Abstract

We have used 3-D optical modelling to investigate light management concepts based on periodic textures and material optimization for photovoltaic devices based on Cu(In,Ga)Se2 (CIGS) absorber material. At first, calibration of the software based on the characterization of a reference (1500-nm thick) CIGS device was carried out. The effects of 1-D and 2-D symmetric gratings on the cell were then investigated, showing significant improvement in anti-reflection effect and in absorptance in the active layer, achieved by excitation of guided modes in the absorber. In addition, device configurations endowed with alternative back reflector and front transparent conductive oxide (TCO) were tested with the goal to quench parasitic absorption losses at front and back side. The use of In2O3:H (IOH) as front and back TCO, combined with an optimized 2-D grating structure, led to a 25% increase of the optical performance with respect to an equally-thick flat device. Most of the performance increase was kept when the absorber thickness was reduced from 1500 nm to 600 nm.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Quenching Mo optical losses in CIGS solar cells by a point contacted dual-layer dielectric spacer: a 3-D optical study

Nasim Rezaei, Olindo Isabella, Zeger Vroon, and Miro Zeman
Opt. Express 26(2) A39-A53 (2018)

Impact of different Na-incorporating methods on Cu(In,Ga)Se2 thin film solar cells with a low-Na substrate

Shenglin Ye, Xiaohui Tan, Minlin Jiang, Bin Fan, Ken Tang, and Songlin Zhuang
Appl. Opt. 49(9) 1662-1665 (2010)

References

  • View by:
  • |
  • |
  • |

  1. P. Jackson, D. Hariskos, R. Wuerz, O. Kiowski, A. Bauer, T. M. Friedlmeier, and M. Powalla, “Properties of Cu(In,Ga)Se2 solar cells with new record efficiencies up to 21.7%,” Phys. Status Solidi Rapid Res. Lett. 9(1), 28–31 (2015).
    [Crossref]
  2. P. Jackson, D. Hariskos, R. Wuerz, W. Wischmann, and M. Powalla, “Compositional investigation of potassium doped Cu(In,Ga)Se2 solar cells with efficiencies up to 20.8%,” Phys. Status Solidi Rapid Res. Lett. 8(3), 219–222 (2014).
    [Crossref]
  3. A. Chirilă, P. Reinhard, F. Pianezzi, P. Bloesch, A. R. Uhl, C. Fella, L. Kranz, D. Keller, C. Gretener, H. Hagendorfer, D. Jaeger, R. Erni, S. Nishiwaki, S. Buecheler, and A. N. Tiwari, “Potassium-induced surface modification of Cu(In,Ga)Se2 thin films for high-efficiency solar cells,” Nat. Mater. 12(12), 1107–1111 (2013).
    [Crossref] [PubMed]
  4. M. Gloeckler and J. R. Sites, “Potential of submicrometer thickness Cu(In,Ga)Se2 solar cells,” J. Appl. Phys. 98(10), 103703 (2005).
    [Crossref]
  5. C. van Lare, G. Yin, A. Polman, and M. Schmid, “Light coupling and trapping in ultrathin Cu(In,Ga)Se2 solar cells using dielectric scattering patterns,” ACS Nano 9(10), 9603–9613 (2015).
    [Crossref] [PubMed]
  6. Z. Yu, A. Raman, and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express 18(S3Suppl 3), A366–A380 (2010).
    [Crossref] [PubMed]
  7. E. Yablonovitch, “Statistical ray optics,” J. Opt. Soc. Am. 72(7), 899–907 (1982).
    [Crossref]
  8. J. Malmström, O. Lundberg, and L. Stolt, “Potential for light trapping in Cu(In,Ga)Se2 solar cells,” in 3rd World Conference on Photovoltaic Energy Conversion, K. Kurokawa, ed. (2003), pp. 344–347.
  9. A. Čampa, J. Krč, J. Malmström, M. Edoff, F. Smole, and M. Topič, “The potential of textured front ZnO and flat TCO/metal back contact to improve optical absorption in thin Cu(In,Ga)Se2 solar cells,” Thin Solid Films 515(15), 5968–5972 (2007).
    [Crossref]
  10. M. Schmid, R. Klenk, M. Ch. Lux-Steiner, M. Topič, and J. Krč, “Modeling plasmonic scattering combined with thin-film optics,” Nanotechnology 22(2), 025204 (2011).
    [Crossref] [PubMed]
  11. L. C. Andreani, P. A. Kowalczewski, C. I. Mura, M. Patrini, M. Acciarri, S. Binetti, A. Sassella, and S. Marchionna, “Towards CIGS slar cells with reduced film thickness: a study of optical properties and of photonic structures for light trapping,” in 27th European Photovoltaic Solar Energy Conference and Exhibition (2012), p. 2334.
  12. M. Schmid, J. Klaer, R. Klenk, M. Topič, and J. Krč, “Stability of plasmonic metal nanoparticles integrated in the back contact of ultra-thin Cu(In,Ga)Se2 solar cells,” Thin Solid Films 527, 308–313 (2013).
    [Crossref]
  13. C. Colin, I. Massiot, A. Cattoni, N. Vandamme, C. Dupuis, N. Bardou, I. Gerard, N. Naghavi, J.-F. Guillemoles, J.-L. Pelouard, and S. Collin, “Broadband light-trapping in ultra-thin nano-structured solar cells,” Proc. SPIE 8620, 86200C (2013).
    [Crossref]
  14. M. Xu, A. J. H. Wachters, J. van Deelen, M. C. D. Mourad, and P. J. P. Buskens, “A study on the optics of copper indium gallium (di)selenide (CIGS) solar cells with ultra-thin absorber layers,” Opt. Express 22(52), A425–A437 (2014).
    [Crossref] [PubMed]
  15. ANSYS white paper, “ANSYS HFSS,” http://www.ansys.com/Products/Simulation+Technology/Electronics/Signal+Integrity/ANSYS+HFSS .
  16. O. Isabella, S. Solntsev, D. Caratelli, and M. Zeman, “3-D optical modeling of thin-film silicon solar cells on diffraction gratings,” Prog. Photovolt. Res. Appl. 21(1), 94–108 (2013).
    [Crossref]
  17. M. Zeman, O. Isabella, S. Solntsev, and K. Jäger, “Modelling of thin-film silicon solar cells,” Sol. Energy Mater. Sol. Cells 119, 94–111 (2013).
    [Crossref]
  18. O. Isabella, H. Sai, M. Kondo, and M. Zeman, “Full-wave optoelectrical modeling of optimized flattened light-scattering substrate for high efficiency thin-film silicon solar cells,” Prog. Photovolt. Res. Appl. 22(6), 671–689 (2014).
    [Crossref]
  19. NREL, “Reference solar spectral irradiance: air mass 1.5,” http://rredc.nrel.gov/solar/spectra/am1.5/ .
  20. C. Roger, S. Noël, O. Sicardy, P. Faucherand, L. Grenet, N. Karst, H. Fournier, F. Roux, F. Ducroquet, A. Brioude, and S. Perraud, “Characteristics of molybdenum bilayer back contacts for Cu(In,Ga)Se2 solar cells on Ti foils,” Thin Solid Films 548, 608–616 (2013).
    [Crossref]
  21. NT-MDT white paper, “NTEGRA Spectra,” http://www.ntmdt.com/afm-raman/ntegra-spectra .
  22. J. A. Sap, O. Isabella, K. Jäger, and M. Zeman, “Extraction of optical properties of flat and surface-textured transparent conductive oxide films in a broad wavelength range,” Thin Solid Films 520(3), 1096–1101 (2011).
    [Crossref]
  23. Perkin Elmer white paper, “LAMBDA 950 UV/Vis/NIR Spectrophotometer,” http://www.perkinelmer.com/Catalog/Product/ID/L950 .
  24. P. A. van Nijnatten, “An automated directional reflectance/transmittance analyser for coating analysis,” Thin Solid Films 442(1–2), 74–79 (2003).
    [Crossref]
  25. J.A. Woollam Co, white paper, “M-2000 Ellipsometer,” http://www.jawoollam.com/m2000_home.html .
  26. J.A. Woolam Co, white paper, “CompleteEASE,” http://www.jawoollam.com/completeease.html .
  27. T. Hara, T. Maekawa, S. Minoura, Y. Sago, S. Niki, and H. Fujiwara, “Quantitative assessment of optical gain and loss in submicron-textured Cu(In1−x Gax)Se2 solar cells fabricated by three-stage coevaporation,” Phys. Rev. Appl. 2(3), 034012 (2014).
    [Crossref]
  28. K. Söderström, J. Escarré, O. Cubero, F.-J. Haug, S. Perregaux, and C. Ballif, “UV-nano-imprint lithography technique for the replication of back reflectors for n-i-p thin film silicon solar cells,” Prog. Photovolt. Res. Appl. 19(2), 202–210 (2011).
    [Crossref]
  29. R. Vismara, Optical Characterization of Photovoltaic Materials and Structures for Thin-Film Solar Cells Based on Advanced Texturization (Delft University of Technology, 2014).
  30. K. Jäger, D. N. P. Linssen, O. Isabella, and M. Zeman, “Ambiguities in optical simulations of nanotextured thin-film solar cells using the finite-element method,” Opt. Express 23(19), A1060–A1071 (2015).
    [Crossref] [PubMed]
  31. H. Tan, E. Psomadaki, O. Isabella, M. Fischer, P. Babal, R. Vasudevan, M. Zeman, and A. H. M. Smets, “Micro- textures for efficient light trapping and improved electrical performance in thin-film nanocrystalline silicon solar cells,” Appl. Phys. Lett. 103(17), 173905 (2013).
    [Crossref]
  32. H. Sai, K. Saito, and M. Kondo, “Enhanced photocurrent and conversion efficiency in thin-film microcrystalline silicon solar cells using periodically textured back reflectors with hexagonal dimple arrays,” Appl. Phys. Lett. 101(17), 173901 (2012).
    [Crossref]
  33. M. L. Brongersma, Y. Cui, and S. Fan, “Light management for photovoltaics using high-index nanostructures,” Nat. Mater. 13(5), 451–460 (2014).
    [Crossref] [PubMed]
  34. K. Orgassa, H. W. Schock, and J. H. Werner, “Alternative back contact materials for thin-film Cu(In,Ga)Se2 solar cells,” Thin Solid Films 431–432, 387–391 (2003).
    [Crossref]
  35. W. N. Shafarman and J. E. Phillips, “Direct current-voltage measurements of the Mo/CuInSe2 contact on operating solar cells,” in Photovoltaic Specialists Conference (IEEE, 1996), pp.917–919.
  36. T. Wada, N. Kohara, T. Negami, and M. Nishitani, “Chemical and structural characterization of Cu(In,Ga)Se2/Mo interface in Cu(In,Ga)Se2 solar cells,” Jpn. J. Appl. Phys. 35(Part 2, No. 10A), L1253–L1256 (1996).
    [Crossref]
  37. J. Springer, A. Poruba, L. Müllerova, M. Vanecek, O. Kluth, and B. Rech, “Absorption loss at nanorough silver back reflector of thin-film silicon solar cells,” J. Appl. Phys. 95(3), 1427–1429 (2004).
    [Crossref]
  38. Z. C. Holman, S. De Wolf, and C. Ballif, “Improving metal reflectors by suppressing surface plamson polaritons: a priori calculation of the internal reflectance of a solar cell,” Light Sci. Appl. 2(10), e106 (2013).
    [Crossref]
  39. R. Santbergen, H. Tan, M. Zeman, and A. H. M. Smets, “Enhancing the driving field for plasmonic nanoparticles in thin-film solar cells,” Opt. Express 22(S4Suppl 4), A1023–A1028 (2014).
    [Crossref] [PubMed]
  40. S. Krishnakumar and C. S. Menon, “Electrical and optical properties of molybdenum trioxide thin films,” Bull. Mater. Sci. 16(3), 187–191 (1993).
    [Crossref]
  41. H. Fujiwara and M. Kondo, “Effects of carrier concentration on the dielectric function of ZnO:Ga and In2O3 studied by spectroscopic ellipsometry: Analysis of free-carrier and band-edge absorption,” Phys. Rev. B 71(7), 075109 (2005).
    [Crossref]
  42. T. Koida, H. Fujiwara, and M. Kondo, “Hydrogen-doped In2O3 as high-mobility transparent conductive oxide,” Jpn. J. Appl. Phys. 46(28), L685–L687 (2007).
    [Crossref]
  43. D. J. L. Brémaud, Investigation and Development of CIGS Solar Cells on Flexible Substrates and with Alternative Electrical Back Contacts (ETH Zurich, 2009).
  44. T. Koida, H. Fujiwara, and M. Kondo, “Reduction of optical loss in hydrogenated amorphous silicon/crystalline silicon heterojunction solar cells by high-mobility hydrogen-doped In2O3 transparent conductive oxide,” Appl. Phys. Express 1, 041501 (2008).
    [Crossref]
  45. K. Kushiya, “CIS-based thin-film PV technology in solar frontier K.K,” Sol. Energy Mater. Sol. Cells 122, 309–313 (2014).
    [Crossref]
  46. T. Koida, Y. Kamikawa-Shimizu, A. Yamada, H. Shibata, and S. Niki, “Cu(In,Ga)Se2 solar cells with amorphous oxide semiconducting buffer layers,” IEEE J. Photovolt. 5(3), 956–961 (2015).
    [Crossref]

2015 (4)

P. Jackson, D. Hariskos, R. Wuerz, O. Kiowski, A. Bauer, T. M. Friedlmeier, and M. Powalla, “Properties of Cu(In,Ga)Se2 solar cells with new record efficiencies up to 21.7%,” Phys. Status Solidi Rapid Res. Lett. 9(1), 28–31 (2015).
[Crossref]

C. van Lare, G. Yin, A. Polman, and M. Schmid, “Light coupling and trapping in ultrathin Cu(In,Ga)Se2 solar cells using dielectric scattering patterns,” ACS Nano 9(10), 9603–9613 (2015).
[Crossref] [PubMed]

K. Jäger, D. N. P. Linssen, O. Isabella, and M. Zeman, “Ambiguities in optical simulations of nanotextured thin-film solar cells using the finite-element method,” Opt. Express 23(19), A1060–A1071 (2015).
[Crossref] [PubMed]

T. Koida, Y. Kamikawa-Shimizu, A. Yamada, H. Shibata, and S. Niki, “Cu(In,Ga)Se2 solar cells with amorphous oxide semiconducting buffer layers,” IEEE J. Photovolt. 5(3), 956–961 (2015).
[Crossref]

2014 (7)

K. Kushiya, “CIS-based thin-film PV technology in solar frontier K.K,” Sol. Energy Mater. Sol. Cells 122, 309–313 (2014).
[Crossref]

R. Santbergen, H. Tan, M. Zeman, and A. H. M. Smets, “Enhancing the driving field for plasmonic nanoparticles in thin-film solar cells,” Opt. Express 22(S4Suppl 4), A1023–A1028 (2014).
[Crossref] [PubMed]

T. Hara, T. Maekawa, S. Minoura, Y. Sago, S. Niki, and H. Fujiwara, “Quantitative assessment of optical gain and loss in submicron-textured Cu(In1−x Gax)Se2 solar cells fabricated by three-stage coevaporation,” Phys. Rev. Appl. 2(3), 034012 (2014).
[Crossref]

M. L. Brongersma, Y. Cui, and S. Fan, “Light management for photovoltaics using high-index nanostructures,” Nat. Mater. 13(5), 451–460 (2014).
[Crossref] [PubMed]

P. Jackson, D. Hariskos, R. Wuerz, W. Wischmann, and M. Powalla, “Compositional investigation of potassium doped Cu(In,Ga)Se2 solar cells with efficiencies up to 20.8%,” Phys. Status Solidi Rapid Res. Lett. 8(3), 219–222 (2014).
[Crossref]

M. Xu, A. J. H. Wachters, J. van Deelen, M. C. D. Mourad, and P. J. P. Buskens, “A study on the optics of copper indium gallium (di)selenide (CIGS) solar cells with ultra-thin absorber layers,” Opt. Express 22(52), A425–A437 (2014).
[Crossref] [PubMed]

O. Isabella, H. Sai, M. Kondo, and M. Zeman, “Full-wave optoelectrical modeling of optimized flattened light-scattering substrate for high efficiency thin-film silicon solar cells,” Prog. Photovolt. Res. Appl. 22(6), 671–689 (2014).
[Crossref]

2013 (8)

C. Roger, S. Noël, O. Sicardy, P. Faucherand, L. Grenet, N. Karst, H. Fournier, F. Roux, F. Ducroquet, A. Brioude, and S. Perraud, “Characteristics of molybdenum bilayer back contacts for Cu(In,Ga)Se2 solar cells on Ti foils,” Thin Solid Films 548, 608–616 (2013).
[Crossref]

O. Isabella, S. Solntsev, D. Caratelli, and M. Zeman, “3-D optical modeling of thin-film silicon solar cells on diffraction gratings,” Prog. Photovolt. Res. Appl. 21(1), 94–108 (2013).
[Crossref]

M. Zeman, O. Isabella, S. Solntsev, and K. Jäger, “Modelling of thin-film silicon solar cells,” Sol. Energy Mater. Sol. Cells 119, 94–111 (2013).
[Crossref]

M. Schmid, J. Klaer, R. Klenk, M. Topič, and J. Krč, “Stability of plasmonic metal nanoparticles integrated in the back contact of ultra-thin Cu(In,Ga)Se2 solar cells,” Thin Solid Films 527, 308–313 (2013).
[Crossref]

C. Colin, I. Massiot, A. Cattoni, N. Vandamme, C. Dupuis, N. Bardou, I. Gerard, N. Naghavi, J.-F. Guillemoles, J.-L. Pelouard, and S. Collin, “Broadband light-trapping in ultra-thin nano-structured solar cells,” Proc. SPIE 8620, 86200C (2013).
[Crossref]

A. Chirilă, P. Reinhard, F. Pianezzi, P. Bloesch, A. R. Uhl, C. Fella, L. Kranz, D. Keller, C. Gretener, H. Hagendorfer, D. Jaeger, R. Erni, S. Nishiwaki, S. Buecheler, and A. N. Tiwari, “Potassium-induced surface modification of Cu(In,Ga)Se2 thin films for high-efficiency solar cells,” Nat. Mater. 12(12), 1107–1111 (2013).
[Crossref] [PubMed]

Z. C. Holman, S. De Wolf, and C. Ballif, “Improving metal reflectors by suppressing surface plamson polaritons: a priori calculation of the internal reflectance of a solar cell,” Light Sci. Appl. 2(10), e106 (2013).
[Crossref]

H. Tan, E. Psomadaki, O. Isabella, M. Fischer, P. Babal, R. Vasudevan, M. Zeman, and A. H. M. Smets, “Micro- textures for efficient light trapping and improved electrical performance in thin-film nanocrystalline silicon solar cells,” Appl. Phys. Lett. 103(17), 173905 (2013).
[Crossref]

2012 (1)

H. Sai, K. Saito, and M. Kondo, “Enhanced photocurrent and conversion efficiency in thin-film microcrystalline silicon solar cells using periodically textured back reflectors with hexagonal dimple arrays,” Appl. Phys. Lett. 101(17), 173901 (2012).
[Crossref]

2011 (3)

K. Söderström, J. Escarré, O. Cubero, F.-J. Haug, S. Perregaux, and C. Ballif, “UV-nano-imprint lithography technique for the replication of back reflectors for n-i-p thin film silicon solar cells,” Prog. Photovolt. Res. Appl. 19(2), 202–210 (2011).
[Crossref]

M. Schmid, R. Klenk, M. Ch. Lux-Steiner, M. Topič, and J. Krč, “Modeling plasmonic scattering combined with thin-film optics,” Nanotechnology 22(2), 025204 (2011).
[Crossref] [PubMed]

J. A. Sap, O. Isabella, K. Jäger, and M. Zeman, “Extraction of optical properties of flat and surface-textured transparent conductive oxide films in a broad wavelength range,” Thin Solid Films 520(3), 1096–1101 (2011).
[Crossref]

2010 (1)

2008 (1)

T. Koida, H. Fujiwara, and M. Kondo, “Reduction of optical loss in hydrogenated amorphous silicon/crystalline silicon heterojunction solar cells by high-mobility hydrogen-doped In2O3 transparent conductive oxide,” Appl. Phys. Express 1, 041501 (2008).
[Crossref]

2007 (2)

T. Koida, H. Fujiwara, and M. Kondo, “Hydrogen-doped In2O3 as high-mobility transparent conductive oxide,” Jpn. J. Appl. Phys. 46(28), L685–L687 (2007).
[Crossref]

A. Čampa, J. Krč, J. Malmström, M. Edoff, F. Smole, and M. Topič, “The potential of textured front ZnO and flat TCO/metal back contact to improve optical absorption in thin Cu(In,Ga)Se2 solar cells,” Thin Solid Films 515(15), 5968–5972 (2007).
[Crossref]

2005 (2)

M. Gloeckler and J. R. Sites, “Potential of submicrometer thickness Cu(In,Ga)Se2 solar cells,” J. Appl. Phys. 98(10), 103703 (2005).
[Crossref]

H. Fujiwara and M. Kondo, “Effects of carrier concentration on the dielectric function of ZnO:Ga and In2O3 studied by spectroscopic ellipsometry: Analysis of free-carrier and band-edge absorption,” Phys. Rev. B 71(7), 075109 (2005).
[Crossref]

2004 (1)

J. Springer, A. Poruba, L. Müllerova, M. Vanecek, O. Kluth, and B. Rech, “Absorption loss at nanorough silver back reflector of thin-film silicon solar cells,” J. Appl. Phys. 95(3), 1427–1429 (2004).
[Crossref]

2003 (2)

K. Orgassa, H. W. Schock, and J. H. Werner, “Alternative back contact materials for thin-film Cu(In,Ga)Se2 solar cells,” Thin Solid Films 431–432, 387–391 (2003).
[Crossref]

P. A. van Nijnatten, “An automated directional reflectance/transmittance analyser for coating analysis,” Thin Solid Films 442(1–2), 74–79 (2003).
[Crossref]

1996 (1)

T. Wada, N. Kohara, T. Negami, and M. Nishitani, “Chemical and structural characterization of Cu(In,Ga)Se2/Mo interface in Cu(In,Ga)Se2 solar cells,” Jpn. J. Appl. Phys. 35(Part 2, No. 10A), L1253–L1256 (1996).
[Crossref]

1993 (1)

S. Krishnakumar and C. S. Menon, “Electrical and optical properties of molybdenum trioxide thin films,” Bull. Mater. Sci. 16(3), 187–191 (1993).
[Crossref]

1982 (1)

Acciarri, M.

L. C. Andreani, P. A. Kowalczewski, C. I. Mura, M. Patrini, M. Acciarri, S. Binetti, A. Sassella, and S. Marchionna, “Towards CIGS slar cells with reduced film thickness: a study of optical properties and of photonic structures for light trapping,” in 27th European Photovoltaic Solar Energy Conference and Exhibition (2012), p. 2334.

Andreani, L. C.

L. C. Andreani, P. A. Kowalczewski, C. I. Mura, M. Patrini, M. Acciarri, S. Binetti, A. Sassella, and S. Marchionna, “Towards CIGS slar cells with reduced film thickness: a study of optical properties and of photonic structures for light trapping,” in 27th European Photovoltaic Solar Energy Conference and Exhibition (2012), p. 2334.

Babal, P.

H. Tan, E. Psomadaki, O. Isabella, M. Fischer, P. Babal, R. Vasudevan, M. Zeman, and A. H. M. Smets, “Micro- textures for efficient light trapping and improved electrical performance in thin-film nanocrystalline silicon solar cells,” Appl. Phys. Lett. 103(17), 173905 (2013).
[Crossref]

Ballif, C.

Z. C. Holman, S. De Wolf, and C. Ballif, “Improving metal reflectors by suppressing surface plamson polaritons: a priori calculation of the internal reflectance of a solar cell,” Light Sci. Appl. 2(10), e106 (2013).
[Crossref]

K. Söderström, J. Escarré, O. Cubero, F.-J. Haug, S. Perregaux, and C. Ballif, “UV-nano-imprint lithography technique for the replication of back reflectors for n-i-p thin film silicon solar cells,” Prog. Photovolt. Res. Appl. 19(2), 202–210 (2011).
[Crossref]

Bardou, N.

C. Colin, I. Massiot, A. Cattoni, N. Vandamme, C. Dupuis, N. Bardou, I. Gerard, N. Naghavi, J.-F. Guillemoles, J.-L. Pelouard, and S. Collin, “Broadband light-trapping in ultra-thin nano-structured solar cells,” Proc. SPIE 8620, 86200C (2013).
[Crossref]

Bauer, A.

P. Jackson, D. Hariskos, R. Wuerz, O. Kiowski, A. Bauer, T. M. Friedlmeier, and M. Powalla, “Properties of Cu(In,Ga)Se2 solar cells with new record efficiencies up to 21.7%,” Phys. Status Solidi Rapid Res. Lett. 9(1), 28–31 (2015).
[Crossref]

Binetti, S.

L. C. Andreani, P. A. Kowalczewski, C. I. Mura, M. Patrini, M. Acciarri, S. Binetti, A. Sassella, and S. Marchionna, “Towards CIGS slar cells with reduced film thickness: a study of optical properties and of photonic structures for light trapping,” in 27th European Photovoltaic Solar Energy Conference and Exhibition (2012), p. 2334.

Bloesch, P.

A. Chirilă, P. Reinhard, F. Pianezzi, P. Bloesch, A. R. Uhl, C. Fella, L. Kranz, D. Keller, C. Gretener, H. Hagendorfer, D. Jaeger, R. Erni, S. Nishiwaki, S. Buecheler, and A. N. Tiwari, “Potassium-induced surface modification of Cu(In,Ga)Se2 thin films for high-efficiency solar cells,” Nat. Mater. 12(12), 1107–1111 (2013).
[Crossref] [PubMed]

Brioude, A.

C. Roger, S. Noël, O. Sicardy, P. Faucherand, L. Grenet, N. Karst, H. Fournier, F. Roux, F. Ducroquet, A. Brioude, and S. Perraud, “Characteristics of molybdenum bilayer back contacts for Cu(In,Ga)Se2 solar cells on Ti foils,” Thin Solid Films 548, 608–616 (2013).
[Crossref]

Brongersma, M. L.

M. L. Brongersma, Y. Cui, and S. Fan, “Light management for photovoltaics using high-index nanostructures,” Nat. Mater. 13(5), 451–460 (2014).
[Crossref] [PubMed]

Buecheler, S.

A. Chirilă, P. Reinhard, F. Pianezzi, P. Bloesch, A. R. Uhl, C. Fella, L. Kranz, D. Keller, C. Gretener, H. Hagendorfer, D. Jaeger, R. Erni, S. Nishiwaki, S. Buecheler, and A. N. Tiwari, “Potassium-induced surface modification of Cu(In,Ga)Se2 thin films for high-efficiency solar cells,” Nat. Mater. 12(12), 1107–1111 (2013).
[Crossref] [PubMed]

Buskens, P. J. P.

Campa, A.

A. Čampa, J. Krč, J. Malmström, M. Edoff, F. Smole, and M. Topič, “The potential of textured front ZnO and flat TCO/metal back contact to improve optical absorption in thin Cu(In,Ga)Se2 solar cells,” Thin Solid Films 515(15), 5968–5972 (2007).
[Crossref]

Caratelli, D.

O. Isabella, S. Solntsev, D. Caratelli, and M. Zeman, “3-D optical modeling of thin-film silicon solar cells on diffraction gratings,” Prog. Photovolt. Res. Appl. 21(1), 94–108 (2013).
[Crossref]

Cattoni, A.

C. Colin, I. Massiot, A. Cattoni, N. Vandamme, C. Dupuis, N. Bardou, I. Gerard, N. Naghavi, J.-F. Guillemoles, J.-L. Pelouard, and S. Collin, “Broadband light-trapping in ultra-thin nano-structured solar cells,” Proc. SPIE 8620, 86200C (2013).
[Crossref]

Chirila, A.

A. Chirilă, P. Reinhard, F. Pianezzi, P. Bloesch, A. R. Uhl, C. Fella, L. Kranz, D. Keller, C. Gretener, H. Hagendorfer, D. Jaeger, R. Erni, S. Nishiwaki, S. Buecheler, and A. N. Tiwari, “Potassium-induced surface modification of Cu(In,Ga)Se2 thin films for high-efficiency solar cells,” Nat. Mater. 12(12), 1107–1111 (2013).
[Crossref] [PubMed]

Colin, C.

C. Colin, I. Massiot, A. Cattoni, N. Vandamme, C. Dupuis, N. Bardou, I. Gerard, N. Naghavi, J.-F. Guillemoles, J.-L. Pelouard, and S. Collin, “Broadband light-trapping in ultra-thin nano-structured solar cells,” Proc. SPIE 8620, 86200C (2013).
[Crossref]

Collin, S.

C. Colin, I. Massiot, A. Cattoni, N. Vandamme, C. Dupuis, N. Bardou, I. Gerard, N. Naghavi, J.-F. Guillemoles, J.-L. Pelouard, and S. Collin, “Broadband light-trapping in ultra-thin nano-structured solar cells,” Proc. SPIE 8620, 86200C (2013).
[Crossref]

Cubero, O.

K. Söderström, J. Escarré, O. Cubero, F.-J. Haug, S. Perregaux, and C. Ballif, “UV-nano-imprint lithography technique for the replication of back reflectors for n-i-p thin film silicon solar cells,” Prog. Photovolt. Res. Appl. 19(2), 202–210 (2011).
[Crossref]

Cui, Y.

M. L. Brongersma, Y. Cui, and S. Fan, “Light management for photovoltaics using high-index nanostructures,” Nat. Mater. 13(5), 451–460 (2014).
[Crossref] [PubMed]

De Wolf, S.

Z. C. Holman, S. De Wolf, and C. Ballif, “Improving metal reflectors by suppressing surface plamson polaritons: a priori calculation of the internal reflectance of a solar cell,” Light Sci. Appl. 2(10), e106 (2013).
[Crossref]

Ducroquet, F.

C. Roger, S. Noël, O. Sicardy, P. Faucherand, L. Grenet, N. Karst, H. Fournier, F. Roux, F. Ducroquet, A. Brioude, and S. Perraud, “Characteristics of molybdenum bilayer back contacts for Cu(In,Ga)Se2 solar cells on Ti foils,” Thin Solid Films 548, 608–616 (2013).
[Crossref]

Dupuis, C.

C. Colin, I. Massiot, A. Cattoni, N. Vandamme, C. Dupuis, N. Bardou, I. Gerard, N. Naghavi, J.-F. Guillemoles, J.-L. Pelouard, and S. Collin, “Broadband light-trapping in ultra-thin nano-structured solar cells,” Proc. SPIE 8620, 86200C (2013).
[Crossref]

Edoff, M.

A. Čampa, J. Krč, J. Malmström, M. Edoff, F. Smole, and M. Topič, “The potential of textured front ZnO and flat TCO/metal back contact to improve optical absorption in thin Cu(In,Ga)Se2 solar cells,” Thin Solid Films 515(15), 5968–5972 (2007).
[Crossref]

Erni, R.

A. Chirilă, P. Reinhard, F. Pianezzi, P. Bloesch, A. R. Uhl, C. Fella, L. Kranz, D. Keller, C. Gretener, H. Hagendorfer, D. Jaeger, R. Erni, S. Nishiwaki, S. Buecheler, and A. N. Tiwari, “Potassium-induced surface modification of Cu(In,Ga)Se2 thin films for high-efficiency solar cells,” Nat. Mater. 12(12), 1107–1111 (2013).
[Crossref] [PubMed]

Escarré, J.

K. Söderström, J. Escarré, O. Cubero, F.-J. Haug, S. Perregaux, and C. Ballif, “UV-nano-imprint lithography technique for the replication of back reflectors for n-i-p thin film silicon solar cells,” Prog. Photovolt. Res. Appl. 19(2), 202–210 (2011).
[Crossref]

Fan, S.

M. L. Brongersma, Y. Cui, and S. Fan, “Light management for photovoltaics using high-index nanostructures,” Nat. Mater. 13(5), 451–460 (2014).
[Crossref] [PubMed]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express 18(S3Suppl 3), A366–A380 (2010).
[Crossref] [PubMed]

Faucherand, P.

C. Roger, S. Noël, O. Sicardy, P. Faucherand, L. Grenet, N. Karst, H. Fournier, F. Roux, F. Ducroquet, A. Brioude, and S. Perraud, “Characteristics of molybdenum bilayer back contacts for Cu(In,Ga)Se2 solar cells on Ti foils,” Thin Solid Films 548, 608–616 (2013).
[Crossref]

Fella, C.

A. Chirilă, P. Reinhard, F. Pianezzi, P. Bloesch, A. R. Uhl, C. Fella, L. Kranz, D. Keller, C. Gretener, H. Hagendorfer, D. Jaeger, R. Erni, S. Nishiwaki, S. Buecheler, and A. N. Tiwari, “Potassium-induced surface modification of Cu(In,Ga)Se2 thin films for high-efficiency solar cells,” Nat. Mater. 12(12), 1107–1111 (2013).
[Crossref] [PubMed]

Fischer, M.

H. Tan, E. Psomadaki, O. Isabella, M. Fischer, P. Babal, R. Vasudevan, M. Zeman, and A. H. M. Smets, “Micro- textures for efficient light trapping and improved electrical performance in thin-film nanocrystalline silicon solar cells,” Appl. Phys. Lett. 103(17), 173905 (2013).
[Crossref]

Fournier, H.

C. Roger, S. Noël, O. Sicardy, P. Faucherand, L. Grenet, N. Karst, H. Fournier, F. Roux, F. Ducroquet, A. Brioude, and S. Perraud, “Characteristics of molybdenum bilayer back contacts for Cu(In,Ga)Se2 solar cells on Ti foils,” Thin Solid Films 548, 608–616 (2013).
[Crossref]

Friedlmeier, T. M.

P. Jackson, D. Hariskos, R. Wuerz, O. Kiowski, A. Bauer, T. M. Friedlmeier, and M. Powalla, “Properties of Cu(In,Ga)Se2 solar cells with new record efficiencies up to 21.7%,” Phys. Status Solidi Rapid Res. Lett. 9(1), 28–31 (2015).
[Crossref]

Fujiwara, H.

T. Hara, T. Maekawa, S. Minoura, Y. Sago, S. Niki, and H. Fujiwara, “Quantitative assessment of optical gain and loss in submicron-textured Cu(In1−x Gax)Se2 solar cells fabricated by three-stage coevaporation,” Phys. Rev. Appl. 2(3), 034012 (2014).
[Crossref]

T. Koida, H. Fujiwara, and M. Kondo, “Reduction of optical loss in hydrogenated amorphous silicon/crystalline silicon heterojunction solar cells by high-mobility hydrogen-doped In2O3 transparent conductive oxide,” Appl. Phys. Express 1, 041501 (2008).
[Crossref]

T. Koida, H. Fujiwara, and M. Kondo, “Hydrogen-doped In2O3 as high-mobility transparent conductive oxide,” Jpn. J. Appl. Phys. 46(28), L685–L687 (2007).
[Crossref]

H. Fujiwara and M. Kondo, “Effects of carrier concentration on the dielectric function of ZnO:Ga and In2O3 studied by spectroscopic ellipsometry: Analysis of free-carrier and band-edge absorption,” Phys. Rev. B 71(7), 075109 (2005).
[Crossref]

Gerard, I.

C. Colin, I. Massiot, A. Cattoni, N. Vandamme, C. Dupuis, N. Bardou, I. Gerard, N. Naghavi, J.-F. Guillemoles, J.-L. Pelouard, and S. Collin, “Broadband light-trapping in ultra-thin nano-structured solar cells,” Proc. SPIE 8620, 86200C (2013).
[Crossref]

Gloeckler, M.

M. Gloeckler and J. R. Sites, “Potential of submicrometer thickness Cu(In,Ga)Se2 solar cells,” J. Appl. Phys. 98(10), 103703 (2005).
[Crossref]

Grenet, L.

C. Roger, S. Noël, O. Sicardy, P. Faucherand, L. Grenet, N. Karst, H. Fournier, F. Roux, F. Ducroquet, A. Brioude, and S. Perraud, “Characteristics of molybdenum bilayer back contacts for Cu(In,Ga)Se2 solar cells on Ti foils,” Thin Solid Films 548, 608–616 (2013).
[Crossref]

Gretener, C.

A. Chirilă, P. Reinhard, F. Pianezzi, P. Bloesch, A. R. Uhl, C. Fella, L. Kranz, D. Keller, C. Gretener, H. Hagendorfer, D. Jaeger, R. Erni, S. Nishiwaki, S. Buecheler, and A. N. Tiwari, “Potassium-induced surface modification of Cu(In,Ga)Se2 thin films for high-efficiency solar cells,” Nat. Mater. 12(12), 1107–1111 (2013).
[Crossref] [PubMed]

Guillemoles, J.-F.

C. Colin, I. Massiot, A. Cattoni, N. Vandamme, C. Dupuis, N. Bardou, I. Gerard, N. Naghavi, J.-F. Guillemoles, J.-L. Pelouard, and S. Collin, “Broadband light-trapping in ultra-thin nano-structured solar cells,” Proc. SPIE 8620, 86200C (2013).
[Crossref]

Hagendorfer, H.

A. Chirilă, P. Reinhard, F. Pianezzi, P. Bloesch, A. R. Uhl, C. Fella, L. Kranz, D. Keller, C. Gretener, H. Hagendorfer, D. Jaeger, R. Erni, S. Nishiwaki, S. Buecheler, and A. N. Tiwari, “Potassium-induced surface modification of Cu(In,Ga)Se2 thin films for high-efficiency solar cells,” Nat. Mater. 12(12), 1107–1111 (2013).
[Crossref] [PubMed]

Hara, T.

T. Hara, T. Maekawa, S. Minoura, Y. Sago, S. Niki, and H. Fujiwara, “Quantitative assessment of optical gain and loss in submicron-textured Cu(In1−x Gax)Se2 solar cells fabricated by three-stage coevaporation,” Phys. Rev. Appl. 2(3), 034012 (2014).
[Crossref]

Hariskos, D.

P. Jackson, D. Hariskos, R. Wuerz, O. Kiowski, A. Bauer, T. M. Friedlmeier, and M. Powalla, “Properties of Cu(In,Ga)Se2 solar cells with new record efficiencies up to 21.7%,” Phys. Status Solidi Rapid Res. Lett. 9(1), 28–31 (2015).
[Crossref]

P. Jackson, D. Hariskos, R. Wuerz, W. Wischmann, and M. Powalla, “Compositional investigation of potassium doped Cu(In,Ga)Se2 solar cells with efficiencies up to 20.8%,” Phys. Status Solidi Rapid Res. Lett. 8(3), 219–222 (2014).
[Crossref]

Haug, F.-J.

K. Söderström, J. Escarré, O. Cubero, F.-J. Haug, S. Perregaux, and C. Ballif, “UV-nano-imprint lithography technique for the replication of back reflectors for n-i-p thin film silicon solar cells,” Prog. Photovolt. Res. Appl. 19(2), 202–210 (2011).
[Crossref]

Holman, Z. C.

Z. C. Holman, S. De Wolf, and C. Ballif, “Improving metal reflectors by suppressing surface plamson polaritons: a priori calculation of the internal reflectance of a solar cell,” Light Sci. Appl. 2(10), e106 (2013).
[Crossref]

Isabella, O.

K. Jäger, D. N. P. Linssen, O. Isabella, and M. Zeman, “Ambiguities in optical simulations of nanotextured thin-film solar cells using the finite-element method,” Opt. Express 23(19), A1060–A1071 (2015).
[Crossref] [PubMed]

O. Isabella, H. Sai, M. Kondo, and M. Zeman, “Full-wave optoelectrical modeling of optimized flattened light-scattering substrate for high efficiency thin-film silicon solar cells,” Prog. Photovolt. Res. Appl. 22(6), 671–689 (2014).
[Crossref]

H. Tan, E. Psomadaki, O. Isabella, M. Fischer, P. Babal, R. Vasudevan, M. Zeman, and A. H. M. Smets, “Micro- textures for efficient light trapping and improved electrical performance in thin-film nanocrystalline silicon solar cells,” Appl. Phys. Lett. 103(17), 173905 (2013).
[Crossref]

O. Isabella, S. Solntsev, D. Caratelli, and M. Zeman, “3-D optical modeling of thin-film silicon solar cells on diffraction gratings,” Prog. Photovolt. Res. Appl. 21(1), 94–108 (2013).
[Crossref]

M. Zeman, O. Isabella, S. Solntsev, and K. Jäger, “Modelling of thin-film silicon solar cells,” Sol. Energy Mater. Sol. Cells 119, 94–111 (2013).
[Crossref]

J. A. Sap, O. Isabella, K. Jäger, and M. Zeman, “Extraction of optical properties of flat and surface-textured transparent conductive oxide films in a broad wavelength range,” Thin Solid Films 520(3), 1096–1101 (2011).
[Crossref]

Jackson, P.

P. Jackson, D. Hariskos, R. Wuerz, O. Kiowski, A. Bauer, T. M. Friedlmeier, and M. Powalla, “Properties of Cu(In,Ga)Se2 solar cells with new record efficiencies up to 21.7%,” Phys. Status Solidi Rapid Res. Lett. 9(1), 28–31 (2015).
[Crossref]

P. Jackson, D. Hariskos, R. Wuerz, W. Wischmann, and M. Powalla, “Compositional investigation of potassium doped Cu(In,Ga)Se2 solar cells with efficiencies up to 20.8%,” Phys. Status Solidi Rapid Res. Lett. 8(3), 219–222 (2014).
[Crossref]

Jaeger, D.

A. Chirilă, P. Reinhard, F. Pianezzi, P. Bloesch, A. R. Uhl, C. Fella, L. Kranz, D. Keller, C. Gretener, H. Hagendorfer, D. Jaeger, R. Erni, S. Nishiwaki, S. Buecheler, and A. N. Tiwari, “Potassium-induced surface modification of Cu(In,Ga)Se2 thin films for high-efficiency solar cells,” Nat. Mater. 12(12), 1107–1111 (2013).
[Crossref] [PubMed]

Jäger, K.

K. Jäger, D. N. P. Linssen, O. Isabella, and M. Zeman, “Ambiguities in optical simulations of nanotextured thin-film solar cells using the finite-element method,” Opt. Express 23(19), A1060–A1071 (2015).
[Crossref] [PubMed]

M. Zeman, O. Isabella, S. Solntsev, and K. Jäger, “Modelling of thin-film silicon solar cells,” Sol. Energy Mater. Sol. Cells 119, 94–111 (2013).
[Crossref]

J. A. Sap, O. Isabella, K. Jäger, and M. Zeman, “Extraction of optical properties of flat and surface-textured transparent conductive oxide films in a broad wavelength range,” Thin Solid Films 520(3), 1096–1101 (2011).
[Crossref]

Kamikawa-Shimizu, Y.

T. Koida, Y. Kamikawa-Shimizu, A. Yamada, H. Shibata, and S. Niki, “Cu(In,Ga)Se2 solar cells with amorphous oxide semiconducting buffer layers,” IEEE J. Photovolt. 5(3), 956–961 (2015).
[Crossref]

Karst, N.

C. Roger, S. Noël, O. Sicardy, P. Faucherand, L. Grenet, N. Karst, H. Fournier, F. Roux, F. Ducroquet, A. Brioude, and S. Perraud, “Characteristics of molybdenum bilayer back contacts for Cu(In,Ga)Se2 solar cells on Ti foils,” Thin Solid Films 548, 608–616 (2013).
[Crossref]

Keller, D.

A. Chirilă, P. Reinhard, F. Pianezzi, P. Bloesch, A. R. Uhl, C. Fella, L. Kranz, D. Keller, C. Gretener, H. Hagendorfer, D. Jaeger, R. Erni, S. Nishiwaki, S. Buecheler, and A. N. Tiwari, “Potassium-induced surface modification of Cu(In,Ga)Se2 thin films for high-efficiency solar cells,” Nat. Mater. 12(12), 1107–1111 (2013).
[Crossref] [PubMed]

Kiowski, O.

P. Jackson, D. Hariskos, R. Wuerz, O. Kiowski, A. Bauer, T. M. Friedlmeier, and M. Powalla, “Properties of Cu(In,Ga)Se2 solar cells with new record efficiencies up to 21.7%,” Phys. Status Solidi Rapid Res. Lett. 9(1), 28–31 (2015).
[Crossref]

Klaer, J.

M. Schmid, J. Klaer, R. Klenk, M. Topič, and J. Krč, “Stability of plasmonic metal nanoparticles integrated in the back contact of ultra-thin Cu(In,Ga)Se2 solar cells,” Thin Solid Films 527, 308–313 (2013).
[Crossref]

Klenk, R.

M. Schmid, J. Klaer, R. Klenk, M. Topič, and J. Krč, “Stability of plasmonic metal nanoparticles integrated in the back contact of ultra-thin Cu(In,Ga)Se2 solar cells,” Thin Solid Films 527, 308–313 (2013).
[Crossref]

M. Schmid, R. Klenk, M. Ch. Lux-Steiner, M. Topič, and J. Krč, “Modeling plasmonic scattering combined with thin-film optics,” Nanotechnology 22(2), 025204 (2011).
[Crossref] [PubMed]

Kluth, O.

J. Springer, A. Poruba, L. Müllerova, M. Vanecek, O. Kluth, and B. Rech, “Absorption loss at nanorough silver back reflector of thin-film silicon solar cells,” J. Appl. Phys. 95(3), 1427–1429 (2004).
[Crossref]

Kohara, N.

T. Wada, N. Kohara, T. Negami, and M. Nishitani, “Chemical and structural characterization of Cu(In,Ga)Se2/Mo interface in Cu(In,Ga)Se2 solar cells,” Jpn. J. Appl. Phys. 35(Part 2, No. 10A), L1253–L1256 (1996).
[Crossref]

Koida, T.

T. Koida, Y. Kamikawa-Shimizu, A. Yamada, H. Shibata, and S. Niki, “Cu(In,Ga)Se2 solar cells with amorphous oxide semiconducting buffer layers,” IEEE J. Photovolt. 5(3), 956–961 (2015).
[Crossref]

T. Koida, H. Fujiwara, and M. Kondo, “Reduction of optical loss in hydrogenated amorphous silicon/crystalline silicon heterojunction solar cells by high-mobility hydrogen-doped In2O3 transparent conductive oxide,” Appl. Phys. Express 1, 041501 (2008).
[Crossref]

T. Koida, H. Fujiwara, and M. Kondo, “Hydrogen-doped In2O3 as high-mobility transparent conductive oxide,” Jpn. J. Appl. Phys. 46(28), L685–L687 (2007).
[Crossref]

Kondo, M.

O. Isabella, H. Sai, M. Kondo, and M. Zeman, “Full-wave optoelectrical modeling of optimized flattened light-scattering substrate for high efficiency thin-film silicon solar cells,” Prog. Photovolt. Res. Appl. 22(6), 671–689 (2014).
[Crossref]

H. Sai, K. Saito, and M. Kondo, “Enhanced photocurrent and conversion efficiency in thin-film microcrystalline silicon solar cells using periodically textured back reflectors with hexagonal dimple arrays,” Appl. Phys. Lett. 101(17), 173901 (2012).
[Crossref]

T. Koida, H. Fujiwara, and M. Kondo, “Reduction of optical loss in hydrogenated amorphous silicon/crystalline silicon heterojunction solar cells by high-mobility hydrogen-doped In2O3 transparent conductive oxide,” Appl. Phys. Express 1, 041501 (2008).
[Crossref]

T. Koida, H. Fujiwara, and M. Kondo, “Hydrogen-doped In2O3 as high-mobility transparent conductive oxide,” Jpn. J. Appl. Phys. 46(28), L685–L687 (2007).
[Crossref]

H. Fujiwara and M. Kondo, “Effects of carrier concentration on the dielectric function of ZnO:Ga and In2O3 studied by spectroscopic ellipsometry: Analysis of free-carrier and band-edge absorption,” Phys. Rev. B 71(7), 075109 (2005).
[Crossref]

Kowalczewski, P. A.

L. C. Andreani, P. A. Kowalczewski, C. I. Mura, M. Patrini, M. Acciarri, S. Binetti, A. Sassella, and S. Marchionna, “Towards CIGS slar cells with reduced film thickness: a study of optical properties and of photonic structures for light trapping,” in 27th European Photovoltaic Solar Energy Conference and Exhibition (2012), p. 2334.

Kranz, L.

A. Chirilă, P. Reinhard, F. Pianezzi, P. Bloesch, A. R. Uhl, C. Fella, L. Kranz, D. Keller, C. Gretener, H. Hagendorfer, D. Jaeger, R. Erni, S. Nishiwaki, S. Buecheler, and A. N. Tiwari, “Potassium-induced surface modification of Cu(In,Ga)Se2 thin films for high-efficiency solar cells,” Nat. Mater. 12(12), 1107–1111 (2013).
[Crossref] [PubMed]

Krc, J.

M. Schmid, J. Klaer, R. Klenk, M. Topič, and J. Krč, “Stability of plasmonic metal nanoparticles integrated in the back contact of ultra-thin Cu(In,Ga)Se2 solar cells,” Thin Solid Films 527, 308–313 (2013).
[Crossref]

M. Schmid, R. Klenk, M. Ch. Lux-Steiner, M. Topič, and J. Krč, “Modeling plasmonic scattering combined with thin-film optics,” Nanotechnology 22(2), 025204 (2011).
[Crossref] [PubMed]

A. Čampa, J. Krč, J. Malmström, M. Edoff, F. Smole, and M. Topič, “The potential of textured front ZnO and flat TCO/metal back contact to improve optical absorption in thin Cu(In,Ga)Se2 solar cells,” Thin Solid Films 515(15), 5968–5972 (2007).
[Crossref]

Krishnakumar, S.

S. Krishnakumar and C. S. Menon, “Electrical and optical properties of molybdenum trioxide thin films,” Bull. Mater. Sci. 16(3), 187–191 (1993).
[Crossref]

Kushiya, K.

K. Kushiya, “CIS-based thin-film PV technology in solar frontier K.K,” Sol. Energy Mater. Sol. Cells 122, 309–313 (2014).
[Crossref]

Linssen, D. N. P.

Lux-Steiner, M. Ch.

M. Schmid, R. Klenk, M. Ch. Lux-Steiner, M. Topič, and J. Krč, “Modeling plasmonic scattering combined with thin-film optics,” Nanotechnology 22(2), 025204 (2011).
[Crossref] [PubMed]

Maekawa, T.

T. Hara, T. Maekawa, S. Minoura, Y. Sago, S. Niki, and H. Fujiwara, “Quantitative assessment of optical gain and loss in submicron-textured Cu(In1−x Gax)Se2 solar cells fabricated by three-stage coevaporation,” Phys. Rev. Appl. 2(3), 034012 (2014).
[Crossref]

Malmström, J.

A. Čampa, J. Krč, J. Malmström, M. Edoff, F. Smole, and M. Topič, “The potential of textured front ZnO and flat TCO/metal back contact to improve optical absorption in thin Cu(In,Ga)Se2 solar cells,” Thin Solid Films 515(15), 5968–5972 (2007).
[Crossref]

Marchionna, S.

L. C. Andreani, P. A. Kowalczewski, C. I. Mura, M. Patrini, M. Acciarri, S. Binetti, A. Sassella, and S. Marchionna, “Towards CIGS slar cells with reduced film thickness: a study of optical properties and of photonic structures for light trapping,” in 27th European Photovoltaic Solar Energy Conference and Exhibition (2012), p. 2334.

Massiot, I.

C. Colin, I. Massiot, A. Cattoni, N. Vandamme, C. Dupuis, N. Bardou, I. Gerard, N. Naghavi, J.-F. Guillemoles, J.-L. Pelouard, and S. Collin, “Broadband light-trapping in ultra-thin nano-structured solar cells,” Proc. SPIE 8620, 86200C (2013).
[Crossref]

Menon, C. S.

S. Krishnakumar and C. S. Menon, “Electrical and optical properties of molybdenum trioxide thin films,” Bull. Mater. Sci. 16(3), 187–191 (1993).
[Crossref]

Minoura, S.

T. Hara, T. Maekawa, S. Minoura, Y. Sago, S. Niki, and H. Fujiwara, “Quantitative assessment of optical gain and loss in submicron-textured Cu(In1−x Gax)Se2 solar cells fabricated by three-stage coevaporation,” Phys. Rev. Appl. 2(3), 034012 (2014).
[Crossref]

Mourad, M. C. D.

Müllerova, L.

J. Springer, A. Poruba, L. Müllerova, M. Vanecek, O. Kluth, and B. Rech, “Absorption loss at nanorough silver back reflector of thin-film silicon solar cells,” J. Appl. Phys. 95(3), 1427–1429 (2004).
[Crossref]

Mura, C. I.

L. C. Andreani, P. A. Kowalczewski, C. I. Mura, M. Patrini, M. Acciarri, S. Binetti, A. Sassella, and S. Marchionna, “Towards CIGS slar cells with reduced film thickness: a study of optical properties and of photonic structures for light trapping,” in 27th European Photovoltaic Solar Energy Conference and Exhibition (2012), p. 2334.

Naghavi, N.

C. Colin, I. Massiot, A. Cattoni, N. Vandamme, C. Dupuis, N. Bardou, I. Gerard, N. Naghavi, J.-F. Guillemoles, J.-L. Pelouard, and S. Collin, “Broadband light-trapping in ultra-thin nano-structured solar cells,” Proc. SPIE 8620, 86200C (2013).
[Crossref]

Negami, T.

T. Wada, N. Kohara, T. Negami, and M. Nishitani, “Chemical and structural characterization of Cu(In,Ga)Se2/Mo interface in Cu(In,Ga)Se2 solar cells,” Jpn. J. Appl. Phys. 35(Part 2, No. 10A), L1253–L1256 (1996).
[Crossref]

Niki, S.

T. Koida, Y. Kamikawa-Shimizu, A. Yamada, H. Shibata, and S. Niki, “Cu(In,Ga)Se2 solar cells with amorphous oxide semiconducting buffer layers,” IEEE J. Photovolt. 5(3), 956–961 (2015).
[Crossref]

T. Hara, T. Maekawa, S. Minoura, Y. Sago, S. Niki, and H. Fujiwara, “Quantitative assessment of optical gain and loss in submicron-textured Cu(In1−x Gax)Se2 solar cells fabricated by three-stage coevaporation,” Phys. Rev. Appl. 2(3), 034012 (2014).
[Crossref]

Nishitani, M.

T. Wada, N. Kohara, T. Negami, and M. Nishitani, “Chemical and structural characterization of Cu(In,Ga)Se2/Mo interface in Cu(In,Ga)Se2 solar cells,” Jpn. J. Appl. Phys. 35(Part 2, No. 10A), L1253–L1256 (1996).
[Crossref]

Nishiwaki, S.

A. Chirilă, P. Reinhard, F. Pianezzi, P. Bloesch, A. R. Uhl, C. Fella, L. Kranz, D. Keller, C. Gretener, H. Hagendorfer, D. Jaeger, R. Erni, S. Nishiwaki, S. Buecheler, and A. N. Tiwari, “Potassium-induced surface modification of Cu(In,Ga)Se2 thin films for high-efficiency solar cells,” Nat. Mater. 12(12), 1107–1111 (2013).
[Crossref] [PubMed]

Noël, S.

C. Roger, S. Noël, O. Sicardy, P. Faucherand, L. Grenet, N. Karst, H. Fournier, F. Roux, F. Ducroquet, A. Brioude, and S. Perraud, “Characteristics of molybdenum bilayer back contacts for Cu(In,Ga)Se2 solar cells on Ti foils,” Thin Solid Films 548, 608–616 (2013).
[Crossref]

Orgassa, K.

K. Orgassa, H. W. Schock, and J. H. Werner, “Alternative back contact materials for thin-film Cu(In,Ga)Se2 solar cells,” Thin Solid Films 431–432, 387–391 (2003).
[Crossref]

Patrini, M.

L. C. Andreani, P. A. Kowalczewski, C. I. Mura, M. Patrini, M. Acciarri, S. Binetti, A. Sassella, and S. Marchionna, “Towards CIGS slar cells with reduced film thickness: a study of optical properties and of photonic structures for light trapping,” in 27th European Photovoltaic Solar Energy Conference and Exhibition (2012), p. 2334.

Pelouard, J.-L.

C. Colin, I. Massiot, A. Cattoni, N. Vandamme, C. Dupuis, N. Bardou, I. Gerard, N. Naghavi, J.-F. Guillemoles, J.-L. Pelouard, and S. Collin, “Broadband light-trapping in ultra-thin nano-structured solar cells,” Proc. SPIE 8620, 86200C (2013).
[Crossref]

Perraud, S.

C. Roger, S. Noël, O. Sicardy, P. Faucherand, L. Grenet, N. Karst, H. Fournier, F. Roux, F. Ducroquet, A. Brioude, and S. Perraud, “Characteristics of molybdenum bilayer back contacts for Cu(In,Ga)Se2 solar cells on Ti foils,” Thin Solid Films 548, 608–616 (2013).
[Crossref]

Perregaux, S.

K. Söderström, J. Escarré, O. Cubero, F.-J. Haug, S. Perregaux, and C. Ballif, “UV-nano-imprint lithography technique for the replication of back reflectors for n-i-p thin film silicon solar cells,” Prog. Photovolt. Res. Appl. 19(2), 202–210 (2011).
[Crossref]

Phillips, J. E.

W. N. Shafarman and J. E. Phillips, “Direct current-voltage measurements of the Mo/CuInSe2 contact on operating solar cells,” in Photovoltaic Specialists Conference (IEEE, 1996), pp.917–919.

Pianezzi, F.

A. Chirilă, P. Reinhard, F. Pianezzi, P. Bloesch, A. R. Uhl, C. Fella, L. Kranz, D. Keller, C. Gretener, H. Hagendorfer, D. Jaeger, R. Erni, S. Nishiwaki, S. Buecheler, and A. N. Tiwari, “Potassium-induced surface modification of Cu(In,Ga)Se2 thin films for high-efficiency solar cells,” Nat. Mater. 12(12), 1107–1111 (2013).
[Crossref] [PubMed]

Polman, A.

C. van Lare, G. Yin, A. Polman, and M. Schmid, “Light coupling and trapping in ultrathin Cu(In,Ga)Se2 solar cells using dielectric scattering patterns,” ACS Nano 9(10), 9603–9613 (2015).
[Crossref] [PubMed]

Poruba, A.

J. Springer, A. Poruba, L. Müllerova, M. Vanecek, O. Kluth, and B. Rech, “Absorption loss at nanorough silver back reflector of thin-film silicon solar cells,” J. Appl. Phys. 95(3), 1427–1429 (2004).
[Crossref]

Powalla, M.

P. Jackson, D. Hariskos, R. Wuerz, O. Kiowski, A. Bauer, T. M. Friedlmeier, and M. Powalla, “Properties of Cu(In,Ga)Se2 solar cells with new record efficiencies up to 21.7%,” Phys. Status Solidi Rapid Res. Lett. 9(1), 28–31 (2015).
[Crossref]

P. Jackson, D. Hariskos, R. Wuerz, W. Wischmann, and M. Powalla, “Compositional investigation of potassium doped Cu(In,Ga)Se2 solar cells with efficiencies up to 20.8%,” Phys. Status Solidi Rapid Res. Lett. 8(3), 219–222 (2014).
[Crossref]

Psomadaki, E.

H. Tan, E. Psomadaki, O. Isabella, M. Fischer, P. Babal, R. Vasudevan, M. Zeman, and A. H. M. Smets, “Micro- textures for efficient light trapping and improved electrical performance in thin-film nanocrystalline silicon solar cells,” Appl. Phys. Lett. 103(17), 173905 (2013).
[Crossref]

Raman, A.

Rech, B.

J. Springer, A. Poruba, L. Müllerova, M. Vanecek, O. Kluth, and B. Rech, “Absorption loss at nanorough silver back reflector of thin-film silicon solar cells,” J. Appl. Phys. 95(3), 1427–1429 (2004).
[Crossref]

Reinhard, P.

A. Chirilă, P. Reinhard, F. Pianezzi, P. Bloesch, A. R. Uhl, C. Fella, L. Kranz, D. Keller, C. Gretener, H. Hagendorfer, D. Jaeger, R. Erni, S. Nishiwaki, S. Buecheler, and A. N. Tiwari, “Potassium-induced surface modification of Cu(In,Ga)Se2 thin films for high-efficiency solar cells,” Nat. Mater. 12(12), 1107–1111 (2013).
[Crossref] [PubMed]

Roger, C.

C. Roger, S. Noël, O. Sicardy, P. Faucherand, L. Grenet, N. Karst, H. Fournier, F. Roux, F. Ducroquet, A. Brioude, and S. Perraud, “Characteristics of molybdenum bilayer back contacts for Cu(In,Ga)Se2 solar cells on Ti foils,” Thin Solid Films 548, 608–616 (2013).
[Crossref]

Roux, F.

C. Roger, S. Noël, O. Sicardy, P. Faucherand, L. Grenet, N. Karst, H. Fournier, F. Roux, F. Ducroquet, A. Brioude, and S. Perraud, “Characteristics of molybdenum bilayer back contacts for Cu(In,Ga)Se2 solar cells on Ti foils,” Thin Solid Films 548, 608–616 (2013).
[Crossref]

Sago, Y.

T. Hara, T. Maekawa, S. Minoura, Y. Sago, S. Niki, and H. Fujiwara, “Quantitative assessment of optical gain and loss in submicron-textured Cu(In1−x Gax)Se2 solar cells fabricated by three-stage coevaporation,” Phys. Rev. Appl. 2(3), 034012 (2014).
[Crossref]

Sai, H.

O. Isabella, H. Sai, M. Kondo, and M. Zeman, “Full-wave optoelectrical modeling of optimized flattened light-scattering substrate for high efficiency thin-film silicon solar cells,” Prog. Photovolt. Res. Appl. 22(6), 671–689 (2014).
[Crossref]

H. Sai, K. Saito, and M. Kondo, “Enhanced photocurrent and conversion efficiency in thin-film microcrystalline silicon solar cells using periodically textured back reflectors with hexagonal dimple arrays,” Appl. Phys. Lett. 101(17), 173901 (2012).
[Crossref]

Saito, K.

H. Sai, K. Saito, and M. Kondo, “Enhanced photocurrent and conversion efficiency in thin-film microcrystalline silicon solar cells using periodically textured back reflectors with hexagonal dimple arrays,” Appl. Phys. Lett. 101(17), 173901 (2012).
[Crossref]

Santbergen, R.

Sap, J. A.

J. A. Sap, O. Isabella, K. Jäger, and M. Zeman, “Extraction of optical properties of flat and surface-textured transparent conductive oxide films in a broad wavelength range,” Thin Solid Films 520(3), 1096–1101 (2011).
[Crossref]

Sassella, A.

L. C. Andreani, P. A. Kowalczewski, C. I. Mura, M. Patrini, M. Acciarri, S. Binetti, A. Sassella, and S. Marchionna, “Towards CIGS slar cells with reduced film thickness: a study of optical properties and of photonic structures for light trapping,” in 27th European Photovoltaic Solar Energy Conference and Exhibition (2012), p. 2334.

Schmid, M.

C. van Lare, G. Yin, A. Polman, and M. Schmid, “Light coupling and trapping in ultrathin Cu(In,Ga)Se2 solar cells using dielectric scattering patterns,” ACS Nano 9(10), 9603–9613 (2015).
[Crossref] [PubMed]

M. Schmid, J. Klaer, R. Klenk, M. Topič, and J. Krč, “Stability of plasmonic metal nanoparticles integrated in the back contact of ultra-thin Cu(In,Ga)Se2 solar cells,” Thin Solid Films 527, 308–313 (2013).
[Crossref]

M. Schmid, R. Klenk, M. Ch. Lux-Steiner, M. Topič, and J. Krč, “Modeling plasmonic scattering combined with thin-film optics,” Nanotechnology 22(2), 025204 (2011).
[Crossref] [PubMed]

Schock, H. W.

K. Orgassa, H. W. Schock, and J. H. Werner, “Alternative back contact materials for thin-film Cu(In,Ga)Se2 solar cells,” Thin Solid Films 431–432, 387–391 (2003).
[Crossref]

Shafarman, W. N.

W. N. Shafarman and J. E. Phillips, “Direct current-voltage measurements of the Mo/CuInSe2 contact on operating solar cells,” in Photovoltaic Specialists Conference (IEEE, 1996), pp.917–919.

Shibata, H.

T. Koida, Y. Kamikawa-Shimizu, A. Yamada, H. Shibata, and S. Niki, “Cu(In,Ga)Se2 solar cells with amorphous oxide semiconducting buffer layers,” IEEE J. Photovolt. 5(3), 956–961 (2015).
[Crossref]

Sicardy, O.

C. Roger, S. Noël, O. Sicardy, P. Faucherand, L. Grenet, N. Karst, H. Fournier, F. Roux, F. Ducroquet, A. Brioude, and S. Perraud, “Characteristics of molybdenum bilayer back contacts for Cu(In,Ga)Se2 solar cells on Ti foils,” Thin Solid Films 548, 608–616 (2013).
[Crossref]

Sites, J. R.

M. Gloeckler and J. R. Sites, “Potential of submicrometer thickness Cu(In,Ga)Se2 solar cells,” J. Appl. Phys. 98(10), 103703 (2005).
[Crossref]

Smets, A. H. M.

R. Santbergen, H. Tan, M. Zeman, and A. H. M. Smets, “Enhancing the driving field for plasmonic nanoparticles in thin-film solar cells,” Opt. Express 22(S4Suppl 4), A1023–A1028 (2014).
[Crossref] [PubMed]

H. Tan, E. Psomadaki, O. Isabella, M. Fischer, P. Babal, R. Vasudevan, M. Zeman, and A. H. M. Smets, “Micro- textures for efficient light trapping and improved electrical performance in thin-film nanocrystalline silicon solar cells,” Appl. Phys. Lett. 103(17), 173905 (2013).
[Crossref]

Smole, F.

A. Čampa, J. Krč, J. Malmström, M. Edoff, F. Smole, and M. Topič, “The potential of textured front ZnO and flat TCO/metal back contact to improve optical absorption in thin Cu(In,Ga)Se2 solar cells,” Thin Solid Films 515(15), 5968–5972 (2007).
[Crossref]

Söderström, K.

K. Söderström, J. Escarré, O. Cubero, F.-J. Haug, S. Perregaux, and C. Ballif, “UV-nano-imprint lithography technique for the replication of back reflectors for n-i-p thin film silicon solar cells,” Prog. Photovolt. Res. Appl. 19(2), 202–210 (2011).
[Crossref]

Solntsev, S.

O. Isabella, S. Solntsev, D. Caratelli, and M. Zeman, “3-D optical modeling of thin-film silicon solar cells on diffraction gratings,” Prog. Photovolt. Res. Appl. 21(1), 94–108 (2013).
[Crossref]

M. Zeman, O. Isabella, S. Solntsev, and K. Jäger, “Modelling of thin-film silicon solar cells,” Sol. Energy Mater. Sol. Cells 119, 94–111 (2013).
[Crossref]

Springer, J.

J. Springer, A. Poruba, L. Müllerova, M. Vanecek, O. Kluth, and B. Rech, “Absorption loss at nanorough silver back reflector of thin-film silicon solar cells,” J. Appl. Phys. 95(3), 1427–1429 (2004).
[Crossref]

Tan, H.

R. Santbergen, H. Tan, M. Zeman, and A. H. M. Smets, “Enhancing the driving field for plasmonic nanoparticles in thin-film solar cells,” Opt. Express 22(S4Suppl 4), A1023–A1028 (2014).
[Crossref] [PubMed]

H. Tan, E. Psomadaki, O. Isabella, M. Fischer, P. Babal, R. Vasudevan, M. Zeman, and A. H. M. Smets, “Micro- textures for efficient light trapping and improved electrical performance in thin-film nanocrystalline silicon solar cells,” Appl. Phys. Lett. 103(17), 173905 (2013).
[Crossref]

Tiwari, A. N.

A. Chirilă, P. Reinhard, F. Pianezzi, P. Bloesch, A. R. Uhl, C. Fella, L. Kranz, D. Keller, C. Gretener, H. Hagendorfer, D. Jaeger, R. Erni, S. Nishiwaki, S. Buecheler, and A. N. Tiwari, “Potassium-induced surface modification of Cu(In,Ga)Se2 thin films for high-efficiency solar cells,” Nat. Mater. 12(12), 1107–1111 (2013).
[Crossref] [PubMed]

Topic, M.

M. Schmid, J. Klaer, R. Klenk, M. Topič, and J. Krč, “Stability of plasmonic metal nanoparticles integrated in the back contact of ultra-thin Cu(In,Ga)Se2 solar cells,” Thin Solid Films 527, 308–313 (2013).
[Crossref]

M. Schmid, R. Klenk, M. Ch. Lux-Steiner, M. Topič, and J. Krč, “Modeling plasmonic scattering combined with thin-film optics,” Nanotechnology 22(2), 025204 (2011).
[Crossref] [PubMed]

A. Čampa, J. Krč, J. Malmström, M. Edoff, F. Smole, and M. Topič, “The potential of textured front ZnO and flat TCO/metal back contact to improve optical absorption in thin Cu(In,Ga)Se2 solar cells,” Thin Solid Films 515(15), 5968–5972 (2007).
[Crossref]

Uhl, A. R.

A. Chirilă, P. Reinhard, F. Pianezzi, P. Bloesch, A. R. Uhl, C. Fella, L. Kranz, D. Keller, C. Gretener, H. Hagendorfer, D. Jaeger, R. Erni, S. Nishiwaki, S. Buecheler, and A. N. Tiwari, “Potassium-induced surface modification of Cu(In,Ga)Se2 thin films for high-efficiency solar cells,” Nat. Mater. 12(12), 1107–1111 (2013).
[Crossref] [PubMed]

van Deelen, J.

van Lare, C.

C. van Lare, G. Yin, A. Polman, and M. Schmid, “Light coupling and trapping in ultrathin Cu(In,Ga)Se2 solar cells using dielectric scattering patterns,” ACS Nano 9(10), 9603–9613 (2015).
[Crossref] [PubMed]

van Nijnatten, P. A.

P. A. van Nijnatten, “An automated directional reflectance/transmittance analyser for coating analysis,” Thin Solid Films 442(1–2), 74–79 (2003).
[Crossref]

Vandamme, N.

C. Colin, I. Massiot, A. Cattoni, N. Vandamme, C. Dupuis, N. Bardou, I. Gerard, N. Naghavi, J.-F. Guillemoles, J.-L. Pelouard, and S. Collin, “Broadband light-trapping in ultra-thin nano-structured solar cells,” Proc. SPIE 8620, 86200C (2013).
[Crossref]

Vanecek, M.

J. Springer, A. Poruba, L. Müllerova, M. Vanecek, O. Kluth, and B. Rech, “Absorption loss at nanorough silver back reflector of thin-film silicon solar cells,” J. Appl. Phys. 95(3), 1427–1429 (2004).
[Crossref]

Vasudevan, R.

H. Tan, E. Psomadaki, O. Isabella, M. Fischer, P. Babal, R. Vasudevan, M. Zeman, and A. H. M. Smets, “Micro- textures for efficient light trapping and improved electrical performance in thin-film nanocrystalline silicon solar cells,” Appl. Phys. Lett. 103(17), 173905 (2013).
[Crossref]

Wachters, A. J. H.

Wada, T.

T. Wada, N. Kohara, T. Negami, and M. Nishitani, “Chemical and structural characterization of Cu(In,Ga)Se2/Mo interface in Cu(In,Ga)Se2 solar cells,” Jpn. J. Appl. Phys. 35(Part 2, No. 10A), L1253–L1256 (1996).
[Crossref]

Werner, J. H.

K. Orgassa, H. W. Schock, and J. H. Werner, “Alternative back contact materials for thin-film Cu(In,Ga)Se2 solar cells,” Thin Solid Films 431–432, 387–391 (2003).
[Crossref]

Wischmann, W.

P. Jackson, D. Hariskos, R. Wuerz, W. Wischmann, and M. Powalla, “Compositional investigation of potassium doped Cu(In,Ga)Se2 solar cells with efficiencies up to 20.8%,” Phys. Status Solidi Rapid Res. Lett. 8(3), 219–222 (2014).
[Crossref]

Wuerz, R.

P. Jackson, D. Hariskos, R. Wuerz, O. Kiowski, A. Bauer, T. M. Friedlmeier, and M. Powalla, “Properties of Cu(In,Ga)Se2 solar cells with new record efficiencies up to 21.7%,” Phys. Status Solidi Rapid Res. Lett. 9(1), 28–31 (2015).
[Crossref]

P. Jackson, D. Hariskos, R. Wuerz, W. Wischmann, and M. Powalla, “Compositional investigation of potassium doped Cu(In,Ga)Se2 solar cells with efficiencies up to 20.8%,” Phys. Status Solidi Rapid Res. Lett. 8(3), 219–222 (2014).
[Crossref]

Xu, M.

Yablonovitch, E.

Yamada, A.

T. Koida, Y. Kamikawa-Shimizu, A. Yamada, H. Shibata, and S. Niki, “Cu(In,Ga)Se2 solar cells with amorphous oxide semiconducting buffer layers,” IEEE J. Photovolt. 5(3), 956–961 (2015).
[Crossref]

Yin, G.

C. van Lare, G. Yin, A. Polman, and M. Schmid, “Light coupling and trapping in ultrathin Cu(In,Ga)Se2 solar cells using dielectric scattering patterns,” ACS Nano 9(10), 9603–9613 (2015).
[Crossref] [PubMed]

Yu, Z.

Zeman, M.

K. Jäger, D. N. P. Linssen, O. Isabella, and M. Zeman, “Ambiguities in optical simulations of nanotextured thin-film solar cells using the finite-element method,” Opt. Express 23(19), A1060–A1071 (2015).
[Crossref] [PubMed]

R. Santbergen, H. Tan, M. Zeman, and A. H. M. Smets, “Enhancing the driving field for plasmonic nanoparticles in thin-film solar cells,” Opt. Express 22(S4Suppl 4), A1023–A1028 (2014).
[Crossref] [PubMed]

O. Isabella, H. Sai, M. Kondo, and M. Zeman, “Full-wave optoelectrical modeling of optimized flattened light-scattering substrate for high efficiency thin-film silicon solar cells,” Prog. Photovolt. Res. Appl. 22(6), 671–689 (2014).
[Crossref]

H. Tan, E. Psomadaki, O. Isabella, M. Fischer, P. Babal, R. Vasudevan, M. Zeman, and A. H. M. Smets, “Micro- textures for efficient light trapping and improved electrical performance in thin-film nanocrystalline silicon solar cells,” Appl. Phys. Lett. 103(17), 173905 (2013).
[Crossref]

O. Isabella, S. Solntsev, D. Caratelli, and M. Zeman, “3-D optical modeling of thin-film silicon solar cells on diffraction gratings,” Prog. Photovolt. Res. Appl. 21(1), 94–108 (2013).
[Crossref]

M. Zeman, O. Isabella, S. Solntsev, and K. Jäger, “Modelling of thin-film silicon solar cells,” Sol. Energy Mater. Sol. Cells 119, 94–111 (2013).
[Crossref]

J. A. Sap, O. Isabella, K. Jäger, and M. Zeman, “Extraction of optical properties of flat and surface-textured transparent conductive oxide films in a broad wavelength range,” Thin Solid Films 520(3), 1096–1101 (2011).
[Crossref]

ACS Nano (1)

C. van Lare, G. Yin, A. Polman, and M. Schmid, “Light coupling and trapping in ultrathin Cu(In,Ga)Se2 solar cells using dielectric scattering patterns,” ACS Nano 9(10), 9603–9613 (2015).
[Crossref] [PubMed]

Appl. Phys. Express (1)

T. Koida, H. Fujiwara, and M. Kondo, “Reduction of optical loss in hydrogenated amorphous silicon/crystalline silicon heterojunction solar cells by high-mobility hydrogen-doped In2O3 transparent conductive oxide,” Appl. Phys. Express 1, 041501 (2008).
[Crossref]

Appl. Phys. Lett. (2)

H. Tan, E. Psomadaki, O. Isabella, M. Fischer, P. Babal, R. Vasudevan, M. Zeman, and A. H. M. Smets, “Micro- textures for efficient light trapping and improved electrical performance in thin-film nanocrystalline silicon solar cells,” Appl. Phys. Lett. 103(17), 173905 (2013).
[Crossref]

H. Sai, K. Saito, and M. Kondo, “Enhanced photocurrent and conversion efficiency in thin-film microcrystalline silicon solar cells using periodically textured back reflectors with hexagonal dimple arrays,” Appl. Phys. Lett. 101(17), 173901 (2012).
[Crossref]

Bull. Mater. Sci. (1)

S. Krishnakumar and C. S. Menon, “Electrical and optical properties of molybdenum trioxide thin films,” Bull. Mater. Sci. 16(3), 187–191 (1993).
[Crossref]

IEEE J. Photovolt. (1)

T. Koida, Y. Kamikawa-Shimizu, A. Yamada, H. Shibata, and S. Niki, “Cu(In,Ga)Se2 solar cells with amorphous oxide semiconducting buffer layers,” IEEE J. Photovolt. 5(3), 956–961 (2015).
[Crossref]

J. Appl. Phys. (2)

J. Springer, A. Poruba, L. Müllerova, M. Vanecek, O. Kluth, and B. Rech, “Absorption loss at nanorough silver back reflector of thin-film silicon solar cells,” J. Appl. Phys. 95(3), 1427–1429 (2004).
[Crossref]

M. Gloeckler and J. R. Sites, “Potential of submicrometer thickness Cu(In,Ga)Se2 solar cells,” J. Appl. Phys. 98(10), 103703 (2005).
[Crossref]

J. Opt. Soc. Am. (1)

Jpn. J. Appl. Phys. (2)

T. Koida, H. Fujiwara, and M. Kondo, “Hydrogen-doped In2O3 as high-mobility transparent conductive oxide,” Jpn. J. Appl. Phys. 46(28), L685–L687 (2007).
[Crossref]

T. Wada, N. Kohara, T. Negami, and M. Nishitani, “Chemical and structural characterization of Cu(In,Ga)Se2/Mo interface in Cu(In,Ga)Se2 solar cells,” Jpn. J. Appl. Phys. 35(Part 2, No. 10A), L1253–L1256 (1996).
[Crossref]

Light Sci. Appl. (1)

Z. C. Holman, S. De Wolf, and C. Ballif, “Improving metal reflectors by suppressing surface plamson polaritons: a priori calculation of the internal reflectance of a solar cell,” Light Sci. Appl. 2(10), e106 (2013).
[Crossref]

Nanotechnology (1)

M. Schmid, R. Klenk, M. Ch. Lux-Steiner, M. Topič, and J. Krč, “Modeling plasmonic scattering combined with thin-film optics,” Nanotechnology 22(2), 025204 (2011).
[Crossref] [PubMed]

Nat. Mater. (2)

A. Chirilă, P. Reinhard, F. Pianezzi, P. Bloesch, A. R. Uhl, C. Fella, L. Kranz, D. Keller, C. Gretener, H. Hagendorfer, D. Jaeger, R. Erni, S. Nishiwaki, S. Buecheler, and A. N. Tiwari, “Potassium-induced surface modification of Cu(In,Ga)Se2 thin films for high-efficiency solar cells,” Nat. Mater. 12(12), 1107–1111 (2013).
[Crossref] [PubMed]

M. L. Brongersma, Y. Cui, and S. Fan, “Light management for photovoltaics using high-index nanostructures,” Nat. Mater. 13(5), 451–460 (2014).
[Crossref] [PubMed]

Opt. Express (4)

Phys. Rev. Appl. (1)

T. Hara, T. Maekawa, S. Minoura, Y. Sago, S. Niki, and H. Fujiwara, “Quantitative assessment of optical gain and loss in submicron-textured Cu(In1−x Gax)Se2 solar cells fabricated by three-stage coevaporation,” Phys. Rev. Appl. 2(3), 034012 (2014).
[Crossref]

Phys. Rev. B (1)

H. Fujiwara and M. Kondo, “Effects of carrier concentration on the dielectric function of ZnO:Ga and In2O3 studied by spectroscopic ellipsometry: Analysis of free-carrier and band-edge absorption,” Phys. Rev. B 71(7), 075109 (2005).
[Crossref]

Phys. Status Solidi Rapid Res. Lett. (2)

P. Jackson, D. Hariskos, R. Wuerz, O. Kiowski, A. Bauer, T. M. Friedlmeier, and M. Powalla, “Properties of Cu(In,Ga)Se2 solar cells with new record efficiencies up to 21.7%,” Phys. Status Solidi Rapid Res. Lett. 9(1), 28–31 (2015).
[Crossref]

P. Jackson, D. Hariskos, R. Wuerz, W. Wischmann, and M. Powalla, “Compositional investigation of potassium doped Cu(In,Ga)Se2 solar cells with efficiencies up to 20.8%,” Phys. Status Solidi Rapid Res. Lett. 8(3), 219–222 (2014).
[Crossref]

Proc. SPIE (1)

C. Colin, I. Massiot, A. Cattoni, N. Vandamme, C. Dupuis, N. Bardou, I. Gerard, N. Naghavi, J.-F. Guillemoles, J.-L. Pelouard, and S. Collin, “Broadband light-trapping in ultra-thin nano-structured solar cells,” Proc. SPIE 8620, 86200C (2013).
[Crossref]

Prog. Photovolt. Res. Appl. (3)

K. Söderström, J. Escarré, O. Cubero, F.-J. Haug, S. Perregaux, and C. Ballif, “UV-nano-imprint lithography technique for the replication of back reflectors for n-i-p thin film silicon solar cells,” Prog. Photovolt. Res. Appl. 19(2), 202–210 (2011).
[Crossref]

O. Isabella, H. Sai, M. Kondo, and M. Zeman, “Full-wave optoelectrical modeling of optimized flattened light-scattering substrate for high efficiency thin-film silicon solar cells,” Prog. Photovolt. Res. Appl. 22(6), 671–689 (2014).
[Crossref]

O. Isabella, S. Solntsev, D. Caratelli, and M. Zeman, “3-D optical modeling of thin-film silicon solar cells on diffraction gratings,” Prog. Photovolt. Res. Appl. 21(1), 94–108 (2013).
[Crossref]

Sol. Energy Mater. Sol. Cells (2)

M. Zeman, O. Isabella, S. Solntsev, and K. Jäger, “Modelling of thin-film silicon solar cells,” Sol. Energy Mater. Sol. Cells 119, 94–111 (2013).
[Crossref]

K. Kushiya, “CIS-based thin-film PV technology in solar frontier K.K,” Sol. Energy Mater. Sol. Cells 122, 309–313 (2014).
[Crossref]

Thin Solid Films (6)

A. Čampa, J. Krč, J. Malmström, M. Edoff, F. Smole, and M. Topič, “The potential of textured front ZnO and flat TCO/metal back contact to improve optical absorption in thin Cu(In,Ga)Se2 solar cells,” Thin Solid Films 515(15), 5968–5972 (2007).
[Crossref]

M. Schmid, J. Klaer, R. Klenk, M. Topič, and J. Krč, “Stability of plasmonic metal nanoparticles integrated in the back contact of ultra-thin Cu(In,Ga)Se2 solar cells,” Thin Solid Films 527, 308–313 (2013).
[Crossref]

C. Roger, S. Noël, O. Sicardy, P. Faucherand, L. Grenet, N. Karst, H. Fournier, F. Roux, F. Ducroquet, A. Brioude, and S. Perraud, “Characteristics of molybdenum bilayer back contacts for Cu(In,Ga)Se2 solar cells on Ti foils,” Thin Solid Films 548, 608–616 (2013).
[Crossref]

J. A. Sap, O. Isabella, K. Jäger, and M. Zeman, “Extraction of optical properties of flat and surface-textured transparent conductive oxide films in a broad wavelength range,” Thin Solid Films 520(3), 1096–1101 (2011).
[Crossref]

P. A. van Nijnatten, “An automated directional reflectance/transmittance analyser for coating analysis,” Thin Solid Films 442(1–2), 74–79 (2003).
[Crossref]

K. Orgassa, H. W. Schock, and J. H. Werner, “Alternative back contact materials for thin-film Cu(In,Ga)Se2 solar cells,” Thin Solid Films 431–432, 387–391 (2003).
[Crossref]

Other (11)

W. N. Shafarman and J. E. Phillips, “Direct current-voltage measurements of the Mo/CuInSe2 contact on operating solar cells,” in Photovoltaic Specialists Conference (IEEE, 1996), pp.917–919.

R. Vismara, Optical Characterization of Photovoltaic Materials and Structures for Thin-Film Solar Cells Based on Advanced Texturization (Delft University of Technology, 2014).

J.A. Woollam Co, white paper, “M-2000 Ellipsometer,” http://www.jawoollam.com/m2000_home.html .

J.A. Woolam Co, white paper, “CompleteEASE,” http://www.jawoollam.com/completeease.html .

Perkin Elmer white paper, “LAMBDA 950 UV/Vis/NIR Spectrophotometer,” http://www.perkinelmer.com/Catalog/Product/ID/L950 .

NT-MDT white paper, “NTEGRA Spectra,” http://www.ntmdt.com/afm-raman/ntegra-spectra .

NREL, “Reference solar spectral irradiance: air mass 1.5,” http://rredc.nrel.gov/solar/spectra/am1.5/ .

L. C. Andreani, P. A. Kowalczewski, C. I. Mura, M. Patrini, M. Acciarri, S. Binetti, A. Sassella, and S. Marchionna, “Towards CIGS slar cells with reduced film thickness: a study of optical properties and of photonic structures for light trapping,” in 27th European Photovoltaic Solar Energy Conference and Exhibition (2012), p. 2334.

ANSYS white paper, “ANSYS HFSS,” http://www.ansys.com/Products/Simulation+Technology/Electronics/Signal+Integrity/ANSYS+HFSS .

J. Malmström, O. Lundberg, and L. Stolt, “Potential for light trapping in Cu(In,Ga)Se2 solar cells,” in 3rd World Conference on Photovoltaic Energy Conversion, K. Kurokawa, ed. (2003), pp. 344–347.

D. J. L. Brémaud, Investigation and Development of CIGS Solar Cells on Flexible Substrates and with Alternative Electrical Back Contacts (ETH Zurich, 2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 (a) SEM cross-section of the reference cell (with indication of measured external parameters) and (b) surface morphology of the CIGS layer (from AFM).
Fig. 2
Fig. 2 Wavelength-dependent real part (n) and imaginary part (k, extinction coefficient) of the refractive index of all materials used.
Fig. 3
Fig. 3 Rendering of the calibration model (left) and simulation results (right). Both simulated CIGS absorptance (blue area) and reflectance (yellow area) well corresponds to the measured EQE (dashed black line) and reflectance (dash-dotted line, here visualized as 1–R).
Fig. 4
Fig. 4 Sketch of the model (left) and simulation results (right) of a device on 1-D gratings with P = 2000 nm and h = 500 nm. Black lines in the plot indicate ACIGS and 1–R of a flat device (i.e. with no gratings).
Fig. 5
Fig. 5 Summary of geometrical optimization of gratings height (a) and period (b).
Fig. 6
Fig. 6 3-D rendering of the pyramidal (2-D) grating model (left) and comparison between simulated CIGS absorptance and cell reflectance of the 1-D and 2-D grating solar cells.
Fig. 7
Fig. 7 Electric field magnitude for selected wavelengths: (a) eigenmode @ 1131 nm, exhibiting a diffraction pattern from gratings’ facets; (b) eigenmode @ 1124 nm, showing wave-guiding in both absorber and front TCO; (c) eigenmode @ 1120 nm and (d) eigenmode @ 1113 nm, where hybridized diffraction and wave-guided resonances can be observed.
Fig. 8
Fig. 8 Sketch of the model with 2-D pyramidal gratings and MoO3 spacer layer (left) and simulation results (right). The introduction of the dielectric spacer layer reduced the parasitic absorptance inside Mo (grey lines) and increased absorption in the CIGS layer (red lines).
Fig. 9
Fig. 9 Different simulated cell configurations (not to scale). These sketches should be imagined as cross-section of the models based on 2-D gratings.
Fig. 10
Fig. 10 ACIGS of devices with different configurations. Modifications to the back reflector improve performance at long wavelengths (‘A’, ‘B’, ‘C’), while using IOH as front TCO (‘D’) results in an increase of ACIGS over the whole spectrum.
Fig. 11
Fig. 11 Absorptance in CIGS for cells with configuration ‘D’ and absorber thickness of 600 nm and 1500 nm. ACIGS of the flat calibration model is included as reference.

Tables (3)

Tables Icon

Table 1 Estimated thickness of device layers.α

Tables Icon

Table 2 Cell layer thicknesses for configurations B, C, and D.

Tables Icon

Table 3 Implied CIGS absorber photocurrent density for selected models.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

A i (λ)= 1 2 ε 0 Im( ε i )ω V i | E | 2 dV
J ph-i (λ)=q 300 nm 1400 nm A i (λ)Φ(λ)dλ

Metrics