetime Imaging Techniques Suitable for Solid-State Imaging Sensor Arrays,” Sensors (Basel) 12(5), 5650–5669 (2012).
[Crossref] [PubMed]

D. D.-U. Li, J. Arlt, D. Tyndall, R. Walker, J. Richardson, D. Stoppa, E. Charbon, and R. K. Henderson, “Video-rate fluorescence lifetime imaging camera with CMOS single-photon avalanche diode arrays and high-speed imaging algorithm,” J. Biomed. Opt. 16, 096012 (2011).

J. Richardson, R. Walker, L. Grant, D. Stoppa, F. Borghetti, E. Charbon, M. Gersbach, and R. K. Henderson, “A 32x32 50ps Resolution 10 bit Time to Digital Converter Array in 130nm CMOS for Time Correlated Imaging,” IEEE Cust. Integr. Cir. 9, 77–80 (2009).

Hughes, M. K.

M. Peter, S. M. Ameer-Beg, M. K. Hughes, M. D. Keppler, S. Prag, M. Marsh, B. Vojnovic, and T. Ng, “Multiphoton-FLIM quantification of the EGFP-mRFP1 FRET pair for localization of membrane receptor-kinase interactions,” Biophys. J. 88(2), 1224–1237 (2005).
[Crossref] [PubMed]

Ingargiola, A.

X. Michalet, R. A. Colyer, G. Scalia, A. Ingargiola, R. Lin, J. E. Millaud, S. Weiss, O. H. Siegmund, A. S. Tremsin, J. V. Vallerga, A. Cheng, M. Levi, D. Aharoni, K. Arisaka, F. Villa, F. Guerrieri, F. Panzeri, I. Rech, A. Gulinatti, F. Zappa, M. Ghioni, and S. Cova, “Development of new photon-counting detectors for single-molecule fluorescence microscopy,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 368(1611), 20120035 (2012).
[Crossref] [PubMed]

Intes, X.

T. Omer, L. Zhao, X. Intes, and J. Hahn, “Reduced temporal sampling effect on accuracy of time-domain fluorescence lifetime Förster resonance energy transfer,” J. Biomed. Opt. 19(8), 086023 (2014).
[Crossref] [PubMed]

Jovin, T. M.

Q. S. Hanley, V. Subramaniam, D. J. Arndt-Jovin, and T. M. Jovin, “Fluorescence lifetime imaging: multi-point calibration, minimum resolvable differences, and artifact suppression,” Cytometry 43(4), 248–260 (2001).
[Crossref] [PubMed]

Katan, M.

Kennedy, G. T.

Keppler, M.

D. R. Matthews, G. O. Fruhwirth, G. Weitsman, L. M. Carlin, E. Ofo, M. Keppler, P. R. Barber, I. D. Tullis, B. Vojnovic, T. Ng, and S. M. Ameer-Beg, “A multi-functional imaging approach to high-content protein interaction screening,” PLoS One 7(4), e33231 (2012).
[Crossref] [PubMed]

D. R. Matthews, G. O. Fruhwirth, G. Weitsman, L. M. Carlin, E. Ofo, M. Keppler, P. R. Barber, I. D. Tullis, B. Vojnovic, T. Ng, and S. M. Ameer-Beg, “A multi-functional imaging approach to high-content protein interaction screening,” PLoS One 7(4), e33231 (2012).
[Crossref] [PubMed]

J. R. Morris, C. Boutell, M. Keppler, R. Densham, D. Weekes, A. Alamshah, L. Butler, Y. Galanty, L. Pangon, T. Kiuchi, T. Ng, and E. Solomon, “The SUMO modification pathway is involved in the BRCA1 response to genotoxic stress,” Nature 462(7275), 886–890 (2009).
[Crossref] [PubMed]

P. Barber, S. Ameer-Beg, J. Gilbey, L. Carlin, M. Keppler, T. Ng, and B. Vojnovic, “Multiphoton time-domain fluorescence lifetime imaging microscopy: practical application to protein–protein interactions using global analysis,” J. R. Soc. Interface 6(Suppl_1), S93–S105 (2009).
[Crossref]

Keppler, M. D.

M. Peter, S. M. Ameer-Beg, M. K. Hughes, M. D. Keppler, S. Prag, M. Marsh, B. Vojnovic, and T. Ng, “Multiphoton-FLIM quantification of the EGFP-mRFP1 FRET pair for localization of membrane receptor-kinase interactions,” Biophys. J. 88(2), 1224–1237 (2005).
[Crossref] [PubMed]

Kiuchi, T.

J. R. Morris, C. Boutell, M. Keppler, R. Densham, D. Weekes, A. Alamshah, L. Butler, Y. Galanty, L. Pangon, T. Kiuchi, T. Ng, and E. Solomon, “The SUMO modification pathway is involved in the BRCA1 response to genotoxic stress,” Nature 462(7275), 886–890 (2009).
[Crossref] [PubMed]

Knight, R. D.

Krstajic, N.

Kumar, S.

Lanigan, P. M.

I. Munro, J. McGinty, N. Galletly, J. Requejo-Isidro, P. M. Lanigan, D. S. Elson, C. Dunsby, M. A. Neil, M. J. Lever, and G. W. Stamp, “Toward the clinical application of time-domain fluorescence lifetime imaging,” J. Biomed. Opt. 10, 051403 (2005).

Lanigan, P. M. P.

Larijani, B.

T. A. Masters, R. J. Marsh, D. A. Armoogum, N. Nicolaou, B. Larijani, and A. J. Bain, “Restricted State Selection in Fluorescent Protein Förster Resonance Energy Transfer,” J. Am. Chem. Soc. 135(21), 7883–7890 (2013).
[Crossref] [PubMed]

Leray, A.

A. Leray, S. Padilla-Parra, J. Roul, L. Héliot, and M. Tramier, “Spatio-Temporal Quantification of FRET in living cells by fast time-domain FLIM: a comparative study of non-fitting methods [corrected],” PLoS One 8(7), e69335 (2013).
[Crossref] [PubMed]

Lever, M. J.

I. Munro, J. McGinty, N. Galletly, J. Requejo-Isidro, P. M. Lanigan, D. S. Elson, C. Dunsby, M. A. Neil, M. J. Lever, and G. W. Stamp, “Toward the clinical application of time-domain fluorescence lifetime imaging,” J. Biomed. Opt. 10, 051403 (2005).

Levi, M.

X. Michalet, R. A. Colyer, G. Scalia, A. Ingargiola, R. Lin, J. E. Millaud, S. Weiss, O. H. Siegmund, A. S. Tremsin, J. V. Vallerga, A. Cheng, M. Levi, D. Aharoni, K. Arisaka, F. Villa, F. Guerrieri, F. Panzeri, I. Rech, A. Gulinatti, F. Zappa, M. Ghioni, and S. Cova, “Development of new photon-counting detectors for single-molecule fluorescence microscopy,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 368(1611), 20120035 (2012).
[Crossref] [PubMed]

Levitt, J.

Li, D. D.

Li, D. D. U.

D. D. U. Li, S. Ameer-Beg, J. Arlt, D. Tyndall, R. Walker, D. R. Matthews, V. Visitkul, J. Richardson, and R. K. Henderson, “Time-Domain Fluorescence Lifetime Imaging Techniques Suitable for Solid-State Imaging Sensor Arrays,” Sensors (Basel) 12(5), 5650–5669 (2012).
[Crossref] [PubMed]

Li, D. D.-U.

Li, D.-U.

D.-U. Li, B. Rae, R. Andrews, J. Arlt, and R. Henderson, “Hardware implementation algorithm and error analysis of high-speed fluorescence lifetime sensing systems using center-of-mass method,” J. Biomed. Opt. 15, 017006 (2010).

Lin, R.

X. Michalet, R. A. Colyer, G. Scalia, A. Ingargiola, R. Lin, J. E. Millaud, S. Weiss, O. H. Siegmund, A. S. Tremsin, J. V. Vallerga, A. Cheng, M. Levi, D. Aharoni, K. Arisaka, F. Villa, F. Guerrieri, F. Panzeri, I. Rech, A. Gulinatti, F. Zappa, M. Ghioni, and S. Cova, “Development of new photon-counting detectors for single-molecule fluorescence microscopy,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 368(1611), 20120035 (2012).
[Crossref] [PubMed]

Long, A.

H. D. Soule, J. Vazguez, A. Long, S. Albert, and M. Brennan, “A human cell line from a pleural effusion derived from a breast carcinoma,” J. Natl. Cancer Inst. 51(5), 1409–1416 (1973).
[PubMed]

Magee, A. I.

Marcu, L.

L. Marcu, “Fluorescence lifetime techniques in medical applications,” Ann. Biomed. Eng. 40(2), 304–331 (2012).
[Crossref] [PubMed]

Marsh, M.

M. Peter, S. M. Ameer-Beg, M. K. Hughes, M. D. Keppler, S. Prag, M. Marsh, B. Vojnovic, and T. Ng, “Multiphoton-FLIM quantification of the EGFP-mRFP1 FRET pair for localization of membrane receptor-kinase interactions,” Biophys. J. 88(2), 1224–1237 (2005).
[Crossref] [PubMed]

Marsh, R. J.

T. A. Masters, R. J. Marsh, D. A. Armoogum, N. Nicolaou, B. Larijani, and A. J. Bain, “Restricted State Selection in Fluorescent Protein Förster Resonance Energy Transfer,” J. Am. Chem. Soc. 135(21), 7883–7890 (2013).
[Crossref] [PubMed]

Masters, T. A.

T. A. Masters, R. J. Marsh, D. A. Armoogum, N. Nicolaou, B. Larijani, and A. J. Bain, “Restricted State Selection in Fluorescent Protein Förster Resonance Energy Transfer,” J. Am. Chem. Soc. 135(21), 7883–7890 (2013).
[Crossref] [PubMed]

Matthews, D. R.

J. Nedbal, V. Visitkul, E. Ortiz-Zapater, G. Weitsman, P. Chana, D. R. Matthews, T. Ng, and S. M. Ameer-Beg, “Time-domain microfluidic fluorescence lifetime flow cytometry for high-throughput Förster resonance energy transfer screening,” Cytometry A 87(2), 104–118 (2015).
[Crossref] [PubMed]

D. R. Matthews, G. O. Fruhwirth, G. Weitsman, L. M. Carlin, E. Ofo, M. Keppler, P. R. Barber, I. D. Tullis, B. Vojnovic, T. Ng, and S. M. Ameer-Beg, “A multi-functional imaging approach to high-content protein interaction screening,” PLoS One 7(4), e33231 (2012).
[Crossref] [PubMed]

D. D. U. Li, S. Ameer-Beg, J. Arlt, D. Tyndall, R. Walker, D. R. Matthews, V. Visitkul, J. Richardson, and R. K. Henderson, “Time-Domain Fluorescence Lifetime Imaging Techniques Suitable for Solid-State Imaging Sensor Arrays,” Sensors (Basel) 12(5), 5650–5669 (2012).
[Crossref] [PubMed]

D. R. Matthews, G. O. Fruhwirth, G. Weitsman, L. M. Carlin, E. Ofo, M. Keppler, P. R. Barber, I. D. Tullis, B. Vojnovic, T. Ng, and S. M. Ameer-Beg, “A multi-functional imaging approach to high-content protein interaction screening,” PLoS One 7(4), e33231 (2012).
[Crossref] [PubMed]

McGhee, E. J.

McGinty, J.

Mellor, H.

T. Ng, A. Squire, G. Hansra, F. Bornancin, C. Prevostel, A. Hanby, W. Harris, D. Barnes, S. Schmidt, H. Mellor, P. I. H. Bastiaens, and P. J. Parker, “Imaging protein kinase Calpha activation in cells,” Science 283(5410), 2085–2089 (1999).
[Crossref] [PubMed]

Michalet, X.

X. Michalet, R. A. Colyer, G. Scalia, A. Ingargiola, R. Lin, J. E. Millaud, S. Weiss, O. H. Siegmund, A. S. Tremsin, J. V. Vallerga, A. Cheng, M. Levi, D. Aharoni, K. Arisaka, F. Villa, F. Guerrieri, F. Panzeri, I. Rech, A. Gulinatti, F. Zappa, M. Ghioni, and S. Cova, “Development of new photon-counting detectors for single-molecule fluorescence microscopy,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 368(1611), 20120035 (2012).
[Crossref] [PubMed]

R. A. Colyer, O. H. Siegmund, A. S. Tremsin, J. V. Vallerga, S. Weiss, and X. Michalet, “Phasor imaging with a widefield photon-counting detector,” J. Biomed. Opt. 17(1), 016008 (2012).
[Crossref] [PubMed]

R. A. Colyer, G. Scalia, I. Rech, A. Gulinatti, M. Ghioni, S. Cova, S. Weiss, and X. Michalet, “High-throughput FCS using an LCOS spatial light modulator and an 8 × 1 SPAD array,” Biomed. Opt. Express 1(5), 1408–1431 (2010).
[Crossref] [PubMed]

Millaud, J. E.

X. Michalet, R. A. Colyer, G. Scalia, A. Ingargiola, R. Lin, J. E. Millaud, S. Weiss, O. H. Siegmund, A. S. Tremsin, J. V. Vallerga, A. Cheng, M. Levi, D. Aharoni, K. Arisaka, F. Villa, F. Guerrieri, F. Panzeri, I. Rech, A. Gulinatti, F. Zappa, M. Ghioni, and S. Cova, “Development of new photon-counting detectors for single-molecule fluorescence microscopy,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 368(1611), 20120035 (2012).
[Crossref] [PubMed]

Mitchell, A. C.

A. C. Mitchell, J. E. Wall, J. G. Murray, and C. G. Morgan, “Measurement of nanosecond time-resolved fluorescence with a directly gated interline CCD camera,” J. Microsc. 206(3), 233–238 (2002).
[Crossref] [PubMed]

A. C. Mitchell, J. E. Wall, J. G. Murray, and C. G. Morgan, “Measurement of nanosecond time-resolved fluorescence with a directly gated interline CCD camera,” J. Microsc. 206(3), 233–238 (2002).
[Crossref] [PubMed]

Miyawaki, A.

A. Miyawaki, O. Griesbeck, R. Heim, and R. Y. Tsien, “Dynamic and quantitative Ca2+ measurements using improved cameleons,” Proc. Natl. Acad. Sci. U.S.A. 96(5), 2135–2140 (1999).
[Crossref] [PubMed]

Monypenny, J.

Moore, C.

Morgan, C. G.

A. C. Mitchell, J. E. Wall, J. G. Murray, and C. G. Morgan, “Measurement of nanosecond time-resolved fluorescence with a directly gated interline CCD camera,” J. Microsc. 206(3), 233–238 (2002).
[Crossref] [PubMed]

A. C. Mitchell, J. E. Wall, J. G. Murray, and C. G. Morgan, “Measurement of nanosecond time-resolved fluorescence with a directly gated interline CCD camera,” J. Microsc. 206(3), 233–238 (2002).
[Crossref] [PubMed]

Morris, J. R.

J. R. Morris, C. Boutell, M. Keppler, R. Densham, D. Weekes, A. Alamshah, L. Butler, Y. Galanty, L. Pangon, T. Kiuchi, T. Ng, and E. Solomon, “The SUMO modification pathway is involved in the BRCA1 response to genotoxic stress,” Nature 462(7275), 886–890 (2009).
[Crossref] [PubMed]

Morton, P. E.

Munro, I.

Murray, J. G.

A. C. Mitchell, J. E. Wall, J. G. Murray, and C. G. Morgan, “Measurement of nanosecond time-resolved fluorescence with a directly gated interline CCD camera,” J. Microsc. 206(3), 233–238 (2002).
[Crossref] [PubMed]

A. C. Mitchell, J. E. Wall, J. G. Murray, and C. G. Morgan, “Measurement of nanosecond time-resolved fluorescence with a directly gated interline CCD camera,” J. Microsc. 206(3), 233–238 (2002).
[Crossref] [PubMed]

Nedbal, J.

J. Nedbal, V. Visitkul, E. Ortiz-Zapater, G. Weitsman, P. Chana, D. R. Matthews, T. Ng, and S. M. Ameer-Beg, “Time-domain microfluidic fluorescence lifetime flow cytometry for high-throughput Förster resonance energy transfer screening,” Cytometry A 87(2), 104–118 (2015).
[Crossref] [PubMed]

Neil, M. A.

I. Munro, J. McGinty, N. Galletly, J. Requejo-Isidro, P. M. Lanigan, D. S. Elson, C. Dunsby, M. A. Neil, M. J. Lever, and G. W. Stamp, “Toward the clinical application of time-domain fluorescence lifetime imaging,” J. Biomed. Opt. 10, 051403 (2005).

Neil, M. A. A.

Ng, T.

S. P. Poland, N. Krstajić, J. Monypenny, S. Coelho, D. Tyndall, R. J. Walker, V. Devauges, J. Richardson, N. Dutton, P. Barber, D. D. Li, K. Suhling, T. Ng, R. K. Henderson, and S. M. Ameer-Beg, “A high speed multifocal multiphoton fluorescence lifetime imaging microscope for live-cell FRET imaging,” Biomed. Opt. Express 6(2), 277–296 (2015).
[Crossref] [PubMed]

J. Nedbal, V. Visitkul, E. Ortiz-Zapater, G. Weitsman, P. Chana, D. R. Matthews, T. Ng, and S. M. Ameer-Beg, “Time-domain microfluidic fluorescence lifetime flow cytometry for high-throughput Förster resonance energy transfer screening,” Cytometry A 87(2), 104–118 (2015).
[Crossref] [PubMed]

D. R. Matthews, G. O. Fruhwirth, G. Weitsman, L. M. Carlin, E. Ofo, M. Keppler, P. R. Barber, I. D. Tullis, B. Vojnovic, T. Ng, and S. M. Ameer-Beg, “A multi-functional imaging approach to high-content protein interaction screening,” PLoS One 7(4), e33231 (2012).
[Crossref] [PubMed]

D. R. Matthews, G. O. Fruhwirth, G. Weitsman, L. M. Carlin, E. Ofo, M. Keppler, P. R. Barber, I. D. Tullis, B. Vojnovic, T. Ng, and S. M. Ameer-Beg, “A multi-functional imaging approach to high-content protein interaction screening,” PLoS One 7(4), e33231 (2012).
[Crossref] [PubMed]

P. Barber, S. Ameer-Beg, J. Gilbey, L. Carlin, M. Keppler, T. Ng, and B. Vojnovic, “Multiphoton time-domain fluorescence lifetime imaging microscopy: practical application to protein–protein interactions using global analysis,” J. R. Soc. Interface 6(Suppl_1), S93–S105 (2009).
[Crossref]

J. R. Morris, C. Boutell, M. Keppler, R. Densham, D. Weekes, A. Alamshah, L. Butler, Y. Galanty, L. Pangon, T. Kiuchi, T. Ng, and E. Solomon, “The SUMO modification pathway is involved in the BRCA1 response to genotoxic stress,” Nature 462(7275), 886–890 (2009).
[Crossref] [PubMed]

M. Peter, S. M. Ameer-Beg, M. K. Hughes, M. D. Keppler, S. Prag, M. Marsh, B. Vojnovic, and T. Ng, “Multiphoton-FLIM quantification of the EGFP-mRFP1 FRET pair for localization of membrane receptor-kinase interactions,” Biophys. J. 88(2), 1224–1237 (2005).
[Crossref] [PubMed]

T. Ng, A. Squire, G. Hansra, F. Bornancin, C. Prevostel, A. Hanby, W. Harris, D. Barnes, S. Schmidt, H. Mellor, P. I. H. Bastiaens, and P. J. Parker, “Imaging protein kinase Calpha activation in cells,” Science 283(5410), 2085–2089 (1999).
[Crossref] [PubMed]

Nicholas, N. S.

Nicolaou, N.

T. A. Masters, R. J. Marsh, D. A. Armoogum, N. Nicolaou, B. Larijani, and A. J. Bain, “Restricted State Selection in Fluorescent Protein Förster Resonance Energy Transfer,” J. Am. Chem. Soc. 135(21), 7883–7890 (2013).
[Crossref] [PubMed]

Ofo, E.

D. R. Matthews, G. O. Fruhwirth, G. Weitsman, L. M. Carlin, E. Ofo, M. Keppler, P. R. Barber, I. D. Tullis, B. Vojnovic, T. Ng, and S. M. Ameer-Beg, “A multi-functional imaging approach to high-content protein interaction screening,” PLoS One 7(4), e33231 (2012).
[Crossref] [PubMed]

D. R. Matthews, G. O. Fruhwirth, G. Weitsman, L. M. Carlin, E. Ofo, M. Keppler, P. R. Barber, I. D. Tullis, B. Vojnovic, T. Ng, and S. M. Ameer-Beg, “A multi-functional imaging approach to high-content protein interaction screening,” PLoS One 7(4), e33231 (2012).
[Crossref] [PubMed]

Omer, T.

T. Omer, L. Zhao, X. Intes, and J. Hahn, “Reduced temporal sampling effect on accuracy of time-domain fluorescence lifetime Förster resonance energy transfer,” J. Biomed. Opt. 19(8), 086023 (2014).
[Crossref] [PubMed]

Ortiz-Zapater, E.

J. Nedbal, V. Visitkul, E. Ortiz-Zapater, G. Weitsman, P. Chana, D. R. Matthews, T. Ng, and S. M. Ameer-Beg, “Time-domain microfluidic fluorescence lifetime flow cytometry for high-throughput Förster resonance energy transfer screening,” Cytometry A 87(2), 104–118 (2015).
[Crossref] [PubMed]

Owen, D. M.

Padilla-Parra, S.

A. Leray, S. Padilla-Parra, J. Roul, L. Héliot, and M. Tramier, “Spatio-Temporal Quantification of FRET in living cells by fast time-domain FLIM: a comparative study of non-fitting methods [corrected],” PLoS One 8(7), e69335 (2013).
[Crossref] [PubMed]

Pangon, L.

J. R. Morris, C. Boutell, M. Keppler, R. Densham, D. Weekes, A. Alamshah, L. Butler, Y. Galanty, L. Pangon, T. Kiuchi, T. Ng, and E. Solomon, “The SUMO modification pathway is involved in the BRCA1 response to genotoxic stress,” Nature 462(7275), 886–890 (2009).
[Crossref] [PubMed]

Panzeri, F.

X. Michalet, R. A. Colyer, G. Scalia, A. Ingargiola, R. Lin, J. E. Millaud, S. Weiss, O. H. Siegmund, A. S. Tremsin, J. V. Vallerga, A. Cheng, M. Levi, D. Aharoni, K. Arisaka, F. Villa, F. Guerrieri, F. Panzeri, I. Rech, A. Gulinatti, F. Zappa, M. Ghioni, and S. Cova, “Development of new photon-counting detectors for single-molecule fluorescence microscopy,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 368(1611), 20120035 (2012).
[Crossref] [PubMed]

Parker, P. J.

T. Ng, A. Squire, G. Hansra, F. Bornancin, C. Prevostel, A. Hanby, W. Harris, D. Barnes, S. Schmidt, H. Mellor, P. I. H. Bastiaens, and P. J. Parker, “Imaging protein kinase Calpha activation in cells,” Science 283(5410), 2085–2089 (1999).
[Crossref] [PubMed]

Parsons, M.

Periasamy, A.

K. K. Sharman, A. Periasamy, H. Ashworth, and J. N. Demas, “Error analysis of the rapid lifetime determination method for double-exponential decays and new windowing schemes,” Anal. Chem. 71(5), 947–952 (1999).
[Crossref] [PubMed]

Peter, M.

M. Peter, S. M. Ameer-Beg, M. K. Hughes, M. D. Keppler, S. Prag, M. Marsh, B. Vojnovic, and T. Ng, “Multiphoton-FLIM quantification of the EGFP-mRFP1 FRET pair for localization of membrane receptor-kinase interactions,” Biophys. J. 88(2), 1224–1237 (2005).
[Crossref] [PubMed]

Poland, S.

Poland, S. P.

Prag, S.

M. Peter, S. M. Ameer-Beg, M. K. Hughes, M. D. Keppler, S. Prag, M. Marsh, B. Vojnovic, and T. Ng, “Multiphoton-FLIM quantification of the EGFP-mRFP1 FRET pair for localization of membrane receptor-kinase interactions,” Biophys. J. 88(2), 1224–1237 (2005).
[Crossref] [PubMed]

Prevostel, C.

T. Ng, A. Squire, G. Hansra, F. Bornancin, C. Prevostel, A. Hanby, W. Harris, D. Barnes, S. Schmidt, H. Mellor, P. I. H. Bastiaens, and P. J. Parker, “Imaging protein kinase Calpha activation in cells,” Science 283(5410), 2085–2089 (1999).
[Crossref] [PubMed]

Rae, B.

D.-U. Li, B. Rae, R. Andrews, J. Arlt, and R. Henderson, “Hardware implementation algorithm and error analysis of high-speed fluorescence lifetime sensing systems using center-of-mass method,” J. Biomed. Opt. 15, 017006 (2010).

Rech, I.

X. Michalet, R. A. Colyer, G. Scalia, A. Ingargiola, R. Lin, J. E. Millaud, S. Weiss, O. H. Siegmund, A. S. Tremsin, J. V. Vallerga, A. Cheng, M. Levi, D. Aharoni, K. Arisaka, F. Villa, F. Guerrieri, F. Panzeri, I. Rech, A. Gulinatti, F. Zappa, M. Ghioni, and S. Cova, “Development of new photon-counting detectors for single-molecule fluorescence microscopy,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 368(1611), 20120035 (2012).
[Crossref] [PubMed]

R. A. Colyer, G. Scalia, I. Rech, A. Gulinatti, M. Ghioni, S. Cova, S. Weiss, and X. Michalet, “High-throughput FCS using an LCOS spatial light modulator and an 8 × 1 SPAD array,” Biomed. Opt. Express 1(5), 1408–1431 (2010).
[Crossref] [PubMed]

Requejo-Isidro, J.

I. Munro, J. McGinty, N. Galletly, J. Requejo-Isidro, P. M. Lanigan, D. S. Elson, C. Dunsby, M. A. Neil, M. J. Lever, and G. W. Stamp, “Toward the clinical application of time-domain fluorescence lifetime imaging,” J. Biomed. Opt. 10, 051403 (2005).

Richardson, J.

S. P. Poland, N. Krstajić, J. Monypenny, S. Coelho, D. Tyndall, R. J. Walker, V. Devauges, J. Richardson, N. Dutton, P. Barber, D. D. Li, K. Suhling, T. Ng, R. K. Henderson, and S. M. Ameer-Beg, “A high speed multifocal multiphoton fluorescence lifetime imaging microscope for live-cell FRET imaging,” Biomed. Opt. Express 6(2), 277–296 (2015).
[Crossref] [PubMed]

S. P. Poland, N. Krstajić, S. Coelho, D. Tyndall, R. J. Walker, V. Devauges, P. E. Morton, N. S. Nicholas, J. Richardson, D. D.-U. Li, K. Suhling, C. M. Wells, M. Parsons, R. K. Henderson, and S. M. Ameer-Beg, “Time-resolved multifocal multiphoton microscope for high speed FRET imaging in vivo,” Opt. Lett. 39(20), 6013–6016 (2014).
[Crossref] [PubMed]

D. D. U. Li, S. Ameer-Beg, J. Arlt, D. Tyndall, R. Walker, D. R. Matthews, V. Visitkul, J. Richardson, and R. K. Henderson, “Time-Domain Fluorescence Lifetime Imaging Techniques Suitable for Solid-State Imaging Sensor Arrays,” Sensors (Basel) 12(5), 5650–5669 (2012).
[Crossref] [PubMed]

D. D.-U. Li, J. Arlt, D. Tyndall, R. Walker, J. Richardson, D. Stoppa, E. Charbon, and R. K. Henderson, “Video-rate fluorescence lifetime imaging camera with CMOS single-photon avalanche diode arrays and high-speed imaging algorithm,” J. Biomed. Opt. 16, 096012 (2011).

J. Richardson, R. Walker, L. Grant, D. Stoppa, F. Borghetti, E. Charbon, M. Gersbach, and R. K. Henderson, “A 32x32 50ps Resolution 10 bit Time to Digital Converter Array in 130nm CMOS for Time Correlated Imaging,” IEEE Cust. Integr. Cir. 9, 77–80 (2009).

Roul, J.

A. Leray, S. Padilla-Parra, J. Roul, L. Héliot, and M. Tramier, “Spatio-Temporal Quantification of FRET in living cells by fast time-domain FLIM: a comparative study of non-fitting methods [corrected],” PLoS One 8(7), e69335 (2013).
[Crossref] [PubMed]

Ruan, Q.

E. Gratton, S. Breusegem, J. Sutin, Q. Ruan, and N. Barry, “Fluorescence lifetime imaging for the two-photon microscope: time-domain and frequency-domain methods,” J. Biomed. Opt. 8(3), 381–390 (2003).
[Crossref] [PubMed]

Scalia, G.

X. Michalet, R. A. Colyer, G. Scalia, A. Ingargiola, R. Lin, J. E. Millaud, S. Weiss, O. H. Siegmund, A. S. Tremsin, J. V. Vallerga, A. Cheng, M. Levi, D. Aharoni, K. Arisaka, F. Villa, F. Guerrieri, F. Panzeri, I. Rech, A. Gulinatti, F. Zappa, M. Ghioni, and S. Cova, “Development of new photon-counting detectors for single-molecule fluorescence microscopy,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 368(1611), 20120035 (2012).
[Crossref] [PubMed]

R. A. Colyer, G. Scalia, I. Rech, A. Gulinatti, M. Ghioni, S. Cova, S. Weiss, and X. Michalet, “High-throughput FCS using an LCOS spatial light modulator and an 8 × 1 SPAD array,” Biomed. Opt. Express 1(5), 1408–1431 (2010).
[Crossref] [PubMed]

Schmidt, S.

T. Ng, A. Squire, G. Hansra, F. Bornancin, C. Prevostel, A. Hanby, W. Harris, D. Barnes, S. Schmidt, H. Mellor, P. I. H. Bastiaens, and P. J. Parker, “Imaging protein kinase Calpha activation in cells,” Science 283(5410), 2085–2089 (1999).
[Crossref] [PubMed]

Sharman, K. K.

K. K. Sharman, A. Periasamy, H. Ashworth, and J. N. Demas, “Error analysis of the rapid lifetime determination method for double-exponential decays and new windowing schemes,” Anal. Chem. 71(5), 947–952 (1999).
[Crossref] [PubMed]

Siegmund, O. H.

R. A. Colyer, O. H. Siegmund, A. S. Tremsin, J. V. Vallerga, S. Weiss, and X. Michalet, “Phasor imaging with a widefield photon-counting detector,” J. Biomed. Opt. 17(1), 016008 (2012).
[Crossref] [PubMed]

X. Michalet, R. A. Colyer, G. Scalia, A. Ingargiola, R. Lin, J. E. Millaud, S. Weiss, O. H. Siegmund, A. S. Tremsin, J. V. Vallerga, A. Cheng, M. Levi, D. Aharoni, K. Arisaka, F. Villa, F. Guerrieri, F. Panzeri, I. Rech, A. Gulinatti, F. Zappa, M. Ghioni, and S. Cova, “Development of new photon-counting detectors for single-molecule fluorescence microscopy,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 368(1611), 20120035 (2012).
[Crossref] [PubMed]

Solomon, E.

J. R. Morris, C. Boutell, M. Keppler, R. Densham, D. Weekes, A. Alamshah, L. Butler, Y. Galanty, L. Pangon, T. Kiuchi, T. Ng, and E. Solomon, “The SUMO modification pathway is involved in the BRCA1 response to genotoxic stress,” Nature 462(7275), 886–890 (2009).
[Crossref] [PubMed]

Soule, H. D.

H. D. Soule, J. Vazguez, A. Long, S. Albert, and M. Brennan, “A human cell line from a pleural effusion derived from a breast carcinoma,” J. Natl. Cancer Inst. 51(5), 1409–1416 (1973).
[PubMed]

Squire, A.

T. Ng, A. Squire, G. Hansra, F. Bornancin, C. Prevostel, A. Hanby, W. Harris, D. Barnes, S. Schmidt, H. Mellor, P. I. H. Bastiaens, and P. J. Parker, “Imaging protein kinase Calpha activation in cells,” Science 283(5410), 2085–2089 (1999).
[Crossref] [PubMed]

Stamp, G. W.

I. Munro, J. McGinty, N. Galletly, J. Requejo-Isidro, P. M. Lanigan, D. S. Elson, C. Dunsby, M. A. Neil, M. J. Lever, and G. W. Stamp, “Toward the clinical application of time-domain fluorescence lifetime imaging,” J. Biomed. Opt. 10, 051403 (2005).

Stoppa, D.

D. D.-U. Li, J. Arlt, D. Tyndall, R. Walker, J. Richardson, D. Stoppa, E. Charbon, and R. K. Henderson, “Video-rate fluorescence lifetime imaging camera with CMOS single-photon avalanche diode arrays and high-speed imaging algorithm,” J. Biomed. Opt. 16, 096012 (2011).

J. Richardson, R. Walker, L. Grant, D. Stoppa, F. Borghetti, E. Charbon, M. Gersbach, and R. K. Henderson, “A 32x32 50ps Resolution 10 bit Time to Digital Converter Array in 130nm CMOS for Time Correlated Imaging,” IEEE Cust. Integr. Cir. 9, 77–80 (2009).

Subramaniam, V.

Q. S. Hanley, V. Subramaniam, D. J. Arndt-Jovin, and T. M. Jovin, “Fluorescence lifetime imaging: multi-point calibration, minimum resolvable differences, and artifact suppression,” Cytometry 43(4), 248–260 (2001).
[Crossref] [PubMed]

Suhling, K.

Sutin, J.

E. Gratton, S. Breusegem, J. Sutin, Q. Ruan, and N. Barry, “Fluorescence lifetime imaging for the two-photon microscope: time-domain and frequency-domain methods,” J. Biomed. Opt. 8(3), 381–390 (2003).
[Crossref] [PubMed]

Talbot, C. B.

Taylor, D. L.

V. C. Abraham, D. L. Taylor, and J. R. Haskins, “High content screening applied to large-scale cell biology,” Trends Biotechnol. 22(1), 15–22 (2004).
[Crossref] [PubMed]

Tramier, M.

A. Leray, S. Padilla-Parra, J. Roul, L. Héliot, and M. Tramier, “Spatio-Temporal Quantification of FRET in living cells by fast time-domain FLIM: a comparative study of non-fitting methods [corrected],” PLoS One 8(7), e69335 (2013).
[Crossref] [PubMed]

Tremsin, A. S.

R. A. Colyer, O. H. Siegmund, A. S. Tremsin, J. V. Vallerga, S. Weiss, and X. Michalet, “Phasor imaging with a widefield photon-counting detector,” J. Biomed. Opt. 17(1), 016008 (2012).
[Crossref] [PubMed]

X. Michalet, R. A. Colyer, G. Scalia, A. Ingargiola, R. Lin, J. E. Millaud, S. Weiss, O. H. Siegmund, A. S. Tremsin, J. V. Vallerga, A. Cheng, M. Levi, D. Aharoni, K. Arisaka, F. Villa, F. Guerrieri, F. Panzeri, I. Rech, A. Gulinatti, F. Zappa, M. Ghioni, and S. Cova, “Development of new photon-counting detectors for single-molecule fluorescence microscopy,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 368(1611), 20120035 (2012).
[Crossref] [PubMed]

Tsien, R. Y.

A. Miyawaki, O. Griesbeck, R. Heim, and R. Y. Tsien, “Dynamic and quantitative Ca2+ measurements using improved cameleons,” Proc. Natl. Acad. Sci. U.S.A. 96(5), 2135–2140 (1999).
[Crossref] [PubMed]

Tullis, I. D.

D. R. Matthews, G. O. Fruhwirth, G. Weitsman, L. M. Carlin, E. Ofo, M. Keppler, P. R. Barber, I. D. Tullis, B. Vojnovic, T. Ng, and S. M. Ameer-Beg, “A multi-functional imaging approach to high-content protein interaction screening,” PLoS One 7(4), e33231 (2012).
[Crossref] [PubMed]

D. R. Matthews, G. O. Fruhwirth, G. Weitsman, L. M. Carlin, E. Ofo, M. Keppler, P. R. Barber, I. D. Tullis, B. Vojnovic, T. Ng, and S. M. Ameer-Beg, “A multi-functional imaging approach to high-content protein interaction screening,” PLoS One 7(4), e33231 (2012).
[Crossref] [PubMed]

Tyndall, D.

S. P. Poland, N. Krstajić, J. Monypenny, S. Coelho, D. Tyndall, R. J. Walker, V. Devauges, J. Richardson, N. Dutton, P. Barber, D. D. Li, K. Suhling, T. Ng, R. K. Henderson, and S. M. Ameer-Beg, “A high speed multifocal multiphoton fluorescence lifetime imaging microscope for live-cell FRET imaging,” Biomed. Opt. Express 6(2), 277–296 (2015).
[Crossref] [PubMed]

S. P. Poland, N. Krstajić, S. Coelho, D. Tyndall, R. J. Walker, V. Devauges, P. E. Morton, N. S. Nicholas, J. Richardson, D. D.-U. Li, K. Suhling, C. M. Wells, M. Parsons, R. K. Henderson, and S. M. Ameer-Beg, “Time-resolved multifocal multiphoton microscope for high speed FRET imaging in vivo,” Opt. Lett. 39(20), 6013–6016 (2014).
[Crossref] [PubMed]

D. D. U. Li, S. Ameer-Beg, J. Arlt, D. Tyndall, R. Walker, D. R. Matthews, V. Visitkul, J. Richardson, and R. K. Henderson, “Time-Domain Fluorescence Lifetime Imaging Techniques Suitable for Solid-State Imaging Sensor Arrays,” Sensors (Basel) 12(5), 5650–5669 (2012).
[Crossref] [PubMed]

D. D.-U. Li, J. Arlt, D. Tyndall, R. Walker, J. Richardson, D. Stoppa, E. Charbon, and R. K. Henderson, “Video-rate fluorescence lifetime imaging camera with CMOS single-photon avalanche diode arrays and high-speed imaging algorithm,” J. Biomed. Opt. 16, 096012 (2011).

Vallerga, J. V.

R. A. Colyer, O. H. Siegmund, A. S. Tremsin, J. V. Vallerga, S. Weiss, and X. Michalet, “Phasor imaging with a widefield photon-counting detector,” J. Biomed. Opt. 17(1), 016008 (2012).
[Crossref] [PubMed]

X. Michalet, R. A. Colyer, G. Scalia, A. Ingargiola, R. Lin, J. E. Millaud, S. Weiss, O. H. Siegmund, A. S. Tremsin, J. V. Vallerga, A. Cheng, M. Levi, D. Aharoni, K. Arisaka, F. Villa, F. Guerrieri, F. Panzeri, I. Rech, A. Gulinatti, F. Zappa, M. Ghioni, and S. Cova, “Development of new photon-counting detectors for single-molecule fluorescence microscopy,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 368(1611), 20120035 (2012).
[Crossref] [PubMed]

Vazguez, J.

H. D. Soule, J. Vazguez, A. Long, S. Albert, and M. Brennan, “A human cell line from a pleural effusion derived from a breast carcinoma,” J. Natl. Cancer Inst. 51(5), 1409–1416 (1973).
[PubMed]

Villa, F.

X. Michalet, R. A. Colyer, G. Scalia, A. Ingargiola, R. Lin, J. E. Millaud, S. Weiss, O. H. Siegmund, A. S. Tremsin, J. V. Vallerga, A. Cheng, M. Levi, D. Aharoni, K. Arisaka, F. Villa, F. Guerrieri, F. Panzeri, I. Rech, A. Gulinatti, F. Zappa, M. Ghioni, and S. Cova, “Development of new photon-counting detectors for single-molecule fluorescence microscopy,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 368(1611), 20120035 (2012).
[Crossref] [PubMed]

Visitkul, V.

J. Nedbal, V. Visitkul, E. Ortiz-Zapater, G. Weitsman, P. Chana, D. R. Matthews, T. Ng, and S. M. Ameer-Beg, “Time-domain microfluidic fluorescence lifetime flow cytometry for high-throughput Förster resonance energy transfer screening,” Cytometry A 87(2), 104–118 (2015).
[Crossref] [PubMed]

D. D. U. Li, S. Ameer-Beg, J. Arlt, D. Tyndall, R. Walker, D. R. Matthews, V. Visitkul, J. Richardson, and R. K. Henderson, “Time-Domain Fluorescence Lifetime Imaging Techniques Suitable for Solid-State Imaging Sensor Arrays,” Sensors (Basel) 12(5), 5650–5669 (2012).
[Crossref] [PubMed]

Vojnovic, B.

D. R. Matthews, G. O. Fruhwirth, G. Weitsman, L. M. Carlin, E. Ofo, M. Keppler, P. R. Barber, I. D. Tullis, B. Vojnovic, T. Ng, and S. M. Ameer-Beg, “A multi-functional imaging approach to high-content protein interaction screening,” PLoS One 7(4), e33231 (2012).
[Crossref] [PubMed]

D. R. Matthews, G. O. Fruhwirth, G. Weitsman, L. M. Carlin, E. Ofo, M. Keppler, P. R. Barber, I. D. Tullis, B. Vojnovic, T. Ng, and S. M. Ameer-Beg, “A multi-functional imaging approach to high-content protein interaction screening,” PLoS One 7(4), e33231 (2012).
[Crossref] [PubMed]

P. Barber, S. Ameer-Beg, J. Gilbey, L. Carlin, M. Keppler, T. Ng, and B. Vojnovic, “Multiphoton time-domain fluorescence lifetime imaging microscopy: practical application to protein–protein interactions using global analysis,” J. R. Soc. Interface 6(Suppl_1), S93–S105 (2009).
[Crossref]

M. Peter, S. M. Ameer-Beg, M. K. Hughes, M. D. Keppler, S. Prag, M. Marsh, B. Vojnovic, and T. Ng, “Multiphoton-FLIM quantification of the EGFP-mRFP1 FRET pair for localization of membrane receptor-kinase interactions,” Biophys. J. 88(2), 1224–1237 (2005).
[Crossref] [PubMed]

Walker, R.

D. D. U. Li, S. Ameer-Beg, J. Arlt, D. Tyndall, R. Walker, D. R. Matthews, V. Visitkul, J. Richardson, and R. K. Henderson, “Time-Domain Fluorescence Lifetime Imaging Techniques Suitable for Solid-State Imaging Sensor Arrays,” Sensors (Basel) 12(5), 5650–5669 (2012).
[Crossref] [PubMed]

D. D.-U. Li, J. Arlt, D. Tyndall, R. Walker, J. Richardson, D. Stoppa, E. Charbon, and R. K. Henderson, “Video-rate fluorescence lifetime imaging camera with CMOS single-photon avalanche diode arrays and high-speed imaging algorithm,” J. Biomed. Opt. 16, 096012 (2011).

J. Richardson, R. Walker, L. Grant, D. Stoppa, F. Borghetti, E. Charbon, M. Gersbach, and R. K. Henderson, “A 32x32 50ps Resolution 10 bit Time to Digital Converter Array in 130nm CMOS for Time Correlated Imaging,” IEEE Cust. Integr. Cir. 9, 77–80 (2009).

Walker, R. J.

Wall, J. E.

A. C. Mitchell, J. E. Wall, J. G. Murray, and C. G. Morgan, “Measurement of nanosecond time-resolved fluorescence with a directly gated interline CCD camera,” J. Microsc. 206(3), 233–238 (2002).
[Crossref] [PubMed]

A. C. Mitchell, J. E. Wall, J. G. Murray, and C. G. Morgan, “Measurement of nanosecond time-resolved fluorescence with a directly gated interline CCD camera,” J. Microsc. 206(3), 233–238 (2002).
[Crossref] [PubMed]

Weekes, D.

J. R. Morris, C. Boutell, M. Keppler, R. Densham, D. Weekes, A. Alamshah, L. Butler, Y. Galanty, L. Pangon, T. Kiuchi, T. Ng, and E. Solomon, “The SUMO modification pathway is involved in the BRCA1 response to genotoxic stress,” Nature 462(7275), 886–890 (2009).
[Crossref] [PubMed]

Weiss, S.

X. Michalet, R. A. Colyer, G. Scalia, A. Ingargiola, R. Lin, J. E. Millaud, S. Weiss, O. H. Siegmund, A. S. Tremsin, J. V. Vallerga, A. Cheng, M. Levi, D. Aharoni, K. Arisaka, F. Villa, F. Guerrieri, F. Panzeri, I. Rech, A. Gulinatti, F. Zappa, M. Ghioni, and S. Cova, “Development of new photon-counting detectors for single-molecule fluorescence microscopy,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 368(1611), 20120035 (2012).
[Crossref] [PubMed]

R. A. Colyer, O. H. Siegmund, A. S. Tremsin, J. V. Vallerga, S. Weiss, and X. Michalet, “Phasor imaging with a widefield photon-counting detector,” J. Biomed. Opt. 17(1), 016008 (2012).
[Crossref] [PubMed]

R. A. Colyer, G. Scalia, I. Rech, A. Gulinatti, M. Ghioni, S. Cova, S. Weiss, and X. Michalet, “High-throughput FCS using an LCOS spatial light modulator and an 8 × 1 SPAD array,” Biomed. Opt. Express 1(5), 1408–1431 (2010).
[Crossref] [PubMed]

Weitsman, G.

J. Nedbal, V. Visitkul, E. Ortiz-Zapater, G. Weitsman, P. Chana, D. R. Matthews, T. Ng, and S. M. Ameer-Beg, “Time-domain microfluidic fluorescence lifetime flow cytometry for high-throughput Förster resonance energy transfer screening,” Cytometry A 87(2), 104–118 (2015).
[Crossref] [PubMed]

D. R. Matthews, G. O. Fruhwirth, G. Weitsman, L. M. Carlin, E. Ofo, M. Keppler, P. R. Barber, I. D. Tullis, B. Vojnovic, T. Ng, and S. M. Ameer-Beg, “A multi-functional imaging approach to high-content protein interaction screening,” PLoS One 7(4), e33231 (2012).
[Crossref] [PubMed]

D. R. Matthews, G. O. Fruhwirth, G. Weitsman, L. M. Carlin, E. Ofo, M. Keppler, P. R. Barber, I. D. Tullis, B. Vojnovic, T. Ng, and S. M. Ameer-Beg, “A multi-functional imaging approach to high-content protein interaction screening,” PLoS One 7(4), e33231 (2012).
[Crossref] [PubMed]

Wells, C. M.

Wouters, F. S.

Yu, H.

Zappa, F.

X. Michalet, R. A. Colyer, G. Scalia, A. Ingargiola, R. Lin, J. E. Millaud, S. Weiss, O. H. Siegmund, A. S. Tremsin, J. V. Vallerga, A. Cheng, M. Levi, D. Aharoni, K. Arisaka, F. Villa, F. Guerrieri, F. Panzeri, I. Rech, A. Gulinatti, F. Zappa, M. Ghioni, and S. Cova, “Development of new photon-counting detectors for single-molecule fluorescence microscopy,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 368(1611), 20120035 (2012).
[Crossref] [PubMed]

Zhang, W.

Zhao, L.

T. Omer, L. Zhao, X. Intes, and J. Hahn, “Reduced temporal sampling effect on accuracy of time-domain fluorescence lifetime Förster resonance energy transfer,” J. Biomed. Opt. 19(8), 086023 (2014).
[Crossref] [PubMed]

Anal. Chem. (3)

R. M. Ballew and J. Demas, “An error analysis of the rapid lifetime determination method for the evaluation of single exponential decays,” Anal. Chem. 61(1), 30–33 (1989).
[Crossref]

K. K. Sharman, A. Periasamy, H. Ashworth, and J. N. Demas, “Error analysis of the rapid lifetime determination method for double-exponential decays and new windowing schemes,” Anal. Chem. 71(5), 947–952 (1999).
[Crossref] [PubMed]

S. P. Chan, Z. J. Fuller, J. N. Demas, and B. A. DeGraff, “Optimized gating scheme for rapid lifetime determinations of single-exponential luminescence lifetimes,” Anal. Chem. 73(18), 4486–4490 (2001).
[Crossref] [PubMed]

Ann. Biomed. Eng. (1)

L. Marcu, “Fluorescence lifetime techniques in medical applications,” Ann. Biomed. Eng. 40(2), 304–331 (2012).
[Crossref] [PubMed]

Appl. Spectrosc. (1)

Biomed. Opt. Express (2)

Biophys. J. (1)

M. Peter, S. M. Ameer-Beg, M. K. Hughes, M. D. Keppler, S. Prag, M. Marsh, B. Vojnovic, and T. Ng, “Multiphoton-FLIM quantification of the EGFP-mRFP1 FRET pair for localization of membrane receptor-kinase interactions,” Biophys. J. 88(2), 1224–1237 (2005).
[Crossref] [PubMed]

Cytometry (1)

Q. S. Hanley, V. Subramaniam, D. J. Arndt-Jovin, and T. M. Jovin, “Fluorescence lifetime imaging: multi-point calibration, minimum resolvable differences, and artifact suppression,” Cytometry 43(4), 248–260 (2001).
[Crossref] [PubMed]

Cytometry A (1)

J. Nedbal, V. Visitkul, E. Ortiz-Zapater, G. Weitsman, P. Chana, D. R. Matthews, T. Ng, and S. M. Ameer-Beg, “Time-domain microfluidic fluorescence lifetime flow cytometry for high-throughput Förster resonance energy transfer screening,” Cytometry A 87(2), 104–118 (2015).
[Crossref] [PubMed]

IEEE Cust. Integr. Cir. (1)

J. Richardson, R. Walker, L. Grant, D. Stoppa, F. Borghetti, E. Charbon, M. Gersbach, and R. K. Henderson, “A 32x32 50ps Resolution 10 bit Time to Digital Converter Array in 130nm CMOS for Time Correlated Imaging,” IEEE Cust. Integr. Cir. 9, 77–80 (2009).

J. Am. Chem. Soc. (1)

T. A. Masters, R. J. Marsh, D. A. Armoogum, N. Nicolaou, B. Larijani, and A. J. Bain, “Restricted State Selection in Fluorescent Protein Förster Resonance Energy Transfer,” J. Am. Chem. Soc. 135(21), 7883–7890 (2013).
[Crossref] [PubMed]

J. Biomed. Opt. (6)

D.-U. Li, B. Rae, R. Andrews, J. Arlt, and R. Henderson, “Hardware implementation algorithm and error analysis of high-speed fluorescence lifetime sensing systems using center-of-mass method,” J. Biomed. Opt. 15, 017006 (2010).

E. Gratton, S. Breusegem, J. Sutin, Q. Ruan, and N. Barry, “Fluorescence lifetime imaging for the two-photon microscope: time-domain and frequency-domain methods,” J. Biomed. Opt. 8(3), 381–390 (2003).
[Crossref] [PubMed]

T. Omer, L. Zhao, X. Intes, and J. Hahn, “Reduced temporal sampling effect on accuracy of time-domain fluorescence lifetime Förster resonance energy transfer,” J. Biomed. Opt. 19(8), 086023 (2014).
[Crossref] [PubMed]

I. Munro, J. McGinty, N. Galletly, J. Requejo-Isidro, P. M. Lanigan, D. S. Elson, C. Dunsby, M. A. Neil, M. J. Lever, and G. W. Stamp, “Toward the clinical application of time-domain fluorescence lifetime imaging,” J. Biomed. Opt. 10, 051403 (2005).

R. A. Colyer, O. H. Siegmund, A. S. Tremsin, J. V. Vallerga, S. Weiss, and X. Michalet, “Phasor imaging with a widefield photon-counting detector,” J. Biomed. Opt. 17(1), 016008 (2012).
[Crossref] [PubMed]

D. D.-U. Li, J. Arlt, D. Tyndall, R. Walker, J. Richardson, D. Stoppa, E. Charbon, and R. K. Henderson, “Video-rate fluorescence lifetime imaging camera with CMOS single-photon avalanche diode arrays and high-speed imaging algorithm,” J. Biomed. Opt. 16, 096012 (2011).

J. Microsc. (2)

A. C. Mitchell, J. E. Wall, J. G. Murray, and C. G. Morgan, “Measurement of nanosecond time-resolved fluorescence with a directly gated interline CCD camera,” J. Microsc. 206(3), 233–238 (2002).
[Crossref] [PubMed]

A. C. Mitchell, J. E. Wall, J. G. Murray, and C. G. Morgan, “Measurement of nanosecond time-resolved fluorescence with a directly gated interline CCD camera,” J. Microsc. 206(3), 233–238 (2002).
[Crossref] [PubMed]

J. Natl. Cancer Inst. (1)

H. D. Soule, J. Vazguez, A. Long, S. Albert, and M. Brennan, “A human cell line from a pleural effusion derived from a breast carcinoma,” J. Natl. Cancer Inst. 51(5), 1409–1416 (1973).
[PubMed]

J. Opt. Soc. Am. A (1)

J. R. Soc. Interface (1)

P. Barber, S. Ameer-Beg, J. Gilbey, L. Carlin, M. Keppler, T. Ng, and B. Vojnovic, “Multiphoton time-domain fluorescence lifetime imaging microscopy: practical application to protein–protein interactions using global analysis,” J. R. Soc. Interface 6(Suppl_1), S93–S105 (2009).
[Crossref]

Nature (1)

J. R. Morris, C. Boutell, M. Keppler, R. Densham, D. Weekes, A. Alamshah, L. Butler, Y. Galanty, L. Pangon, T. Kiuchi, T. Ng, and E. Solomon, “The SUMO modification pathway is involved in the BRCA1 response to genotoxic stress,” Nature 462(7275), 886–890 (2009).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (3)

Philos. Trans. R. Soc. Lond. B Biol. Sci. (1)

X. Michalet, R. A. Colyer, G. Scalia, A. Ingargiola, R. Lin, J. E. Millaud, S. Weiss, O. H. Siegmund, A. S. Tremsin, J. V. Vallerga, A. Cheng, M. Levi, D. Aharoni, K. Arisaka, F. Villa, F. Guerrieri, F. Panzeri, I. Rech, A. Gulinatti, F. Zappa, M. Ghioni, and S. Cova, “Development of new photon-counting detectors for single-molecule fluorescence microscopy,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 368(1611), 20120035 (2012).
[Crossref] [PubMed]

PLoS One (3)

A. Leray, S. Padilla-Parra, J. Roul, L. Héliot, and M. Tramier, “Spatio-Temporal Quantification of FRET in living cells by fast time-domain FLIM: a comparative study of non-fitting methods [corrected],” PLoS One 8(7), e69335 (2013).
[Crossref] [PubMed]

D. R. Matthews, G. O. Fruhwirth, G. Weitsman, L. M. Carlin, E. Ofo, M. Keppler, P. R. Barber, I. D. Tullis, B. Vojnovic, T. Ng, and S. M. Ameer-Beg, “A multi-functional imaging approach to high-content protein interaction screening,” PLoS One 7(4), e33231 (2012).
[Crossref] [PubMed]

D. R. Matthews, G. O. Fruhwirth, G. Weitsman, L. M. Carlin, E. Ofo, M. Keppler, P. R. Barber, I. D. Tullis, B. Vojnovic, T. Ng, and S. M. Ameer-Beg, “A multi-functional imaging approach to high-content protein interaction screening,” PLoS One 7(4), e33231 (2012).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

A. Miyawaki, O. Griesbeck, R. Heim, and R. Y. Tsien, “Dynamic and quantitative Ca2+ measurements using improved cameleons,” Proc. Natl. Acad. Sci. U.S.A. 96(5), 2135–2140 (1999).
[Crossref] [PubMed]

Science (1)

T. Ng, A. Squire, G. Hansra, F. Bornancin, C. Prevostel, A. Hanby, W. Harris, D. Barnes, S. Schmidt, H. Mellor, P. I. H. Bastiaens, and P. J. Parker, “Imaging protein kinase Calpha activation in cells,” Science 283(5410), 2085–2089 (1999).
[Crossref] [PubMed]

Sensors (Basel) (1)

D. D. U. Li, S. Ameer-Beg, J. Arlt, D. Tyndall, R. Walker, D. R. Matthews, V. Visitkul, J. Richardson, and R. K. Henderson, “Time-Domain Fluorescence Lifetime Imaging Techniques Suitable for Solid-State Imaging Sensor Arrays,” Sensors (Basel) 12(5), 5650–5669 (2012).
[Crossref] [PubMed]

Trends Biotechnol. (1)

V. C. Abraham, D. L. Taylor, and J. R. Haskins, “High content screening applied to large-scale cell biology,” Trends Biotechnol. 22(1), 15–22 (2004).
[Crossref] [PubMed]

Other (2)

G. C. Spalding, J. Courtial, and R. Leonardo, “Structured Light and its Applications,” in Holographic Optical Tweezers (Academic Press, 2008), pp. 139–168.

“Opal Kelly XEM 3050 user manual,” (2006), http://assets00.opalkelly.com/library/XEM3050-UM.pdf .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Dark Count Rate (DCR) of a selected 8x8 detector array on the Megaframe 32x32 pixel camera.

Fig. 2
Fig. 2

Operational schematic of the multifocal multiphoton system, whereby light from the Chameleon Ultra II Ti:Sapphire laser system is projected onto the Spatial Light Modulator (SLM) that generates the appropriate beamlet array pattern, which is then re-imaged and scanned across sample and using a set of galvanometers. The two photon generated fluorescence collected by the objective lens is then de-scanned and projected onto the Megaframe SPAD array for detection.

Fig. 3
Fig. 3

A typical Megaframe camera based TCSPC system block diagram.

Fig. 4
Fig. 4

Megaframe camera block diagram.

Fig. 5
Fig. 5

Firmware block diagram.

Fig. 6
Fig. 6

A typical graph of a measured fluorescence histogram indicating the typical positions of the timing windows for measurement (yellow) and background (green) when set up to acquire data for CMMdiffsub.

Fig. 7
Fig. 7

Analysis of simulated transient data sets showing how increasing the percentage contribution background noise to total number of photons affected the average lifetime value of 4096 transients determined using CMMoriginal and CMMdiffsub. For each individual transient, the total number of photons remains constant at 1000 counts.

Fig. 8
Fig. 8

Comparison of various CMM approaches to lifetime determination for live MCF-7 breast cancer cells expressing FRET standards imaged at 10 second time frames. Each standard (7aa, 19aa, 32aa) is comprised of eGFP and mRFP separated with different length amino acid linker sequences which are denoted by the number. These are then compared with cells expressing eGFP alone. Intensity, lifetime and composite images of live cells expressing the FRET standards and eGFP are presented.

Fig. 9
Fig. 9

Comparison of various CMM approaches to lifetime determination. These were Original CMM, Differential CMM, and Differential CMM incorporating background subtraction approaches for lifetime determination for a live MCF breast cancer cell expressing the eGFP-7AA-mRFP FRET standard. Of the 8x8 detector array used to acquire the image, individual histograms associated with 10 SPAD detectors were chosen as displayed in the pixels of interest image and presented for each CMM variant.

Fig. 10
Fig. 10

Comparing Levenburg-Marquardt (L-M), Time gated Rapid lifetime determination (RLD) and Centre-of-Mass Method (CMM) lifetime determination techniques with data sets taken from live MCF-7 breast cancer cells expressing FRET standards imaged at 10 second time frames.

Fig. 11
Fig. 11

Examining the correlation of RLD and CMM to the L-M fitting approach for lifetime determination on a pixel comparison basis for data presented in Fig. 10. For each data set the 7aa data is presented as red, 19aa data is yellow, 32aa data is green and the eGFP only data is blue. The Pearson product-moment correlation coefficient is used to determine the correlative significance.

Fig. 12
Fig. 12

Histograms showing the distribution of lifetimes determined using RLD, CMM and L-M for 7aa, 19aa, 32aa and GFP data sets presented in Fig. 10 are shown.

Fig. 13
Fig. 13

Statistical analysis comparing the average FRET efficiencies for a sample of 5 cells expressing each FRET standard and eGFP are presented for each lifetime determination technique. In order to compare two different populations for significance the unpaired Student t-test was used. *** between populations denotes a highly significant difference in lifetime values (p<0.001), ** denotes a very significant difference in lifetime values (p≤0.01), * denotes a significant difference in lifetime values (p<0.05) and NS denotes no significance (p>0.05).

Tables (1)

Tables Icon

Table 1 The calculated FRET efficiencies for each technique are displayed

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

τ=Ω[ 1 M ( i=1 N c D i ¯ N c + 1 2 ) ].Mh
τ=Ω[ 1 M ( i=1 N c D i ¯ N c ( N b S ) N c ( N b S ) + 1 2 ) ].Mh
  τ diff = τ s τ IRF

Metrics