Abstract

Volume Holographic Optical Elements (HOEs) present interesting characteristics for photovoltaic applications as they can select spectrum for concentrating the target bandwidth and avoiding non-desired wavelengths, which can cause the decrease of the performance on the cell, for instance by overheating it. Volume HOEs have been recorded on Bayfol HX photopolymer to test the suitability of this material for solar concentrating photovoltaic systems. The HOEs were recorded at 532 nm and provided a dynamic range, reaching close to 100% efficiency at 800 nm. The diffracted spectrum had a FWHM of 230 nm when illuminating at Bragg angle. These characteristics prove HOEs recorded on Bayfol HX photopolymer are suitable for concentrating solar light onto photovoltaic cells sensitive to that wavelength range.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Characterization of transmission volume holographic gratings recorded in Slavich PFG04 dichromated gelatin plates

Ayalid Villamarín, Jesús Atencia, M. Victoria Collados, and Manuel Quintanilla
Appl. Opt. 48(22) 4348-4353 (2009)

Optimization of multi-grating volume holographic spectrum splitters for photovoltaic applications

G. B. Ingersoll and J. R. Leger
Appl. Opt. 55(20) 5399-5407 (2016)

Holographic recording in acrylamide photopolymers: thickness limitations

Mohammad Sultan Mahmud, Izabela Naydenova, Nitesh Pandey, Tzwetanka Babeva, Raghavendra Jallapuram, Suzanne Martin, and Vincent Toal
Appl. Opt. 48(14) 2642-2648 (2009)

References

  • View by:
  • |
  • |
  • |

  1. M. V. Collados, D. Chemisana, and J. Atencia, “Holographic solar energy systems: the role of optical elements,” Renew. Sustain. Energy Rev. 59, 130–140 (2016).
    [Crossref]
  2. H. Field, “Solar cell spectral response measurement errors related to spectral band width and chopped light waveform,” in Conference Record of the Twenty Sixth IEEE Photovoltaic Specialists Conference - 1997 (IEEE, 1997), pp. 471–474.
    [Crossref]
  3. C. Xiao, X. Yu, D. Yang, and D. Que, “Impact of solar irradiance intensity and temperature on the performance of compensated crystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 128, 427–434 (2014).
    [Crossref]
  4. S. Chander, A. Purohit, A. Sharma, S. P. Nehra, and M. S. Dhaka, “A study on photovoltaic parameters of mono-crystalline silicon solar cell with cell temperature,” Energy Reports 1, 104–109 (2015).
    [Crossref]
  5. D. Chemisana, M. V. Collados, M. Quintanilla, and J. Atencia, “Holographic lenses for building integrated concentrating photovoltaics,” Appl. Energy 110, 227–235 (2013).
    [Crossref]
  6. J. E. Ludman, J. Riccobono, I. V. Semenova, N. O. Reinhand, W. Tai, X. Li, G. Syphers, E. Rallis, G. Sliker, and J. Martín, “The optimization of a holographic system for solar power generation,” Sol. Energy 60(1), 1–9 (1997).
    [Crossref]
  7. A. Villamarín, J. Atencia, M. V. Collados, and M. Quintanilla, “Characterization of transmission volume holographic gratings recorded in Slavich PFG04 dichromated gelatin plates,” Appl. Opt. 48(22), 4348–4353 (2009).
    [Crossref] [PubMed]
  8. P. Bañares-Palacios, S. Álvarez-Álvarez, J. Marín-Sáez, M.-V. Collados, D. Chemisana, and J. Atencia, “Broadband behavior of transmission volume holographic optical elements for solar concentration,” Opt. Express 23(11), A671–A681 (2015).
    [Crossref] [PubMed]
  9. D. Zhang, J. M. Castro, and R. K. Kostuk, “One-axis tracking holographic planar concentrator systems,” J. Photonics Energy 1(1), 015505 (2011).
    [Crossref]
  10. J. M. Castro, D. Zhang, B. Myer, and R. K. Kostuk, “Energy collection efficiency of holographic planar solar concentrators,” Appl. Opt. 49(5), 858–870 (2010).
    [Crossref] [PubMed]
  11. C. G. Stojanoff, “A review of selected technological applications of DCG holograms,” Proc. SPIE 7957, 79570 (2011).
    [Crossref]
  12. S. T. L. Sam, A. P. T. Kumar, P. Predeep, M. Thakur, and M. K. R. Varma, “Design and Optimization of Photopolymer Based Holographic Solar Concentrators,” in Optics: Phenomena, Materials, Devices and Characterization, (AIP Conference Proceedings, 2011), pp. 248–250.
  13. H. Akbari, I. Naydenova, and S. Martin, “Using acrylamide-based photopolymers for fabrication of holographic optical elements in solar energy applications,” Appl. Opt. 53(7), 1343–1353 (2014).
    [Crossref] [PubMed]
  14. G. Bianco, M. A. Ferrara, F. Borbone, A. Roviello, V. Pagliarulo, S. Grilli, P. Ferraro, V. Striano, and G. Coppola, “Multiplexed holographic lenses : realization and optical characterization,” in 2015 Fotonica AEIT Italian Conference on Photonics Technologies (IET, 2015), pp. 1–3.
    [Crossref]
  15. H. Berneth, F.-K. Bruder, T. Fäcke, D. Jurbergs, R. Hagen, D. Hönel, T. Rölle, and G. Walze, “Bayfol HX photopolymer for full-color transmission volume Bragg gratings,” Proc. SPIE 9006, 900602 (2014).
    [Crossref]
  16. M. R. Gleeson, J. T. Sheridan, F.-K. Bruder, T. Rölle, H. Berneth, M.-S. Weiser, and T. Fäcke, “Comparison of a new self developing photopolymer with AA/PVA based photopolymer utilizing the NPDD model,” Opt. Express 19(27), 26325–26342 (2011).
    [Crossref] [PubMed]
  17. A. Zanutta, E. Orselli, T. Fäcke, and A. Bianco, “Photopolymeric films with highly tunable refractive index modulation for high precision diffractive optics,” Opt. Mater. Express 6(1), 252 (2016).
    [Crossref]
  18. A. Zanutta, A. Bianco, M. Insausti, and F. Garzón, “Volume phase holographic gratings for astronomy based on solid photopolymers,” Proc. SPIE 9151, 91515 (2014).
    [Crossref]
  19. M.-L. Piao, K.-C. Kwon, H.-J. Kang, K.-Y. Lee, and N. Kim, “Full-color holographic diffuser using time-scheduled iterative exposure,” Appl. Opt. 54(16), 5252–5259 (2015).
    [Crossref] [PubMed]
  20. Y. S. Hwang, F.-K. Bruder, T. Fäcke, S.-C. Kim, G. Walze, R. Hagen, and E.-S. Kim, “Time-sequential autostereoscopic 3-D display with a novel directional backlight system based on volume-holographic optical elements,” Opt. Express 22(8), 9820–9838 (2014).
    [Crossref] [PubMed]
  21. P. Vojtíšek and M. Květoň, “Impact of overmodulation on spectral response in high efficient transmission gratings,” Proc. SPIE 9442, 94421H (2015).
    [Crossref]
  22. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
    [Crossref]
  23. E. Hecht, Optics (Addison-Wesley, 1998).
  24. M. V. Collados, I. Arias, A. García, J. Atencia, and M. Quintanilla, “Silver halide sensitized gelatin process effects in holographic lenses recorded on Slavich PFG-01 plates,” Appl. Opt. 42(5), 805–810 (2003).
    [Crossref] [PubMed]
  25. F.-K. Bruder, T. Fäcke, R. Hagen, D. Hönel, E. Orselli, C. Rewitz, T. Rölle, G. Walze, and B. Wewer, “Second harmonics HOE recording in Bayfol HX,” Proc. SPIE 9508, 95080G (2015).
    [Crossref]

2016 (2)

M. V. Collados, D. Chemisana, and J. Atencia, “Holographic solar energy systems: the role of optical elements,” Renew. Sustain. Energy Rev. 59, 130–140 (2016).
[Crossref]

A. Zanutta, E. Orselli, T. Fäcke, and A. Bianco, “Photopolymeric films with highly tunable refractive index modulation for high precision diffractive optics,” Opt. Mater. Express 6(1), 252 (2016).
[Crossref]

2015 (5)

M.-L. Piao, K.-C. Kwon, H.-J. Kang, K.-Y. Lee, and N. Kim, “Full-color holographic diffuser using time-scheduled iterative exposure,” Appl. Opt. 54(16), 5252–5259 (2015).
[Crossref] [PubMed]

P. Vojtíšek and M. Květoň, “Impact of overmodulation on spectral response in high efficient transmission gratings,” Proc. SPIE 9442, 94421H (2015).
[Crossref]

S. Chander, A. Purohit, A. Sharma, S. P. Nehra, and M. S. Dhaka, “A study on photovoltaic parameters of mono-crystalline silicon solar cell with cell temperature,” Energy Reports 1, 104–109 (2015).
[Crossref]

P. Bañares-Palacios, S. Álvarez-Álvarez, J. Marín-Sáez, M.-V. Collados, D. Chemisana, and J. Atencia, “Broadband behavior of transmission volume holographic optical elements for solar concentration,” Opt. Express 23(11), A671–A681 (2015).
[Crossref] [PubMed]

F.-K. Bruder, T. Fäcke, R. Hagen, D. Hönel, E. Orselli, C. Rewitz, T. Rölle, G. Walze, and B. Wewer, “Second harmonics HOE recording in Bayfol HX,” Proc. SPIE 9508, 95080G (2015).
[Crossref]

2014 (5)

C. Xiao, X. Yu, D. Yang, and D. Que, “Impact of solar irradiance intensity and temperature on the performance of compensated crystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 128, 427–434 (2014).
[Crossref]

Y. S. Hwang, F.-K. Bruder, T. Fäcke, S.-C. Kim, G. Walze, R. Hagen, and E.-S. Kim, “Time-sequential autostereoscopic 3-D display with a novel directional backlight system based on volume-holographic optical elements,” Opt. Express 22(8), 9820–9838 (2014).
[Crossref] [PubMed]

A. Zanutta, A. Bianco, M. Insausti, and F. Garzón, “Volume phase holographic gratings for astronomy based on solid photopolymers,” Proc. SPIE 9151, 91515 (2014).
[Crossref]

H. Akbari, I. Naydenova, and S. Martin, “Using acrylamide-based photopolymers for fabrication of holographic optical elements in solar energy applications,” Appl. Opt. 53(7), 1343–1353 (2014).
[Crossref] [PubMed]

H. Berneth, F.-K. Bruder, T. Fäcke, D. Jurbergs, R. Hagen, D. Hönel, T. Rölle, and G. Walze, “Bayfol HX photopolymer for full-color transmission volume Bragg gratings,” Proc. SPIE 9006, 900602 (2014).
[Crossref]

2013 (1)

D. Chemisana, M. V. Collados, M. Quintanilla, and J. Atencia, “Holographic lenses for building integrated concentrating photovoltaics,” Appl. Energy 110, 227–235 (2013).
[Crossref]

2011 (3)

D. Zhang, J. M. Castro, and R. K. Kostuk, “One-axis tracking holographic planar concentrator systems,” J. Photonics Energy 1(1), 015505 (2011).
[Crossref]

C. G. Stojanoff, “A review of selected technological applications of DCG holograms,” Proc. SPIE 7957, 79570 (2011).
[Crossref]

M. R. Gleeson, J. T. Sheridan, F.-K. Bruder, T. Rölle, H. Berneth, M.-S. Weiser, and T. Fäcke, “Comparison of a new self developing photopolymer with AA/PVA based photopolymer utilizing the NPDD model,” Opt. Express 19(27), 26325–26342 (2011).
[Crossref] [PubMed]

2010 (1)

2009 (1)

2003 (1)

1997 (1)

J. E. Ludman, J. Riccobono, I. V. Semenova, N. O. Reinhand, W. Tai, X. Li, G. Syphers, E. Rallis, G. Sliker, and J. Martín, “The optimization of a holographic system for solar power generation,” Sol. Energy 60(1), 1–9 (1997).
[Crossref]

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
[Crossref]

Akbari, H.

Álvarez-Álvarez, S.

Arias, I.

Atencia, J.

Bañares-Palacios, P.

Berneth, H.

H. Berneth, F.-K. Bruder, T. Fäcke, D. Jurbergs, R. Hagen, D. Hönel, T. Rölle, and G. Walze, “Bayfol HX photopolymer for full-color transmission volume Bragg gratings,” Proc. SPIE 9006, 900602 (2014).
[Crossref]

M. R. Gleeson, J. T. Sheridan, F.-K. Bruder, T. Rölle, H. Berneth, M.-S. Weiser, and T. Fäcke, “Comparison of a new self developing photopolymer with AA/PVA based photopolymer utilizing the NPDD model,” Opt. Express 19(27), 26325–26342 (2011).
[Crossref] [PubMed]

Bianco, A.

A. Zanutta, E. Orselli, T. Fäcke, and A. Bianco, “Photopolymeric films with highly tunable refractive index modulation for high precision diffractive optics,” Opt. Mater. Express 6(1), 252 (2016).
[Crossref]

A. Zanutta, A. Bianco, M. Insausti, and F. Garzón, “Volume phase holographic gratings for astronomy based on solid photopolymers,” Proc. SPIE 9151, 91515 (2014).
[Crossref]

Bianco, G.

G. Bianco, M. A. Ferrara, F. Borbone, A. Roviello, V. Pagliarulo, S. Grilli, P. Ferraro, V. Striano, and G. Coppola, “Multiplexed holographic lenses : realization and optical characterization,” in 2015 Fotonica AEIT Italian Conference on Photonics Technologies (IET, 2015), pp. 1–3.
[Crossref]

Borbone, F.

G. Bianco, M. A. Ferrara, F. Borbone, A. Roviello, V. Pagliarulo, S. Grilli, P. Ferraro, V. Striano, and G. Coppola, “Multiplexed holographic lenses : realization and optical characterization,” in 2015 Fotonica AEIT Italian Conference on Photonics Technologies (IET, 2015), pp. 1–3.
[Crossref]

Bruder, F.-K.

F.-K. Bruder, T. Fäcke, R. Hagen, D. Hönel, E. Orselli, C. Rewitz, T. Rölle, G. Walze, and B. Wewer, “Second harmonics HOE recording in Bayfol HX,” Proc. SPIE 9508, 95080G (2015).
[Crossref]

H. Berneth, F.-K. Bruder, T. Fäcke, D. Jurbergs, R. Hagen, D. Hönel, T. Rölle, and G. Walze, “Bayfol HX photopolymer for full-color transmission volume Bragg gratings,” Proc. SPIE 9006, 900602 (2014).
[Crossref]

Y. S. Hwang, F.-K. Bruder, T. Fäcke, S.-C. Kim, G. Walze, R. Hagen, and E.-S. Kim, “Time-sequential autostereoscopic 3-D display with a novel directional backlight system based on volume-holographic optical elements,” Opt. Express 22(8), 9820–9838 (2014).
[Crossref] [PubMed]

M. R. Gleeson, J. T. Sheridan, F.-K. Bruder, T. Rölle, H. Berneth, M.-S. Weiser, and T. Fäcke, “Comparison of a new self developing photopolymer with AA/PVA based photopolymer utilizing the NPDD model,” Opt. Express 19(27), 26325–26342 (2011).
[Crossref] [PubMed]

Castro, J. M.

D. Zhang, J. M. Castro, and R. K. Kostuk, “One-axis tracking holographic planar concentrator systems,” J. Photonics Energy 1(1), 015505 (2011).
[Crossref]

J. M. Castro, D. Zhang, B. Myer, and R. K. Kostuk, “Energy collection efficiency of holographic planar solar concentrators,” Appl. Opt. 49(5), 858–870 (2010).
[Crossref] [PubMed]

Chander, S.

S. Chander, A. Purohit, A. Sharma, S. P. Nehra, and M. S. Dhaka, “A study on photovoltaic parameters of mono-crystalline silicon solar cell with cell temperature,” Energy Reports 1, 104–109 (2015).
[Crossref]

Chemisana, D.

M. V. Collados, D. Chemisana, and J. Atencia, “Holographic solar energy systems: the role of optical elements,” Renew. Sustain. Energy Rev. 59, 130–140 (2016).
[Crossref]

P. Bañares-Palacios, S. Álvarez-Álvarez, J. Marín-Sáez, M.-V. Collados, D. Chemisana, and J. Atencia, “Broadband behavior of transmission volume holographic optical elements for solar concentration,” Opt. Express 23(11), A671–A681 (2015).
[Crossref] [PubMed]

D. Chemisana, M. V. Collados, M. Quintanilla, and J. Atencia, “Holographic lenses for building integrated concentrating photovoltaics,” Appl. Energy 110, 227–235 (2013).
[Crossref]

Collados, M. V.

M. V. Collados, D. Chemisana, and J. Atencia, “Holographic solar energy systems: the role of optical elements,” Renew. Sustain. Energy Rev. 59, 130–140 (2016).
[Crossref]

D. Chemisana, M. V. Collados, M. Quintanilla, and J. Atencia, “Holographic lenses for building integrated concentrating photovoltaics,” Appl. Energy 110, 227–235 (2013).
[Crossref]

A. Villamarín, J. Atencia, M. V. Collados, and M. Quintanilla, “Characterization of transmission volume holographic gratings recorded in Slavich PFG04 dichromated gelatin plates,” Appl. Opt. 48(22), 4348–4353 (2009).
[Crossref] [PubMed]

M. V. Collados, I. Arias, A. García, J. Atencia, and M. Quintanilla, “Silver halide sensitized gelatin process effects in holographic lenses recorded on Slavich PFG-01 plates,” Appl. Opt. 42(5), 805–810 (2003).
[Crossref] [PubMed]

Collados, M.-V.

Coppola, G.

G. Bianco, M. A. Ferrara, F. Borbone, A. Roviello, V. Pagliarulo, S. Grilli, P. Ferraro, V. Striano, and G. Coppola, “Multiplexed holographic lenses : realization and optical characterization,” in 2015 Fotonica AEIT Italian Conference on Photonics Technologies (IET, 2015), pp. 1–3.
[Crossref]

Dhaka, M. S.

S. Chander, A. Purohit, A. Sharma, S. P. Nehra, and M. S. Dhaka, “A study on photovoltaic parameters of mono-crystalline silicon solar cell with cell temperature,” Energy Reports 1, 104–109 (2015).
[Crossref]

Fäcke, T.

Ferrara, M. A.

G. Bianco, M. A. Ferrara, F. Borbone, A. Roviello, V. Pagliarulo, S. Grilli, P. Ferraro, V. Striano, and G. Coppola, “Multiplexed holographic lenses : realization and optical characterization,” in 2015 Fotonica AEIT Italian Conference on Photonics Technologies (IET, 2015), pp. 1–3.
[Crossref]

Ferraro, P.

G. Bianco, M. A. Ferrara, F. Borbone, A. Roviello, V. Pagliarulo, S. Grilli, P. Ferraro, V. Striano, and G. Coppola, “Multiplexed holographic lenses : realization and optical characterization,” in 2015 Fotonica AEIT Italian Conference on Photonics Technologies (IET, 2015), pp. 1–3.
[Crossref]

Field, H.

H. Field, “Solar cell spectral response measurement errors related to spectral band width and chopped light waveform,” in Conference Record of the Twenty Sixth IEEE Photovoltaic Specialists Conference - 1997 (IEEE, 1997), pp. 471–474.
[Crossref]

García, A.

Garzón, F.

A. Zanutta, A. Bianco, M. Insausti, and F. Garzón, “Volume phase holographic gratings for astronomy based on solid photopolymers,” Proc. SPIE 9151, 91515 (2014).
[Crossref]

Gleeson, M. R.

Grilli, S.

G. Bianco, M. A. Ferrara, F. Borbone, A. Roviello, V. Pagliarulo, S. Grilli, P. Ferraro, V. Striano, and G. Coppola, “Multiplexed holographic lenses : realization and optical characterization,” in 2015 Fotonica AEIT Italian Conference on Photonics Technologies (IET, 2015), pp. 1–3.
[Crossref]

Hagen, R.

F.-K. Bruder, T. Fäcke, R. Hagen, D. Hönel, E. Orselli, C. Rewitz, T. Rölle, G. Walze, and B. Wewer, “Second harmonics HOE recording in Bayfol HX,” Proc. SPIE 9508, 95080G (2015).
[Crossref]

H. Berneth, F.-K. Bruder, T. Fäcke, D. Jurbergs, R. Hagen, D. Hönel, T. Rölle, and G. Walze, “Bayfol HX photopolymer for full-color transmission volume Bragg gratings,” Proc. SPIE 9006, 900602 (2014).
[Crossref]

Y. S. Hwang, F.-K. Bruder, T. Fäcke, S.-C. Kim, G. Walze, R. Hagen, and E.-S. Kim, “Time-sequential autostereoscopic 3-D display with a novel directional backlight system based on volume-holographic optical elements,” Opt. Express 22(8), 9820–9838 (2014).
[Crossref] [PubMed]

Hönel, D.

F.-K. Bruder, T. Fäcke, R. Hagen, D. Hönel, E. Orselli, C. Rewitz, T. Rölle, G. Walze, and B. Wewer, “Second harmonics HOE recording in Bayfol HX,” Proc. SPIE 9508, 95080G (2015).
[Crossref]

H. Berneth, F.-K. Bruder, T. Fäcke, D. Jurbergs, R. Hagen, D. Hönel, T. Rölle, and G. Walze, “Bayfol HX photopolymer for full-color transmission volume Bragg gratings,” Proc. SPIE 9006, 900602 (2014).
[Crossref]

Hwang, Y. S.

Insausti, M.

A. Zanutta, A. Bianco, M. Insausti, and F. Garzón, “Volume phase holographic gratings for astronomy based on solid photopolymers,” Proc. SPIE 9151, 91515 (2014).
[Crossref]

Jurbergs, D.

H. Berneth, F.-K. Bruder, T. Fäcke, D. Jurbergs, R. Hagen, D. Hönel, T. Rölle, and G. Walze, “Bayfol HX photopolymer for full-color transmission volume Bragg gratings,” Proc. SPIE 9006, 900602 (2014).
[Crossref]

Kang, H.-J.

Kim, E.-S.

Kim, N.

Kim, S.-C.

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
[Crossref]

Kostuk, R. K.

D. Zhang, J. M. Castro, and R. K. Kostuk, “One-axis tracking holographic planar concentrator systems,” J. Photonics Energy 1(1), 015505 (2011).
[Crossref]

J. M. Castro, D. Zhang, B. Myer, and R. K. Kostuk, “Energy collection efficiency of holographic planar solar concentrators,” Appl. Opt. 49(5), 858–870 (2010).
[Crossref] [PubMed]

Kveton, M.

P. Vojtíšek and M. Květoň, “Impact of overmodulation on spectral response in high efficient transmission gratings,” Proc. SPIE 9442, 94421H (2015).
[Crossref]

Kwon, K.-C.

Lee, K.-Y.

Li, X.

J. E. Ludman, J. Riccobono, I. V. Semenova, N. O. Reinhand, W. Tai, X. Li, G. Syphers, E. Rallis, G. Sliker, and J. Martín, “The optimization of a holographic system for solar power generation,” Sol. Energy 60(1), 1–9 (1997).
[Crossref]

Ludman, J. E.

J. E. Ludman, J. Riccobono, I. V. Semenova, N. O. Reinhand, W. Tai, X. Li, G. Syphers, E. Rallis, G. Sliker, and J. Martín, “The optimization of a holographic system for solar power generation,” Sol. Energy 60(1), 1–9 (1997).
[Crossref]

Marín-Sáez, J.

Martin, S.

Martín, J.

J. E. Ludman, J. Riccobono, I. V. Semenova, N. O. Reinhand, W. Tai, X. Li, G. Syphers, E. Rallis, G. Sliker, and J. Martín, “The optimization of a holographic system for solar power generation,” Sol. Energy 60(1), 1–9 (1997).
[Crossref]

Myer, B.

Naydenova, I.

Nehra, S. P.

S. Chander, A. Purohit, A. Sharma, S. P. Nehra, and M. S. Dhaka, “A study on photovoltaic parameters of mono-crystalline silicon solar cell with cell temperature,” Energy Reports 1, 104–109 (2015).
[Crossref]

Orselli, E.

A. Zanutta, E. Orselli, T. Fäcke, and A. Bianco, “Photopolymeric films with highly tunable refractive index modulation for high precision diffractive optics,” Opt. Mater. Express 6(1), 252 (2016).
[Crossref]

F.-K. Bruder, T. Fäcke, R. Hagen, D. Hönel, E. Orselli, C. Rewitz, T. Rölle, G. Walze, and B. Wewer, “Second harmonics HOE recording in Bayfol HX,” Proc. SPIE 9508, 95080G (2015).
[Crossref]

Pagliarulo, V.

G. Bianco, M. A. Ferrara, F. Borbone, A. Roviello, V. Pagliarulo, S. Grilli, P. Ferraro, V. Striano, and G. Coppola, “Multiplexed holographic lenses : realization and optical characterization,” in 2015 Fotonica AEIT Italian Conference on Photonics Technologies (IET, 2015), pp. 1–3.
[Crossref]

Piao, M.-L.

Purohit, A.

S. Chander, A. Purohit, A. Sharma, S. P. Nehra, and M. S. Dhaka, “A study on photovoltaic parameters of mono-crystalline silicon solar cell with cell temperature,” Energy Reports 1, 104–109 (2015).
[Crossref]

Que, D.

C. Xiao, X. Yu, D. Yang, and D. Que, “Impact of solar irradiance intensity and temperature on the performance of compensated crystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 128, 427–434 (2014).
[Crossref]

Quintanilla, M.

Rallis, E.

J. E. Ludman, J. Riccobono, I. V. Semenova, N. O. Reinhand, W. Tai, X. Li, G. Syphers, E. Rallis, G. Sliker, and J. Martín, “The optimization of a holographic system for solar power generation,” Sol. Energy 60(1), 1–9 (1997).
[Crossref]

Reinhand, N. O.

J. E. Ludman, J. Riccobono, I. V. Semenova, N. O. Reinhand, W. Tai, X. Li, G. Syphers, E. Rallis, G. Sliker, and J. Martín, “The optimization of a holographic system for solar power generation,” Sol. Energy 60(1), 1–9 (1997).
[Crossref]

Rewitz, C.

F.-K. Bruder, T. Fäcke, R. Hagen, D. Hönel, E. Orselli, C. Rewitz, T. Rölle, G. Walze, and B. Wewer, “Second harmonics HOE recording in Bayfol HX,” Proc. SPIE 9508, 95080G (2015).
[Crossref]

Riccobono, J.

J. E. Ludman, J. Riccobono, I. V. Semenova, N. O. Reinhand, W. Tai, X. Li, G. Syphers, E. Rallis, G. Sliker, and J. Martín, “The optimization of a holographic system for solar power generation,” Sol. Energy 60(1), 1–9 (1997).
[Crossref]

Rölle, T.

F.-K. Bruder, T. Fäcke, R. Hagen, D. Hönel, E. Orselli, C. Rewitz, T. Rölle, G. Walze, and B. Wewer, “Second harmonics HOE recording in Bayfol HX,” Proc. SPIE 9508, 95080G (2015).
[Crossref]

H. Berneth, F.-K. Bruder, T. Fäcke, D. Jurbergs, R. Hagen, D. Hönel, T. Rölle, and G. Walze, “Bayfol HX photopolymer for full-color transmission volume Bragg gratings,” Proc. SPIE 9006, 900602 (2014).
[Crossref]

M. R. Gleeson, J. T. Sheridan, F.-K. Bruder, T. Rölle, H. Berneth, M.-S. Weiser, and T. Fäcke, “Comparison of a new self developing photopolymer with AA/PVA based photopolymer utilizing the NPDD model,” Opt. Express 19(27), 26325–26342 (2011).
[Crossref] [PubMed]

Roviello, A.

G. Bianco, M. A. Ferrara, F. Borbone, A. Roviello, V. Pagliarulo, S. Grilli, P. Ferraro, V. Striano, and G. Coppola, “Multiplexed holographic lenses : realization and optical characterization,” in 2015 Fotonica AEIT Italian Conference on Photonics Technologies (IET, 2015), pp. 1–3.
[Crossref]

Semenova, I. V.

J. E. Ludman, J. Riccobono, I. V. Semenova, N. O. Reinhand, W. Tai, X. Li, G. Syphers, E. Rallis, G. Sliker, and J. Martín, “The optimization of a holographic system for solar power generation,” Sol. Energy 60(1), 1–9 (1997).
[Crossref]

Sharma, A.

S. Chander, A. Purohit, A. Sharma, S. P. Nehra, and M. S. Dhaka, “A study on photovoltaic parameters of mono-crystalline silicon solar cell with cell temperature,” Energy Reports 1, 104–109 (2015).
[Crossref]

Sheridan, J. T.

Sliker, G.

J. E. Ludman, J. Riccobono, I. V. Semenova, N. O. Reinhand, W. Tai, X. Li, G. Syphers, E. Rallis, G. Sliker, and J. Martín, “The optimization of a holographic system for solar power generation,” Sol. Energy 60(1), 1–9 (1997).
[Crossref]

Stojanoff, C. G.

C. G. Stojanoff, “A review of selected technological applications of DCG holograms,” Proc. SPIE 7957, 79570 (2011).
[Crossref]

Striano, V.

G. Bianco, M. A. Ferrara, F. Borbone, A. Roviello, V. Pagliarulo, S. Grilli, P. Ferraro, V. Striano, and G. Coppola, “Multiplexed holographic lenses : realization and optical characterization,” in 2015 Fotonica AEIT Italian Conference on Photonics Technologies (IET, 2015), pp. 1–3.
[Crossref]

Syphers, G.

J. E. Ludman, J. Riccobono, I. V. Semenova, N. O. Reinhand, W. Tai, X. Li, G. Syphers, E. Rallis, G. Sliker, and J. Martín, “The optimization of a holographic system for solar power generation,” Sol. Energy 60(1), 1–9 (1997).
[Crossref]

Tai, W.

J. E. Ludman, J. Riccobono, I. V. Semenova, N. O. Reinhand, W. Tai, X. Li, G. Syphers, E. Rallis, G. Sliker, and J. Martín, “The optimization of a holographic system for solar power generation,” Sol. Energy 60(1), 1–9 (1997).
[Crossref]

Villamarín, A.

Vojtíšek, P.

P. Vojtíšek and M. Květoň, “Impact of overmodulation on spectral response in high efficient transmission gratings,” Proc. SPIE 9442, 94421H (2015).
[Crossref]

Walze, G.

F.-K. Bruder, T. Fäcke, R. Hagen, D. Hönel, E. Orselli, C. Rewitz, T. Rölle, G. Walze, and B. Wewer, “Second harmonics HOE recording in Bayfol HX,” Proc. SPIE 9508, 95080G (2015).
[Crossref]

H. Berneth, F.-K. Bruder, T. Fäcke, D. Jurbergs, R. Hagen, D. Hönel, T. Rölle, and G. Walze, “Bayfol HX photopolymer for full-color transmission volume Bragg gratings,” Proc. SPIE 9006, 900602 (2014).
[Crossref]

Y. S. Hwang, F.-K. Bruder, T. Fäcke, S.-C. Kim, G. Walze, R. Hagen, and E.-S. Kim, “Time-sequential autostereoscopic 3-D display with a novel directional backlight system based on volume-holographic optical elements,” Opt. Express 22(8), 9820–9838 (2014).
[Crossref] [PubMed]

Weiser, M.-S.

Wewer, B.

F.-K. Bruder, T. Fäcke, R. Hagen, D. Hönel, E. Orselli, C. Rewitz, T. Rölle, G. Walze, and B. Wewer, “Second harmonics HOE recording in Bayfol HX,” Proc. SPIE 9508, 95080G (2015).
[Crossref]

Xiao, C.

C. Xiao, X. Yu, D. Yang, and D. Que, “Impact of solar irradiance intensity and temperature on the performance of compensated crystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 128, 427–434 (2014).
[Crossref]

Yang, D.

C. Xiao, X. Yu, D. Yang, and D. Que, “Impact of solar irradiance intensity and temperature on the performance of compensated crystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 128, 427–434 (2014).
[Crossref]

Yu, X.

C. Xiao, X. Yu, D. Yang, and D. Que, “Impact of solar irradiance intensity and temperature on the performance of compensated crystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 128, 427–434 (2014).
[Crossref]

Zanutta, A.

A. Zanutta, E. Orselli, T. Fäcke, and A. Bianco, “Photopolymeric films with highly tunable refractive index modulation for high precision diffractive optics,” Opt. Mater. Express 6(1), 252 (2016).
[Crossref]

A. Zanutta, A. Bianco, M. Insausti, and F. Garzón, “Volume phase holographic gratings for astronomy based on solid photopolymers,” Proc. SPIE 9151, 91515 (2014).
[Crossref]

Zhang, D.

D. Zhang, J. M. Castro, and R. K. Kostuk, “One-axis tracking holographic planar concentrator systems,” J. Photonics Energy 1(1), 015505 (2011).
[Crossref]

J. M. Castro, D. Zhang, B. Myer, and R. K. Kostuk, “Energy collection efficiency of holographic planar solar concentrators,” Appl. Opt. 49(5), 858–870 (2010).
[Crossref] [PubMed]

Appl. Energy (1)

D. Chemisana, M. V. Collados, M. Quintanilla, and J. Atencia, “Holographic lenses for building integrated concentrating photovoltaics,” Appl. Energy 110, 227–235 (2013).
[Crossref]

Appl. Opt. (5)

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
[Crossref]

Energy Reports (1)

S. Chander, A. Purohit, A. Sharma, S. P. Nehra, and M. S. Dhaka, “A study on photovoltaic parameters of mono-crystalline silicon solar cell with cell temperature,” Energy Reports 1, 104–109 (2015).
[Crossref]

J. Photonics Energy (1)

D. Zhang, J. M. Castro, and R. K. Kostuk, “One-axis tracking holographic planar concentrator systems,” J. Photonics Energy 1(1), 015505 (2011).
[Crossref]

Opt. Express (3)

Opt. Mater. Express (1)

Proc. SPIE (5)

A. Zanutta, A. Bianco, M. Insausti, and F. Garzón, “Volume phase holographic gratings for astronomy based on solid photopolymers,” Proc. SPIE 9151, 91515 (2014).
[Crossref]

H. Berneth, F.-K. Bruder, T. Fäcke, D. Jurbergs, R. Hagen, D. Hönel, T. Rölle, and G. Walze, “Bayfol HX photopolymer for full-color transmission volume Bragg gratings,” Proc. SPIE 9006, 900602 (2014).
[Crossref]

C. G. Stojanoff, “A review of selected technological applications of DCG holograms,” Proc. SPIE 7957, 79570 (2011).
[Crossref]

P. Vojtíšek and M. Květoň, “Impact of overmodulation on spectral response in high efficient transmission gratings,” Proc. SPIE 9442, 94421H (2015).
[Crossref]

F.-K. Bruder, T. Fäcke, R. Hagen, D. Hönel, E. Orselli, C. Rewitz, T. Rölle, G. Walze, and B. Wewer, “Second harmonics HOE recording in Bayfol HX,” Proc. SPIE 9508, 95080G (2015).
[Crossref]

Renew. Sustain. Energy Rev. (1)

M. V. Collados, D. Chemisana, and J. Atencia, “Holographic solar energy systems: the role of optical elements,” Renew. Sustain. Energy Rev. 59, 130–140 (2016).
[Crossref]

Sol. Energy (1)

J. E. Ludman, J. Riccobono, I. V. Semenova, N. O. Reinhand, W. Tai, X. Li, G. Syphers, E. Rallis, G. Sliker, and J. Martín, “The optimization of a holographic system for solar power generation,” Sol. Energy 60(1), 1–9 (1997).
[Crossref]

Sol. Energy Mater. Sol. Cells (1)

C. Xiao, X. Yu, D. Yang, and D. Que, “Impact of solar irradiance intensity and temperature on the performance of compensated crystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 128, 427–434 (2014).
[Crossref]

Other (4)

H. Field, “Solar cell spectral response measurement errors related to spectral band width and chopped light waveform,” in Conference Record of the Twenty Sixth IEEE Photovoltaic Specialists Conference - 1997 (IEEE, 1997), pp. 471–474.
[Crossref]

S. T. L. Sam, A. P. T. Kumar, P. Predeep, M. Thakur, and M. K. R. Varma, “Design and Optimization of Photopolymer Based Holographic Solar Concentrators,” in Optics: Phenomena, Materials, Devices and Characterization, (AIP Conference Proceedings, 2011), pp. 248–250.

G. Bianco, M. A. Ferrara, F. Borbone, A. Roviello, V. Pagliarulo, S. Grilli, P. Ferraro, V. Striano, and G. Coppola, “Multiplexed holographic lenses : realization and optical characterization,” in 2015 Fotonica AEIT Italian Conference on Photonics Technologies (IET, 2015), pp. 1–3.
[Crossref]

E. Hecht, Optics (Addison-Wesley, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Absolute irradiance of the sun (black curve, left y-axis) and spectral response of several photovoltaic cells [2] (red, green, and blue curves, right y-axis).
Fig. 2
Fig. 2 Relation between the grating vector K , the recording wave propagation vectors k 1 and k 2 and the reconstruction wave propagation vectors k 0 and k +1 when Bragg condition is met. Z-axis is chosen perpendicular to the holographic film plane.
Fig. 3
Fig. 3 Intensity on the sample provided by the white LED used for photocuring as a funcion of the wavelength.
Fig. 4
Fig. 4 Transmission spectra of unexposed (black curve) and bleached with visible LED and a metal halide lamp (red curve) and with visible LED and the sun radiation (blue curve) Bayfol HX 104 (a) and Bayfol HX TP (b) photopolymer. The reflection losses on all surfaces have been eliminated.
Fig. 5
Fig. 5 Schematic of the geometry used for the measurement of the transmitted and diffracted beams intensity to calculate the efficiency. The detector could be placed on either beam.
Fig. 6
Fig. 6 Efficiency versus exposure energy of gratings recorded in Bayfol HX 104 with 0.275 mW/cm2 of intensity and measured with a laser emitting at 532 nm (green circles) and one at 800 nm (red squares).
Fig. 7
Fig. 7 Efficiency versus exposure energy of gratings recorded in Bayfol HX TP with 1.17 mW/cm2 of intensity and measured with a laser emitting at 532 nm (green circles) and one at 800 nm (red squares).
Fig. 8
Fig. 8 Refractive index modulation of gratings recorded in Bayfol HX 104 (black circles, bottom x-axis) with 0.275 mW/cm2 of intensity, and Bayfol HX TP (red squares, top x-axis) with 1.17 mW/cm2 of intensity.
Fig. 9
Fig. 9 Maximum refraction index modulation obtained by different recording intensities with Bayfol HX 104 (black circles) and Bayfol HX TP (red squares). The x-axis corresponds with the sum of the intensity of the reference beam and the object beam.
Fig. 10
Fig. 10 Comparison of theoretical (green curves) and experimental (black curves) angular selectivity of a grating recorded with 4.43 mJ/cm2 in Bayfol HX 104 (a) and a grating recorded with 19.56 mJ/cm2 in Bayfol HX TP (b), measured with a laser emmiting at 800 nm and varying the incident direction along the plane formed by the two recording beams. Reflection losses have been suppressed.
Fig. 11
Fig. 11 Angular selectivity of a grating recorded with 4.43 mJ/cm2 in Bayfol HX 104 (black curve) and a grating recorded with 19.56 mJ/cm2 in Bayfol HX TP (red curve), measured with a laser emmiting at 800 nm and varying the incident direction along the plane perpendicular to the two recording beams. Reflection losses have been suppressed.
Fig. 12
Fig. 12 Chromatic selectivity of a grating recorded with 4.43 mJ/cm2 in Bayfol HX 104 (black curve) and a grating recorded with 19.56 mJ/cm2 in Bayfol HX TP (red curve), measured at Bragg angle for 800 nm. Reflection losses have been suppressed.

Tables (1)

Tables Icon

Table 1 Comparison of the provided and measured values of refraction index and thickness of the photopolymer and substrate of Bayfol HX 104 and HX TP.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

K = k 1 ± k 2
η= I +1 I 0 + I +1
2Λsin θ C = λ C
η= sin 2 ( π n 1 d λ C cos θ 0 cos θ +1 )

Metrics