M. Lim, S. Jin, S. S. Lee, and B. J. Lee, “Graphene-assisted Si-InSb thermophotovoltaic system for low temperature applications,” Opt. Express 23(7), A240–A253 (2015).

[Crossref]
[PubMed]

M. Lim, S. S. Lee, and B. J. Lee, “Near-field thermal radiation between doped silicon plates at nanoscale gaps,” Phys. Rev. B 91(19), 195136 (2015).

[Crossref]

K. Ito, A. Miura, H. Iizuka, and H. Toshiyoshi, “Parallel-plate submicron gap formed by micromachined low-density pillars for near-field radiative heat transfer,” Appl. Phys. Lett. 106(8), 083504 (2015).

[Crossref]

M. P. Bernardi, O. Dupré, E. Blandre, P.-O. Chapuis, R. Vaillon, and M. Francoeur, “Impacts of propagating, frustrated and surface modes on radiative, electrical and thermal losses in nanoscale-gap thermophotovoltaic power generators,” Sci. Rep. 5, 11626 (2015).

[Crossref]
[PubMed]

J.-Y. Chang, Y. Yang, and L. P. Wang, “Tungsten nanowire based hyperbolic metamaterial emitters for near-field thermophotovoltaic applications,” Int. J. Heat Mass Transfer 87, 237–247 (2015).

[Crossref]

S. Basu, Y. Yang, and L. P. Wang, “Near-field radiative heat transfer between metamaterials coated with silicon carbide thin films,” Appl. Phys. Lett. 106(3), 033106 (2015).

[Crossref]

X. L. Liu, T. J. Bright, and Z. M. Zhang, “Application conditions of effective medium theory in near-field radiative heat transfer between multilayered metamaterials,” J. Heat Transfer 136(9), 092703 (2014).

[Crossref]

X. L. Liu, R. Z. Zhang, and Z. M. Zhang, “Near-field radiative heat transfer with doped-silicon nanostructured metamaterials,” Int. J. Heat Mass Transfer 73, 389–398 (2014).

[Crossref]

T. J. Bright, L. P. Wang, and Z. M. Zhang, “Performance of near-field thermophotovoltaic cells enhanced with a backside reflector,” J. Heat. Transfer 136(6), 062701 (2014).

[Crossref]

H. J. Joyce, C. J. Docherty, Q. Gao, H. H. Tan, C. Jagadish, J. Lloyd-Hughes, L. M. Herz, and M. B. Johnston, “Electronic properties of GaAs, InAs and InP nanowires studied by terahertz spectroscopy,” Nanotechnology 24(21), 214006 (2013).

[Crossref]
[PubMed]

Y. Guo and Z. Jacob, “Thermal hyperbolic metamaterials,” Opt. Express 21(12), 15014–15019 (2013).

[Crossref]
[PubMed]

R. Messina and P. Ben-Abdallah, “Graphene-based photovoltaic cells for near-field thermal energy conversion,” Sci. Rep. 3, 1383 (2013).

[Crossref]
[PubMed]

S.-A. Biehs, M. Tschikin, R. Messina, and P. Ben-Abdallah, “Super-Planckian near-field thermal emission with phonon-polaritonic hyperbolic metamaterials,” Appl. Phys. Lett. 102(13), 131106 (2013).

[Crossref]

S. V. Zhukovsky, O. Kidwai, and J. E. Sipe, “Physical nature of volume plasmon polaritons in hyperbolic metamaterials,” Opt. Express 21(12), 14982–14987 (2013).

[Crossref]
[PubMed]

M. Lim, S. S. Lee, and B. J. Lee, “Near-field thermal radiation between graphene-covered doped silicon plates,” Opt. Express 21(19), 22173–22185 (2013).

[Crossref]
[PubMed]

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7, 948–957 (2013).

[Crossref]

Y. Guo, W. Newman, C. L. Cortes, and Z. Jacob, “Applications of hyperbolic metamaterial substrates,” Adv. OptoElectron. 2012452502 (2012).

[Crossref]

O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, “Overcoming the black body limit in plasmonic and graphene near-field thermophotovoltaic systems,” Opt. Express 20(S3), A366–A384 (2012).

[Crossref]
[PubMed]

M. Tschikin, P. Ben-Abdallah, and S.-A. Biehs, “Coherent thermal conductance of 1-D photonic crystals,” Phys. Lett. A 376(45), 3462–3465 (2012).

[Crossref]

S.-A. Biehs, M. Tschikin, and P. Ben-Abdallah, “Hyperbolic metamaterials as an analog of a blackbody in the near field,” Phys. Rev. Lett. 109(10), 104301 (2012).

[Crossref]
[PubMed]

M. Francoeur, R. Vaillon, and M. P. Mengüç, “Thermal impacts on the performance of nanoscale-gap thermophotovoltaic power generators,” IEEE Trans. Energy Conver. 26(2), 686–698 (2011).

[Crossref]

S. V. Zhukovsky, “Perfect transmission and highly asymmetric light localization in photonic multilayers,” Phys. Rev. A 81(5), 053808 (2010).

[Crossref]

M. Francoeur, M. P. Mengüç, and R. Vaillon, “Spectral tuning of near-field radiative heat flux between two thin silicon carbide films,” J. Phys. D Appl. Phys. 43(7), 075501 (2010).

[Crossref]

S. Basu, B. J. Lee, and Z. M. Zhang, “Near-field radiation calculated with an improved dielectric function model for doped silicon,” J. Heat Transfer 132(2), 023302 (2010).

[Crossref]

R. Ortuño, C. García-Meca, F. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B 79(7), 075425 (2009).

[Crossref]

B. J. Lee and Z. M. Zhang, “Lateral shifts in near-field thermal radiation with surface phonon polaritons,” Nanoscale Microscale Thermophys. Eng. 12, 238–250 (2008).

[Crossref]

K. Park, S. Basu, W. P. King, and Z. M. Zhang, “Performance analysis of near-field thermophotovoltaic devices considering absorption distribution,” J. Quant. Spectrosc. Radiat. Transf. 109(2), 305–316 (2008).

[Crossref]

P.-O. Chapuis, S. Volz, C. Henkel, K. Joulain, and J.-J. Greffet, “Effects of spatial dispersion in near-field radiative heat transfer between two parallel metallic surfaces,” Phys. Rev. B 77(3), 035431 (2008).

[Crossref]

S. Basu, Y. B. Chen, and Z. M. Zhang, “Microscale radiation in thermophotovoltaic devices-a review,” Int. J. Energy Res. 31(6), 689–716 (2007).

[Crossref]

S.-A. Biehs, “Thermal heat radiation, near-field energy density and near-field radiative heat transfer of coated materials,” Eur. Phys. J. B 58(4), 423–431 (2007).

[Crossref]

R. Vaillon, L. Robin, C. Muresan, and C. Ménézo, “Modeling of coupled spectral radiation, thermal and carrier transport in a silicon photovoltaic cell,” Int. J. Heat Mass Transfer 49(23), 4454–4468 (2006).

[Crossref]

M. Laroche, R. Carminati, and J.-J. Greffet, “Near-field thermophotovoltaic energy conversion,” J. Appl. Phys. 100(6), 063704 (2006).

[Crossref]

J. A. González-Cuevas, T. F. Refaat, M. N. Abedin, and H. E. Elsayed-Ali, “Modeling of the temperature-dependent spectral response of In1−xGaxSb infrared photodetectors,” Opt. Eng. 45(4), 044001 (2006).

[Crossref]

K. Park, B. J. Lee, C. Fu, and Z. M. Zhang, “Study of the surface and bulk polaritons with a negative index metamaterial,” J. Opt. Soc. Am. B 22(5), 1016–1023 (2005).

[Crossref]

K. Joulain, J.-P. Mulet, F. Marquier, R. Carminati, and J.-J. Greffet, “Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and casimir forces revisited in the near field,” Surf. Sci. Rep. 57(3), 59–112 (2005).

[Crossref]

M. D. Whale and E. G. Cravalho, “Modeling and performance of microscale thermophotovoltaic energy conversion devices,” IEEE Trans. Energy Conver. 17(1), 130–142 (2002).

[Crossref]

J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, “Enhanced radiative heat transfer at nanometric distances,” Microscale Thermophys. Eng. 6(3), 209–222 (2002).

[Crossref]

M. Sotoodeh, A. H. Khalid, and A. A. Rezazadeh, “Empirical low-field mobility model for III – V compounds applicable in device simulation codes,” J. Appl. Phys. 87(6), 2890–2900 (2000).

[Crossref]

K. L. Vodopyanov, H. Graener, C. C. Phillips, and T. J. Tate, “Picosecond carrier dynamics and studies of Auger recombination processes in indium arsenide at room temperature,” Phys. Rev. B 46(20), 13194 (1992).

[Crossref]

D. Polder and M. Van Hove, “Theory of radiative heat transfer between closely spaced bodies,” Phys. Rev. B 4(10), 3303 (1971).

[Crossref]

J. R. Dixon and J. M. Ellis, “Optical properties of n-type indium arsenide in the fundamental absorption edge region,” Phys. Rev. 123(5), 1560 (1961).

[Crossref]

J. A. González-Cuevas, T. F. Refaat, M. N. Abedin, and H. E. Elsayed-Ali, “Modeling of the temperature-dependent spectral response of In1−xGaxSb infrared photodetectors,” Opt. Eng. 45(4), 044001 (2006).

[Crossref]

S. Basu, Y. Yang, and L. P. Wang, “Near-field radiative heat transfer between metamaterials coated with silicon carbide thin films,” Appl. Phys. Lett. 106(3), 033106 (2015).

[Crossref]

S. Basu, B. J. Lee, and Z. M. Zhang, “Near-field radiation calculated with an improved dielectric function model for doped silicon,” J. Heat Transfer 132(2), 023302 (2010).

[Crossref]

K. Park, S. Basu, W. P. King, and Z. M. Zhang, “Performance analysis of near-field thermophotovoltaic devices considering absorption distribution,” J. Quant. Spectrosc. Radiat. Transf. 109(2), 305–316 (2008).

[Crossref]

S. Basu, Y. B. Chen, and Z. M. Zhang, “Microscale radiation in thermophotovoltaic devices-a review,” Int. J. Energy Res. 31(6), 689–716 (2007).

[Crossref]

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7, 948–957 (2013).

[Crossref]

R. Messina and P. Ben-Abdallah, “Graphene-based photovoltaic cells for near-field thermal energy conversion,” Sci. Rep. 3, 1383 (2013).

[Crossref]
[PubMed]

S.-A. Biehs, M. Tschikin, R. Messina, and P. Ben-Abdallah, “Super-Planckian near-field thermal emission with phonon-polaritonic hyperbolic metamaterials,” Appl. Phys. Lett. 102(13), 131106 (2013).

[Crossref]

S.-A. Biehs, M. Tschikin, and P. Ben-Abdallah, “Hyperbolic metamaterials as an analog of a blackbody in the near field,” Phys. Rev. Lett. 109(10), 104301 (2012).

[Crossref]
[PubMed]

M. Tschikin, P. Ben-Abdallah, and S.-A. Biehs, “Coherent thermal conductance of 1-D photonic crystals,” Phys. Lett. A 376(45), 3462–3465 (2012).

[Crossref]

M. P. Bernardi, O. Dupré, E. Blandre, P.-O. Chapuis, R. Vaillon, and M. Francoeur, “Impacts of propagating, frustrated and surface modes on radiative, electrical and thermal losses in nanoscale-gap thermophotovoltaic power generators,” Sci. Rep. 5, 11626 (2015).

[Crossref]
[PubMed]

S.-A. Biehs, M. Tschikin, R. Messina, and P. Ben-Abdallah, “Super-Planckian near-field thermal emission with phonon-polaritonic hyperbolic metamaterials,” Appl. Phys. Lett. 102(13), 131106 (2013).

[Crossref]

M. Tschikin, P. Ben-Abdallah, and S.-A. Biehs, “Coherent thermal conductance of 1-D photonic crystals,” Phys. Lett. A 376(45), 3462–3465 (2012).

[Crossref]

S.-A. Biehs, M. Tschikin, and P. Ben-Abdallah, “Hyperbolic metamaterials as an analog of a blackbody in the near field,” Phys. Rev. Lett. 109(10), 104301 (2012).

[Crossref]
[PubMed]

S.-A. Biehs, “Thermal heat radiation, near-field energy density and near-field radiative heat transfer of coated materials,” Eur. Phys. J. B 58(4), 423–431 (2007).

[Crossref]

M. P. Bernardi, O. Dupré, E. Blandre, P.-O. Chapuis, R. Vaillon, and M. Francoeur, “Impacts of propagating, frustrated and surface modes on radiative, electrical and thermal losses in nanoscale-gap thermophotovoltaic power generators,” Sci. Rep. 5, 11626 (2015).

[Crossref]
[PubMed]

X. L. Liu, T. J. Bright, and Z. M. Zhang, “Application conditions of effective medium theory in near-field radiative heat transfer between multilayered metamaterials,” J. Heat Transfer 136(9), 092703 (2014).

[Crossref]

T. J. Bright, L. P. Wang, and Z. M. Zhang, “Performance of near-field thermophotovoltaic cells enhanced with a backside reflector,” J. Heat. Transfer 136(6), 062701 (2014).

[Crossref]

V. Shalaev and W. Cai, Optical Metamaterials: Fundamentals and Applications (Springer, 2010).

M. Laroche, R. Carminati, and J.-J. Greffet, “Near-field thermophotovoltaic energy conversion,” J. Appl. Phys. 100(6), 063704 (2006).

[Crossref]

K. Joulain, J.-P. Mulet, F. Marquier, R. Carminati, and J.-J. Greffet, “Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and casimir forces revisited in the near field,” Surf. Sci. Rep. 57(3), 59–112 (2005).

[Crossref]

J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, “Enhanced radiative heat transfer at nanometric distances,” Microscale Thermophys. Eng. 6(3), 209–222 (2002).

[Crossref]

J.-Y. Chang, Y. Yang, and L. P. Wang, “Tungsten nanowire based hyperbolic metamaterial emitters for near-field thermophotovoltaic applications,” Int. J. Heat Mass Transfer 87, 237–247 (2015).

[Crossref]

M. P. Bernardi, O. Dupré, E. Blandre, P.-O. Chapuis, R. Vaillon, and M. Francoeur, “Impacts of propagating, frustrated and surface modes on radiative, electrical and thermal losses in nanoscale-gap thermophotovoltaic power generators,” Sci. Rep. 5, 11626 (2015).

[Crossref]
[PubMed]

P.-O. Chapuis, S. Volz, C. Henkel, K. Joulain, and J.-J. Greffet, “Effects of spatial dispersion in near-field radiative heat transfer between two parallel metallic surfaces,” Phys. Rev. B 77(3), 035431 (2008).

[Crossref]

S. Basu, Y. B. Chen, and Z. M. Zhang, “Microscale radiation in thermophotovoltaic devices-a review,” Int. J. Energy Res. 31(6), 689–716 (2007).

[Crossref]

D. Chubb, Fundamentals of Thermophotovoltaic Energy Conversion (Elsevier, 2007).

Y. Guo, W. Newman, C. L. Cortes, and Z. Jacob, “Applications of hyperbolic metamaterial substrates,” Adv. OptoElectron. 2012452502 (2012).

[Crossref]

M. D. Whale and E. G. Cravalho, “Modeling and performance of microscale thermophotovoltaic energy conversion devices,” IEEE Trans. Energy Conver. 17(1), 130–142 (2002).

[Crossref]

J. R. Dixon and J. M. Ellis, “Optical properties of n-type indium arsenide in the fundamental absorption edge region,” Phys. Rev. 123(5), 1560 (1961).

[Crossref]

H. J. Joyce, C. J. Docherty, Q. Gao, H. H. Tan, C. Jagadish, J. Lloyd-Hughes, L. M. Herz, and M. B. Johnston, “Electronic properties of GaAs, InAs and InP nanowires studied by terahertz spectroscopy,” Nanotechnology 24(21), 214006 (2013).

[Crossref]
[PubMed]

M. P. Bernardi, O. Dupré, E. Blandre, P.-O. Chapuis, R. Vaillon, and M. Francoeur, “Impacts of propagating, frustrated and surface modes on radiative, electrical and thermal losses in nanoscale-gap thermophotovoltaic power generators,” Sci. Rep. 5, 11626 (2015).

[Crossref]
[PubMed]

J. R. Dixon and J. M. Ellis, “Optical properties of n-type indium arsenide in the fundamental absorption edge region,” Phys. Rev. 123(5), 1560 (1961).

[Crossref]

J. A. González-Cuevas, T. F. Refaat, M. N. Abedin, and H. E. Elsayed-Ali, “Modeling of the temperature-dependent spectral response of In1−xGaxSb infrared photodetectors,” Opt. Eng. 45(4), 044001 (2006).

[Crossref]

M. P. Bernardi, O. Dupré, E. Blandre, P.-O. Chapuis, R. Vaillon, and M. Francoeur, “Impacts of propagating, frustrated and surface modes on radiative, electrical and thermal losses in nanoscale-gap thermophotovoltaic power generators,” Sci. Rep. 5, 11626 (2015).

[Crossref]
[PubMed]

M. Francoeur, R. Vaillon, and M. P. Mengüç, “Thermal impacts on the performance of nanoscale-gap thermophotovoltaic power generators,” IEEE Trans. Energy Conver. 26(2), 686–698 (2011).

[Crossref]

M. Francoeur, M. P. Mengüç, and R. Vaillon, “Spectral tuning of near-field radiative heat flux between two thin silicon carbide films,” J. Phys. D Appl. Phys. 43(7), 075501 (2010).

[Crossref]

H. J. Joyce, C. J. Docherty, Q. Gao, H. H. Tan, C. Jagadish, J. Lloyd-Hughes, L. M. Herz, and M. B. Johnston, “Electronic properties of GaAs, InAs and InP nanowires studied by terahertz spectroscopy,” Nanotechnology 24(21), 214006 (2013).

[Crossref]
[PubMed]

R. Ortuño, C. García-Meca, F. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B 79(7), 075425 (2009).

[Crossref]

J. A. González-Cuevas, T. F. Refaat, M. N. Abedin, and H. E. Elsayed-Ali, “Modeling of the temperature-dependent spectral response of In1−xGaxSb infrared photodetectors,” Opt. Eng. 45(4), 044001 (2006).

[Crossref]

K. L. Vodopyanov, H. Graener, C. C. Phillips, and T. J. Tate, “Picosecond carrier dynamics and studies of Auger recombination processes in indium arsenide at room temperature,” Phys. Rev. B 46(20), 13194 (1992).

[Crossref]

P.-O. Chapuis, S. Volz, C. Henkel, K. Joulain, and J.-J. Greffet, “Effects of spatial dispersion in near-field radiative heat transfer between two parallel metallic surfaces,” Phys. Rev. B 77(3), 035431 (2008).

[Crossref]

M. Laroche, R. Carminati, and J.-J. Greffet, “Near-field thermophotovoltaic energy conversion,” J. Appl. Phys. 100(6), 063704 (2006).

[Crossref]

K. Joulain, J.-P. Mulet, F. Marquier, R. Carminati, and J.-J. Greffet, “Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and casimir forces revisited in the near field,” Surf. Sci. Rep. 57(3), 59–112 (2005).

[Crossref]

J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, “Enhanced radiative heat transfer at nanometric distances,” Microscale Thermophys. Eng. 6(3), 209–222 (2002).

[Crossref]

P.-O. Chapuis, S. Volz, C. Henkel, K. Joulain, and J.-J. Greffet, “Effects of spatial dispersion in near-field radiative heat transfer between two parallel metallic surfaces,” Phys. Rev. B 77(3), 035431 (2008).

[Crossref]

H. J. Joyce, C. J. Docherty, Q. Gao, H. H. Tan, C. Jagadish, J. Lloyd-Hughes, L. M. Herz, and M. B. Johnston, “Electronic properties of GaAs, InAs and InP nanowires studied by terahertz spectroscopy,” Nanotechnology 24(21), 214006 (2013).

[Crossref]
[PubMed]

K. Ito, A. Miura, H. Iizuka, and H. Toshiyoshi, “Parallel-plate submicron gap formed by micromachined low-density pillars for near-field radiative heat transfer,” Appl. Phys. Lett. 106(8), 083504 (2015).

[Crossref]

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7, 948–957 (2013).

[Crossref]

K. Ito, A. Miura, H. Iizuka, and H. Toshiyoshi, “Parallel-plate submicron gap formed by micromachined low-density pillars for near-field radiative heat transfer,” Appl. Phys. Lett. 106(8), 083504 (2015).

[Crossref]

H. J. Joyce, C. J. Docherty, Q. Gao, H. H. Tan, C. Jagadish, J. Lloyd-Hughes, L. M. Herz, and M. B. Johnston, “Electronic properties of GaAs, InAs and InP nanowires studied by terahertz spectroscopy,” Nanotechnology 24(21), 214006 (2013).

[Crossref]
[PubMed]

H. J. Joyce, C. J. Docherty, Q. Gao, H. H. Tan, C. Jagadish, J. Lloyd-Hughes, L. M. Herz, and M. B. Johnston, “Electronic properties of GaAs, InAs and InP nanowires studied by terahertz spectroscopy,” Nanotechnology 24(21), 214006 (2013).

[Crossref]
[PubMed]

P.-O. Chapuis, S. Volz, C. Henkel, K. Joulain, and J.-J. Greffet, “Effects of spatial dispersion in near-field radiative heat transfer between two parallel metallic surfaces,” Phys. Rev. B 77(3), 035431 (2008).

[Crossref]

K. Joulain, J.-P. Mulet, F. Marquier, R. Carminati, and J.-J. Greffet, “Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and casimir forces revisited in the near field,” Surf. Sci. Rep. 57(3), 59–112 (2005).

[Crossref]

J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, “Enhanced radiative heat transfer at nanometric distances,” Microscale Thermophys. Eng. 6(3), 209–222 (2002).

[Crossref]

H. J. Joyce, C. J. Docherty, Q. Gao, H. H. Tan, C. Jagadish, J. Lloyd-Hughes, L. M. Herz, and M. B. Johnston, “Electronic properties of GaAs, InAs and InP nanowires studied by terahertz spectroscopy,” Nanotechnology 24(21), 214006 (2013).

[Crossref]
[PubMed]

M. Sotoodeh, A. H. Khalid, and A. A. Rezazadeh, “Empirical low-field mobility model for III – V compounds applicable in device simulation codes,” J. Appl. Phys. 87(6), 2890–2900 (2000).

[Crossref]

K. Park, S. Basu, W. P. King, and Z. M. Zhang, “Performance analysis of near-field thermophotovoltaic devices considering absorption distribution,” J. Quant. Spectrosc. Radiat. Transf. 109(2), 305–316 (2008).

[Crossref]

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7, 948–957 (2013).

[Crossref]

M. Laroche, R. Carminati, and J.-J. Greffet, “Near-field thermophotovoltaic energy conversion,” J. Appl. Phys. 100(6), 063704 (2006).

[Crossref]

M. Lim, S. S. Lee, and B. J. Lee, “Near-field thermal radiation between doped silicon plates at nanoscale gaps,” Phys. Rev. B 91(19), 195136 (2015).

[Crossref]

M. Lim, S. Jin, S. S. Lee, and B. J. Lee, “Graphene-assisted Si-InSb thermophotovoltaic system for low temperature applications,” Opt. Express 23(7), A240–A253 (2015).

[Crossref]
[PubMed]

M. Lim, S. S. Lee, and B. J. Lee, “Near-field thermal radiation between graphene-covered doped silicon plates,” Opt. Express 21(19), 22173–22185 (2013).

[Crossref]
[PubMed]

S. Basu, B. J. Lee, and Z. M. Zhang, “Near-field radiation calculated with an improved dielectric function model for doped silicon,” J. Heat Transfer 132(2), 023302 (2010).

[Crossref]

B. J. Lee and Z. M. Zhang, “Lateral shifts in near-field thermal radiation with surface phonon polaritons,” Nanoscale Microscale Thermophys. Eng. 12, 238–250 (2008).

[Crossref]

K. Park, B. J. Lee, C. Fu, and Z. M. Zhang, “Study of the surface and bulk polaritons with a negative index metamaterial,” J. Opt. Soc. Am. B 22(5), 1016–1023 (2005).

[Crossref]

M. Lim, S. Jin, S. S. Lee, and B. J. Lee, “Graphene-assisted Si-InSb thermophotovoltaic system for low temperature applications,” Opt. Express 23(7), A240–A253 (2015).

[Crossref]
[PubMed]

M. Lim, S. S. Lee, and B. J. Lee, “Near-field thermal radiation between doped silicon plates at nanoscale gaps,” Phys. Rev. B 91(19), 195136 (2015).

[Crossref]

M. Lim, S. S. Lee, and B. J. Lee, “Near-field thermal radiation between graphene-covered doped silicon plates,” Opt. Express 21(19), 22173–22185 (2013).

[Crossref]
[PubMed]

M. Lim, S. S. Lee, and B. J. Lee, “Near-field thermal radiation between doped silicon plates at nanoscale gaps,” Phys. Rev. B 91(19), 195136 (2015).

[Crossref]

M. Lim, S. Jin, S. S. Lee, and B. J. Lee, “Graphene-assisted Si-InSb thermophotovoltaic system for low temperature applications,” Opt. Express 23(7), A240–A253 (2015).

[Crossref]
[PubMed]

M. Lim, S. S. Lee, and B. J. Lee, “Near-field thermal radiation between graphene-covered doped silicon plates,” Opt. Express 21(19), 22173–22185 (2013).

[Crossref]
[PubMed]

X. L. Liu, R. Z. Zhang, and Z. M. Zhang, “Near-field radiative heat transfer with doped-silicon nanostructured metamaterials,” Int. J. Heat Mass Transfer 73, 389–398 (2014).

[Crossref]

X. L. Liu, T. J. Bright, and Z. M. Zhang, “Application conditions of effective medium theory in near-field radiative heat transfer between multilayered metamaterials,” J. Heat Transfer 136(9), 092703 (2014).

[Crossref]

H. J. Joyce, C. J. Docherty, Q. Gao, H. H. Tan, C. Jagadish, J. Lloyd-Hughes, L. M. Herz, and M. B. Johnston, “Electronic properties of GaAs, InAs and InP nanowires studied by terahertz spectroscopy,” Nanotechnology 24(21), 214006 (2013).

[Crossref]
[PubMed]

P. Markos and C. M. Soukoulis, Wave Propagation: From Electrons to Photonic Crystals and Left-handed Materials (Princeton University, 2008).

K. Joulain, J.-P. Mulet, F. Marquier, R. Carminati, and J.-J. Greffet, “Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and casimir forces revisited in the near field,” Surf. Sci. Rep. 57(3), 59–112 (2005).

[Crossref]

R. Ortuño, C. García-Meca, F. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B 79(7), 075425 (2009).

[Crossref]

R. Ortuño, C. García-Meca, F. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B 79(7), 075425 (2009).

[Crossref]

R. Vaillon, L. Robin, C. Muresan, and C. Ménézo, “Modeling of coupled spectral radiation, thermal and carrier transport in a silicon photovoltaic cell,” Int. J. Heat Mass Transfer 49(23), 4454–4468 (2006).

[Crossref]

M. Francoeur, R. Vaillon, and M. P. Mengüç, “Thermal impacts on the performance of nanoscale-gap thermophotovoltaic power generators,” IEEE Trans. Energy Conver. 26(2), 686–698 (2011).

[Crossref]

M. Francoeur, M. P. Mengüç, and R. Vaillon, “Spectral tuning of near-field radiative heat flux between two thin silicon carbide films,” J. Phys. D Appl. Phys. 43(7), 075501 (2010).

[Crossref]

S.-A. Biehs, M. Tschikin, R. Messina, and P. Ben-Abdallah, “Super-Planckian near-field thermal emission with phonon-polaritonic hyperbolic metamaterials,” Appl. Phys. Lett. 102(13), 131106 (2013).

[Crossref]

R. Messina and P. Ben-Abdallah, “Graphene-based photovoltaic cells for near-field thermal energy conversion,” Sci. Rep. 3, 1383 (2013).

[Crossref]
[PubMed]

K. Ito, A. Miura, H. Iizuka, and H. Toshiyoshi, “Parallel-plate submicron gap formed by micromachined low-density pillars for near-field radiative heat transfer,” Appl. Phys. Lett. 106(8), 083504 (2015).

[Crossref]

K. Joulain, J.-P. Mulet, F. Marquier, R. Carminati, and J.-J. Greffet, “Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and casimir forces revisited in the near field,” Surf. Sci. Rep. 57(3), 59–112 (2005).

[Crossref]

J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, “Enhanced radiative heat transfer at nanometric distances,” Microscale Thermophys. Eng. 6(3), 209–222 (2002).

[Crossref]

R. Vaillon, L. Robin, C. Muresan, and C. Ménézo, “Modeling of coupled spectral radiation, thermal and carrier transport in a silicon photovoltaic cell,” Int. J. Heat Mass Transfer 49(23), 4454–4468 (2006).

[Crossref]

Y. Guo, W. Newman, C. L. Cortes, and Z. Jacob, “Applications of hyperbolic metamaterial substrates,” Adv. OptoElectron. 2012452502 (2012).

[Crossref]

S. M. Sze and K. K. Ng, Physics of Semiconductor Devices (John Wiley & Sons, 2006).

R. Ortuño, C. García-Meca, F. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B 79(7), 075425 (2009).

[Crossref]

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).

K. Park, S. Basu, W. P. King, and Z. M. Zhang, “Performance analysis of near-field thermophotovoltaic devices considering absorption distribution,” J. Quant. Spectrosc. Radiat. Transf. 109(2), 305–316 (2008).

[Crossref]

K. Park, B. J. Lee, C. Fu, and Z. M. Zhang, “Study of the surface and bulk polaritons with a negative index metamaterial,” J. Opt. Soc. Am. B 22(5), 1016–1023 (2005).

[Crossref]

K. L. Vodopyanov, H. Graener, C. C. Phillips, and T. J. Tate, “Picosecond carrier dynamics and studies of Auger recombination processes in indium arsenide at room temperature,” Phys. Rev. B 46(20), 13194 (1992).

[Crossref]

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7, 948–957 (2013).

[Crossref]

D. Polder and M. Van Hove, “Theory of radiative heat transfer between closely spaced bodies,” Phys. Rev. B 4(10), 3303 (1971).

[Crossref]

J. A. González-Cuevas, T. F. Refaat, M. N. Abedin, and H. E. Elsayed-Ali, “Modeling of the temperature-dependent spectral response of In1−xGaxSb infrared photodetectors,” Opt. Eng. 45(4), 044001 (2006).

[Crossref]

M. Sotoodeh, A. H. Khalid, and A. A. Rezazadeh, “Empirical low-field mobility model for III – V compounds applicable in device simulation codes,” J. Appl. Phys. 87(6), 2890–2900 (2000).

[Crossref]

R. Vaillon, L. Robin, C. Muresan, and C. Ménézo, “Modeling of coupled spectral radiation, thermal and carrier transport in a silicon photovoltaic cell,” Int. J. Heat Mass Transfer 49(23), 4454–4468 (2006).

[Crossref]

R. Ortuño, C. García-Meca, F. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B 79(7), 075425 (2009).

[Crossref]

V. Shalaev and W. Cai, Optical Metamaterials: Fundamentals and Applications (Springer, 2010).

M. Sotoodeh, A. H. Khalid, and A. A. Rezazadeh, “Empirical low-field mobility model for III – V compounds applicable in device simulation codes,” J. Appl. Phys. 87(6), 2890–2900 (2000).

[Crossref]

P. Markos and C. M. Soukoulis, Wave Propagation: From Electrons to Photonic Crystals and Left-handed Materials (Princeton University, 2008).

S. M. Sze and K. K. Ng, Physics of Semiconductor Devices (John Wiley & Sons, 2006).

H. J. Joyce, C. J. Docherty, Q. Gao, H. H. Tan, C. Jagadish, J. Lloyd-Hughes, L. M. Herz, and M. B. Johnston, “Electronic properties of GaAs, InAs and InP nanowires studied by terahertz spectroscopy,” Nanotechnology 24(21), 214006 (2013).

[Crossref]
[PubMed]

K. L. Vodopyanov, H. Graener, C. C. Phillips, and T. J. Tate, “Picosecond carrier dynamics and studies of Auger recombination processes in indium arsenide at room temperature,” Phys. Rev. B 46(20), 13194 (1992).

[Crossref]

K. Ito, A. Miura, H. Iizuka, and H. Toshiyoshi, “Parallel-plate submicron gap formed by micromachined low-density pillars for near-field radiative heat transfer,” Appl. Phys. Lett. 106(8), 083504 (2015).

[Crossref]

S.-A. Biehs, M. Tschikin, R. Messina, and P. Ben-Abdallah, “Super-Planckian near-field thermal emission with phonon-polaritonic hyperbolic metamaterials,” Appl. Phys. Lett. 102(13), 131106 (2013).

[Crossref]

M. Tschikin, P. Ben-Abdallah, and S.-A. Biehs, “Coherent thermal conductance of 1-D photonic crystals,” Phys. Lett. A 376(45), 3462–3465 (2012).

[Crossref]

S.-A. Biehs, M. Tschikin, and P. Ben-Abdallah, “Hyperbolic metamaterials as an analog of a blackbody in the near field,” Phys. Rev. Lett. 109(10), 104301 (2012).

[Crossref]
[PubMed]

M. P. Bernardi, O. Dupré, E. Blandre, P.-O. Chapuis, R. Vaillon, and M. Francoeur, “Impacts of propagating, frustrated and surface modes on radiative, electrical and thermal losses in nanoscale-gap thermophotovoltaic power generators,” Sci. Rep. 5, 11626 (2015).

[Crossref]
[PubMed]

M. Francoeur, R. Vaillon, and M. P. Mengüç, “Thermal impacts on the performance of nanoscale-gap thermophotovoltaic power generators,” IEEE Trans. Energy Conver. 26(2), 686–698 (2011).

[Crossref]

M. Francoeur, M. P. Mengüç, and R. Vaillon, “Spectral tuning of near-field radiative heat flux between two thin silicon carbide films,” J. Phys. D Appl. Phys. 43(7), 075501 (2010).

[Crossref]

R. Vaillon, L. Robin, C. Muresan, and C. Ménézo, “Modeling of coupled spectral radiation, thermal and carrier transport in a silicon photovoltaic cell,” Int. J. Heat Mass Transfer 49(23), 4454–4468 (2006).

[Crossref]

D. Polder and M. Van Hove, “Theory of radiative heat transfer between closely spaced bodies,” Phys. Rev. B 4(10), 3303 (1971).

[Crossref]

K. L. Vodopyanov, H. Graener, C. C. Phillips, and T. J. Tate, “Picosecond carrier dynamics and studies of Auger recombination processes in indium arsenide at room temperature,” Phys. Rev. B 46(20), 13194 (1992).

[Crossref]

P.-O. Chapuis, S. Volz, C. Henkel, K. Joulain, and J.-J. Greffet, “Effects of spatial dispersion in near-field radiative heat transfer between two parallel metallic surfaces,” Phys. Rev. B 77(3), 035431 (2008).

[Crossref]

J.-Y. Chang, Y. Yang, and L. P. Wang, “Tungsten nanowire based hyperbolic metamaterial emitters for near-field thermophotovoltaic applications,” Int. J. Heat Mass Transfer 87, 237–247 (2015).

[Crossref]

S. Basu, Y. Yang, and L. P. Wang, “Near-field radiative heat transfer between metamaterials coated with silicon carbide thin films,” Appl. Phys. Lett. 106(3), 033106 (2015).

[Crossref]

T. J. Bright, L. P. Wang, and Z. M. Zhang, “Performance of near-field thermophotovoltaic cells enhanced with a backside reflector,” J. Heat. Transfer 136(6), 062701 (2014).

[Crossref]

M. D. Whale and E. G. Cravalho, “Modeling and performance of microscale thermophotovoltaic energy conversion devices,” IEEE Trans. Energy Conver. 17(1), 130–142 (2002).

[Crossref]

S. Basu, Y. Yang, and L. P. Wang, “Near-field radiative heat transfer between metamaterials coated with silicon carbide thin films,” Appl. Phys. Lett. 106(3), 033106 (2015).

[Crossref]

J.-Y. Chang, Y. Yang, and L. P. Wang, “Tungsten nanowire based hyperbolic metamaterial emitters for near-field thermophotovoltaic applications,” Int. J. Heat Mass Transfer 87, 237–247 (2015).

[Crossref]

X. L. Liu, R. Z. Zhang, and Z. M. Zhang, “Near-field radiative heat transfer with doped-silicon nanostructured metamaterials,” Int. J. Heat Mass Transfer 73, 389–398 (2014).

[Crossref]

X. L. Liu, R. Z. Zhang, and Z. M. Zhang, “Near-field radiative heat transfer with doped-silicon nanostructured metamaterials,” Int. J. Heat Mass Transfer 73, 389–398 (2014).

[Crossref]

X. L. Liu, T. J. Bright, and Z. M. Zhang, “Application conditions of effective medium theory in near-field radiative heat transfer between multilayered metamaterials,” J. Heat Transfer 136(9), 092703 (2014).

[Crossref]

T. J. Bright, L. P. Wang, and Z. M. Zhang, “Performance of near-field thermophotovoltaic cells enhanced with a backside reflector,” J. Heat. Transfer 136(6), 062701 (2014).

[Crossref]

S. Basu, B. J. Lee, and Z. M. Zhang, “Near-field radiation calculated with an improved dielectric function model for doped silicon,” J. Heat Transfer 132(2), 023302 (2010).

[Crossref]

B. J. Lee and Z. M. Zhang, “Lateral shifts in near-field thermal radiation with surface phonon polaritons,” Nanoscale Microscale Thermophys. Eng. 12, 238–250 (2008).

[Crossref]

K. Park, S. Basu, W. P. King, and Z. M. Zhang, “Performance analysis of near-field thermophotovoltaic devices considering absorption distribution,” J. Quant. Spectrosc. Radiat. Transf. 109(2), 305–316 (2008).

[Crossref]

S. Basu, Y. B. Chen, and Z. M. Zhang, “Microscale radiation in thermophotovoltaic devices-a review,” Int. J. Energy Res. 31(6), 689–716 (2007).

[Crossref]

K. Park, B. J. Lee, C. Fu, and Z. M. Zhang, “Study of the surface and bulk polaritons with a negative index metamaterial,” J. Opt. Soc. Am. B 22(5), 1016–1023 (2005).

[Crossref]

Y. Guo, W. Newman, C. L. Cortes, and Z. Jacob, “Applications of hyperbolic metamaterial substrates,” Adv. OptoElectron. 2012452502 (2012).

[Crossref]

S. Basu, Y. Yang, and L. P. Wang, “Near-field radiative heat transfer between metamaterials coated with silicon carbide thin films,” Appl. Phys. Lett. 106(3), 033106 (2015).

[Crossref]

K. Ito, A. Miura, H. Iizuka, and H. Toshiyoshi, “Parallel-plate submicron gap formed by micromachined low-density pillars for near-field radiative heat transfer,” Appl. Phys. Lett. 106(8), 083504 (2015).

[Crossref]

S.-A. Biehs, M. Tschikin, R. Messina, and P. Ben-Abdallah, “Super-Planckian near-field thermal emission with phonon-polaritonic hyperbolic metamaterials,” Appl. Phys. Lett. 102(13), 131106 (2013).

[Crossref]

S.-A. Biehs, “Thermal heat radiation, near-field energy density and near-field radiative heat transfer of coated materials,” Eur. Phys. J. B 58(4), 423–431 (2007).

[Crossref]

M. D. Whale and E. G. Cravalho, “Modeling and performance of microscale thermophotovoltaic energy conversion devices,” IEEE Trans. Energy Conver. 17(1), 130–142 (2002).

[Crossref]

M. Francoeur, R. Vaillon, and M. P. Mengüç, “Thermal impacts on the performance of nanoscale-gap thermophotovoltaic power generators,” IEEE Trans. Energy Conver. 26(2), 686–698 (2011).

[Crossref]

S. Basu, Y. B. Chen, and Z. M. Zhang, “Microscale radiation in thermophotovoltaic devices-a review,” Int. J. Energy Res. 31(6), 689–716 (2007).

[Crossref]

X. L. Liu, R. Z. Zhang, and Z. M. Zhang, “Near-field radiative heat transfer with doped-silicon nanostructured metamaterials,” Int. J. Heat Mass Transfer 73, 389–398 (2014).

[Crossref]

J.-Y. Chang, Y. Yang, and L. P. Wang, “Tungsten nanowire based hyperbolic metamaterial emitters for near-field thermophotovoltaic applications,” Int. J. Heat Mass Transfer 87, 237–247 (2015).

[Crossref]

R. Vaillon, L. Robin, C. Muresan, and C. Ménézo, “Modeling of coupled spectral radiation, thermal and carrier transport in a silicon photovoltaic cell,” Int. J. Heat Mass Transfer 49(23), 4454–4468 (2006).

[Crossref]

M. Laroche, R. Carminati, and J.-J. Greffet, “Near-field thermophotovoltaic energy conversion,” J. Appl. Phys. 100(6), 063704 (2006).

[Crossref]

M. Sotoodeh, A. H. Khalid, and A. A. Rezazadeh, “Empirical low-field mobility model for III – V compounds applicable in device simulation codes,” J. Appl. Phys. 87(6), 2890–2900 (2000).

[Crossref]

X. L. Liu, T. J. Bright, and Z. M. Zhang, “Application conditions of effective medium theory in near-field radiative heat transfer between multilayered metamaterials,” J. Heat Transfer 136(9), 092703 (2014).

[Crossref]

S. Basu, B. J. Lee, and Z. M. Zhang, “Near-field radiation calculated with an improved dielectric function model for doped silicon,” J. Heat Transfer 132(2), 023302 (2010).

[Crossref]

T. J. Bright, L. P. Wang, and Z. M. Zhang, “Performance of near-field thermophotovoltaic cells enhanced with a backside reflector,” J. Heat. Transfer 136(6), 062701 (2014).

[Crossref]

M. Francoeur, M. P. Mengüç, and R. Vaillon, “Spectral tuning of near-field radiative heat flux between two thin silicon carbide films,” J. Phys. D Appl. Phys. 43(7), 075501 (2010).

[Crossref]

K. Park, S. Basu, W. P. King, and Z. M. Zhang, “Performance analysis of near-field thermophotovoltaic devices considering absorption distribution,” J. Quant. Spectrosc. Radiat. Transf. 109(2), 305–316 (2008).

[Crossref]

J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, “Enhanced radiative heat transfer at nanometric distances,” Microscale Thermophys. Eng. 6(3), 209–222 (2002).

[Crossref]

B. J. Lee and Z. M. Zhang, “Lateral shifts in near-field thermal radiation with surface phonon polaritons,” Nanoscale Microscale Thermophys. Eng. 12, 238–250 (2008).

[Crossref]

H. J. Joyce, C. J. Docherty, Q. Gao, H. H. Tan, C. Jagadish, J. Lloyd-Hughes, L. M. Herz, and M. B. Johnston, “Electronic properties of GaAs, InAs and InP nanowires studied by terahertz spectroscopy,” Nanotechnology 24(21), 214006 (2013).

[Crossref]
[PubMed]

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7, 948–957 (2013).

[Crossref]

J. A. González-Cuevas, T. F. Refaat, M. N. Abedin, and H. E. Elsayed-Ali, “Modeling of the temperature-dependent spectral response of In1−xGaxSb infrared photodetectors,” Opt. Eng. 45(4), 044001 (2006).

[Crossref]

O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, “Overcoming the black body limit in plasmonic and graphene near-field thermophotovoltaic systems,” Opt. Express 20(S3), A366–A384 (2012).

[Crossref]
[PubMed]

S. V. Zhukovsky, O. Kidwai, and J. E. Sipe, “Physical nature of volume plasmon polaritons in hyperbolic metamaterials,” Opt. Express 21(12), 14982–14987 (2013).

[Crossref]
[PubMed]

Y. Guo and Z. Jacob, “Thermal hyperbolic metamaterials,” Opt. Express 21(12), 15014–15019 (2013).

[Crossref]
[PubMed]

M. Lim, S. S. Lee, and B. J. Lee, “Near-field thermal radiation between graphene-covered doped silicon plates,” Opt. Express 21(19), 22173–22185 (2013).

[Crossref]
[PubMed]

M. Lim, S. Jin, S. S. Lee, and B. J. Lee, “Graphene-assisted Si-InSb thermophotovoltaic system for low temperature applications,” Opt. Express 23(7), A240–A253 (2015).

[Crossref]
[PubMed]

M. Tschikin, P. Ben-Abdallah, and S.-A. Biehs, “Coherent thermal conductance of 1-D photonic crystals,” Phys. Lett. A 376(45), 3462–3465 (2012).

[Crossref]

J. R. Dixon and J. M. Ellis, “Optical properties of n-type indium arsenide in the fundamental absorption edge region,” Phys. Rev. 123(5), 1560 (1961).

[Crossref]

S. V. Zhukovsky, “Perfect transmission and highly asymmetric light localization in photonic multilayers,” Phys. Rev. A 81(5), 053808 (2010).

[Crossref]

D. Polder and M. Van Hove, “Theory of radiative heat transfer between closely spaced bodies,” Phys. Rev. B 4(10), 3303 (1971).

[Crossref]

M. Lim, S. S. Lee, and B. J. Lee, “Near-field thermal radiation between doped silicon plates at nanoscale gaps,” Phys. Rev. B 91(19), 195136 (2015).

[Crossref]

P.-O. Chapuis, S. Volz, C. Henkel, K. Joulain, and J.-J. Greffet, “Effects of spatial dispersion in near-field radiative heat transfer between two parallel metallic surfaces,” Phys. Rev. B 77(3), 035431 (2008).

[Crossref]

K. L. Vodopyanov, H. Graener, C. C. Phillips, and T. J. Tate, “Picosecond carrier dynamics and studies of Auger recombination processes in indium arsenide at room temperature,” Phys. Rev. B 46(20), 13194 (1992).

[Crossref]

R. Ortuño, C. García-Meca, F. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B 79(7), 075425 (2009).

[Crossref]

S.-A. Biehs, M. Tschikin, and P. Ben-Abdallah, “Hyperbolic metamaterials as an analog of a blackbody in the near field,” Phys. Rev. Lett. 109(10), 104301 (2012).

[Crossref]
[PubMed]

M. P. Bernardi, O. Dupré, E. Blandre, P.-O. Chapuis, R. Vaillon, and M. Francoeur, “Impacts of propagating, frustrated and surface modes on radiative, electrical and thermal losses in nanoscale-gap thermophotovoltaic power generators,” Sci. Rep. 5, 11626 (2015).

[Crossref]
[PubMed]

R. Messina and P. Ben-Abdallah, “Graphene-based photovoltaic cells for near-field thermal energy conversion,” Sci. Rep. 3, 1383 (2013).

[Crossref]
[PubMed]

K. Joulain, J.-P. Mulet, F. Marquier, R. Carminati, and J.-J. Greffet, “Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and casimir forces revisited in the near field,” Surf. Sci. Rep. 57(3), 59–112 (2005).

[Crossref]

V. Shalaev and W. Cai, Optical Metamaterials: Fundamentals and Applications (Springer, 2010).

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).

S. M. Sze and K. K. Ng, Physics of Semiconductor Devices (John Wiley & Sons, 2006).

P. Markos and C. M. Soukoulis, Wave Propagation: From Electrons to Photonic Crystals and Left-handed Materials (Princeton University, 2008).

D. Chubb, Fundamentals of Thermophotovoltaic Energy Conversion (Elsevier, 2007).