Abstract

Simultaneous wind and temperature measurements in stratosphere with high time-spatial resolution for gravity waves study are scarce. In this paper we perform wind field gravity waves cases in the stratosphere observed by a mobile Rayleigh Doppler lidar. This lidar system with both wind and temperature measurements were implemented for atmosphere gravity waves research in the altitude region 15-60 km. Observations were carried out for two periods of time: 3 months started from November 4, 2014 in Xinzhou, China (38.425°N,112.729°E) and 2 months started from October 7, 2015 in Jiuquan, China (39.741°N, 98.495°E) . The mesoscale fluctuations of the horizontal wind velocity and the two dimensional spectra analysis of these fluctuations show the presence of dominant oscillatory modes with wavelength of 4-14 km and period of around 10 hours in several cases. The simultaneous temperature observations make it possible to identify gravity wave cases from the relationships between different variables: temperature and horizontal wind. The observed cases demonstrate the Rayleigh Doppler Lidar’s capacity to study gravity waves.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Mobile Rayleigh Doppler lidar for wind and temperature measurements in the stratosphere and lower mesosphere

Xiankang Dou, Yuli Han, Dongsong Sun, Haiyun Xia, Zhifeng Shu, Ruocan Zhao, Mingjia Shangguan, and Jie Guo
Opt. Express 22(S5) A1203-A1221 (2014)

Rayleigh–Mie Doppler wind lidar for atmospheric measurements. I. Instrumental setup, validation, and first climatological results

Claude Souprayen, Anne Garnier, Albert Hertzog, Alain Hauchecorne, and Jacques Porteneuve
Appl. Opt. 38(12) 2410-2421 (1999)

Stratospheric temperature measurement with scanning Fabry-Perot interferometer for wind retrieval from mobile Rayleigh Doppler lidar

Haiyun Xia, Xiankang Dou, Mingjia Shangguan, Ruocan Zhao, Dongsong Sun, Chong Wang, Jiawei Qiu, Zhifeng Shu, Xianghui Xue, Yuli Han, and Yan Han
Opt. Express 22(18) 21775-21789 (2014)

References

  • View by:
  • |
  • |
  • |

  1. M. L. Chanin, A. Garnier, A. Hauchecorne, and J. Porteneuve, “A Doppler lidar for measuring winds in the middle atmosphere,” Geophys. Res. Lett. 16(11), 1273–1276 (1989).
    [Crossref]
  2. A. Garnier and M. L. Chanin, “Description of a Doppler Rayleigh LIDAR for measuring winds in the middle atmosphere,” Appl. Phys. B 55(1), 35–40 (1992).
    [Crossref]
  3. C. Souprayen, A. Garnier, A. Hertzog, A. Hauchecorne, and J. Porteneuve, “Rayleigh-Mie Doppler wind lidar for atmospheric measurements. I. Instrumental setup, validation, and first climatological results,” Appl. Opt. 38(12), 2410–2421 (1999).
    [Crossref] [PubMed]
  4. C. Souprayen, A. Garnier, and A. Hertzog, “Rayleigh-Mie Doppler wind lidar for atmospheric measurements. II. Mie scattering effect, theory, and calibration,” Appl. Opt. 38(12), 2422–2431 (1999).
    [Crossref] [PubMed]
  5. C. A. Tepley, S. I. Sargoytchev, and C. O. Hines, “Initial Doppler Rayleigh lidar results from Arecibo,” Geophys. Res. Lett. 18(2), 167–170 (1991).
    [Crossref]
  6. C. A. Tepley, S. I. Sargoytchev, and R. Rojas, “The Doppler Rayleigh lidar system at Arecibo,” IEEE Trans. Geosci. Rem. Sens. 31(1), 36–47 (1993).
    [Crossref]
  7. C. A. Tepley, “Neutral winds of the middle atmosphere observed at Arecibo using a Doppler Rayleigh lidar,” J. Geophys. Res. 99(D12), 25781–25790 (1994).
    [Crossref]
  8. J. S. Friedman, C. A. Tepley, P. A. Castleberg, and H. Roe, “Middle-atmospheric Doppler lidar using an iodine-vapor edge filter,” Opt. Lett. 22(21), 1648–1650 (1997).
    [Crossref] [PubMed]
  9. D. Rees, M. Vyssogorets, N. P. Meredith, E. Griffin, and Y. Chaxell, “The Doppler wind and temperature system of the ALOMAR lidar facility: overview and initial results,” J. Atmos. Sol. Terr. Phys. 58(16), 1827–1842 (1996).
    [Crossref]
  10. U. von Zahn, G. von Cossart, J. Fiedler, K. H. Fricke, G. Nelke, G. Baumgarten, D. Rees, A. Hauchecorne, and K. Adolfsen, “The ALOMAR Rayleigh/Mie/Raman lidar: objectives, configuration, and performance,” Ann. Geophys. 18(7), 815–833 (2000).
    [Crossref]
  11. G. Baumgarten, “Doppler Rayleigh Mie Raman lidar for wind and temperature measurements in the middle atmosphere up to 80 km,” Atmos. Meas. Tech. Discuss. 3(6), 1509–1518 (2010).
    [Crossref]
  12. W. Huang, X. Chu, J. Wiig, B. Tan, C. Yamashita, T. Yuan, J. Yue, S. D. Harrell, C.-Y. She, B. P. Williams, J. S. Friedman, and R. M. Hardesty, “Field demonstration of simultaneous wind and temperature measurements from 5 to 50 km with a Na double-edge magneto-optic filter in a multi-frequency Doppler lidar,” Opt. Lett. 34(10), 1552–1554 (2009).
    [Crossref] [PubMed]
  13. B. M. Gentry, H. Chen, and S. X. Li, “Wind measurements with 355-nm molecular Doppler lidar,” Opt. Lett. 25(17), 1231–1233 (2000).
    [Crossref] [PubMed]
  14. P. Hays, M. Dehring, L. Fisk, P. Tchoryk, I. Dors, J. Ryan, J. Wang, M. Hardesty, B. Gentry, and F. Hovis,“Space-based Doppler winds lidar: a vital national need,” in response to national research council (NRC)decadal study request for information (RFI), May (2005).
  15. European Space Agency ESA, ADM-Aeolus science report: ESA SP-1311 (ESA Communication Production Office, 2008).
  16. A. Stoffelen, J. Pailleux, E. Källen, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, “The atmospheric dynamics mission for global wind field measurement,” Bull. Am. Meteorol. Soc. 86(1), 73–87 (2005).
    [Crossref]
  17. O. Reitebuch, C. Lemmerz, E. Nagel, U. Paffrath, Y. Durand, M. Endemann, F. Fabre, and M. Chaloupy, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-Aeolus. Part I: Instrument design and comparison to satellite instrument,” J. Atmos. Ocean. Technol. 26(12), 2501–2515 (2009).
    [Crossref]
  18. U. Paffrath, C. Lemmerz, O. Reitebuch, B. Witschas, I. Nikolaus, and V. Freudenthaler, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-Aeolus. Part II: simulations and Rayleigh receiver radiometric performance,” J. Atmos. Ocean. Technol. 26(12), 2516–2530 (2009).
    [Crossref]
  19. D. C. Fritts, “Gravity wave saturation in the middle atmosphere: a review of theory and observations,” Rev. Geophys. 22(3), 275–308 (1984).
    [Crossref]
  20. S. P. Alexander, A. R. Klekociuk, and D. J. Murphy, “Rayleigh lidar observations of gravity wave activity in the winter upper stratosphere and lower mesosphere above Davis, Antarctica (69 S, 78 E),” J. Geophys. Res.: Atmospheres. 116(D13), D13109 (2011).
    [Crossref]
  21. J. Hildebrand, G. Baumgarten, J. Fiedler, U. P. Hoppe, B. Kaifler, F. J. Lübken, and B. P. Williams, “Combined wind measurements by two different lidar instruments in the Arctic middle atmosphere,” Atmos. Meas. Tech. 5(10), 2433–2445 (2012).
    [Crossref]
  22. R. Wilson, M. L. Chanin, and A. Hauchecorne, “Gravity waves in the middle atmosphere observed by Rayleigh lidar: 1. Case studies,” J. Geophys. Res. Atmos. 96(D3), 5153–5167 (1991).
    [Crossref]
  23. R. Wilson, M. L. Chanin, and A. Hauchecorne, “Gravity waves in the middle atmosphere observed by Rayleigh lidar: 2. Climatology,” J. Geophys. Res. Atmos. 96(D3), 5169–5183 (1991).
    [Crossref]
  24. X. Dou, Y. Han, D. Sun, H. Xia, Z. Shu, R. Zhao, M. Shangguan, and J. Guo, “Mobile Rayleigh Doppler lidar for wind and temperature measurements in the stratosphere and lower mesosphere,” Opt. Express 22(105), A1203–A1221 (2014).
    [Crossref] [PubMed]
  25. H. Xia, X. Dou, D. Sun, Z. Shu, X. Xue, Y. Han, D. Hu, Y. Han, and T. Cheng, “Mid-altitude wind measurements with mobile Rayleigh Doppler lidar incorporating system-level optical frequency control method,” Opt. Express 20(14), 15286–15300 (2012).
    [Crossref] [PubMed]
  26. C. L. Korb, B. M. Gentry, S. X. Li, and C. Flesia, “Theory of the double-edge technique for Doppler lidar wind measurement,” Appl. Opt. 37(15), 3097–3104 (1998).
    [Crossref] [PubMed]
  27. C. Flesia and C. L. Korb, “Theory of the double-edge molecular technique for Doppler lidar wind measurement,” Appl. Opt. 38(3), 432–440 (1999).
    [Crossref] [PubMed]
  28. R.-C. Zhao, H.-Y. Xia, X.-K. Dou, D.-S. Sun, Y.-L. Han, M.-J. Shangguan, J. Guo, and Z.-F. Shu, “Correction of temperature influence on the wind retrieval from a mobile Rayleigh Doppler lidar,” Chin. Phys. B 24(2), 024218 (2015).
    [Crossref]
  29. F. Zhang, X. Dou, D. Sun, Z. Shu, H. Xia, Y. Gao, D. Hu, and M. Shangguan, “Analysis on error of laser frequency locking for fiber optical receiver in direct detection wind lidar based on Fabry–Perot interferometer and improvements,” Opt. Eng. 53(12), 124102 (2014).
    [Crossref]
  30. D. Hu, D. Sun, Z. Shu, M. Shangguan, Y. Gao, and X. Dou, “Mobile incoherent Doppler lidar using fiber-based lidar receivers,” Opt. Eng. 53(9), 093106 (2014).
    [Crossref]
  31. D. C. Fritts and M. J. Alexander, “Gravity wave dynamics and effects in the middle atmosphere,” Rev. Geophys. 41(1), 1003 (2003).
    [Crossref]
  32. I. Hirota and T. Niki, “A statistical study of inertia-gravity waves in the middle atmosphere,” J. Meteorol. Soc. Jpn. 63(6), 1055–1066 (1985).
  33. S. D. Eckermann and R. A. Vincent, “Falling sphere observations of anisotropic gravity wave motions in the upper stratosphere over Australia,” Pure Appl. Geophys. 130(2), 509–532 (1989).
    [Crossref]

2015 (1)

R.-C. Zhao, H.-Y. Xia, X.-K. Dou, D.-S. Sun, Y.-L. Han, M.-J. Shangguan, J. Guo, and Z.-F. Shu, “Correction of temperature influence on the wind retrieval from a mobile Rayleigh Doppler lidar,” Chin. Phys. B 24(2), 024218 (2015).
[Crossref]

2014 (3)

F. Zhang, X. Dou, D. Sun, Z. Shu, H. Xia, Y. Gao, D. Hu, and M. Shangguan, “Analysis on error of laser frequency locking for fiber optical receiver in direct detection wind lidar based on Fabry–Perot interferometer and improvements,” Opt. Eng. 53(12), 124102 (2014).
[Crossref]

D. Hu, D. Sun, Z. Shu, M. Shangguan, Y. Gao, and X. Dou, “Mobile incoherent Doppler lidar using fiber-based lidar receivers,” Opt. Eng. 53(9), 093106 (2014).
[Crossref]

X. Dou, Y. Han, D. Sun, H. Xia, Z. Shu, R. Zhao, M. Shangguan, and J. Guo, “Mobile Rayleigh Doppler lidar for wind and temperature measurements in the stratosphere and lower mesosphere,” Opt. Express 22(105), A1203–A1221 (2014).
[Crossref] [PubMed]

2012 (2)

H. Xia, X. Dou, D. Sun, Z. Shu, X. Xue, Y. Han, D. Hu, Y. Han, and T. Cheng, “Mid-altitude wind measurements with mobile Rayleigh Doppler lidar incorporating system-level optical frequency control method,” Opt. Express 20(14), 15286–15300 (2012).
[Crossref] [PubMed]

J. Hildebrand, G. Baumgarten, J. Fiedler, U. P. Hoppe, B. Kaifler, F. J. Lübken, and B. P. Williams, “Combined wind measurements by two different lidar instruments in the Arctic middle atmosphere,” Atmos. Meas. Tech. 5(10), 2433–2445 (2012).
[Crossref]

2011 (1)

S. P. Alexander, A. R. Klekociuk, and D. J. Murphy, “Rayleigh lidar observations of gravity wave activity in the winter upper stratosphere and lower mesosphere above Davis, Antarctica (69 S, 78 E),” J. Geophys. Res.: Atmospheres. 116(D13), D13109 (2011).
[Crossref]

2010 (1)

G. Baumgarten, “Doppler Rayleigh Mie Raman lidar for wind and temperature measurements in the middle atmosphere up to 80 km,” Atmos. Meas. Tech. Discuss. 3(6), 1509–1518 (2010).
[Crossref]

2009 (3)

W. Huang, X. Chu, J. Wiig, B. Tan, C. Yamashita, T. Yuan, J. Yue, S. D. Harrell, C.-Y. She, B. P. Williams, J. S. Friedman, and R. M. Hardesty, “Field demonstration of simultaneous wind and temperature measurements from 5 to 50 km with a Na double-edge magneto-optic filter in a multi-frequency Doppler lidar,” Opt. Lett. 34(10), 1552–1554 (2009).
[Crossref] [PubMed]

O. Reitebuch, C. Lemmerz, E. Nagel, U. Paffrath, Y. Durand, M. Endemann, F. Fabre, and M. Chaloupy, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-Aeolus. Part I: Instrument design and comparison to satellite instrument,” J. Atmos. Ocean. Technol. 26(12), 2501–2515 (2009).
[Crossref]

U. Paffrath, C. Lemmerz, O. Reitebuch, B. Witschas, I. Nikolaus, and V. Freudenthaler, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-Aeolus. Part II: simulations and Rayleigh receiver radiometric performance,” J. Atmos. Ocean. Technol. 26(12), 2516–2530 (2009).
[Crossref]

2005 (1)

A. Stoffelen, J. Pailleux, E. Källen, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, “The atmospheric dynamics mission for global wind field measurement,” Bull. Am. Meteorol. Soc. 86(1), 73–87 (2005).
[Crossref]

2003 (1)

D. C. Fritts and M. J. Alexander, “Gravity wave dynamics and effects in the middle atmosphere,” Rev. Geophys. 41(1), 1003 (2003).
[Crossref]

2000 (2)

U. von Zahn, G. von Cossart, J. Fiedler, K. H. Fricke, G. Nelke, G. Baumgarten, D. Rees, A. Hauchecorne, and K. Adolfsen, “The ALOMAR Rayleigh/Mie/Raman lidar: objectives, configuration, and performance,” Ann. Geophys. 18(7), 815–833 (2000).
[Crossref]

B. M. Gentry, H. Chen, and S. X. Li, “Wind measurements with 355-nm molecular Doppler lidar,” Opt. Lett. 25(17), 1231–1233 (2000).
[Crossref] [PubMed]

1999 (3)

1998 (1)

1997 (1)

1996 (1)

D. Rees, M. Vyssogorets, N. P. Meredith, E. Griffin, and Y. Chaxell, “The Doppler wind and temperature system of the ALOMAR lidar facility: overview and initial results,” J. Atmos. Sol. Terr. Phys. 58(16), 1827–1842 (1996).
[Crossref]

1994 (1)

C. A. Tepley, “Neutral winds of the middle atmosphere observed at Arecibo using a Doppler Rayleigh lidar,” J. Geophys. Res. 99(D12), 25781–25790 (1994).
[Crossref]

1993 (1)

C. A. Tepley, S. I. Sargoytchev, and R. Rojas, “The Doppler Rayleigh lidar system at Arecibo,” IEEE Trans. Geosci. Rem. Sens. 31(1), 36–47 (1993).
[Crossref]

1992 (1)

A. Garnier and M. L. Chanin, “Description of a Doppler Rayleigh LIDAR for measuring winds in the middle atmosphere,” Appl. Phys. B 55(1), 35–40 (1992).
[Crossref]

1991 (3)

C. A. Tepley, S. I. Sargoytchev, and C. O. Hines, “Initial Doppler Rayleigh lidar results from Arecibo,” Geophys. Res. Lett. 18(2), 167–170 (1991).
[Crossref]

R. Wilson, M. L. Chanin, and A. Hauchecorne, “Gravity waves in the middle atmosphere observed by Rayleigh lidar: 1. Case studies,” J. Geophys. Res. Atmos. 96(D3), 5153–5167 (1991).
[Crossref]

R. Wilson, M. L. Chanin, and A. Hauchecorne, “Gravity waves in the middle atmosphere observed by Rayleigh lidar: 2. Climatology,” J. Geophys. Res. Atmos. 96(D3), 5169–5183 (1991).
[Crossref]

1989 (2)

M. L. Chanin, A. Garnier, A. Hauchecorne, and J. Porteneuve, “A Doppler lidar for measuring winds in the middle atmosphere,” Geophys. Res. Lett. 16(11), 1273–1276 (1989).
[Crossref]

S. D. Eckermann and R. A. Vincent, “Falling sphere observations of anisotropic gravity wave motions in the upper stratosphere over Australia,” Pure Appl. Geophys. 130(2), 509–532 (1989).
[Crossref]

1985 (1)

I. Hirota and T. Niki, “A statistical study of inertia-gravity waves in the middle atmosphere,” J. Meteorol. Soc. Jpn. 63(6), 1055–1066 (1985).

1984 (1)

D. C. Fritts, “Gravity wave saturation in the middle atmosphere: a review of theory and observations,” Rev. Geophys. 22(3), 275–308 (1984).
[Crossref]

Adolfsen, K.

U. von Zahn, G. von Cossart, J. Fiedler, K. H. Fricke, G. Nelke, G. Baumgarten, D. Rees, A. Hauchecorne, and K. Adolfsen, “The ALOMAR Rayleigh/Mie/Raman lidar: objectives, configuration, and performance,” Ann. Geophys. 18(7), 815–833 (2000).
[Crossref]

Alexander, M. J.

D. C. Fritts and M. J. Alexander, “Gravity wave dynamics and effects in the middle atmosphere,” Rev. Geophys. 41(1), 1003 (2003).
[Crossref]

Alexander, S. P.

S. P. Alexander, A. R. Klekociuk, and D. J. Murphy, “Rayleigh lidar observations of gravity wave activity in the winter upper stratosphere and lower mesosphere above Davis, Antarctica (69 S, 78 E),” J. Geophys. Res.: Atmospheres. 116(D13), D13109 (2011).
[Crossref]

Andersson, E.

A. Stoffelen, J. Pailleux, E. Källen, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, “The atmospheric dynamics mission for global wind field measurement,” Bull. Am. Meteorol. Soc. 86(1), 73–87 (2005).
[Crossref]

Baumgarten, G.

J. Hildebrand, G. Baumgarten, J. Fiedler, U. P. Hoppe, B. Kaifler, F. J. Lübken, and B. P. Williams, “Combined wind measurements by two different lidar instruments in the Arctic middle atmosphere,” Atmos. Meas. Tech. 5(10), 2433–2445 (2012).
[Crossref]

G. Baumgarten, “Doppler Rayleigh Mie Raman lidar for wind and temperature measurements in the middle atmosphere up to 80 km,” Atmos. Meas. Tech. Discuss. 3(6), 1509–1518 (2010).
[Crossref]

U. von Zahn, G. von Cossart, J. Fiedler, K. H. Fricke, G. Nelke, G. Baumgarten, D. Rees, A. Hauchecorne, and K. Adolfsen, “The ALOMAR Rayleigh/Mie/Raman lidar: objectives, configuration, and performance,” Ann. Geophys. 18(7), 815–833 (2000).
[Crossref]

Castleberg, P. A.

Chaloupy, M.

O. Reitebuch, C. Lemmerz, E. Nagel, U. Paffrath, Y. Durand, M. Endemann, F. Fabre, and M. Chaloupy, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-Aeolus. Part I: Instrument design and comparison to satellite instrument,” J. Atmos. Ocean. Technol. 26(12), 2501–2515 (2009).
[Crossref]

Chanin, M. L.

A. Garnier and M. L. Chanin, “Description of a Doppler Rayleigh LIDAR for measuring winds in the middle atmosphere,” Appl. Phys. B 55(1), 35–40 (1992).
[Crossref]

R. Wilson, M. L. Chanin, and A. Hauchecorne, “Gravity waves in the middle atmosphere observed by Rayleigh lidar: 1. Case studies,” J. Geophys. Res. Atmos. 96(D3), 5153–5167 (1991).
[Crossref]

R. Wilson, M. L. Chanin, and A. Hauchecorne, “Gravity waves in the middle atmosphere observed by Rayleigh lidar: 2. Climatology,” J. Geophys. Res. Atmos. 96(D3), 5169–5183 (1991).
[Crossref]

M. L. Chanin, A. Garnier, A. Hauchecorne, and J. Porteneuve, “A Doppler lidar for measuring winds in the middle atmosphere,” Geophys. Res. Lett. 16(11), 1273–1276 (1989).
[Crossref]

Chaxell, Y.

D. Rees, M. Vyssogorets, N. P. Meredith, E. Griffin, and Y. Chaxell, “The Doppler wind and temperature system of the ALOMAR lidar facility: overview and initial results,” J. Atmos. Sol. Terr. Phys. 58(16), 1827–1842 (1996).
[Crossref]

Chen, H.

Cheng, T.

Chu, X.

Culoma, A.

A. Stoffelen, J. Pailleux, E. Källen, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, “The atmospheric dynamics mission for global wind field measurement,” Bull. Am. Meteorol. Soc. 86(1), 73–87 (2005).
[Crossref]

Dou, X.

X. Dou, Y. Han, D. Sun, H. Xia, Z. Shu, R. Zhao, M. Shangguan, and J. Guo, “Mobile Rayleigh Doppler lidar for wind and temperature measurements in the stratosphere and lower mesosphere,” Opt. Express 22(105), A1203–A1221 (2014).
[Crossref] [PubMed]

F. Zhang, X. Dou, D. Sun, Z. Shu, H. Xia, Y. Gao, D. Hu, and M. Shangguan, “Analysis on error of laser frequency locking for fiber optical receiver in direct detection wind lidar based on Fabry–Perot interferometer and improvements,” Opt. Eng. 53(12), 124102 (2014).
[Crossref]

D. Hu, D. Sun, Z. Shu, M. Shangguan, Y. Gao, and X. Dou, “Mobile incoherent Doppler lidar using fiber-based lidar receivers,” Opt. Eng. 53(9), 093106 (2014).
[Crossref]

H. Xia, X. Dou, D. Sun, Z. Shu, X. Xue, Y. Han, D. Hu, Y. Han, and T. Cheng, “Mid-altitude wind measurements with mobile Rayleigh Doppler lidar incorporating system-level optical frequency control method,” Opt. Express 20(14), 15286–15300 (2012).
[Crossref] [PubMed]

Dou, X.-K.

R.-C. Zhao, H.-Y. Xia, X.-K. Dou, D.-S. Sun, Y.-L. Han, M.-J. Shangguan, J. Guo, and Z.-F. Shu, “Correction of temperature influence on the wind retrieval from a mobile Rayleigh Doppler lidar,” Chin. Phys. B 24(2), 024218 (2015).
[Crossref]

Durand, Y.

O. Reitebuch, C. Lemmerz, E. Nagel, U. Paffrath, Y. Durand, M. Endemann, F. Fabre, and M. Chaloupy, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-Aeolus. Part I: Instrument design and comparison to satellite instrument,” J. Atmos. Ocean. Technol. 26(12), 2501–2515 (2009).
[Crossref]

Eckermann, S. D.

S. D. Eckermann and R. A. Vincent, “Falling sphere observations of anisotropic gravity wave motions in the upper stratosphere over Australia,” Pure Appl. Geophys. 130(2), 509–532 (1989).
[Crossref]

Endemann, M.

O. Reitebuch, C. Lemmerz, E. Nagel, U. Paffrath, Y. Durand, M. Endemann, F. Fabre, and M. Chaloupy, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-Aeolus. Part I: Instrument design and comparison to satellite instrument,” J. Atmos. Ocean. Technol. 26(12), 2501–2515 (2009).
[Crossref]

A. Stoffelen, J. Pailleux, E. Källen, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, “The atmospheric dynamics mission for global wind field measurement,” Bull. Am. Meteorol. Soc. 86(1), 73–87 (2005).
[Crossref]

Fabre, F.

O. Reitebuch, C. Lemmerz, E. Nagel, U. Paffrath, Y. Durand, M. Endemann, F. Fabre, and M. Chaloupy, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-Aeolus. Part I: Instrument design and comparison to satellite instrument,” J. Atmos. Ocean. Technol. 26(12), 2501–2515 (2009).
[Crossref]

Fiedler, J.

J. Hildebrand, G. Baumgarten, J. Fiedler, U. P. Hoppe, B. Kaifler, F. J. Lübken, and B. P. Williams, “Combined wind measurements by two different lidar instruments in the Arctic middle atmosphere,” Atmos. Meas. Tech. 5(10), 2433–2445 (2012).
[Crossref]

U. von Zahn, G. von Cossart, J. Fiedler, K. H. Fricke, G. Nelke, G. Baumgarten, D. Rees, A. Hauchecorne, and K. Adolfsen, “The ALOMAR Rayleigh/Mie/Raman lidar: objectives, configuration, and performance,” Ann. Geophys. 18(7), 815–833 (2000).
[Crossref]

Flamant, P.

A. Stoffelen, J. Pailleux, E. Källen, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, “The atmospheric dynamics mission for global wind field measurement,” Bull. Am. Meteorol. Soc. 86(1), 73–87 (2005).
[Crossref]

Flesia, C.

Freudenthaler, V.

U. Paffrath, C. Lemmerz, O. Reitebuch, B. Witschas, I. Nikolaus, and V. Freudenthaler, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-Aeolus. Part II: simulations and Rayleigh receiver radiometric performance,” J. Atmos. Ocean. Technol. 26(12), 2516–2530 (2009).
[Crossref]

Fricke, K. H.

U. von Zahn, G. von Cossart, J. Fiedler, K. H. Fricke, G. Nelke, G. Baumgarten, D. Rees, A. Hauchecorne, and K. Adolfsen, “The ALOMAR Rayleigh/Mie/Raman lidar: objectives, configuration, and performance,” Ann. Geophys. 18(7), 815–833 (2000).
[Crossref]

Friedman, J. S.

Fritts, D. C.

D. C. Fritts and M. J. Alexander, “Gravity wave dynamics and effects in the middle atmosphere,” Rev. Geophys. 41(1), 1003 (2003).
[Crossref]

D. C. Fritts, “Gravity wave saturation in the middle atmosphere: a review of theory and observations,” Rev. Geophys. 22(3), 275–308 (1984).
[Crossref]

Gao, Y.

F. Zhang, X. Dou, D. Sun, Z. Shu, H. Xia, Y. Gao, D. Hu, and M. Shangguan, “Analysis on error of laser frequency locking for fiber optical receiver in direct detection wind lidar based on Fabry–Perot interferometer and improvements,” Opt. Eng. 53(12), 124102 (2014).
[Crossref]

D. Hu, D. Sun, Z. Shu, M. Shangguan, Y. Gao, and X. Dou, “Mobile incoherent Doppler lidar using fiber-based lidar receivers,” Opt. Eng. 53(9), 093106 (2014).
[Crossref]

Garnier, A.

Gentry, B. M.

Griffin, E.

D. Rees, M. Vyssogorets, N. P. Meredith, E. Griffin, and Y. Chaxell, “The Doppler wind and temperature system of the ALOMAR lidar facility: overview and initial results,” J. Atmos. Sol. Terr. Phys. 58(16), 1827–1842 (1996).
[Crossref]

Guo, J.

R.-C. Zhao, H.-Y. Xia, X.-K. Dou, D.-S. Sun, Y.-L. Han, M.-J. Shangguan, J. Guo, and Z.-F. Shu, “Correction of temperature influence on the wind retrieval from a mobile Rayleigh Doppler lidar,” Chin. Phys. B 24(2), 024218 (2015).
[Crossref]

X. Dou, Y. Han, D. Sun, H. Xia, Z. Shu, R. Zhao, M. Shangguan, and J. Guo, “Mobile Rayleigh Doppler lidar for wind and temperature measurements in the stratosphere and lower mesosphere,” Opt. Express 22(105), A1203–A1221 (2014).
[Crossref] [PubMed]

Han, Y.

Han, Y.-L.

R.-C. Zhao, H.-Y. Xia, X.-K. Dou, D.-S. Sun, Y.-L. Han, M.-J. Shangguan, J. Guo, and Z.-F. Shu, “Correction of temperature influence on the wind retrieval from a mobile Rayleigh Doppler lidar,” Chin. Phys. B 24(2), 024218 (2015).
[Crossref]

Hardesty, R. M.

Harrell, S. D.

Hauchecorne, A.

U. von Zahn, G. von Cossart, J. Fiedler, K. H. Fricke, G. Nelke, G. Baumgarten, D. Rees, A. Hauchecorne, and K. Adolfsen, “The ALOMAR Rayleigh/Mie/Raman lidar: objectives, configuration, and performance,” Ann. Geophys. 18(7), 815–833 (2000).
[Crossref]

C. Souprayen, A. Garnier, A. Hertzog, A. Hauchecorne, and J. Porteneuve, “Rayleigh-Mie Doppler wind lidar for atmospheric measurements. I. Instrumental setup, validation, and first climatological results,” Appl. Opt. 38(12), 2410–2421 (1999).
[Crossref] [PubMed]

R. Wilson, M. L. Chanin, and A. Hauchecorne, “Gravity waves in the middle atmosphere observed by Rayleigh lidar: 2. Climatology,” J. Geophys. Res. Atmos. 96(D3), 5169–5183 (1991).
[Crossref]

R. Wilson, M. L. Chanin, and A. Hauchecorne, “Gravity waves in the middle atmosphere observed by Rayleigh lidar: 1. Case studies,” J. Geophys. Res. Atmos. 96(D3), 5153–5167 (1991).
[Crossref]

M. L. Chanin, A. Garnier, A. Hauchecorne, and J. Porteneuve, “A Doppler lidar for measuring winds in the middle atmosphere,” Geophys. Res. Lett. 16(11), 1273–1276 (1989).
[Crossref]

Hertzog, A.

Hildebrand, J.

J. Hildebrand, G. Baumgarten, J. Fiedler, U. P. Hoppe, B. Kaifler, F. J. Lübken, and B. P. Williams, “Combined wind measurements by two different lidar instruments in the Arctic middle atmosphere,” Atmos. Meas. Tech. 5(10), 2433–2445 (2012).
[Crossref]

Hines, C. O.

C. A. Tepley, S. I. Sargoytchev, and C. O. Hines, “Initial Doppler Rayleigh lidar results from Arecibo,” Geophys. Res. Lett. 18(2), 167–170 (1991).
[Crossref]

Hirota, I.

I. Hirota and T. Niki, “A statistical study of inertia-gravity waves in the middle atmosphere,” J. Meteorol. Soc. Jpn. 63(6), 1055–1066 (1985).

Hoppe, U. P.

J. Hildebrand, G. Baumgarten, J. Fiedler, U. P. Hoppe, B. Kaifler, F. J. Lübken, and B. P. Williams, “Combined wind measurements by two different lidar instruments in the Arctic middle atmosphere,” Atmos. Meas. Tech. 5(10), 2433–2445 (2012).
[Crossref]

Hu, D.

F. Zhang, X. Dou, D. Sun, Z. Shu, H. Xia, Y. Gao, D. Hu, and M. Shangguan, “Analysis on error of laser frequency locking for fiber optical receiver in direct detection wind lidar based on Fabry–Perot interferometer and improvements,” Opt. Eng. 53(12), 124102 (2014).
[Crossref]

D. Hu, D. Sun, Z. Shu, M. Shangguan, Y. Gao, and X. Dou, “Mobile incoherent Doppler lidar using fiber-based lidar receivers,” Opt. Eng. 53(9), 093106 (2014).
[Crossref]

H. Xia, X. Dou, D. Sun, Z. Shu, X. Xue, Y. Han, D. Hu, Y. Han, and T. Cheng, “Mid-altitude wind measurements with mobile Rayleigh Doppler lidar incorporating system-level optical frequency control method,” Opt. Express 20(14), 15286–15300 (2012).
[Crossref] [PubMed]

Huang, W.

Ingmann, P.

A. Stoffelen, J. Pailleux, E. Källen, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, “The atmospheric dynamics mission for global wind field measurement,” Bull. Am. Meteorol. Soc. 86(1), 73–87 (2005).
[Crossref]

Isaksen, L.

A. Stoffelen, J. Pailleux, E. Källen, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, “The atmospheric dynamics mission for global wind field measurement,” Bull. Am. Meteorol. Soc. 86(1), 73–87 (2005).
[Crossref]

Kaifler, B.

J. Hildebrand, G. Baumgarten, J. Fiedler, U. P. Hoppe, B. Kaifler, F. J. Lübken, and B. P. Williams, “Combined wind measurements by two different lidar instruments in the Arctic middle atmosphere,” Atmos. Meas. Tech. 5(10), 2433–2445 (2012).
[Crossref]

Källen, E.

A. Stoffelen, J. Pailleux, E. Källen, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, “The atmospheric dynamics mission for global wind field measurement,” Bull. Am. Meteorol. Soc. 86(1), 73–87 (2005).
[Crossref]

Klekociuk, A. R.

S. P. Alexander, A. R. Klekociuk, and D. J. Murphy, “Rayleigh lidar observations of gravity wave activity in the winter upper stratosphere and lower mesosphere above Davis, Antarctica (69 S, 78 E),” J. Geophys. Res.: Atmospheres. 116(D13), D13109 (2011).
[Crossref]

Korb, C. L.

Lemmerz, C.

U. Paffrath, C. Lemmerz, O. Reitebuch, B. Witschas, I. Nikolaus, and V. Freudenthaler, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-Aeolus. Part II: simulations and Rayleigh receiver radiometric performance,” J. Atmos. Ocean. Technol. 26(12), 2516–2530 (2009).
[Crossref]

O. Reitebuch, C. Lemmerz, E. Nagel, U. Paffrath, Y. Durand, M. Endemann, F. Fabre, and M. Chaloupy, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-Aeolus. Part I: Instrument design and comparison to satellite instrument,” J. Atmos. Ocean. Technol. 26(12), 2501–2515 (2009).
[Crossref]

Li, S. X.

Lübken, F. J.

J. Hildebrand, G. Baumgarten, J. Fiedler, U. P. Hoppe, B. Kaifler, F. J. Lübken, and B. P. Williams, “Combined wind measurements by two different lidar instruments in the Arctic middle atmosphere,” Atmos. Meas. Tech. 5(10), 2433–2445 (2012).
[Crossref]

Meredith, N. P.

D. Rees, M. Vyssogorets, N. P. Meredith, E. Griffin, and Y. Chaxell, “The Doppler wind and temperature system of the ALOMAR lidar facility: overview and initial results,” J. Atmos. Sol. Terr. Phys. 58(16), 1827–1842 (1996).
[Crossref]

Meynart, R.

A. Stoffelen, J. Pailleux, E. Källen, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, “The atmospheric dynamics mission for global wind field measurement,” Bull. Am. Meteorol. Soc. 86(1), 73–87 (2005).
[Crossref]

Murphy, D. J.

S. P. Alexander, A. R. Klekociuk, and D. J. Murphy, “Rayleigh lidar observations of gravity wave activity in the winter upper stratosphere and lower mesosphere above Davis, Antarctica (69 S, 78 E),” J. Geophys. Res.: Atmospheres. 116(D13), D13109 (2011).
[Crossref]

Nagel, E.

O. Reitebuch, C. Lemmerz, E. Nagel, U. Paffrath, Y. Durand, M. Endemann, F. Fabre, and M. Chaloupy, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-Aeolus. Part I: Instrument design and comparison to satellite instrument,” J. Atmos. Ocean. Technol. 26(12), 2501–2515 (2009).
[Crossref]

Nelke, G.

U. von Zahn, G. von Cossart, J. Fiedler, K. H. Fricke, G. Nelke, G. Baumgarten, D. Rees, A. Hauchecorne, and K. Adolfsen, “The ALOMAR Rayleigh/Mie/Raman lidar: objectives, configuration, and performance,” Ann. Geophys. 18(7), 815–833 (2000).
[Crossref]

Niki, T.

I. Hirota and T. Niki, “A statistical study of inertia-gravity waves in the middle atmosphere,” J. Meteorol. Soc. Jpn. 63(6), 1055–1066 (1985).

Nikolaus, I.

U. Paffrath, C. Lemmerz, O. Reitebuch, B. Witschas, I. Nikolaus, and V. Freudenthaler, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-Aeolus. Part II: simulations and Rayleigh receiver radiometric performance,” J. Atmos. Ocean. Technol. 26(12), 2516–2530 (2009).
[Crossref]

Paffrath, U.

U. Paffrath, C. Lemmerz, O. Reitebuch, B. Witschas, I. Nikolaus, and V. Freudenthaler, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-Aeolus. Part II: simulations and Rayleigh receiver radiometric performance,” J. Atmos. Ocean. Technol. 26(12), 2516–2530 (2009).
[Crossref]

O. Reitebuch, C. Lemmerz, E. Nagel, U. Paffrath, Y. Durand, M. Endemann, F. Fabre, and M. Chaloupy, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-Aeolus. Part I: Instrument design and comparison to satellite instrument,” J. Atmos. Ocean. Technol. 26(12), 2501–2515 (2009).
[Crossref]

Pailleux, J.

A. Stoffelen, J. Pailleux, E. Källen, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, “The atmospheric dynamics mission for global wind field measurement,” Bull. Am. Meteorol. Soc. 86(1), 73–87 (2005).
[Crossref]

Porteneuve, J.

Rees, D.

U. von Zahn, G. von Cossart, J. Fiedler, K. H. Fricke, G. Nelke, G. Baumgarten, D. Rees, A. Hauchecorne, and K. Adolfsen, “The ALOMAR Rayleigh/Mie/Raman lidar: objectives, configuration, and performance,” Ann. Geophys. 18(7), 815–833 (2000).
[Crossref]

D. Rees, M. Vyssogorets, N. P. Meredith, E. Griffin, and Y. Chaxell, “The Doppler wind and temperature system of the ALOMAR lidar facility: overview and initial results,” J. Atmos. Sol. Terr. Phys. 58(16), 1827–1842 (1996).
[Crossref]

Reitebuch, O.

O. Reitebuch, C. Lemmerz, E. Nagel, U. Paffrath, Y. Durand, M. Endemann, F. Fabre, and M. Chaloupy, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-Aeolus. Part I: Instrument design and comparison to satellite instrument,” J. Atmos. Ocean. Technol. 26(12), 2501–2515 (2009).
[Crossref]

U. Paffrath, C. Lemmerz, O. Reitebuch, B. Witschas, I. Nikolaus, and V. Freudenthaler, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-Aeolus. Part II: simulations and Rayleigh receiver radiometric performance,” J. Atmos. Ocean. Technol. 26(12), 2516–2530 (2009).
[Crossref]

Roe, H.

Rojas, R.

C. A. Tepley, S. I. Sargoytchev, and R. Rojas, “The Doppler Rayleigh lidar system at Arecibo,” IEEE Trans. Geosci. Rem. Sens. 31(1), 36–47 (1993).
[Crossref]

Sargoytchev, S. I.

C. A. Tepley, S. I. Sargoytchev, and R. Rojas, “The Doppler Rayleigh lidar system at Arecibo,” IEEE Trans. Geosci. Rem. Sens. 31(1), 36–47 (1993).
[Crossref]

C. A. Tepley, S. I. Sargoytchev, and C. O. Hines, “Initial Doppler Rayleigh lidar results from Arecibo,” Geophys. Res. Lett. 18(2), 167–170 (1991).
[Crossref]

Schyberg, H.

A. Stoffelen, J. Pailleux, E. Källen, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, “The atmospheric dynamics mission for global wind field measurement,” Bull. Am. Meteorol. Soc. 86(1), 73–87 (2005).
[Crossref]

Shangguan, M.

F. Zhang, X. Dou, D. Sun, Z. Shu, H. Xia, Y. Gao, D. Hu, and M. Shangguan, “Analysis on error of laser frequency locking for fiber optical receiver in direct detection wind lidar based on Fabry–Perot interferometer and improvements,” Opt. Eng. 53(12), 124102 (2014).
[Crossref]

D. Hu, D. Sun, Z. Shu, M. Shangguan, Y. Gao, and X. Dou, “Mobile incoherent Doppler lidar using fiber-based lidar receivers,” Opt. Eng. 53(9), 093106 (2014).
[Crossref]

X. Dou, Y. Han, D. Sun, H. Xia, Z. Shu, R. Zhao, M. Shangguan, and J. Guo, “Mobile Rayleigh Doppler lidar for wind and temperature measurements in the stratosphere and lower mesosphere,” Opt. Express 22(105), A1203–A1221 (2014).
[Crossref] [PubMed]

Shangguan, M.-J.

R.-C. Zhao, H.-Y. Xia, X.-K. Dou, D.-S. Sun, Y.-L. Han, M.-J. Shangguan, J. Guo, and Z.-F. Shu, “Correction of temperature influence on the wind retrieval from a mobile Rayleigh Doppler lidar,” Chin. Phys. B 24(2), 024218 (2015).
[Crossref]

She, C.-Y.

Shu, Z.

X. Dou, Y. Han, D. Sun, H. Xia, Z. Shu, R. Zhao, M. Shangguan, and J. Guo, “Mobile Rayleigh Doppler lidar for wind and temperature measurements in the stratosphere and lower mesosphere,” Opt. Express 22(105), A1203–A1221 (2014).
[Crossref] [PubMed]

F. Zhang, X. Dou, D. Sun, Z. Shu, H. Xia, Y. Gao, D. Hu, and M. Shangguan, “Analysis on error of laser frequency locking for fiber optical receiver in direct detection wind lidar based on Fabry–Perot interferometer and improvements,” Opt. Eng. 53(12), 124102 (2014).
[Crossref]

D. Hu, D. Sun, Z. Shu, M. Shangguan, Y. Gao, and X. Dou, “Mobile incoherent Doppler lidar using fiber-based lidar receivers,” Opt. Eng. 53(9), 093106 (2014).
[Crossref]

H. Xia, X. Dou, D. Sun, Z. Shu, X. Xue, Y. Han, D. Hu, Y. Han, and T. Cheng, “Mid-altitude wind measurements with mobile Rayleigh Doppler lidar incorporating system-level optical frequency control method,” Opt. Express 20(14), 15286–15300 (2012).
[Crossref] [PubMed]

Shu, Z.-F.

R.-C. Zhao, H.-Y. Xia, X.-K. Dou, D.-S. Sun, Y.-L. Han, M.-J. Shangguan, J. Guo, and Z.-F. Shu, “Correction of temperature influence on the wind retrieval from a mobile Rayleigh Doppler lidar,” Chin. Phys. B 24(2), 024218 (2015).
[Crossref]

Souprayen, C.

Stoffelen, A.

A. Stoffelen, J. Pailleux, E. Källen, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, “The atmospheric dynamics mission for global wind field measurement,” Bull. Am. Meteorol. Soc. 86(1), 73–87 (2005).
[Crossref]

Sun, D.

X. Dou, Y. Han, D. Sun, H. Xia, Z. Shu, R. Zhao, M. Shangguan, and J. Guo, “Mobile Rayleigh Doppler lidar for wind and temperature measurements in the stratosphere and lower mesosphere,” Opt. Express 22(105), A1203–A1221 (2014).
[Crossref] [PubMed]

F. Zhang, X. Dou, D. Sun, Z. Shu, H. Xia, Y. Gao, D. Hu, and M. Shangguan, “Analysis on error of laser frequency locking for fiber optical receiver in direct detection wind lidar based on Fabry–Perot interferometer and improvements,” Opt. Eng. 53(12), 124102 (2014).
[Crossref]

D. Hu, D. Sun, Z. Shu, M. Shangguan, Y. Gao, and X. Dou, “Mobile incoherent Doppler lidar using fiber-based lidar receivers,” Opt. Eng. 53(9), 093106 (2014).
[Crossref]

H. Xia, X. Dou, D. Sun, Z. Shu, X. Xue, Y. Han, D. Hu, Y. Han, and T. Cheng, “Mid-altitude wind measurements with mobile Rayleigh Doppler lidar incorporating system-level optical frequency control method,” Opt. Express 20(14), 15286–15300 (2012).
[Crossref] [PubMed]

Sun, D.-S.

R.-C. Zhao, H.-Y. Xia, X.-K. Dou, D.-S. Sun, Y.-L. Han, M.-J. Shangguan, J. Guo, and Z.-F. Shu, “Correction of temperature influence on the wind retrieval from a mobile Rayleigh Doppler lidar,” Chin. Phys. B 24(2), 024218 (2015).
[Crossref]

Tan, B.

Tepley, C. A.

J. S. Friedman, C. A. Tepley, P. A. Castleberg, and H. Roe, “Middle-atmospheric Doppler lidar using an iodine-vapor edge filter,” Opt. Lett. 22(21), 1648–1650 (1997).
[Crossref] [PubMed]

C. A. Tepley, “Neutral winds of the middle atmosphere observed at Arecibo using a Doppler Rayleigh lidar,” J. Geophys. Res. 99(D12), 25781–25790 (1994).
[Crossref]

C. A. Tepley, S. I. Sargoytchev, and R. Rojas, “The Doppler Rayleigh lidar system at Arecibo,” IEEE Trans. Geosci. Rem. Sens. 31(1), 36–47 (1993).
[Crossref]

C. A. Tepley, S. I. Sargoytchev, and C. O. Hines, “Initial Doppler Rayleigh lidar results from Arecibo,” Geophys. Res. Lett. 18(2), 167–170 (1991).
[Crossref]

Vaughan, J. M.

A. Stoffelen, J. Pailleux, E. Källen, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, “The atmospheric dynamics mission for global wind field measurement,” Bull. Am. Meteorol. Soc. 86(1), 73–87 (2005).
[Crossref]

Vincent, R. A.

S. D. Eckermann and R. A. Vincent, “Falling sphere observations of anisotropic gravity wave motions in the upper stratosphere over Australia,” Pure Appl. Geophys. 130(2), 509–532 (1989).
[Crossref]

von Cossart, G.

U. von Zahn, G. von Cossart, J. Fiedler, K. H. Fricke, G. Nelke, G. Baumgarten, D. Rees, A. Hauchecorne, and K. Adolfsen, “The ALOMAR Rayleigh/Mie/Raman lidar: objectives, configuration, and performance,” Ann. Geophys. 18(7), 815–833 (2000).
[Crossref]

von Zahn, U.

U. von Zahn, G. von Cossart, J. Fiedler, K. H. Fricke, G. Nelke, G. Baumgarten, D. Rees, A. Hauchecorne, and K. Adolfsen, “The ALOMAR Rayleigh/Mie/Raman lidar: objectives, configuration, and performance,” Ann. Geophys. 18(7), 815–833 (2000).
[Crossref]

Vyssogorets, M.

D. Rees, M. Vyssogorets, N. P. Meredith, E. Griffin, and Y. Chaxell, “The Doppler wind and temperature system of the ALOMAR lidar facility: overview and initial results,” J. Atmos. Sol. Terr. Phys. 58(16), 1827–1842 (1996).
[Crossref]

Wergen, W.

A. Stoffelen, J. Pailleux, E. Källen, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, “The atmospheric dynamics mission for global wind field measurement,” Bull. Am. Meteorol. Soc. 86(1), 73–87 (2005).
[Crossref]

Wiig, J.

Williams, B. P.

Wilson, R.

R. Wilson, M. L. Chanin, and A. Hauchecorne, “Gravity waves in the middle atmosphere observed by Rayleigh lidar: 1. Case studies,” J. Geophys. Res. Atmos. 96(D3), 5153–5167 (1991).
[Crossref]

R. Wilson, M. L. Chanin, and A. Hauchecorne, “Gravity waves in the middle atmosphere observed by Rayleigh lidar: 2. Climatology,” J. Geophys. Res. Atmos. 96(D3), 5169–5183 (1991).
[Crossref]

Witschas, B.

U. Paffrath, C. Lemmerz, O. Reitebuch, B. Witschas, I. Nikolaus, and V. Freudenthaler, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-Aeolus. Part II: simulations and Rayleigh receiver radiometric performance,” J. Atmos. Ocean. Technol. 26(12), 2516–2530 (2009).
[Crossref]

Xia, H.

Xia, H.-Y.

R.-C. Zhao, H.-Y. Xia, X.-K. Dou, D.-S. Sun, Y.-L. Han, M.-J. Shangguan, J. Guo, and Z.-F. Shu, “Correction of temperature influence on the wind retrieval from a mobile Rayleigh Doppler lidar,” Chin. Phys. B 24(2), 024218 (2015).
[Crossref]

Xue, X.

Yamashita, C.

Yuan, T.

Yue, J.

Zhang, F.

F. Zhang, X. Dou, D. Sun, Z. Shu, H. Xia, Y. Gao, D. Hu, and M. Shangguan, “Analysis on error of laser frequency locking for fiber optical receiver in direct detection wind lidar based on Fabry–Perot interferometer and improvements,” Opt. Eng. 53(12), 124102 (2014).
[Crossref]

Zhao, R.

Zhao, R.-C.

R.-C. Zhao, H.-Y. Xia, X.-K. Dou, D.-S. Sun, Y.-L. Han, M.-J. Shangguan, J. Guo, and Z.-F. Shu, “Correction of temperature influence on the wind retrieval from a mobile Rayleigh Doppler lidar,” Chin. Phys. B 24(2), 024218 (2015).
[Crossref]

Ann. Geophys. (1)

U. von Zahn, G. von Cossart, J. Fiedler, K. H. Fricke, G. Nelke, G. Baumgarten, D. Rees, A. Hauchecorne, and K. Adolfsen, “The ALOMAR Rayleigh/Mie/Raman lidar: objectives, configuration, and performance,” Ann. Geophys. 18(7), 815–833 (2000).
[Crossref]

Appl. Opt. (4)

Appl. Phys. B (1)

A. Garnier and M. L. Chanin, “Description of a Doppler Rayleigh LIDAR for measuring winds in the middle atmosphere,” Appl. Phys. B 55(1), 35–40 (1992).
[Crossref]

Atmos. Meas. Tech. (1)

J. Hildebrand, G. Baumgarten, J. Fiedler, U. P. Hoppe, B. Kaifler, F. J. Lübken, and B. P. Williams, “Combined wind measurements by two different lidar instruments in the Arctic middle atmosphere,” Atmos. Meas. Tech. 5(10), 2433–2445 (2012).
[Crossref]

Atmos. Meas. Tech. Discuss. (1)

G. Baumgarten, “Doppler Rayleigh Mie Raman lidar for wind and temperature measurements in the middle atmosphere up to 80 km,” Atmos. Meas. Tech. Discuss. 3(6), 1509–1518 (2010).
[Crossref]

Bull. Am. Meteorol. Soc. (1)

A. Stoffelen, J. Pailleux, E. Källen, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, “The atmospheric dynamics mission for global wind field measurement,” Bull. Am. Meteorol. Soc. 86(1), 73–87 (2005).
[Crossref]

Chin. Phys. B (1)

R.-C. Zhao, H.-Y. Xia, X.-K. Dou, D.-S. Sun, Y.-L. Han, M.-J. Shangguan, J. Guo, and Z.-F. Shu, “Correction of temperature influence on the wind retrieval from a mobile Rayleigh Doppler lidar,” Chin. Phys. B 24(2), 024218 (2015).
[Crossref]

Geophys. Res. Lett. (2)

M. L. Chanin, A. Garnier, A. Hauchecorne, and J. Porteneuve, “A Doppler lidar for measuring winds in the middle atmosphere,” Geophys. Res. Lett. 16(11), 1273–1276 (1989).
[Crossref]

C. A. Tepley, S. I. Sargoytchev, and C. O. Hines, “Initial Doppler Rayleigh lidar results from Arecibo,” Geophys. Res. Lett. 18(2), 167–170 (1991).
[Crossref]

IEEE Trans. Geosci. Rem. Sens. (1)

C. A. Tepley, S. I. Sargoytchev, and R. Rojas, “The Doppler Rayleigh lidar system at Arecibo,” IEEE Trans. Geosci. Rem. Sens. 31(1), 36–47 (1993).
[Crossref]

J. Atmos. Ocean. Technol. (2)

O. Reitebuch, C. Lemmerz, E. Nagel, U. Paffrath, Y. Durand, M. Endemann, F. Fabre, and M. Chaloupy, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-Aeolus. Part I: Instrument design and comparison to satellite instrument,” J. Atmos. Ocean. Technol. 26(12), 2501–2515 (2009).
[Crossref]

U. Paffrath, C. Lemmerz, O. Reitebuch, B. Witschas, I. Nikolaus, and V. Freudenthaler, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-Aeolus. Part II: simulations and Rayleigh receiver radiometric performance,” J. Atmos. Ocean. Technol. 26(12), 2516–2530 (2009).
[Crossref]

J. Atmos. Sol. Terr. Phys. (1)

D. Rees, M. Vyssogorets, N. P. Meredith, E. Griffin, and Y. Chaxell, “The Doppler wind and temperature system of the ALOMAR lidar facility: overview and initial results,” J. Atmos. Sol. Terr. Phys. 58(16), 1827–1842 (1996).
[Crossref]

J. Geophys. Res. (1)

C. A. Tepley, “Neutral winds of the middle atmosphere observed at Arecibo using a Doppler Rayleigh lidar,” J. Geophys. Res. 99(D12), 25781–25790 (1994).
[Crossref]

J. Geophys. Res. Atmos. (2)

R. Wilson, M. L. Chanin, and A. Hauchecorne, “Gravity waves in the middle atmosphere observed by Rayleigh lidar: 1. Case studies,” J. Geophys. Res. Atmos. 96(D3), 5153–5167 (1991).
[Crossref]

R. Wilson, M. L. Chanin, and A. Hauchecorne, “Gravity waves in the middle atmosphere observed by Rayleigh lidar: 2. Climatology,” J. Geophys. Res. Atmos. 96(D3), 5169–5183 (1991).
[Crossref]

J. Geophys. Res.: Atmospheres. (1)

S. P. Alexander, A. R. Klekociuk, and D. J. Murphy, “Rayleigh lidar observations of gravity wave activity in the winter upper stratosphere and lower mesosphere above Davis, Antarctica (69 S, 78 E),” J. Geophys. Res.: Atmospheres. 116(D13), D13109 (2011).
[Crossref]

J. Meteorol. Soc. Jpn. (1)

I. Hirota and T. Niki, “A statistical study of inertia-gravity waves in the middle atmosphere,” J. Meteorol. Soc. Jpn. 63(6), 1055–1066 (1985).

Opt. Eng. (2)

F. Zhang, X. Dou, D. Sun, Z. Shu, H. Xia, Y. Gao, D. Hu, and M. Shangguan, “Analysis on error of laser frequency locking for fiber optical receiver in direct detection wind lidar based on Fabry–Perot interferometer and improvements,” Opt. Eng. 53(12), 124102 (2014).
[Crossref]

D. Hu, D. Sun, Z. Shu, M. Shangguan, Y. Gao, and X. Dou, “Mobile incoherent Doppler lidar using fiber-based lidar receivers,” Opt. Eng. 53(9), 093106 (2014).
[Crossref]

Opt. Express (2)

Opt. Lett. (3)

Pure Appl. Geophys. (1)

S. D. Eckermann and R. A. Vincent, “Falling sphere observations of anisotropic gravity wave motions in the upper stratosphere over Australia,” Pure Appl. Geophys. 130(2), 509–532 (1989).
[Crossref]

Rev. Geophys. (2)

D. C. Fritts and M. J. Alexander, “Gravity wave dynamics and effects in the middle atmosphere,” Rev. Geophys. 41(1), 1003 (2003).
[Crossref]

D. C. Fritts, “Gravity wave saturation in the middle atmosphere: a review of theory and observations,” Rev. Geophys. 22(3), 275–308 (1984).
[Crossref]

Other (2)

P. Hays, M. Dehring, L. Fisk, P. Tchoryk, I. Dors, J. Ryan, J. Wang, M. Hardesty, B. Gentry, and F. Hovis,“Space-based Doppler winds lidar: a vital national need,” in response to national research council (NRC)decadal study request for information (RFI), May (2005).

European Space Agency ESA, ADM-Aeolus science report: ESA SP-1311 (ESA Communication Production Office, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic view of the lidar’s three lines of sight. The mobile platforms are set in different directions in Xinzhou and Jiuquan.

Fig. 2
Fig. 2

(a) raw temperature profile with error bars at 00:15 on December 14, 2014, Xinzhou and the third-order polynomial fit of the whole-night mean temperature profiles (blue), compared with the CIRA 86 model (red) and MERRA temperature (green) at local time of 23:00 on December 13. (b) The relative perturbation of the temperature profile

Fig. 3
Fig. 3

(a)Y wind profile with error bars at 23:30 on October 27, 2015, Jiuquan, compared with the radiosonde data at 19:00 on October 27 (blue dots) and MERRA data (green lines in three different times on this night). The polynomial fit of the whole night mean profile is also shown (red dash-dot line) (b)Y wind fluctuation profile after (blue) and before bandpass-filtering(black). The red solid lines represent the fitting result of the fluctuation’s amplitude.

Fig. 4
Fig. 4

(a) Y wind map on October 27/28, 2015, Jiuquan (b) residual of Y wind speed after subtracting background (c)filtering result of the residual (d) 2-D spectra analysis of the perturbations.

Fig. 5
Fig. 5

Height-time maps of X wind perturbations on Dec. 03-06, 2014, Xinzhou. Lidar only operates in nighttime thus daytime is shown as white in this figure. The time scale is continuous and linear.

Fig. 6
Fig. 6

Height-time maps of simultaneous Y wind and temperature relative perturbations on Dec. 29/30, 2014, Jiuquan.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

L W-W = 2 htan(π/6)
L WT =htan(π/6)

Metrics