Abstract

The role of pseudo-disordered photonic crystals on the absorption efficiency of simplified thin film crystalline silicon solar cells is presented and discussed. The expected short circuit current can thus be further increased compared to a fully optimized square lattice of holes, thanks to carefully controlled positions of the nanoholes in the considered realistic simplified solar cell stack. In addition, the pseudo-disordered structures are less sensitive to the angle of incidence, especially in the long wavelength range.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Full-spectrum light management by pseudo-disordered moth-eye structures for thin film solar cells

Xiaojun Liu, Yun Da, and Yimin Xuan
Opt. Express 25(16) A824-A839 (2017)

Disordered photonic structures for light harvesting in solar cells

Filippo Pratesi, Matteo Burresi, Francesco Riboli, Kevin Vynck, and Diederik S. Wiersma
Opt. Express 21(S3) A460-A468 (2013)

Design, fabrication and optical characterization of photonic crystal assisted thin film monocrystalline-silicon solar cells

Xianqin Meng, Valérie Depauw, Guillaume Gomard, Ounsi El Daif, Christos Trompoukis, Emmanuel Drouard, Cécile Jamois, Alain Fave, Frédéric Dross, Ivan Gordon, and Christian Seassal
Opt. Express 20(S4) A465-A475 (2012)

References

  • View by:
  • |
  • |
  • |

  1. X. Meng, V. Depauw, G. Gomard, O. El Daif, C. Trompoukis, E. Drouard, C. Jamois, A. Fave, F. Dross, I. Gordon, and C. Seassal, “Design, fabrication and optical characterization of photonic crystal assisted thin film monocrystalline-silicon solar cells,” Opt. Express 20(S4Suppl 4), A465–A475 (2012).
    [Crossref] [PubMed]
  2. K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008).
    [Crossref] [PubMed]
  3. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
    [Crossref] [PubMed]
  4. E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).
    [Crossref] [PubMed]
  5. R. Dewan, V. Jovanov, S. Hamraz, and D. Knipp, “Analyzing periodic and random textured silicon thin film solar cells by Rigorous Coupled Wave Analysis,” Sci. Rep. 4, 6029 (2014).
    [Crossref] [PubMed]
  6. M. Burresi, F. Pratesi, F. Riboli, and D. S. Wiersma, “Complex photonic structures for light harvesting,” Adv. Opt. Mater. 3(6), 722–743 (2015).
    [Crossref] [PubMed]
  7. M. S. Branham, W. C. Hsu, S. Yerci, J. Loomis, S. V. Boriskina, B. R. Hoard, S. E. Han, and G. Chen, “15.7% efficient 10-μm-thick crystalline silicon solar cells using periodic nanostructures,” Adv. Mater. 27(13), 2182–2188 (2015).
    [Crossref] [PubMed]
  8. L. Zeng, P. Bermel, Y. Yi, B. Alamariu, K. Broderick, J. Liu, C. Hong, X. Duan, J. Joannopoulos, and L. Kimerling, “Demonstration of enhanced absorption in thin film Si solar cells with textured photonic crystal back reflector,” Appl. Phys. Lett. 93(22), 221105 (2008).
    [Crossref]
  9. J. G. Mutitu, S. Shi, C. Chen, T. Creazzo, A. Barnett, C. Honsberg, and D. W. Prather, “Thin film solar cell design based on photonic crystal and diffractive grating structures,” Opt. Express 16(19), 15238–15248 (2008).
    [Crossref] [PubMed]
  10. X. Meng, E. Drouard, G. Gomard, R. Peretti, A. Fave, and C. Seassal, “Combined front and back diffraction gratings for broad band light trapping in thin film solar cell,” Opt. Express 20(S5Suppl 5), A560–A571 (2012).
    [Crossref] [PubMed]
  11. C. S. Schuster, P. Kowalczewski, E. R. Martins, M. Patrini, M. G. Scullion, M. Liscidini, L. Lewis, C. Reardon, L. C. Andreani, and T. F. Krauss, “Dual gratings for enhanced light trapping in thin-film solar cells by a layer-transfer technique,” Opt. Express 21(S3Suppl 3), A433–A439 (2013).
    [Crossref] [PubMed]
  12. K. Vynck, M. Burresi, F. Riboli, and D. S. Wiersma, “Photon management in two-dimensional disordered media,” Nat. Mater. 11(12), 1017–1022 (2012).
    [PubMed]
  13. F. Pratesi, M. Burresi, F. Riboli, K. Vynck, and D. S. Wiersma, “Disordered photonic structures for light harvesting in solar cells,” Opt. Express 21(S3Suppl 3), A460–A468 (2013).
    [Crossref] [PubMed]
  14. M. Burresi, F. Pratesi, K. Vynck, M. Prasciolu, M. Tormen, and D. S. Wiersma, “Two-dimensional disorder for broadband, omnidirectional and polarization-insensitive absorption,” Opt. Express 21(S2Suppl 2), A268–A275 (2013).
    [Crossref] [PubMed]
  15. U. W. Paetzold, M. Smeets, M. Meier, K. Bittkau, T. Merdzhanova, V. Smirnov, D. Michaelis, C. Waechter, R. Carius, and U. Rau, “Disorder improves nanophotonic light trapping in thin-film solar cells,” Appl. Phys. Lett. 104(13), 131102 (2014).
    [Crossref]
  16. R. A. Pala, J. S. Liu, E. S. Barnard, D. Askarov, E. C. Garnett, S. Fan, and M. L. Brongersma, “Optimization of non-periodic plasmonic light-trapping layers for thin-film solar cells,” Nat. Commun. 4, 2095 (2013).
    [Crossref] [PubMed]
  17. Q. G. Du, C. H. Kam, H. V. Demir, H. Y. Yu, and X. W. Sun, “Broadband absorption enhancement in randomly positioned silicon nanowire arrays for solar cell applications,” Opt. Lett. 36(10), 1884–1886 (2011).
    [Crossref] [PubMed]
  18. A. Oskooi, P. A. Favuzzi, Y. Tanaka, H. Shigeta, Y. Kawakami, and S. Noda, “Partially disordered photonic-crystal thin films for enhanced and robust photovoltaics,” Appl. Phys. Lett. 100(18), 181110 (2012).
    [Crossref]
  19. C. Lin, L. J. Martínez, and M. L. Povinelli, “Experimental broadband absorption enhancement in silicon nanohole structures with optimized complex unit cells,” Opt. Express 21(S5Suppl 5), A872–A882 (2013).
    [Crossref] [PubMed]
  20. E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 2665 (2013).
    [Crossref] [PubMed]
  21. R. Peretti, G. Gomard, L. Lalouat, C. Seassal, and E. Drouard, “Absorption control in pseudodisordered photonic-crystal thin films,” Phys. Rev. A 88(5), 053835 (2013).
    [Crossref]
  22. J. Liu, L. Lalouat, E. Drouard, and R. Orobtchouk, “Binary coded patterns for photon control using necklace problem concept,” Opt. Express 24(2), 1133–1142 (2016).
    [Crossref] [PubMed]
  23. A. Oskooi, Y. Tanaka, and S. Noda, “Tandem photonic-crystal thin films surpassing Lambertian light-trapping limit over broad bandwidth and angular range,” Appl. Phys. Lett. 104(9), 091121 (2014).
    [Crossref]
  24. A. Oskooi, M. De Zoysa, K. Ishizaki, and S. Noda, “Experimental Demonstration of Quasi-resonant Absorption in Silicon Thin Films for Enhanced Solar Light Trapping,” ACS Photonics 1(4), 304–309 (2014).
    [Crossref]
  25. X. Fang, M. Lou, H. Bao, and C. Y. Zhao, “Thin films with disordered nanohole patterns for solar radiation absorbers,” J. Quant. Spectrosc. Radiat. Transf. 158, 145–153 (2015).
    [Crossref]
  26. H. Ren, Q. Du, F. Ren, and C. Png, “Photonic quasicrystal nanopatterned silicon thin film for photovoltaic applications,” J. Opt. 17(3), 035901 (2015).
    [Crossref]
  27. P. A. Postigo and J. M. Llorens, “Optical absorption enhancement by photonic quasicrystals in thin films for photovoltaic applications,” in 2013 15th International Conference on Transparent Optical Networks (ICTON) (2013), pp. 1–4.
    [Crossref]
  28. J. Xavier, J. Probst, F. Back, P. Wyss, D. Eisenhauer, B. Löchel, E. Rudigier-Voigt, and C. Becker, “Quasicrystalline-structured light harvesting nanophotonic silicon films on nanoimprinted glass for ultra-thin photovoltaics,” Opt. Mater. Express 4(11), 2290–2299 (2014).
    [Crossref]
  29. M. C. van Lare and A. Polman, “Optimized scattering power spectral density of photovoltaic light-trapping patterns,” ACS Photonics 2(7), 822–831 (2015).
    [Crossref]
  30. A. Bozzola, M. Liscidini, and L. C. Andreani, “Photonic light-trapping versus Lambertian limits in thin film silicon solar cells with 1D and 2D periodic patterns,” Opt. Express 20(S2Suppl 2), A224–A244 (2012).
    [Crossref] [PubMed]
  31. V. Depauw, X. Meng, O. El Daif, G. Gomard, L. Lalouat, E. Drouard, C. Trompoukis, A. Fave, C. Seassal, and I. Gordon, “Micrometer-thin crystalline-silicon solar cells integrating numerically optimized 2-D photonic crystals,” IEEE J. Photovoltaics 4(1), 215–223 (2014).
    [Crossref]
  32. M. Moharam and T. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71(7), 811–818 (1981).
    [Crossref]
  33. C. Herzinger, B. Johs, W. McGahan, J. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys. 83(6), 3323–3336 (1998).
    [Crossref]
  34. E. D. Palik, Handbook of Optical Constants of Solids, Vol. 3 (Academic Press, 1998).
  35. Source of data ASTM/NREL, http://rredc.nrel.gov/solar/spectra/am1.5/ .
  36. T. Tiedje, E. Yablonovitch, G. D. Cody, and B. G. Brooks, “Limiting efficiency of silicon solar cells,” IEEE Trans. Electron Dev. 31(5), 711–716 (1984).
    [Crossref]
  37. G. Gomard, R. Peretti, E. Drouard, X. Meng, and C. Seassal, “Photonic crystals and optical mode engineering for thin film photovoltaics,” Opt. Express 21(S3Suppl 3), A515–A527 (2013).
    [Crossref] [PubMed]
  38. A. Bozzola, M. Liscidini, and L. C. Andreani, “Broadband light trapping with disordered photonic structures in thin-film silicon solar cells,” Prog. Photovolt. Res. Appl. 22, 1237–1245 (2014).
  39. Z. Yu, A. Raman, and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express 18(S3Suppl 3), A366–A380 (2010).
    [Crossref] [PubMed]
  40. C. Trompoukis, O. El Daif, V. Depauw, I. Gordon, and J. Poortmans, “Photonic assisted light trapping integrated in ultrathin crystalline silicon solar cells by nanoimprint lithography,” Appl. Phys. Lett. 101(10), 103901 (2012).
    [Crossref]

2016 (1)

2015 (5)

X. Fang, M. Lou, H. Bao, and C. Y. Zhao, “Thin films with disordered nanohole patterns for solar radiation absorbers,” J. Quant. Spectrosc. Radiat. Transf. 158, 145–153 (2015).
[Crossref]

H. Ren, Q. Du, F. Ren, and C. Png, “Photonic quasicrystal nanopatterned silicon thin film for photovoltaic applications,” J. Opt. 17(3), 035901 (2015).
[Crossref]

M. C. van Lare and A. Polman, “Optimized scattering power spectral density of photovoltaic light-trapping patterns,” ACS Photonics 2(7), 822–831 (2015).
[Crossref]

M. Burresi, F. Pratesi, F. Riboli, and D. S. Wiersma, “Complex photonic structures for light harvesting,” Adv. Opt. Mater. 3(6), 722–743 (2015).
[Crossref] [PubMed]

M. S. Branham, W. C. Hsu, S. Yerci, J. Loomis, S. V. Boriskina, B. R. Hoard, S. E. Han, and G. Chen, “15.7% efficient 10-μm-thick crystalline silicon solar cells using periodic nanostructures,” Adv. Mater. 27(13), 2182–2188 (2015).
[Crossref] [PubMed]

2014 (7)

R. Dewan, V. Jovanov, S. Hamraz, and D. Knipp, “Analyzing periodic and random textured silicon thin film solar cells by Rigorous Coupled Wave Analysis,” Sci. Rep. 4, 6029 (2014).
[Crossref] [PubMed]

U. W. Paetzold, M. Smeets, M. Meier, K. Bittkau, T. Merdzhanova, V. Smirnov, D. Michaelis, C. Waechter, R. Carius, and U. Rau, “Disorder improves nanophotonic light trapping in thin-film solar cells,” Appl. Phys. Lett. 104(13), 131102 (2014).
[Crossref]

J. Xavier, J. Probst, F. Back, P. Wyss, D. Eisenhauer, B. Löchel, E. Rudigier-Voigt, and C. Becker, “Quasicrystalline-structured light harvesting nanophotonic silicon films on nanoimprinted glass for ultra-thin photovoltaics,” Opt. Mater. Express 4(11), 2290–2299 (2014).
[Crossref]

A. Oskooi, Y. Tanaka, and S. Noda, “Tandem photonic-crystal thin films surpassing Lambertian light-trapping limit over broad bandwidth and angular range,” Appl. Phys. Lett. 104(9), 091121 (2014).
[Crossref]

A. Oskooi, M. De Zoysa, K. Ishizaki, and S. Noda, “Experimental Demonstration of Quasi-resonant Absorption in Silicon Thin Films for Enhanced Solar Light Trapping,” ACS Photonics 1(4), 304–309 (2014).
[Crossref]

V. Depauw, X. Meng, O. El Daif, G. Gomard, L. Lalouat, E. Drouard, C. Trompoukis, A. Fave, C. Seassal, and I. Gordon, “Micrometer-thin crystalline-silicon solar cells integrating numerically optimized 2-D photonic crystals,” IEEE J. Photovoltaics 4(1), 215–223 (2014).
[Crossref]

A. Bozzola, M. Liscidini, and L. C. Andreani, “Broadband light trapping with disordered photonic structures in thin-film silicon solar cells,” Prog. Photovolt. Res. Appl. 22, 1237–1245 (2014).

2013 (8)

G. Gomard, R. Peretti, E. Drouard, X. Meng, and C. Seassal, “Photonic crystals and optical mode engineering for thin film photovoltaics,” Opt. Express 21(S3Suppl 3), A515–A527 (2013).
[Crossref] [PubMed]

C. Lin, L. J. Martínez, and M. L. Povinelli, “Experimental broadband absorption enhancement in silicon nanohole structures with optimized complex unit cells,” Opt. Express 21(S5Suppl 5), A872–A882 (2013).
[Crossref] [PubMed]

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 2665 (2013).
[Crossref] [PubMed]

R. Peretti, G. Gomard, L. Lalouat, C. Seassal, and E. Drouard, “Absorption control in pseudodisordered photonic-crystal thin films,” Phys. Rev. A 88(5), 053835 (2013).
[Crossref]

R. A. Pala, J. S. Liu, E. S. Barnard, D. Askarov, E. C. Garnett, S. Fan, and M. L. Brongersma, “Optimization of non-periodic plasmonic light-trapping layers for thin-film solar cells,” Nat. Commun. 4, 2095 (2013).
[Crossref] [PubMed]

F. Pratesi, M. Burresi, F. Riboli, K. Vynck, and D. S. Wiersma, “Disordered photonic structures for light harvesting in solar cells,” Opt. Express 21(S3Suppl 3), A460–A468 (2013).
[Crossref] [PubMed]

M. Burresi, F. Pratesi, K. Vynck, M. Prasciolu, M. Tormen, and D. S. Wiersma, “Two-dimensional disorder for broadband, omnidirectional and polarization-insensitive absorption,” Opt. Express 21(S2Suppl 2), A268–A275 (2013).
[Crossref] [PubMed]

C. S. Schuster, P. Kowalczewski, E. R. Martins, M. Patrini, M. G. Scullion, M. Liscidini, L. Lewis, C. Reardon, L. C. Andreani, and T. F. Krauss, “Dual gratings for enhanced light trapping in thin-film solar cells by a layer-transfer technique,” Opt. Express 21(S3Suppl 3), A433–A439 (2013).
[Crossref] [PubMed]

2012 (6)

K. Vynck, M. Burresi, F. Riboli, and D. S. Wiersma, “Photon management in two-dimensional disordered media,” Nat. Mater. 11(12), 1017–1022 (2012).
[PubMed]

X. Meng, E. Drouard, G. Gomard, R. Peretti, A. Fave, and C. Seassal, “Combined front and back diffraction gratings for broad band light trapping in thin film solar cell,” Opt. Express 20(S5Suppl 5), A560–A571 (2012).
[Crossref] [PubMed]

X. Meng, V. Depauw, G. Gomard, O. El Daif, C. Trompoukis, E. Drouard, C. Jamois, A. Fave, F. Dross, I. Gordon, and C. Seassal, “Design, fabrication and optical characterization of photonic crystal assisted thin film monocrystalline-silicon solar cells,” Opt. Express 20(S4Suppl 4), A465–A475 (2012).
[Crossref] [PubMed]

A. Bozzola, M. Liscidini, and L. C. Andreani, “Photonic light-trapping versus Lambertian limits in thin film silicon solar cells with 1D and 2D periodic patterns,” Opt. Express 20(S2Suppl 2), A224–A244 (2012).
[Crossref] [PubMed]

A. Oskooi, P. A. Favuzzi, Y. Tanaka, H. Shigeta, Y. Kawakami, and S. Noda, “Partially disordered photonic-crystal thin films for enhanced and robust photovoltaics,” Appl. Phys. Lett. 100(18), 181110 (2012).
[Crossref]

C. Trompoukis, O. El Daif, V. Depauw, I. Gordon, and J. Poortmans, “Photonic assisted light trapping integrated in ultrathin crystalline silicon solar cells by nanoimprint lithography,” Appl. Phys. Lett. 101(10), 103901 (2012).
[Crossref]

2011 (1)

2010 (3)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).
[Crossref] [PubMed]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express 18(S3Suppl 3), A366–A380 (2010).
[Crossref] [PubMed]

2008 (3)

K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008).
[Crossref] [PubMed]

L. Zeng, P. Bermel, Y. Yi, B. Alamariu, K. Broderick, J. Liu, C. Hong, X. Duan, J. Joannopoulos, and L. Kimerling, “Demonstration of enhanced absorption in thin film Si solar cells with textured photonic crystal back reflector,” Appl. Phys. Lett. 93(22), 221105 (2008).
[Crossref]

J. G. Mutitu, S. Shi, C. Chen, T. Creazzo, A. Barnett, C. Honsberg, and D. W. Prather, “Thin film solar cell design based on photonic crystal and diffractive grating structures,” Opt. Express 16(19), 15238–15248 (2008).
[Crossref] [PubMed]

1998 (1)

C. Herzinger, B. Johs, W. McGahan, J. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys. 83(6), 3323–3336 (1998).
[Crossref]

1984 (1)

T. Tiedje, E. Yablonovitch, G. D. Cody, and B. G. Brooks, “Limiting efficiency of silicon solar cells,” IEEE Trans. Electron Dev. 31(5), 711–716 (1984).
[Crossref]

1981 (1)

Alamariu, B.

L. Zeng, P. Bermel, Y. Yi, B. Alamariu, K. Broderick, J. Liu, C. Hong, X. Duan, J. Joannopoulos, and L. Kimerling, “Demonstration of enhanced absorption in thin film Si solar cells with textured photonic crystal back reflector,” Appl. Phys. Lett. 93(22), 221105 (2008).
[Crossref]

Andreani, L. C.

Askarov, D.

R. A. Pala, J. S. Liu, E. S. Barnard, D. Askarov, E. C. Garnett, S. Fan, and M. L. Brongersma, “Optimization of non-periodic plasmonic light-trapping layers for thin-film solar cells,” Nat. Commun. 4, 2095 (2013).
[Crossref] [PubMed]

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Back, F.

Bao, H.

X. Fang, M. Lou, H. Bao, and C. Y. Zhao, “Thin films with disordered nanohole patterns for solar radiation absorbers,” J. Quant. Spectrosc. Radiat. Transf. 158, 145–153 (2015).
[Crossref]

Barnard, E. S.

R. A. Pala, J. S. Liu, E. S. Barnard, D. Askarov, E. C. Garnett, S. Fan, and M. L. Brongersma, “Optimization of non-periodic plasmonic light-trapping layers for thin-film solar cells,” Nat. Commun. 4, 2095 (2013).
[Crossref] [PubMed]

Barnett, A.

Becker, C.

Bermel, P.

L. Zeng, P. Bermel, Y. Yi, B. Alamariu, K. Broderick, J. Liu, C. Hong, X. Duan, J. Joannopoulos, and L. Kimerling, “Demonstration of enhanced absorption in thin film Si solar cells with textured photonic crystal back reflector,” Appl. Phys. Lett. 93(22), 221105 (2008).
[Crossref]

Bittkau, K.

U. W. Paetzold, M. Smeets, M. Meier, K. Bittkau, T. Merdzhanova, V. Smirnov, D. Michaelis, C. Waechter, R. Carius, and U. Rau, “Disorder improves nanophotonic light trapping in thin-film solar cells,” Appl. Phys. Lett. 104(13), 131102 (2014).
[Crossref]

Boriskina, S. V.

M. S. Branham, W. C. Hsu, S. Yerci, J. Loomis, S. V. Boriskina, B. R. Hoard, S. E. Han, and G. Chen, “15.7% efficient 10-μm-thick crystalline silicon solar cells using periodic nanostructures,” Adv. Mater. 27(13), 2182–2188 (2015).
[Crossref] [PubMed]

Bozzola, A.

A. Bozzola, M. Liscidini, and L. C. Andreani, “Broadband light trapping with disordered photonic structures in thin-film silicon solar cells,” Prog. Photovolt. Res. Appl. 22, 1237–1245 (2014).

A. Bozzola, M. Liscidini, and L. C. Andreani, “Photonic light-trapping versus Lambertian limits in thin film silicon solar cells with 1D and 2D periodic patterns,” Opt. Express 20(S2Suppl 2), A224–A244 (2012).
[Crossref] [PubMed]

Branham, M. S.

M. S. Branham, W. C. Hsu, S. Yerci, J. Loomis, S. V. Boriskina, B. R. Hoard, S. E. Han, and G. Chen, “15.7% efficient 10-μm-thick crystalline silicon solar cells using periodic nanostructures,” Adv. Mater. 27(13), 2182–2188 (2015).
[Crossref] [PubMed]

Broderick, K.

L. Zeng, P. Bermel, Y. Yi, B. Alamariu, K. Broderick, J. Liu, C. Hong, X. Duan, J. Joannopoulos, and L. Kimerling, “Demonstration of enhanced absorption in thin film Si solar cells with textured photonic crystal back reflector,” Appl. Phys. Lett. 93(22), 221105 (2008).
[Crossref]

Brongersma, M. L.

R. A. Pala, J. S. Liu, E. S. Barnard, D. Askarov, E. C. Garnett, S. Fan, and M. L. Brongersma, “Optimization of non-periodic plasmonic light-trapping layers for thin-film solar cells,” Nat. Commun. 4, 2095 (2013).
[Crossref] [PubMed]

Brooks, B. G.

T. Tiedje, E. Yablonovitch, G. D. Cody, and B. G. Brooks, “Limiting efficiency of silicon solar cells,” IEEE Trans. Electron Dev. 31(5), 711–716 (1984).
[Crossref]

Burresi, M.

Carius, R.

U. W. Paetzold, M. Smeets, M. Meier, K. Bittkau, T. Merdzhanova, V. Smirnov, D. Michaelis, C. Waechter, R. Carius, and U. Rau, “Disorder improves nanophotonic light trapping in thin-film solar cells,” Appl. Phys. Lett. 104(13), 131102 (2014).
[Crossref]

Catchpole, K. R.

Chen, C.

Chen, G.

M. S. Branham, W. C. Hsu, S. Yerci, J. Loomis, S. V. Boriskina, B. R. Hoard, S. E. Han, and G. Chen, “15.7% efficient 10-μm-thick crystalline silicon solar cells using periodic nanostructures,” Adv. Mater. 27(13), 2182–2188 (2015).
[Crossref] [PubMed]

Chen, Z.

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 2665 (2013).
[Crossref] [PubMed]

Cody, G. D.

T. Tiedje, E. Yablonovitch, G. D. Cody, and B. G. Brooks, “Limiting efficiency of silicon solar cells,” IEEE Trans. Electron Dev. 31(5), 711–716 (1984).
[Crossref]

Creazzo, T.

De Zoysa, M.

A. Oskooi, M. De Zoysa, K. Ishizaki, and S. Noda, “Experimental Demonstration of Quasi-resonant Absorption in Silicon Thin Films for Enhanced Solar Light Trapping,” ACS Photonics 1(4), 304–309 (2014).
[Crossref]

Demir, H. V.

Depauw, V.

V. Depauw, X. Meng, O. El Daif, G. Gomard, L. Lalouat, E. Drouard, C. Trompoukis, A. Fave, C. Seassal, and I. Gordon, “Micrometer-thin crystalline-silicon solar cells integrating numerically optimized 2-D photonic crystals,” IEEE J. Photovoltaics 4(1), 215–223 (2014).
[Crossref]

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 2665 (2013).
[Crossref] [PubMed]

X. Meng, V. Depauw, G. Gomard, O. El Daif, C. Trompoukis, E. Drouard, C. Jamois, A. Fave, F. Dross, I. Gordon, and C. Seassal, “Design, fabrication and optical characterization of photonic crystal assisted thin film monocrystalline-silicon solar cells,” Opt. Express 20(S4Suppl 4), A465–A475 (2012).
[Crossref] [PubMed]

C. Trompoukis, O. El Daif, V. Depauw, I. Gordon, and J. Poortmans, “Photonic assisted light trapping integrated in ultrathin crystalline silicon solar cells by nanoimprint lithography,” Appl. Phys. Lett. 101(10), 103901 (2012).
[Crossref]

Dewan, R.

R. Dewan, V. Jovanov, S. Hamraz, and D. Knipp, “Analyzing periodic and random textured silicon thin film solar cells by Rigorous Coupled Wave Analysis,” Sci. Rep. 4, 6029 (2014).
[Crossref] [PubMed]

Dross, F.

Drouard, E.

Du, Q.

H. Ren, Q. Du, F. Ren, and C. Png, “Photonic quasicrystal nanopatterned silicon thin film for photovoltaic applications,” J. Opt. 17(3), 035901 (2015).
[Crossref]

Du, Q. G.

Duan, X.

L. Zeng, P. Bermel, Y. Yi, B. Alamariu, K. Broderick, J. Liu, C. Hong, X. Duan, J. Joannopoulos, and L. Kimerling, “Demonstration of enhanced absorption in thin film Si solar cells with textured photonic crystal back reflector,” Appl. Phys. Lett. 93(22), 221105 (2008).
[Crossref]

Eisenhauer, D.

El Daif, O.

V. Depauw, X. Meng, O. El Daif, G. Gomard, L. Lalouat, E. Drouard, C. Trompoukis, A. Fave, C. Seassal, and I. Gordon, “Micrometer-thin crystalline-silicon solar cells integrating numerically optimized 2-D photonic crystals,” IEEE J. Photovoltaics 4(1), 215–223 (2014).
[Crossref]

X. Meng, V. Depauw, G. Gomard, O. El Daif, C. Trompoukis, E. Drouard, C. Jamois, A. Fave, F. Dross, I. Gordon, and C. Seassal, “Design, fabrication and optical characterization of photonic crystal assisted thin film monocrystalline-silicon solar cells,” Opt. Express 20(S4Suppl 4), A465–A475 (2012).
[Crossref] [PubMed]

C. Trompoukis, O. El Daif, V. Depauw, I. Gordon, and J. Poortmans, “Photonic assisted light trapping integrated in ultrathin crystalline silicon solar cells by nanoimprint lithography,” Appl. Phys. Lett. 101(10), 103901 (2012).
[Crossref]

Fan, S.

R. A. Pala, J. S. Liu, E. S. Barnard, D. Askarov, E. C. Garnett, S. Fan, and M. L. Brongersma, “Optimization of non-periodic plasmonic light-trapping layers for thin-film solar cells,” Nat. Commun. 4, 2095 (2013).
[Crossref] [PubMed]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express 18(S3Suppl 3), A366–A380 (2010).
[Crossref] [PubMed]

Fang, X.

X. Fang, M. Lou, H. Bao, and C. Y. Zhao, “Thin films with disordered nanohole patterns for solar radiation absorbers,” J. Quant. Spectrosc. Radiat. Transf. 158, 145–153 (2015).
[Crossref]

Fave, A.

Favuzzi, P. A.

A. Oskooi, P. A. Favuzzi, Y. Tanaka, H. Shigeta, Y. Kawakami, and S. Noda, “Partially disordered photonic-crystal thin films for enhanced and robust photovoltaics,” Appl. Phys. Lett. 100(18), 181110 (2012).
[Crossref]

Garnett, E.

E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).
[Crossref] [PubMed]

Garnett, E. C.

R. A. Pala, J. S. Liu, E. S. Barnard, D. Askarov, E. C. Garnett, S. Fan, and M. L. Brongersma, “Optimization of non-periodic plasmonic light-trapping layers for thin-film solar cells,” Nat. Commun. 4, 2095 (2013).
[Crossref] [PubMed]

Gaylord, T.

Gomard, G.

Gordon, I.

V. Depauw, X. Meng, O. El Daif, G. Gomard, L. Lalouat, E. Drouard, C. Trompoukis, A. Fave, C. Seassal, and I. Gordon, “Micrometer-thin crystalline-silicon solar cells integrating numerically optimized 2-D photonic crystals,” IEEE J. Photovoltaics 4(1), 215–223 (2014).
[Crossref]

C. Trompoukis, O. El Daif, V. Depauw, I. Gordon, and J. Poortmans, “Photonic assisted light trapping integrated in ultrathin crystalline silicon solar cells by nanoimprint lithography,” Appl. Phys. Lett. 101(10), 103901 (2012).
[Crossref]

X. Meng, V. Depauw, G. Gomard, O. El Daif, C. Trompoukis, E. Drouard, C. Jamois, A. Fave, F. Dross, I. Gordon, and C. Seassal, “Design, fabrication and optical characterization of photonic crystal assisted thin film monocrystalline-silicon solar cells,” Opt. Express 20(S4Suppl 4), A465–A475 (2012).
[Crossref] [PubMed]

Hamraz, S.

R. Dewan, V. Jovanov, S. Hamraz, and D. Knipp, “Analyzing periodic and random textured silicon thin film solar cells by Rigorous Coupled Wave Analysis,” Sci. Rep. 4, 6029 (2014).
[Crossref] [PubMed]

Han, S. E.

M. S. Branham, W. C. Hsu, S. Yerci, J. Loomis, S. V. Boriskina, B. R. Hoard, S. E. Han, and G. Chen, “15.7% efficient 10-μm-thick crystalline silicon solar cells using periodic nanostructures,” Adv. Mater. 27(13), 2182–2188 (2015).
[Crossref] [PubMed]

Herzinger, C.

C. Herzinger, B. Johs, W. McGahan, J. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys. 83(6), 3323–3336 (1998).
[Crossref]

Hoard, B. R.

M. S. Branham, W. C. Hsu, S. Yerci, J. Loomis, S. V. Boriskina, B. R. Hoard, S. E. Han, and G. Chen, “15.7% efficient 10-μm-thick crystalline silicon solar cells using periodic nanostructures,” Adv. Mater. 27(13), 2182–2188 (2015).
[Crossref] [PubMed]

Hong, C.

L. Zeng, P. Bermel, Y. Yi, B. Alamariu, K. Broderick, J. Liu, C. Hong, X. Duan, J. Joannopoulos, and L. Kimerling, “Demonstration of enhanced absorption in thin film Si solar cells with textured photonic crystal back reflector,” Appl. Phys. Lett. 93(22), 221105 (2008).
[Crossref]

Honsberg, C.

Hsu, W. C.

M. S. Branham, W. C. Hsu, S. Yerci, J. Loomis, S. V. Boriskina, B. R. Hoard, S. E. Han, and G. Chen, “15.7% efficient 10-μm-thick crystalline silicon solar cells using periodic nanostructures,” Adv. Mater. 27(13), 2182–2188 (2015).
[Crossref] [PubMed]

Ishizaki, K.

A. Oskooi, M. De Zoysa, K. Ishizaki, and S. Noda, “Experimental Demonstration of Quasi-resonant Absorption in Silicon Thin Films for Enhanced Solar Light Trapping,” ACS Photonics 1(4), 304–309 (2014).
[Crossref]

Jamois, C.

Joannopoulos, J.

L. Zeng, P. Bermel, Y. Yi, B. Alamariu, K. Broderick, J. Liu, C. Hong, X. Duan, J. Joannopoulos, and L. Kimerling, “Demonstration of enhanced absorption in thin film Si solar cells with textured photonic crystal back reflector,” Appl. Phys. Lett. 93(22), 221105 (2008).
[Crossref]

Johs, B.

C. Herzinger, B. Johs, W. McGahan, J. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys. 83(6), 3323–3336 (1998).
[Crossref]

Jovanov, V.

R. Dewan, V. Jovanov, S. Hamraz, and D. Knipp, “Analyzing periodic and random textured silicon thin film solar cells by Rigorous Coupled Wave Analysis,” Sci. Rep. 4, 6029 (2014).
[Crossref] [PubMed]

Kam, C. H.

Kawakami, Y.

A. Oskooi, P. A. Favuzzi, Y. Tanaka, H. Shigeta, Y. Kawakami, and S. Noda, “Partially disordered photonic-crystal thin films for enhanced and robust photovoltaics,” Appl. Phys. Lett. 100(18), 181110 (2012).
[Crossref]

Kimerling, L.

L. Zeng, P. Bermel, Y. Yi, B. Alamariu, K. Broderick, J. Liu, C. Hong, X. Duan, J. Joannopoulos, and L. Kimerling, “Demonstration of enhanced absorption in thin film Si solar cells with textured photonic crystal back reflector,” Appl. Phys. Lett. 93(22), 221105 (2008).
[Crossref]

Knipp, D.

R. Dewan, V. Jovanov, S. Hamraz, and D. Knipp, “Analyzing periodic and random textured silicon thin film solar cells by Rigorous Coupled Wave Analysis,” Sci. Rep. 4, 6029 (2014).
[Crossref] [PubMed]

Kowalczewski, P.

Krauss, T. F.

Lalouat, L.

J. Liu, L. Lalouat, E. Drouard, and R. Orobtchouk, “Binary coded patterns for photon control using necklace problem concept,” Opt. Express 24(2), 1133–1142 (2016).
[Crossref] [PubMed]

V. Depauw, X. Meng, O. El Daif, G. Gomard, L. Lalouat, E. Drouard, C. Trompoukis, A. Fave, C. Seassal, and I. Gordon, “Micrometer-thin crystalline-silicon solar cells integrating numerically optimized 2-D photonic crystals,” IEEE J. Photovoltaics 4(1), 215–223 (2014).
[Crossref]

R. Peretti, G. Gomard, L. Lalouat, C. Seassal, and E. Drouard, “Absorption control in pseudodisordered photonic-crystal thin films,” Phys. Rev. A 88(5), 053835 (2013).
[Crossref]

Lewis, L.

Li, J.

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 2665 (2013).
[Crossref] [PubMed]

Lin, C.

Liscidini, M.

Liu, J.

J. Liu, L. Lalouat, E. Drouard, and R. Orobtchouk, “Binary coded patterns for photon control using necklace problem concept,” Opt. Express 24(2), 1133–1142 (2016).
[Crossref] [PubMed]

L. Zeng, P. Bermel, Y. Yi, B. Alamariu, K. Broderick, J. Liu, C. Hong, X. Duan, J. Joannopoulos, and L. Kimerling, “Demonstration of enhanced absorption in thin film Si solar cells with textured photonic crystal back reflector,” Appl. Phys. Lett. 93(22), 221105 (2008).
[Crossref]

Liu, J. S.

R. A. Pala, J. S. Liu, E. S. Barnard, D. Askarov, E. C. Garnett, S. Fan, and M. L. Brongersma, “Optimization of non-periodic plasmonic light-trapping layers for thin-film solar cells,” Nat. Commun. 4, 2095 (2013).
[Crossref] [PubMed]

Liu, Y.

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 2665 (2013).
[Crossref] [PubMed]

Löchel, B.

Loomis, J.

M. S. Branham, W. C. Hsu, S. Yerci, J. Loomis, S. V. Boriskina, B. R. Hoard, S. E. Han, and G. Chen, “15.7% efficient 10-μm-thick crystalline silicon solar cells using periodic nanostructures,” Adv. Mater. 27(13), 2182–2188 (2015).
[Crossref] [PubMed]

Lou, M.

X. Fang, M. Lou, H. Bao, and C. Y. Zhao, “Thin films with disordered nanohole patterns for solar radiation absorbers,” J. Quant. Spectrosc. Radiat. Transf. 158, 145–153 (2015).
[Crossref]

Martínez, L. J.

Martins, E. R.

McGahan, W.

C. Herzinger, B. Johs, W. McGahan, J. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys. 83(6), 3323–3336 (1998).
[Crossref]

Meier, M.

U. W. Paetzold, M. Smeets, M. Meier, K. Bittkau, T. Merdzhanova, V. Smirnov, D. Michaelis, C. Waechter, R. Carius, and U. Rau, “Disorder improves nanophotonic light trapping in thin-film solar cells,” Appl. Phys. Lett. 104(13), 131102 (2014).
[Crossref]

Meng, X.

Merdzhanova, T.

U. W. Paetzold, M. Smeets, M. Meier, K. Bittkau, T. Merdzhanova, V. Smirnov, D. Michaelis, C. Waechter, R. Carius, and U. Rau, “Disorder improves nanophotonic light trapping in thin-film solar cells,” Appl. Phys. Lett. 104(13), 131102 (2014).
[Crossref]

Michaelis, D.

U. W. Paetzold, M. Smeets, M. Meier, K. Bittkau, T. Merdzhanova, V. Smirnov, D. Michaelis, C. Waechter, R. Carius, and U. Rau, “Disorder improves nanophotonic light trapping in thin-film solar cells,” Appl. Phys. Lett. 104(13), 131102 (2014).
[Crossref]

Moharam, M.

Mutitu, J. G.

Noda, S.

A. Oskooi, M. De Zoysa, K. Ishizaki, and S. Noda, “Experimental Demonstration of Quasi-resonant Absorption in Silicon Thin Films for Enhanced Solar Light Trapping,” ACS Photonics 1(4), 304–309 (2014).
[Crossref]

A. Oskooi, Y. Tanaka, and S. Noda, “Tandem photonic-crystal thin films surpassing Lambertian light-trapping limit over broad bandwidth and angular range,” Appl. Phys. Lett. 104(9), 091121 (2014).
[Crossref]

A. Oskooi, P. A. Favuzzi, Y. Tanaka, H. Shigeta, Y. Kawakami, and S. Noda, “Partially disordered photonic-crystal thin films for enhanced and robust photovoltaics,” Appl. Phys. Lett. 100(18), 181110 (2012).
[Crossref]

Orobtchouk, R.

Oskooi, A.

A. Oskooi, M. De Zoysa, K. Ishizaki, and S. Noda, “Experimental Demonstration of Quasi-resonant Absorption in Silicon Thin Films for Enhanced Solar Light Trapping,” ACS Photonics 1(4), 304–309 (2014).
[Crossref]

A. Oskooi, Y. Tanaka, and S. Noda, “Tandem photonic-crystal thin films surpassing Lambertian light-trapping limit over broad bandwidth and angular range,” Appl. Phys. Lett. 104(9), 091121 (2014).
[Crossref]

A. Oskooi, P. A. Favuzzi, Y. Tanaka, H. Shigeta, Y. Kawakami, and S. Noda, “Partially disordered photonic-crystal thin films for enhanced and robust photovoltaics,” Appl. Phys. Lett. 100(18), 181110 (2012).
[Crossref]

Paetzold, U. W.

U. W. Paetzold, M. Smeets, M. Meier, K. Bittkau, T. Merdzhanova, V. Smirnov, D. Michaelis, C. Waechter, R. Carius, and U. Rau, “Disorder improves nanophotonic light trapping in thin-film solar cells,” Appl. Phys. Lett. 104(13), 131102 (2014).
[Crossref]

Pala, R. A.

R. A. Pala, J. S. Liu, E. S. Barnard, D. Askarov, E. C. Garnett, S. Fan, and M. L. Brongersma, “Optimization of non-periodic plasmonic light-trapping layers for thin-film solar cells,” Nat. Commun. 4, 2095 (2013).
[Crossref] [PubMed]

Patrini, M.

Paulson, W.

C. Herzinger, B. Johs, W. McGahan, J. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys. 83(6), 3323–3336 (1998).
[Crossref]

Peretti, R.

Png, C.

H. Ren, Q. Du, F. Ren, and C. Png, “Photonic quasicrystal nanopatterned silicon thin film for photovoltaic applications,” J. Opt. 17(3), 035901 (2015).
[Crossref]

Polman, A.

M. C. van Lare and A. Polman, “Optimized scattering power spectral density of photovoltaic light-trapping patterns,” ACS Photonics 2(7), 822–831 (2015).
[Crossref]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008).
[Crossref] [PubMed]

Poortmans, J.

C. Trompoukis, O. El Daif, V. Depauw, I. Gordon, and J. Poortmans, “Photonic assisted light trapping integrated in ultrathin crystalline silicon solar cells by nanoimprint lithography,” Appl. Phys. Lett. 101(10), 103901 (2012).
[Crossref]

Povinelli, M. L.

Prasciolu, M.

Pratesi, F.

Prather, D. W.

Probst, J.

Raman, A.

Rau, U.

U. W. Paetzold, M. Smeets, M. Meier, K. Bittkau, T. Merdzhanova, V. Smirnov, D. Michaelis, C. Waechter, R. Carius, and U. Rau, “Disorder improves nanophotonic light trapping in thin-film solar cells,” Appl. Phys. Lett. 104(13), 131102 (2014).
[Crossref]

Reardon, C.

Ren, F.

H. Ren, Q. Du, F. Ren, and C. Png, “Photonic quasicrystal nanopatterned silicon thin film for photovoltaic applications,” J. Opt. 17(3), 035901 (2015).
[Crossref]

Ren, H.

H. Ren, Q. Du, F. Ren, and C. Png, “Photonic quasicrystal nanopatterned silicon thin film for photovoltaic applications,” J. Opt. 17(3), 035901 (2015).
[Crossref]

Riboli, F.

M. Burresi, F. Pratesi, F. Riboli, and D. S. Wiersma, “Complex photonic structures for light harvesting,” Adv. Opt. Mater. 3(6), 722–743 (2015).
[Crossref] [PubMed]

F. Pratesi, M. Burresi, F. Riboli, K. Vynck, and D. S. Wiersma, “Disordered photonic structures for light harvesting in solar cells,” Opt. Express 21(S3Suppl 3), A460–A468 (2013).
[Crossref] [PubMed]

K. Vynck, M. Burresi, F. Riboli, and D. S. Wiersma, “Photon management in two-dimensional disordered media,” Nat. Mater. 11(12), 1017–1022 (2012).
[PubMed]

Rudigier-Voigt, E.

Schuster, C. S.

Scullion, M. G.

Seassal, C.

Shi, S.

Shigeta, H.

A. Oskooi, P. A. Favuzzi, Y. Tanaka, H. Shigeta, Y. Kawakami, and S. Noda, “Partially disordered photonic-crystal thin films for enhanced and robust photovoltaics,” Appl. Phys. Lett. 100(18), 181110 (2012).
[Crossref]

Smeets, M.

U. W. Paetzold, M. Smeets, M. Meier, K. Bittkau, T. Merdzhanova, V. Smirnov, D. Michaelis, C. Waechter, R. Carius, and U. Rau, “Disorder improves nanophotonic light trapping in thin-film solar cells,” Appl. Phys. Lett. 104(13), 131102 (2014).
[Crossref]

Smirnov, V.

U. W. Paetzold, M. Smeets, M. Meier, K. Bittkau, T. Merdzhanova, V. Smirnov, D. Michaelis, C. Waechter, R. Carius, and U. Rau, “Disorder improves nanophotonic light trapping in thin-film solar cells,” Appl. Phys. Lett. 104(13), 131102 (2014).
[Crossref]

Sun, X. W.

Tanaka, Y.

A. Oskooi, Y. Tanaka, and S. Noda, “Tandem photonic-crystal thin films surpassing Lambertian light-trapping limit over broad bandwidth and angular range,” Appl. Phys. Lett. 104(9), 091121 (2014).
[Crossref]

A. Oskooi, P. A. Favuzzi, Y. Tanaka, H. Shigeta, Y. Kawakami, and S. Noda, “Partially disordered photonic-crystal thin films for enhanced and robust photovoltaics,” Appl. Phys. Lett. 100(18), 181110 (2012).
[Crossref]

Tiedje, T.

T. Tiedje, E. Yablonovitch, G. D. Cody, and B. G. Brooks, “Limiting efficiency of silicon solar cells,” IEEE Trans. Electron Dev. 31(5), 711–716 (1984).
[Crossref]

Tormen, M.

Trompoukis, C.

V. Depauw, X. Meng, O. El Daif, G. Gomard, L. Lalouat, E. Drouard, C. Trompoukis, A. Fave, C. Seassal, and I. Gordon, “Micrometer-thin crystalline-silicon solar cells integrating numerically optimized 2-D photonic crystals,” IEEE J. Photovoltaics 4(1), 215–223 (2014).
[Crossref]

X. Meng, V. Depauw, G. Gomard, O. El Daif, C. Trompoukis, E. Drouard, C. Jamois, A. Fave, F. Dross, I. Gordon, and C. Seassal, “Design, fabrication and optical characterization of photonic crystal assisted thin film monocrystalline-silicon solar cells,” Opt. Express 20(S4Suppl 4), A465–A475 (2012).
[Crossref] [PubMed]

C. Trompoukis, O. El Daif, V. Depauw, I. Gordon, and J. Poortmans, “Photonic assisted light trapping integrated in ultrathin crystalline silicon solar cells by nanoimprint lithography,” Appl. Phys. Lett. 101(10), 103901 (2012).
[Crossref]

van Lare, M. C.

M. C. van Lare and A. Polman, “Optimized scattering power spectral density of photovoltaic light-trapping patterns,” ACS Photonics 2(7), 822–831 (2015).
[Crossref]

Vynck, K.

Waechter, C.

U. W. Paetzold, M. Smeets, M. Meier, K. Bittkau, T. Merdzhanova, V. Smirnov, D. Michaelis, C. Waechter, R. Carius, and U. Rau, “Disorder improves nanophotonic light trapping in thin-film solar cells,” Appl. Phys. Lett. 104(13), 131102 (2014).
[Crossref]

Wiersma, D. S.

Woollam, J.

C. Herzinger, B. Johs, W. McGahan, J. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys. 83(6), 3323–3336 (1998).
[Crossref]

Wyss, P.

Xavier, J.

Yablonovitch, E.

T. Tiedje, E. Yablonovitch, G. D. Cody, and B. G. Brooks, “Limiting efficiency of silicon solar cells,” IEEE Trans. Electron Dev. 31(5), 711–716 (1984).
[Crossref]

Yang, P.

E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).
[Crossref] [PubMed]

Yerci, S.

M. S. Branham, W. C. Hsu, S. Yerci, J. Loomis, S. V. Boriskina, B. R. Hoard, S. E. Han, and G. Chen, “15.7% efficient 10-μm-thick crystalline silicon solar cells using periodic nanostructures,” Adv. Mater. 27(13), 2182–2188 (2015).
[Crossref] [PubMed]

Yi, Y.

L. Zeng, P. Bermel, Y. Yi, B. Alamariu, K. Broderick, J. Liu, C. Hong, X. Duan, J. Joannopoulos, and L. Kimerling, “Demonstration of enhanced absorption in thin film Si solar cells with textured photonic crystal back reflector,” Appl. Phys. Lett. 93(22), 221105 (2008).
[Crossref]

Yu, H. Y.

Yu, Z.

Zeng, L.

L. Zeng, P. Bermel, Y. Yi, B. Alamariu, K. Broderick, J. Liu, C. Hong, X. Duan, J. Joannopoulos, and L. Kimerling, “Demonstration of enhanced absorption in thin film Si solar cells with textured photonic crystal back reflector,” Appl. Phys. Lett. 93(22), 221105 (2008).
[Crossref]

Zhao, C. Y.

X. Fang, M. Lou, H. Bao, and C. Y. Zhao, “Thin films with disordered nanohole patterns for solar radiation absorbers,” J. Quant. Spectrosc. Radiat. Transf. 158, 145–153 (2015).
[Crossref]

Zhou, J.

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 2665 (2013).
[Crossref] [PubMed]

ACS Photonics (2)

A. Oskooi, M. De Zoysa, K. Ishizaki, and S. Noda, “Experimental Demonstration of Quasi-resonant Absorption in Silicon Thin Films for Enhanced Solar Light Trapping,” ACS Photonics 1(4), 304–309 (2014).
[Crossref]

M. C. van Lare and A. Polman, “Optimized scattering power spectral density of photovoltaic light-trapping patterns,” ACS Photonics 2(7), 822–831 (2015).
[Crossref]

Adv. Mater. (1)

M. S. Branham, W. C. Hsu, S. Yerci, J. Loomis, S. V. Boriskina, B. R. Hoard, S. E. Han, and G. Chen, “15.7% efficient 10-μm-thick crystalline silicon solar cells using periodic nanostructures,” Adv. Mater. 27(13), 2182–2188 (2015).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

M. Burresi, F. Pratesi, F. Riboli, and D. S. Wiersma, “Complex photonic structures for light harvesting,” Adv. Opt. Mater. 3(6), 722–743 (2015).
[Crossref] [PubMed]

Appl. Phys. Lett. (5)

U. W. Paetzold, M. Smeets, M. Meier, K. Bittkau, T. Merdzhanova, V. Smirnov, D. Michaelis, C. Waechter, R. Carius, and U. Rau, “Disorder improves nanophotonic light trapping in thin-film solar cells,” Appl. Phys. Lett. 104(13), 131102 (2014).
[Crossref]

A. Oskooi, P. A. Favuzzi, Y. Tanaka, H. Shigeta, Y. Kawakami, and S. Noda, “Partially disordered photonic-crystal thin films for enhanced and robust photovoltaics,” Appl. Phys. Lett. 100(18), 181110 (2012).
[Crossref]

L. Zeng, P. Bermel, Y. Yi, B. Alamariu, K. Broderick, J. Liu, C. Hong, X. Duan, J. Joannopoulos, and L. Kimerling, “Demonstration of enhanced absorption in thin film Si solar cells with textured photonic crystal back reflector,” Appl. Phys. Lett. 93(22), 221105 (2008).
[Crossref]

A. Oskooi, Y. Tanaka, and S. Noda, “Tandem photonic-crystal thin films surpassing Lambertian light-trapping limit over broad bandwidth and angular range,” Appl. Phys. Lett. 104(9), 091121 (2014).
[Crossref]

C. Trompoukis, O. El Daif, V. Depauw, I. Gordon, and J. Poortmans, “Photonic assisted light trapping integrated in ultrathin crystalline silicon solar cells by nanoimprint lithography,” Appl. Phys. Lett. 101(10), 103901 (2012).
[Crossref]

IEEE J. Photovoltaics (1)

V. Depauw, X. Meng, O. El Daif, G. Gomard, L. Lalouat, E. Drouard, C. Trompoukis, A. Fave, C. Seassal, and I. Gordon, “Micrometer-thin crystalline-silicon solar cells integrating numerically optimized 2-D photonic crystals,” IEEE J. Photovoltaics 4(1), 215–223 (2014).
[Crossref]

IEEE Trans. Electron Dev. (1)

T. Tiedje, E. Yablonovitch, G. D. Cody, and B. G. Brooks, “Limiting efficiency of silicon solar cells,” IEEE Trans. Electron Dev. 31(5), 711–716 (1984).
[Crossref]

J. Appl. Phys. (1)

C. Herzinger, B. Johs, W. McGahan, J. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys. 83(6), 3323–3336 (1998).
[Crossref]

J. Opt. (1)

H. Ren, Q. Du, F. Ren, and C. Png, “Photonic quasicrystal nanopatterned silicon thin film for photovoltaic applications,” J. Opt. 17(3), 035901 (2015).
[Crossref]

J. Opt. Soc. Am. (1)

J. Quant. Spectrosc. Radiat. Transf. (1)

X. Fang, M. Lou, H. Bao, and C. Y. Zhao, “Thin films with disordered nanohole patterns for solar radiation absorbers,” J. Quant. Spectrosc. Radiat. Transf. 158, 145–153 (2015).
[Crossref]

Nano Lett. (1)

E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).
[Crossref] [PubMed]

Nat. Commun. (2)

R. A. Pala, J. S. Liu, E. S. Barnard, D. Askarov, E. C. Garnett, S. Fan, and M. L. Brongersma, “Optimization of non-periodic plasmonic light-trapping layers for thin-film solar cells,” Nat. Commun. 4, 2095 (2013).
[Crossref] [PubMed]

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 2665 (2013).
[Crossref] [PubMed]

Nat. Mater. (2)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

K. Vynck, M. Burresi, F. Riboli, and D. S. Wiersma, “Photon management in two-dimensional disordered media,” Nat. Mater. 11(12), 1017–1022 (2012).
[PubMed]

Opt. Express (12)

F. Pratesi, M. Burresi, F. Riboli, K. Vynck, and D. S. Wiersma, “Disordered photonic structures for light harvesting in solar cells,” Opt. Express 21(S3Suppl 3), A460–A468 (2013).
[Crossref] [PubMed]

M. Burresi, F. Pratesi, K. Vynck, M. Prasciolu, M. Tormen, and D. S. Wiersma, “Two-dimensional disorder for broadband, omnidirectional and polarization-insensitive absorption,” Opt. Express 21(S2Suppl 2), A268–A275 (2013).
[Crossref] [PubMed]

C. Lin, L. J. Martínez, and M. L. Povinelli, “Experimental broadband absorption enhancement in silicon nanohole structures with optimized complex unit cells,” Opt. Express 21(S5Suppl 5), A872–A882 (2013).
[Crossref] [PubMed]

X. Meng, V. Depauw, G. Gomard, O. El Daif, C. Trompoukis, E. Drouard, C. Jamois, A. Fave, F. Dross, I. Gordon, and C. Seassal, “Design, fabrication and optical characterization of photonic crystal assisted thin film monocrystalline-silicon solar cells,” Opt. Express 20(S4Suppl 4), A465–A475 (2012).
[Crossref] [PubMed]

K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008).
[Crossref] [PubMed]

J. G. Mutitu, S. Shi, C. Chen, T. Creazzo, A. Barnett, C. Honsberg, and D. W. Prather, “Thin film solar cell design based on photonic crystal and diffractive grating structures,” Opt. Express 16(19), 15238–15248 (2008).
[Crossref] [PubMed]

X. Meng, E. Drouard, G. Gomard, R. Peretti, A. Fave, and C. Seassal, “Combined front and back diffraction gratings for broad band light trapping in thin film solar cell,” Opt. Express 20(S5Suppl 5), A560–A571 (2012).
[Crossref] [PubMed]

C. S. Schuster, P. Kowalczewski, E. R. Martins, M. Patrini, M. G. Scullion, M. Liscidini, L. Lewis, C. Reardon, L. C. Andreani, and T. F. Krauss, “Dual gratings for enhanced light trapping in thin-film solar cells by a layer-transfer technique,” Opt. Express 21(S3Suppl 3), A433–A439 (2013).
[Crossref] [PubMed]

J. Liu, L. Lalouat, E. Drouard, and R. Orobtchouk, “Binary coded patterns for photon control using necklace problem concept,” Opt. Express 24(2), 1133–1142 (2016).
[Crossref] [PubMed]

A. Bozzola, M. Liscidini, and L. C. Andreani, “Photonic light-trapping versus Lambertian limits in thin film silicon solar cells with 1D and 2D periodic patterns,” Opt. Express 20(S2Suppl 2), A224–A244 (2012).
[Crossref] [PubMed]

G. Gomard, R. Peretti, E. Drouard, X. Meng, and C. Seassal, “Photonic crystals and optical mode engineering for thin film photovoltaics,” Opt. Express 21(S3Suppl 3), A515–A527 (2013).
[Crossref] [PubMed]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express 18(S3Suppl 3), A366–A380 (2010).
[Crossref] [PubMed]

Opt. Lett. (1)

Opt. Mater. Express (1)

Phys. Rev. A (1)

R. Peretti, G. Gomard, L. Lalouat, C. Seassal, and E. Drouard, “Absorption control in pseudodisordered photonic-crystal thin films,” Phys. Rev. A 88(5), 053835 (2013).
[Crossref]

Prog. Photovolt. Res. Appl. (1)

A. Bozzola, M. Liscidini, and L. C. Andreani, “Broadband light trapping with disordered photonic structures in thin-film silicon solar cells,” Prog. Photovolt. Res. Appl. 22, 1237–1245 (2014).

Sci. Rep. (1)

R. Dewan, V. Jovanov, S. Hamraz, and D. Knipp, “Analyzing periodic and random textured silicon thin film solar cells by Rigorous Coupled Wave Analysis,” Sci. Rep. 4, 6029 (2014).
[Crossref] [PubMed]

Other (3)

E. D. Palik, Handbook of Optical Constants of Solids, Vol. 3 (Academic Press, 1998).

Source of data ASTM/NREL, http://rredc.nrel.gov/solar/spectra/am1.5/ .

P. A. Postigo and J. M. Llorens, “Optical absorption enhancement by photonic quasicrystals in thin films for photovoltaic applications,” in 2013 15th International Conference on Transparent Optical Networks (ICTON) (2013), pp. 1–4.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 (a) Schematic view of the simplified thin film solar cells stack with pseudo-disordered structure. Side-view (b) and top view (c) of the thin film solar cell.
Fig. 2
Fig. 2 (a) Jsc calculated for the optimized geometrical parameters in the case of the square lattice of holes with 2 µm thick c-Si layers, and for geometries modified to mimic technological fluctuations. Each step of the simulation sequence refers to a modification of each of the three key parameters, with the magnitude shown on the figure. (b) Absorption spectra of the unpatterned structure (dark line) and the optimized square lattice of holes (red line), for different thickness of the c-Si layer from 1 to 8 µm.
Fig. 3
Fig. 3 Schematic view of the perturbation (a) for a single hole and (b) for 9 holes in a 3 × 3 supercell structure. (c & d) Determination of the pseudo-disordered structure parameter thanks to replication of the 3 × 3 supercell. (c) The blue point represents the centroid of the selected red holes which is used to determine the “compactness” parameter. (d) The minimum distance between the 9 holes depicted by the red arrows determines the “clustering” parameter.
Fig. 4
Fig. 4 For the 2 µm thick c-Si layer stack: (a) Ratio of the absorption associated to the best pseudo-disordered structure divided by the absorption corresponding to the optimized square lattice of holes structure. (b) Ratio of the absorption associated to the best/worst pseudo-disordered structure divided by the absorption corresponding to the optimized square lattice of holes structure. For a sake of clarity, these ratio are averaged over a 25 nm spectral range. (c) Comparison between the absorption spectra of the best pseudo-disordered structure and the optimized square lattice of holes, as well as the Yablonovitch limit and Lambertian scattering limit in the whole spectrum range; (d) for a spectral range comprised between 850 and 950 nm in order to highlight new absorption peaks (depicted by green arrows), broaden peaks (depicted by slide yellow arrows) or small magnitude peaks (depicted by red arrows).
Fig. 5
Fig. 5 Current density (Jsc, mA/cm2) map (a) as a function of clustering and compactness parameters ratio between optimized square lattice of holes and the pseudo-disordered structure for the 2µm thick c-Si layer case. The dashed black lines represent the compactness parameter of the optimized square lattice of holes (reference value = 1) structure for 2 × 2, 3 × 3 and 4 × 4 supercell. The clustering parameter of the optimized square lattice of holes structure corresponds to the period of the lattice and is 0.57 µm. The schematic views correspond to hole distribution of the pseudo-disordered structure that exhibit lowest Jsc for 2 × 2, 3 × 3 and 4 × 4 supercells (b, c, d) highest Jsc for the same cases (e, f, g). The red circles highlight the selected hole of the supercell.
Fig. 6
Fig. 6 Schematic view of the best 4x4 pseudo-disordered structure from the set of simulation discussed above (already shown Fig. 5d), together with the structure modified using the design rules inspired from the 2 × 2 supercell analysis. From the original distribution (a), selected holes (depicted the red dash circles) are shifted in the direction depicted by the arrow in order to break the small clusters of holes, leading to more homogeneously distributed holes (b).
Fig. 7
Fig. 7 Angularly integrated magnitude in logarithmic scale of Fourier component of the dielectric function of the considered nanostructure is integrated over polar coordinate (AIMF). For the 2 µm thick c-Si stack, the results for the best (res. worst) pseudo-disordered structure is plotted in blue (resp. red) line and for the optimized square lattice of holes structure in black in the case of a 2 × 2 (a), 3 × 3 (b) and 4 × 4 (c) supercell. The best pseudo-disordered structure for each supercell size and the square lattice of holes structure are also plotted together (d).
Fig. 8
Fig. 8 Current density (Jsc, mA/cm2) map of the 2 µm thick c-Si layer stack patterned by pseudo-disordered structures in a 2 × 2 supercell in function of the weight of low and high frequency components. The weight of low (resp. high) frequency components is determined by the AIMF in [0 2π/Λ] (resp. [2π/Λ 4π/Λ])
Fig. 9
Fig. 9 High current density (Jsc, mA/cm2) seeking for the pseudo-disordered structure with a 5x5 supercell by referring to the criteria in terms of AIMF.
Fig. 10
Fig. 10 Schematic view of an oblique incident light under an incidence angle θ with a conical angle Φ (a). For the 2 µm thick c-Si layer stack, evolution of Jsc for the optimized square lattice of holes structure (red dot), for the best pseudo-disordered structures (blue triangle) and for the unpatterned case (black square) over the [300-1100] nm (b) and [700-1100] nm spectral ranges (c).
Fig. 11
Fig. 11 Refractive index n (red) and extinction coefficient k (blue) used for optical simulations, for c-Si (a), ITO (b) and Aluminum (c).

Tables (2)

Tables Icon

Table 1 Achievable current density (Jsc, mA/cm2) with and without a square lattice of holes, for different thicknesses of the c-Si layer. The parameters (period, filling fraction and the depth of the hole, as well as the scanning range) correspond to the maximal value for the optimized square lattice of holes structure.

Tables Icon

Table 2 Achievable current density (Jsc, mA/cm2) for the different thicknesses of c-Si layer: optimized value for square lattice of holes, mean value and standard, and extreme (best and worst) values obtained on pseudo-disordered structures with the corresponding parameters of the pattern.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

J sc = e hc λ 1 λ 2 λA(λ) dI dλ dλ

Metrics