Abstract

We report a new energy-transfer process in erbium doped ZBLAN glass, which is critical for optimizing the operation of lasers that use the 3.5 μm band 4F9/2 to 4I9/2 transition. The magnitude of this energy-transfer process is measured for two different doping levels in Er3+:ZBLAN and the requirement for low doping in these lasers established.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Spectroscopic and energy-transfer parameters for Er3+-doped and Er3+, Pr3+-codoped GeGaS glasses

Daniel J. Coleman, Paul Golding, Terence A. King, and Stuart D. Jackson
J. Opt. Soc. Am. B 19(9) 1982-1989 (2002)

Measurements of the spectroscopic and energy transfer parameters for Er3+-doped and Er3+, Pr3+-codoped PbO–Bi2O3–Ga2O3 glasses

Daniel J. Coleman, Stuart D. Jackson, Paul Golding, and Terence A. King
J. Opt. Soc. Am. B 19(12) 2927-2937 (2002)

Spectroscopy of upper energy levels in an Er3+-doped amorphous oxide

Laura Agazzi, Kerstin Wörhoff, Andreas Kahn, Matthias Fechner, Günter Huber, and Markus Pollnau
J. Opt. Soc. Am. B 30(3) 663-677 (2013)

References

  • View by:
  • |
  • |
  • |

  1. V. Fortin, M. Bernier, S. T. Bah, and R. Valle, “30 W fluoride glass all-fiber laser at 2.94 µm,” Opt. Lett. 40, 2882–2885 (2015).
    [Crossref] [PubMed]
  2. O. Henderson-Sapir, J. Munch, and D. J. Ottaway, “Mid-infrared fiber lasers at and beyond 3.5 µ m using dual-wavelength pumping,” Opt. Lett. 39, 493–496 (2014).
    [Crossref] [PubMed]
  3. V. Fortin, F. Maes, M. Bernier, S. T. Bah, M. D’Auteuil, and R. Vallée, “Watt-level erbium-doped all-fiber laser at 3.44 µm,” Opt. Lett. (to be published).
  4. O. Henderson-Sapir, S. D. Jackson, and D. J. Ottaway, “Versatile and widely tunable mid-infrared erbium doped ZBLAN fiber laser,” (submitted to Opt. Lett).
  5. P. S. Golding, S. D. Jackson, T. A. King, and M. Pollnau, “Energy transfer processes in Er3+-doped and Er3+, Pr3+-codoped ZBLAN glasses,” Phys. Rev. B 62, 856–864 (2000).
    [Crossref]
  6. M. Gorjan, M. Marincek, and M. Copic, “Role of interionic processes in the efficiency and operation of erbium-doped fluoride fiber lasers,” IEEE J. Quantum Electron. 47, 262–273 (2011).
    [Crossref]
  7. H. Többen, “Room temperature cw fibre laser at 3.5 µ m in Er3+-doped ZBLAN glass,” Electron. Lett. 28, 1361–1362 (1992).
    [Crossref]
  8. W. Hofle and H. Többen, “Analysis, measurement and optimization of threshold power of 3.5 µ m ZBLAN-glass fiber lasers,” Int. J. Infrared and Millimeter Waves 14, 1407–1424 (1993).
    [Crossref]
  9. M. Pollnau and S. D. Jackson, “Advances in mid-infrared fiber lasers,” in Mid-Infrared Coherent Sources and Applications, M. Ebrahim-Zadeh and I. T. Sorokina, eds. (Springer, 2008).
    [Crossref]
  10. O. Henderson-Sapir, “Development of dual-wavelength pumped mid-infrared fibre laser,” Ph.D. thesis, University of Adelaide (2015).
  11. M. Pollnau and S. D. Jackson, “Energy recycling versus lifetime quenching in erbium-doped 3-µ m fiber lasers,” IEEE J. Quantum Electron. 38, 162–169 (2002).
    [Crossref]
  12. R. Caspary, “Applied rare-earth spectroscopy for fiber laser optimization,” Ph.D. thesis, Technical University Braunschweig, Germany (2001).
  13. L. Wetenkamp, G. F. West, and H. Többen, “Optical properties of rare earth-doped ZBLAN glasses,” J. Non-Crystalline Solids 140, 35–40 (1992).
    [Crossref]
  14. R. S. Quimby, W. J. Miniscalco, and B. A. Thompson, “Excited-state absorption at 980 nm in erbium-doped glass,” Proc. SPIE 1581, 72–79 (1992).
    [Crossref]
  15. L. Jianfeng and S. D. Jackson, “Numerical modeling and optimization of diode pumped heavily-erbium-doped fluoride fiber lasers,” IEEE J. Quantum Electron. 48, 454–464 (2012).
    [Crossref]
  16. U. Skrzypczak, M. Miclea, A. Stalmashonak, B. Ahrens, B. Henke, G. Seifert, J. A. Johnson, and S. Schweizer, “Time-resolved investigations of erbium ions in ZBLAN-based glasses and glass ceramics,” Physica Status Solidi 8, 2649–2652 (2011).
  17. J. Li, L. Gomes, and S. D. Jackson, “Numerical modeling of holmium-doped fluoride fiber lasers,” IEEE J. Quantum Electron. 48, 596–607 (2012).
    [Crossref]
  18. L. Jianfeng, L. Hongyu, L. Yong, Z. Lin, and S. D. Jackson, “Modeling and optimization of cascaded erbium and holmium doped fluoride fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20, 15–28 (2014).
    [Crossref]

2015 (1)

2014 (2)

O. Henderson-Sapir, J. Munch, and D. J. Ottaway, “Mid-infrared fiber lasers at and beyond 3.5 µ m using dual-wavelength pumping,” Opt. Lett. 39, 493–496 (2014).
[Crossref] [PubMed]

L. Jianfeng, L. Hongyu, L. Yong, Z. Lin, and S. D. Jackson, “Modeling and optimization of cascaded erbium and holmium doped fluoride fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20, 15–28 (2014).
[Crossref]

2012 (2)

J. Li, L. Gomes, and S. D. Jackson, “Numerical modeling of holmium-doped fluoride fiber lasers,” IEEE J. Quantum Electron. 48, 596–607 (2012).
[Crossref]

L. Jianfeng and S. D. Jackson, “Numerical modeling and optimization of diode pumped heavily-erbium-doped fluoride fiber lasers,” IEEE J. Quantum Electron. 48, 454–464 (2012).
[Crossref]

2011 (2)

U. Skrzypczak, M. Miclea, A. Stalmashonak, B. Ahrens, B. Henke, G. Seifert, J. A. Johnson, and S. Schweizer, “Time-resolved investigations of erbium ions in ZBLAN-based glasses and glass ceramics,” Physica Status Solidi 8, 2649–2652 (2011).

M. Gorjan, M. Marincek, and M. Copic, “Role of interionic processes in the efficiency and operation of erbium-doped fluoride fiber lasers,” IEEE J. Quantum Electron. 47, 262–273 (2011).
[Crossref]

2002 (1)

M. Pollnau and S. D. Jackson, “Energy recycling versus lifetime quenching in erbium-doped 3-µ m fiber lasers,” IEEE J. Quantum Electron. 38, 162–169 (2002).
[Crossref]

2000 (1)

P. S. Golding, S. D. Jackson, T. A. King, and M. Pollnau, “Energy transfer processes in Er3+-doped and Er3+, Pr3+-codoped ZBLAN glasses,” Phys. Rev. B 62, 856–864 (2000).
[Crossref]

1993 (1)

W. Hofle and H. Többen, “Analysis, measurement and optimization of threshold power of 3.5 µ m ZBLAN-glass fiber lasers,” Int. J. Infrared and Millimeter Waves 14, 1407–1424 (1993).
[Crossref]

1992 (3)

H. Többen, “Room temperature cw fibre laser at 3.5 µ m in Er3+-doped ZBLAN glass,” Electron. Lett. 28, 1361–1362 (1992).
[Crossref]

L. Wetenkamp, G. F. West, and H. Többen, “Optical properties of rare earth-doped ZBLAN glasses,” J. Non-Crystalline Solids 140, 35–40 (1992).
[Crossref]

R. S. Quimby, W. J. Miniscalco, and B. A. Thompson, “Excited-state absorption at 980 nm in erbium-doped glass,” Proc. SPIE 1581, 72–79 (1992).
[Crossref]

Ahrens, B.

U. Skrzypczak, M. Miclea, A. Stalmashonak, B. Ahrens, B. Henke, G. Seifert, J. A. Johnson, and S. Schweizer, “Time-resolved investigations of erbium ions in ZBLAN-based glasses and glass ceramics,” Physica Status Solidi 8, 2649–2652 (2011).

Bah, S. T.

V. Fortin, M. Bernier, S. T. Bah, and R. Valle, “30 W fluoride glass all-fiber laser at 2.94 µm,” Opt. Lett. 40, 2882–2885 (2015).
[Crossref] [PubMed]

V. Fortin, F. Maes, M. Bernier, S. T. Bah, M. D’Auteuil, and R. Vallée, “Watt-level erbium-doped all-fiber laser at 3.44 µm,” Opt. Lett. (to be published).

Bernier, M.

V. Fortin, M. Bernier, S. T. Bah, and R. Valle, “30 W fluoride glass all-fiber laser at 2.94 µm,” Opt. Lett. 40, 2882–2885 (2015).
[Crossref] [PubMed]

V. Fortin, F. Maes, M. Bernier, S. T. Bah, M. D’Auteuil, and R. Vallée, “Watt-level erbium-doped all-fiber laser at 3.44 µm,” Opt. Lett. (to be published).

Caspary, R.

R. Caspary, “Applied rare-earth spectroscopy for fiber laser optimization,” Ph.D. thesis, Technical University Braunschweig, Germany (2001).

Copic, M.

M. Gorjan, M. Marincek, and M. Copic, “Role of interionic processes in the efficiency and operation of erbium-doped fluoride fiber lasers,” IEEE J. Quantum Electron. 47, 262–273 (2011).
[Crossref]

D’Auteuil, M.

V. Fortin, F. Maes, M. Bernier, S. T. Bah, M. D’Auteuil, and R. Vallée, “Watt-level erbium-doped all-fiber laser at 3.44 µm,” Opt. Lett. (to be published).

Fortin, V.

V. Fortin, M. Bernier, S. T. Bah, and R. Valle, “30 W fluoride glass all-fiber laser at 2.94 µm,” Opt. Lett. 40, 2882–2885 (2015).
[Crossref] [PubMed]

V. Fortin, F. Maes, M. Bernier, S. T. Bah, M. D’Auteuil, and R. Vallée, “Watt-level erbium-doped all-fiber laser at 3.44 µm,” Opt. Lett. (to be published).

Golding, P. S.

P. S. Golding, S. D. Jackson, T. A. King, and M. Pollnau, “Energy transfer processes in Er3+-doped and Er3+, Pr3+-codoped ZBLAN glasses,” Phys. Rev. B 62, 856–864 (2000).
[Crossref]

Gomes, L.

J. Li, L. Gomes, and S. D. Jackson, “Numerical modeling of holmium-doped fluoride fiber lasers,” IEEE J. Quantum Electron. 48, 596–607 (2012).
[Crossref]

Gorjan, M.

M. Gorjan, M. Marincek, and M. Copic, “Role of interionic processes in the efficiency and operation of erbium-doped fluoride fiber lasers,” IEEE J. Quantum Electron. 47, 262–273 (2011).
[Crossref]

Henderson-Sapir, O.

O. Henderson-Sapir, J. Munch, and D. J. Ottaway, “Mid-infrared fiber lasers at and beyond 3.5 µ m using dual-wavelength pumping,” Opt. Lett. 39, 493–496 (2014).
[Crossref] [PubMed]

O. Henderson-Sapir, S. D. Jackson, and D. J. Ottaway, “Versatile and widely tunable mid-infrared erbium doped ZBLAN fiber laser,” (submitted to Opt. Lett).

O. Henderson-Sapir, “Development of dual-wavelength pumped mid-infrared fibre laser,” Ph.D. thesis, University of Adelaide (2015).

Henke, B.

U. Skrzypczak, M. Miclea, A. Stalmashonak, B. Ahrens, B. Henke, G. Seifert, J. A. Johnson, and S. Schweizer, “Time-resolved investigations of erbium ions in ZBLAN-based glasses and glass ceramics,” Physica Status Solidi 8, 2649–2652 (2011).

Hofle, W.

W. Hofle and H. Többen, “Analysis, measurement and optimization of threshold power of 3.5 µ m ZBLAN-glass fiber lasers,” Int. J. Infrared and Millimeter Waves 14, 1407–1424 (1993).
[Crossref]

Hongyu, L.

L. Jianfeng, L. Hongyu, L. Yong, Z. Lin, and S. D. Jackson, “Modeling and optimization of cascaded erbium and holmium doped fluoride fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20, 15–28 (2014).
[Crossref]

Jackson, S. D.

L. Jianfeng, L. Hongyu, L. Yong, Z. Lin, and S. D. Jackson, “Modeling and optimization of cascaded erbium and holmium doped fluoride fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20, 15–28 (2014).
[Crossref]

J. Li, L. Gomes, and S. D. Jackson, “Numerical modeling of holmium-doped fluoride fiber lasers,” IEEE J. Quantum Electron. 48, 596–607 (2012).
[Crossref]

L. Jianfeng and S. D. Jackson, “Numerical modeling and optimization of diode pumped heavily-erbium-doped fluoride fiber lasers,” IEEE J. Quantum Electron. 48, 454–464 (2012).
[Crossref]

M. Pollnau and S. D. Jackson, “Energy recycling versus lifetime quenching in erbium-doped 3-µ m fiber lasers,” IEEE J. Quantum Electron. 38, 162–169 (2002).
[Crossref]

P. S. Golding, S. D. Jackson, T. A. King, and M. Pollnau, “Energy transfer processes in Er3+-doped and Er3+, Pr3+-codoped ZBLAN glasses,” Phys. Rev. B 62, 856–864 (2000).
[Crossref]

O. Henderson-Sapir, S. D. Jackson, and D. J. Ottaway, “Versatile and widely tunable mid-infrared erbium doped ZBLAN fiber laser,” (submitted to Opt. Lett).

M. Pollnau and S. D. Jackson, “Advances in mid-infrared fiber lasers,” in Mid-Infrared Coherent Sources and Applications, M. Ebrahim-Zadeh and I. T. Sorokina, eds. (Springer, 2008).
[Crossref]

Jianfeng, L.

L. Jianfeng, L. Hongyu, L. Yong, Z. Lin, and S. D. Jackson, “Modeling and optimization of cascaded erbium and holmium doped fluoride fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20, 15–28 (2014).
[Crossref]

L. Jianfeng and S. D. Jackson, “Numerical modeling and optimization of diode pumped heavily-erbium-doped fluoride fiber lasers,” IEEE J. Quantum Electron. 48, 454–464 (2012).
[Crossref]

Johnson, J. A.

U. Skrzypczak, M. Miclea, A. Stalmashonak, B. Ahrens, B. Henke, G. Seifert, J. A. Johnson, and S. Schweizer, “Time-resolved investigations of erbium ions in ZBLAN-based glasses and glass ceramics,” Physica Status Solidi 8, 2649–2652 (2011).

King, T. A.

P. S. Golding, S. D. Jackson, T. A. King, and M. Pollnau, “Energy transfer processes in Er3+-doped and Er3+, Pr3+-codoped ZBLAN glasses,” Phys. Rev. B 62, 856–864 (2000).
[Crossref]

Li, J.

J. Li, L. Gomes, and S. D. Jackson, “Numerical modeling of holmium-doped fluoride fiber lasers,” IEEE J. Quantum Electron. 48, 596–607 (2012).
[Crossref]

Lin, Z.

L. Jianfeng, L. Hongyu, L. Yong, Z. Lin, and S. D. Jackson, “Modeling and optimization of cascaded erbium and holmium doped fluoride fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20, 15–28 (2014).
[Crossref]

Maes, F.

V. Fortin, F. Maes, M. Bernier, S. T. Bah, M. D’Auteuil, and R. Vallée, “Watt-level erbium-doped all-fiber laser at 3.44 µm,” Opt. Lett. (to be published).

Marincek, M.

M. Gorjan, M. Marincek, and M. Copic, “Role of interionic processes in the efficiency and operation of erbium-doped fluoride fiber lasers,” IEEE J. Quantum Electron. 47, 262–273 (2011).
[Crossref]

Miclea, M.

U. Skrzypczak, M. Miclea, A. Stalmashonak, B. Ahrens, B. Henke, G. Seifert, J. A. Johnson, and S. Schweizer, “Time-resolved investigations of erbium ions in ZBLAN-based glasses and glass ceramics,” Physica Status Solidi 8, 2649–2652 (2011).

Miniscalco, W. J.

R. S. Quimby, W. J. Miniscalco, and B. A. Thompson, “Excited-state absorption at 980 nm in erbium-doped glass,” Proc. SPIE 1581, 72–79 (1992).
[Crossref]

Munch, J.

Ottaway, D. J.

O. Henderson-Sapir, J. Munch, and D. J. Ottaway, “Mid-infrared fiber lasers at and beyond 3.5 µ m using dual-wavelength pumping,” Opt. Lett. 39, 493–496 (2014).
[Crossref] [PubMed]

O. Henderson-Sapir, S. D. Jackson, and D. J. Ottaway, “Versatile and widely tunable mid-infrared erbium doped ZBLAN fiber laser,” (submitted to Opt. Lett).

Pollnau, M.

M. Pollnau and S. D. Jackson, “Energy recycling versus lifetime quenching in erbium-doped 3-µ m fiber lasers,” IEEE J. Quantum Electron. 38, 162–169 (2002).
[Crossref]

P. S. Golding, S. D. Jackson, T. A. King, and M. Pollnau, “Energy transfer processes in Er3+-doped and Er3+, Pr3+-codoped ZBLAN glasses,” Phys. Rev. B 62, 856–864 (2000).
[Crossref]

M. Pollnau and S. D. Jackson, “Advances in mid-infrared fiber lasers,” in Mid-Infrared Coherent Sources and Applications, M. Ebrahim-Zadeh and I. T. Sorokina, eds. (Springer, 2008).
[Crossref]

Quimby, R. S.

R. S. Quimby, W. J. Miniscalco, and B. A. Thompson, “Excited-state absorption at 980 nm in erbium-doped glass,” Proc. SPIE 1581, 72–79 (1992).
[Crossref]

Schweizer, S.

U. Skrzypczak, M. Miclea, A. Stalmashonak, B. Ahrens, B. Henke, G. Seifert, J. A. Johnson, and S. Schweizer, “Time-resolved investigations of erbium ions in ZBLAN-based glasses and glass ceramics,” Physica Status Solidi 8, 2649–2652 (2011).

Seifert, G.

U. Skrzypczak, M. Miclea, A. Stalmashonak, B. Ahrens, B. Henke, G. Seifert, J. A. Johnson, and S. Schweizer, “Time-resolved investigations of erbium ions in ZBLAN-based glasses and glass ceramics,” Physica Status Solidi 8, 2649–2652 (2011).

Skrzypczak, U.

U. Skrzypczak, M. Miclea, A. Stalmashonak, B. Ahrens, B. Henke, G. Seifert, J. A. Johnson, and S. Schweizer, “Time-resolved investigations of erbium ions in ZBLAN-based glasses and glass ceramics,” Physica Status Solidi 8, 2649–2652 (2011).

Stalmashonak, A.

U. Skrzypczak, M. Miclea, A. Stalmashonak, B. Ahrens, B. Henke, G. Seifert, J. A. Johnson, and S. Schweizer, “Time-resolved investigations of erbium ions in ZBLAN-based glasses and glass ceramics,” Physica Status Solidi 8, 2649–2652 (2011).

Thompson, B. A.

R. S. Quimby, W. J. Miniscalco, and B. A. Thompson, “Excited-state absorption at 980 nm in erbium-doped glass,” Proc. SPIE 1581, 72–79 (1992).
[Crossref]

Többen, H.

W. Hofle and H. Többen, “Analysis, measurement and optimization of threshold power of 3.5 µ m ZBLAN-glass fiber lasers,” Int. J. Infrared and Millimeter Waves 14, 1407–1424 (1993).
[Crossref]

H. Többen, “Room temperature cw fibre laser at 3.5 µ m in Er3+-doped ZBLAN glass,” Electron. Lett. 28, 1361–1362 (1992).
[Crossref]

L. Wetenkamp, G. F. West, and H. Többen, “Optical properties of rare earth-doped ZBLAN glasses,” J. Non-Crystalline Solids 140, 35–40 (1992).
[Crossref]

Valle, R.

Vallée, R.

V. Fortin, F. Maes, M. Bernier, S. T. Bah, M. D’Auteuil, and R. Vallée, “Watt-level erbium-doped all-fiber laser at 3.44 µm,” Opt. Lett. (to be published).

West, G. F.

L. Wetenkamp, G. F. West, and H. Többen, “Optical properties of rare earth-doped ZBLAN glasses,” J. Non-Crystalline Solids 140, 35–40 (1992).
[Crossref]

Wetenkamp, L.

L. Wetenkamp, G. F. West, and H. Többen, “Optical properties of rare earth-doped ZBLAN glasses,” J. Non-Crystalline Solids 140, 35–40 (1992).
[Crossref]

Yong, L.

L. Jianfeng, L. Hongyu, L. Yong, Z. Lin, and S. D. Jackson, “Modeling and optimization of cascaded erbium and holmium doped fluoride fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20, 15–28 (2014).
[Crossref]

Electron. Lett. (1)

H. Többen, “Room temperature cw fibre laser at 3.5 µ m in Er3+-doped ZBLAN glass,” Electron. Lett. 28, 1361–1362 (1992).
[Crossref]

IEEE J. Quantum Electron. (4)

M. Gorjan, M. Marincek, and M. Copic, “Role of interionic processes in the efficiency and operation of erbium-doped fluoride fiber lasers,” IEEE J. Quantum Electron. 47, 262–273 (2011).
[Crossref]

M. Pollnau and S. D. Jackson, “Energy recycling versus lifetime quenching in erbium-doped 3-µ m fiber lasers,” IEEE J. Quantum Electron. 38, 162–169 (2002).
[Crossref]

L. Jianfeng and S. D. Jackson, “Numerical modeling and optimization of diode pumped heavily-erbium-doped fluoride fiber lasers,” IEEE J. Quantum Electron. 48, 454–464 (2012).
[Crossref]

J. Li, L. Gomes, and S. D. Jackson, “Numerical modeling of holmium-doped fluoride fiber lasers,” IEEE J. Quantum Electron. 48, 596–607 (2012).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

L. Jianfeng, L. Hongyu, L. Yong, Z. Lin, and S. D. Jackson, “Modeling and optimization of cascaded erbium and holmium doped fluoride fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20, 15–28 (2014).
[Crossref]

Int. J. Infrared and Millimeter Waves (1)

W. Hofle and H. Többen, “Analysis, measurement and optimization of threshold power of 3.5 µ m ZBLAN-glass fiber lasers,” Int. J. Infrared and Millimeter Waves 14, 1407–1424 (1993).
[Crossref]

J. Non-Crystalline Solids (1)

L. Wetenkamp, G. F. West, and H. Többen, “Optical properties of rare earth-doped ZBLAN glasses,” J. Non-Crystalline Solids 140, 35–40 (1992).
[Crossref]

Opt. Lett. (2)

Phys. Rev. B (1)

P. S. Golding, S. D. Jackson, T. A. King, and M. Pollnau, “Energy transfer processes in Er3+-doped and Er3+, Pr3+-codoped ZBLAN glasses,” Phys. Rev. B 62, 856–864 (2000).
[Crossref]

Physica Status Solidi (1)

U. Skrzypczak, M. Miclea, A. Stalmashonak, B. Ahrens, B. Henke, G. Seifert, J. A. Johnson, and S. Schweizer, “Time-resolved investigations of erbium ions in ZBLAN-based glasses and glass ceramics,” Physica Status Solidi 8, 2649–2652 (2011).

Proc. SPIE (1)

R. S. Quimby, W. J. Miniscalco, and B. A. Thompson, “Excited-state absorption at 980 nm in erbium-doped glass,” Proc. SPIE 1581, 72–79 (1992).
[Crossref]

Other (5)

R. Caspary, “Applied rare-earth spectroscopy for fiber laser optimization,” Ph.D. thesis, Technical University Braunschweig, Germany (2001).

V. Fortin, F. Maes, M. Bernier, S. T. Bah, M. D’Auteuil, and R. Vallée, “Watt-level erbium-doped all-fiber laser at 3.44 µm,” Opt. Lett. (to be published).

O. Henderson-Sapir, S. D. Jackson, and D. J. Ottaway, “Versatile and widely tunable mid-infrared erbium doped ZBLAN fiber laser,” (submitted to Opt. Lett).

M. Pollnau and S. D. Jackson, “Advances in mid-infrared fiber lasers,” in Mid-Infrared Coherent Sources and Applications, M. Ebrahim-Zadeh and I. T. Sorokina, eds. (Springer, 2008).
[Crossref]

O. Henderson-Sapir, “Development of dual-wavelength pumped mid-infrared fibre laser,” Ph.D. thesis, University of Adelaide (2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Energy levels, wavelengths and spectroscopic processes in Er+3:ZBLAN. P1,2 -pump absorption with GSA/ESA are the ground and excited-state absorption. Energy-transfer processes are indicated by Wij with the indices indicating the initial levels involved in the process, which are marked with black dots; MP - multi-phonon relaxation. The subject of this paper, the W42 energy-transfer process is highlighted. Fluorescence wavelengths shown are the ones used in our measurements, although each fluorescence band is significantly broader. The numbers in brackets to the right represent the number of the rate equation, presented in section 3, which is associated with this energy level. Note that 4F7/2, 4S3/2 and 2H11/2 are thermally coupled and share the same rate equation.

Fig. 2
Fig. 2

Experimental setup for spectroscopy measurements.

Fig. 3
Fig. 3

An example of the decay of the population of the 4F9/2 state as indicated by the intensity of the 657 nm fluorescence when the 1973 nm pump is blocked. The stronger fluorescence on the leading edge of the pulse is because of a temporary increase in the P2 pump caused by different feedback conditions when blocking by the chopper was suddenly removed. The inset shows the decay part of the waveform on a semi-logarithmic plot. This example of the data was taken from a measurement with a FiberLabs ZDF fiber doped at 4 mol.%.

Fig. 4
Fig. 4

Example of 4F9/2 lifetime changes with pump power in IR-Photonics, 1.7 mol.% doped fiber. Each coloured curve represents a fixed P1 pump power, while the P2 pump power was increased. In this measurement the fluorescence was collected at 2 mm from the fiber input side.

Fig. 5
Fig. 5

Decay rate of the 4F9/2 level as a function of the relative population density of the 4I11/2 state as measured by the intensity of 995 nm fluorescence in a 1.7 mol.% doped fiber. Markers of the same color represent readings taken with a fixed P2 while P1 power was changed. The spread in the data at the low 995 nm fluorescence is because of reduced population at the 4I11/2 state ions and hence poor absorption of P2 light.

Fig. 6
Fig. 6

Fluorescence at 551 nm and 1535 nm collected from the side of the 1.7 mol.% doped fiber as an indicator for energy level population. Fluorescence collected at 2 mm from the input side of the fiber.

Fig. 7
Fig. 7

The populations density of the bottom five excited states of Er:ZBLAN versus incident P1 power using the WI parameters assumptions in a 4 mol.% doped fiber. The continuous curves represent the simulated results assuming W42 = 0. The dashed line for the 4F9/2 level represents the simulated values assuming W42 as measured. The squares are the measured fluorescence signals and their uncertainties scaled to the absolute population using simulated population at the second data point using WI regime.

Fig. 8
Fig. 8

Fit of decay rate to energy-transfer constant. This example is using values for the 4 mol.% doped fiber.

Tables (3)

Tables Icon

Table 1 Parameters used throughout the simulations.

Tables Icon

Table 2 Macroscopic known energy transfer parameters in Er3+:ZBLAN for different doping concentrations. Parameters from two regimes are included: strongly interacting (SI) [5] and weakly interacting parameters (WI) [15]. Energy transfer parameters relevant to this work, which fall in between values found in literature, were interpolated (*) or extrapolated (‡) according to the curves provided in [5,15].

Tables Icon

Table 3 Energy-transfer coefficient 4F9/2 + 4I11/24S3/2 + 4I13/2. Comparison of all values obtained using IR-Photonics fiber containing 1.7 mol.% of Er3+ ions and FiberLabs ZDF fiber containing 4 mol.% of Er3+ ions. Results for both the SI and WI approaches are shown. Uncertainty of these values is estimated at about 20%.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

d N 5 / d t = R P 1 E S A + W 22 N 2 2 τ 5 1 N 5 W 50 N 5 N 0 + W 42 N 2 N 4 ,
d N 4 / d t = R P 2 + β 54 τ 5 1 N 5 τ 4 1 N 4 W 42 N 2 N 4 ,
d N 3 / d t = β 53 τ 5 1 N 5 + β 43 τ 4 1 N 4 τ 3 1 N 3 + W 50 N 5 N 0 + W 11 N 1 2 ,
d N 2 / d t = R P 1 G S A R P 1 E S A R P 2 + i = 3 5 [ β i 2 τ i 1 N i ] τ 2 1 N 2 2 W 22 N 2 2 W 42 N 2 N 4 ,
d N 1 / d t = i = 2 5 [ β i 1 τ i 1 N i ] τ 1 1 N 1 + W 50 N 5 N 0 2 W 11 N 1 2 + W 42 N 2 N 4 ,
d N 0 / d t = i = 1 5 [ β i 0 τ i 1 N i ] R P 1 G S A W 50 N 5 N 0 + W 11 N 1 2 + W 22 N 2 2 ,
N E r = i = 0 5 N i .
R P 1 G S A = ( σ 0 , 2 N 0 σ 2 , 0 N 2 ) λ p 1 h c π r c o r e 2 P i n 1 ,
R P 1 E S A = ( σ 2 , 5 N 2 σ 5 , 2 N 5 ) λ p 1 h c π r c o r e 2 P i n 1 ,
R P 2 = ( σ 2 , 4 N 2 σ 4 , 2 N 4 ) λ p 2 h c π r c o r e 2 P i n 2 ,
d Δ N 4 / d t = Δ N 4 ( τ 4 1 + W 42 ) N ¯ 2 + β 54 τ 5 1 Δ N 5 .
Δ N 4 ( t ) = Δ N 4 ( 0 ) e ( 1 τ 4 + W 42 N 2 ) t .

Metrics