Abstract

In the search for alternative materials to replace indium-tin-oxide in transparent electrodes we have structured copper and aluminum thin films (between 5 an 40 nm) for tailoring their optical properties. Micrometer scaled holes were produced using the direct laser interference patterning (DLIP) technique. We compared the optical and electrical parameters of nanosecond and picosecond processed thin films. It was found that the optical transmittance of the structured layers was relatively increased between 25 to 125% while the electrical resistance was marginally influenced. In addition, the laser treatment enhanced the diffuse to total transmission ratio (HAZE) by values ranging from 30 to 82% (relative) as a potential advantage of μm structuring. The results also show that both of the studied metals succeed to match the target which is set by typical applications of indium thin oxide (ITO) films. Furthermore, numerical simulations are performed in order to understand the ablation process of thin film material for ps and ns pulses.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Laser perforated ultrathin metal films for transparent electrode applications

Martin Theuring, Volker Steenhoff, Stefan Geißendörfer, Martin Vehse, Karsten von Maydell, and Carsten Agert
Opt. Express 23(7) A254-A262 (2015)

High-performance composite Ag-Ni mesh based flexible transparent conductive film as multifunctional devices

Su Shen, Shi-Yu Chen, Dong-Yu Zhang, and Yan-Hua Liu
Opt. Express 26(21) 27545-27554 (2018)

Deposition and characterization of far-infrared absorbing gold black films

Donna J. Advena, Vincent T. Bly, and J. Thomas Cox
Appl. Opt. 32(7) 1136-1144 (1993)

References

  • View by:
  • |
  • |
  • |

  1. J. Meiß, New Material Concepts for Organic Solar Cells (Optimus Mostafa Verlag, Göttingen, 2011).
  2. N.S. Sariciftci and S.-S. Sun, Organic Photovoltaics: Mechanism, Materials, and Devices (Taylor & Francis, Boca Raton, 2005).
    [Crossref]
  3. B. Kang, J. Shi, and Q. Gao, in 2011 International Conference on Electrical and Control Engineering (ICECE): Sept. 16–18, 2011, Yichang, China Proceedings (Institute of Electrical and Electronics Engineers (IEEE)), IEEE. [Piscataway, N.J.] 2011, p. 3017.
  4. D.S. Ghosh, T.L. Chen, N. Formica, J. Hwang, I. Bruder, and V. Pruneri, “High figure-of-merit Ag/Al:ZnO nano-thick transparent electrodes for indium-free flexible photovoltaics, Solar Energy Materials and Solar Cells,” 107, 338–343 (2012).
  5. Polinares Consortium, Fact Sheet: Indium (European Research Area, Dundee, 2012).
  6. H. Paul, Lexikon der Optik (Spektrum, Akad. Verl., Heidelberg, Berlin, 2003).
  7. S. Ray, R. Banerjee, N. Basu, A. K. Batabyal, and A. Barua, “Properties of tin doped indium oxide thin films prepared by magnetron sputtering,” J. Appl. Phys. 54, 3497 (1983).
    [Crossref]
  8. Y. Waseda and J. M. Toguri, The Structure and Properties of Oxide Melts: Application of Basic Science to Metallurgical Processing (World Scientific, Singapore, River Edge, 1998).
    [Crossref]
  9. M. Yamaguchi, A. Ide-Ektessabi, H. Nomura, and N. Yasui, “Characteristics of indium tin oxide thin films prepared using electron beam evaporation,” Thin Solid Films 447, 115–118 (2004).
    [Crossref]
  10. X. Pang, H. Ma, K. Gao, H. Yang, X. Wu, and A. A. Volinsky, “Fracture Toughness and Adhesion of Transparent Al:ZnO Films Deposited on Glass Substrates,” J. Mater. Eng. Perform. 22, 3161–3167 (2013).
    [Crossref]
  11. E.G. Loewen, M. Nevière, and D. Maystre, “Grating efficiency theory as it applies to blazed and holographic gratings,” Appl. Opt. 16, 2711–2721 (1977).
    [Crossref] [PubMed]
  12. K.Q. Le and A. Alù, “Plasmonic gratings for enhanced light-trapping in thin-film organic solar cells,” in Conference on Lasers and Electro-Optics 2012, OSA Technical Digest (online) (Optical Society of America, 2012), paper CF3J.5.
  13. S. Sivasubramaniam and M. M. Alkaisi, “Inverted nanopyramid texturing for silicon solar cells using interference lithography,” Microelectron. Eng. 119, 146–150 (2014).
    [Crossref]
  14. Y.M. Song, J.S. Yu, and Y.T. Lee, “Antireflective submicrometer gratings on thin-film silicon solar cells for light-absorption enhancement,” Opt. Lett. 35, 276–278 (2010).
    [Crossref] [PubMed]
  15. B. Voisiat, M. Gedvilas, S. Indrisinas, and G. Raciukaitis, “Picosecond-laser 4-beam-interference ablation as a flexible tool for thin film microstructuring,” Physics Procedia 12, 116–124 (2011).
    [Crossref]
  16. A. Lasagni, T. Roch, M. Bieda, D. Benke, and E. Beyer, “High speed surface functionalization using direct laser interference patterning, towards 1 m2/min fabrication speed with sub-μm resolution,” Proc. SPIE 8968, 89680A (2014).
    [Crossref]
  17. M. Theuring, V. Steenhoff, S. Geißendörfer, M. Vehse, K. von Maydell, and C. Agert, “Laser perforated ultrathin metal films for transparent electrode applications,” Opt. Express 23, A254–A262 (2015).
    [Crossref] [PubMed]
  18. A. Lasagni, T. Roch, J. Berger, T. Kunze, V. Lang, and E. Beyer, “To use or not to use (direct laser interference patterning), that is the question,” Proc. SPIE 9351, 935115 (2015).
    [Crossref]
  19. Z.L. Wang, Nanowires and Nanobelts. Materials, Properties and Devices. Volume 1: Metal and Semiconductor Nanowires (Sringer, Boston, 2003).
  20. A. Sedlmayr, Experimental Investigations of Deformation Pathways in Nanowires (KIT Scientific Publishing, Karlsruhe, 2012)
  21. S. De, T.M. Higgins, P.E. Lyons, E.M. Doherty, P.N. Nirmalraj, W.J. Blau, J.J. Boland, and J.N. Coleman, “Silver Nanowire Networks as Flexible, Transparent, Conducting Films: Extremely High DC to Optical Conductivity Ratios,” ACS Nano 28, 1767–1774 (2009).
    [Crossref]
  22. H. Wu, L. Hu, M.W. Rowell, D. Kong, J.J. Cha, J.R. McDonough, J. Zhu, Y. Yang, M.D. McGehee, and Y. Cui, “Electrospun Metal Nanofiber Webs as High-Performance Transparent Electrode,” Nano Lett. 10, 4242–4248 (2010).
    [Crossref] [PubMed]
  23. L. Hu, H.S. Kim, J.-Y. Lee, P. Peumans, and Y. Cui, “Scalable Coating and Properties of Transparent, Flexible, Silver Nanowire Electrodes,” ACS Nano 4, 2955–2963 (2010).
    [Crossref] [PubMed]
  24. J. Groep, P. Spinelli, and A. Polman, “Transparent Conducting Silver Nanowire Networks,” Nano Lett. 12, 3138–3144 (2012).
    [Crossref] [PubMed]
  25. E.C. Garnett, W. Cai, J.J. Cha, F. Mahmood, S.T. Connor, M.G. Christoforo, Y. Cui, M.D. McGehee, and M.L. Brongersma, “Self-limited plasmonic welding of silver nanowire junctions,” Nature Materials 11, 241–249 (2012).
    [Crossref]
  26. G.Y. Margulis, M.G. Christoforo, D. Lam, Z.M. Beiley, A.R. Bowring, C.D. Bailie, A. Salleo, and M.D. McGehee, “Spray Deposition of Silver Nanowire Electrodes for Semitransparent Solid-State Dye-Sensitized Solar Cells,” Adv. Energy Mater. 3, 1657–1663 (2013).
    [Crossref]
  27. H. Wu, D. Kong, Z. Ruan, P.-C. Hsu, S. Wang, Z. Yu, T.J. Carney, L. Hu, S. Fan, and Y. Cui, “A transparent electrode based on a metal nanotrough network,” Nat. Nanotechnol. 8, 421–425 (2013).
    [Crossref] [PubMed]
  28. J.A. Fairfield, C. Ritter, A.T. Bellew, E.K. McCarthy, M.S. Ferreira, and J. J. Boland, “Effective Electrode Length Enhances Electrical Activation of Nanowire Networks: Experiment and Simulation,” ACS Nano 89542–9549 (2014).
    [Crossref] [PubMed]
  29. O. Eibl, Thermoelectric Bi2Te3 Nanomaterials (Wiley, Weinheim, 2015)
  30. T. Nakanishi, E. Tsutsumi, K. Masunaga, A. Fujimoto, and K. Asakawa, “Transparent Aluminum Nanomesh Electrode Fabricated by Nanopatterning Using Self-Assembled Nanoparticles,” Appl. Phys. Express 4, 025201 (2011).
    [Crossref]
  31. F. Afshinmanesh, A.G. Curto, K.M. Milaninia, N.F. van Hulst, and M.L. Brongersma, “Transparent Metallic Fractal Electrodes for Semiconductor Devices,” Nano Lett. 14, 5068–5074 (2014).
    [Crossref] [PubMed]
  32. T. Gao, B. Wang, B. Ding, J. Lee, and P.W. Leu, “Uniform and Ordered Copper Nanomeshes by Microsphere Lithography for Transparent Electrodes,” Nano Lett. 14, 2105–2110 (2014).
    [Crossref] [PubMed]
  33. M.-G. Kang and L.J. Guo, “Nanoimprinted Semitransparent Metal Electrodes and Their Application in Organic Light-Emitting Diodes,” Adv. Mater. 19, 1391–1396 (2007).
    [Crossref]
  34. J. van de Groep, F. Gupta, M.A. Verschuuren, M.M. Wienk, R.A. Janssen, and A. Polman, “Large-area soft-imprinted nanowire networks as light trapping transparent conductors,” Sci. Rep. 5, 11414 (2015).
    [Crossref] [PubMed]
  35. S. Eckhardt, L. Müller-Meskamp, M. Loeser, M. Siebold, and A. F. Lasagni, “Fabrication of highly efficient transparent metal thin film electrodes using Direct Laser Interference Patterning,” Proc. SPIE 9351, 935116 (2014).
  36. L. Müller-Meskamp, Y.H. Kim, T. Roch, S. Hofmann, R. Scholz, S. Eckardt, K. Leo, and A.F. Lasagni, “Efficiency Enhancement of Organic Solar Cells by Fabricating Periodic Surface Textures using Direct Laser Interference Patterning,” Adv. Mater. 24, 906–910 (2012).
    [Crossref] [PubMed]
  37. J. Lawrence, D.G. Waugh, and N. Aoyagi, Laser Surface Engineering: Processes and Applications (Woodhead Publishing, Cambridge, 2015).
  38. G F. Deyev and D.G. Deyev, Surface Phenomena in Fusion Welding Processes (CRC Taylor & Francis, Boca Raton, 2006).
  39. J.E. Hatch, Aluminum: Properties and Physical Metallurgy, American Society for Metals (Metals Park, Ohio, 1984).
  40. A. Lasagni and F. Mücklich, “FEM simulation of periodical local heating caused by Laser Interference Metallurgy,” J. Mater. Process. Tech. 209, 202–209 (2009).
    [Crossref]
  41. S.L. Chaplot, R. Mittal, and N. Choudhury, Thermodynamic properties of solids: Experiment and modeling (Wiley-VCH, Weinheim, 2010).
    [Crossref]
  42. R. Hultgren, R.L. Orr, P.D. Anderson, and K.K. Kelley, Selected Values of the Thermodynamic Properties of Metals and Alloys (John Wiley & Sons Inc., New York, Heidelberg, 1963).
  43. IAEA, Thermophysical Properties of Materials for Nuclear Engineering: A Tutorial and Collection of Data (International Atomic Energy Agency, Vienna, 2008).
  44. L.D. Pye, A. Montenero, and I. Joseph, Properties of Glass-Forming Melts (Taylor & Francis, Boca Raton, 2005).
    [Crossref]
  45. M. Wakaki, K. Kudo, and T. Shibuya, Physical Properties and Data of Optical Materials (CRC Press, Boca Raton, 2007).
    [Crossref]
  46. L. Ward, The Optical Constants of Bulk Materials and Films (Institute of Physics Pub, Bristol, Philadelphia, 1994).
  47. K. Mertens, Photovoltaics: Fundamentals, Technology and Practice (John Wiley & Sons, 2014).
  48. A.F. Mayadas and M. Shatzkes, “Electrical-Resistivity Model for Polycrystalline Films: the Case of Arbitrary Reflection at External Surfaces,” Phys. Rev. B 1, 1382 (1970).
    [Crossref]
  49. G. Aichmayr, D. Toet, M. Mulato, P. V. Santos, A. Spangenberg, and R.B. Bergmann, “Growth mechanisms in laser crystallization and laser interference crystallization,” J. Non-Cryst. Solids 227, 921–924 (1998).
    [Crossref]
  50. T. Suzuki, T. Yamazaki, and H. Oda, “Properties of indium oxide/tin oxide multilayered films prepared by ion-beam sputtering,” J. Mater. Sci. 23, 3026–3030 (1988).
    [Crossref]
  51. Y. Akagi, K. Hanamoto, H. Suzuki, T. Katoh, M. Sasaki, S. Imai, M. Tsudagawa, Y. Nakayama, and H. Miki, “Low-Resistivity Highly Transparent Indium-Tin-Oxide Thin Films Prepared at Room Temperature by Synchrotron Radiation Ablation,” Jpn. J. Appl. Phys. 38, 6846–6850 (1999).
    [Crossref]
  52. H. Agura, A. Suzuki, T. Matsushita, T. Aoki, and M. Okuda, “Low resistivity transparent conducting Al-doped ZnO films prepared by pulsed laser deposition,” Thin Solid Films 445, 263–267 (2003).
    [Crossref]
  53. R. Ghodssi and P. Lin, MEMS Materials and Processes Handbook (Springer, Boston, 2011).
    [Crossref]
  54. H. Askari, H. Fallah, M. Askari, and M.C. Mohmmadieyh, “Electrical and optical properties of ITO thin films prepared by DC magnetron sputtering for low-emitting coatings,” eprint arXiv:1409.5293 (2014).
  55. D.S. Ghosh, Ultrathin Metal Transparent Electrodes for the Optoelectronics Industry (Springer, New York, 2013).
    [Crossref]
  56. C. Fuchs, T. Schwab, T. Roch, S. Eckardt, A. Lasagni, S. Hofmann, B. Lssem, L. Müller-Meskamp, K. Leo, C. Gather, and R. Scholz, “Quantitative allocation of Bragg scattering effects in highly efficient OLEDs fabricated on periodically corrugated substrates,” Opt. Express 21, 16319–16330 (2013).
    [Crossref] [PubMed]

2015 (3)

M. Theuring, V. Steenhoff, S. Geißendörfer, M. Vehse, K. von Maydell, and C. Agert, “Laser perforated ultrathin metal films for transparent electrode applications,” Opt. Express 23, A254–A262 (2015).
[Crossref] [PubMed]

A. Lasagni, T. Roch, J. Berger, T. Kunze, V. Lang, and E. Beyer, “To use or not to use (direct laser interference patterning), that is the question,” Proc. SPIE 9351, 935115 (2015).
[Crossref]

J. van de Groep, F. Gupta, M.A. Verschuuren, M.M. Wienk, R.A. Janssen, and A. Polman, “Large-area soft-imprinted nanowire networks as light trapping transparent conductors,” Sci. Rep. 5, 11414 (2015).
[Crossref] [PubMed]

2014 (6)

S. Eckhardt, L. Müller-Meskamp, M. Loeser, M. Siebold, and A. F. Lasagni, “Fabrication of highly efficient transparent metal thin film electrodes using Direct Laser Interference Patterning,” Proc. SPIE 9351, 935116 (2014).

J.A. Fairfield, C. Ritter, A.T. Bellew, E.K. McCarthy, M.S. Ferreira, and J. J. Boland, “Effective Electrode Length Enhances Electrical Activation of Nanowire Networks: Experiment and Simulation,” ACS Nano 89542–9549 (2014).
[Crossref] [PubMed]

F. Afshinmanesh, A.G. Curto, K.M. Milaninia, N.F. van Hulst, and M.L. Brongersma, “Transparent Metallic Fractal Electrodes for Semiconductor Devices,” Nano Lett. 14, 5068–5074 (2014).
[Crossref] [PubMed]

T. Gao, B. Wang, B. Ding, J. Lee, and P.W. Leu, “Uniform and Ordered Copper Nanomeshes by Microsphere Lithography for Transparent Electrodes,” Nano Lett. 14, 2105–2110 (2014).
[Crossref] [PubMed]

S. Sivasubramaniam and M. M. Alkaisi, “Inverted nanopyramid texturing for silicon solar cells using interference lithography,” Microelectron. Eng. 119, 146–150 (2014).
[Crossref]

A. Lasagni, T. Roch, M. Bieda, D. Benke, and E. Beyer, “High speed surface functionalization using direct laser interference patterning, towards 1 m2/min fabrication speed with sub-μm resolution,” Proc. SPIE 8968, 89680A (2014).
[Crossref]

2013 (4)

X. Pang, H. Ma, K. Gao, H. Yang, X. Wu, and A. A. Volinsky, “Fracture Toughness and Adhesion of Transparent Al:ZnO Films Deposited on Glass Substrates,” J. Mater. Eng. Perform. 22, 3161–3167 (2013).
[Crossref]

G.Y. Margulis, M.G. Christoforo, D. Lam, Z.M. Beiley, A.R. Bowring, C.D. Bailie, A. Salleo, and M.D. McGehee, “Spray Deposition of Silver Nanowire Electrodes for Semitransparent Solid-State Dye-Sensitized Solar Cells,” Adv. Energy Mater. 3, 1657–1663 (2013).
[Crossref]

H. Wu, D. Kong, Z. Ruan, P.-C. Hsu, S. Wang, Z. Yu, T.J. Carney, L. Hu, S. Fan, and Y. Cui, “A transparent electrode based on a metal nanotrough network,” Nat. Nanotechnol. 8, 421–425 (2013).
[Crossref] [PubMed]

C. Fuchs, T. Schwab, T. Roch, S. Eckardt, A. Lasagni, S. Hofmann, B. Lssem, L. Müller-Meskamp, K. Leo, C. Gather, and R. Scholz, “Quantitative allocation of Bragg scattering effects in highly efficient OLEDs fabricated on periodically corrugated substrates,” Opt. Express 21, 16319–16330 (2013).
[Crossref] [PubMed]

2012 (3)

L. Müller-Meskamp, Y.H. Kim, T. Roch, S. Hofmann, R. Scholz, S. Eckardt, K. Leo, and A.F. Lasagni, “Efficiency Enhancement of Organic Solar Cells by Fabricating Periodic Surface Textures using Direct Laser Interference Patterning,” Adv. Mater. 24, 906–910 (2012).
[Crossref] [PubMed]

J. Groep, P. Spinelli, and A. Polman, “Transparent Conducting Silver Nanowire Networks,” Nano Lett. 12, 3138–3144 (2012).
[Crossref] [PubMed]

E.C. Garnett, W. Cai, J.J. Cha, F. Mahmood, S.T. Connor, M.G. Christoforo, Y. Cui, M.D. McGehee, and M.L. Brongersma, “Self-limited plasmonic welding of silver nanowire junctions,” Nature Materials 11, 241–249 (2012).
[Crossref]

2011 (2)

B. Voisiat, M. Gedvilas, S. Indrisinas, and G. Raciukaitis, “Picosecond-laser 4-beam-interference ablation as a flexible tool for thin film microstructuring,” Physics Procedia 12, 116–124 (2011).
[Crossref]

T. Nakanishi, E. Tsutsumi, K. Masunaga, A. Fujimoto, and K. Asakawa, “Transparent Aluminum Nanomesh Electrode Fabricated by Nanopatterning Using Self-Assembled Nanoparticles,” Appl. Phys. Express 4, 025201 (2011).
[Crossref]

2010 (3)

Y.M. Song, J.S. Yu, and Y.T. Lee, “Antireflective submicrometer gratings on thin-film silicon solar cells for light-absorption enhancement,” Opt. Lett. 35, 276–278 (2010).
[Crossref] [PubMed]

H. Wu, L. Hu, M.W. Rowell, D. Kong, J.J. Cha, J.R. McDonough, J. Zhu, Y. Yang, M.D. McGehee, and Y. Cui, “Electrospun Metal Nanofiber Webs as High-Performance Transparent Electrode,” Nano Lett. 10, 4242–4248 (2010).
[Crossref] [PubMed]

L. Hu, H.S. Kim, J.-Y. Lee, P. Peumans, and Y. Cui, “Scalable Coating and Properties of Transparent, Flexible, Silver Nanowire Electrodes,” ACS Nano 4, 2955–2963 (2010).
[Crossref] [PubMed]

2009 (2)

S. De, T.M. Higgins, P.E. Lyons, E.M. Doherty, P.N. Nirmalraj, W.J. Blau, J.J. Boland, and J.N. Coleman, “Silver Nanowire Networks as Flexible, Transparent, Conducting Films: Extremely High DC to Optical Conductivity Ratios,” ACS Nano 28, 1767–1774 (2009).
[Crossref]

A. Lasagni and F. Mücklich, “FEM simulation of periodical local heating caused by Laser Interference Metallurgy,” J. Mater. Process. Tech. 209, 202–209 (2009).
[Crossref]

2007 (1)

M.-G. Kang and L.J. Guo, “Nanoimprinted Semitransparent Metal Electrodes and Their Application in Organic Light-Emitting Diodes,” Adv. Mater. 19, 1391–1396 (2007).
[Crossref]

2004 (1)

M. Yamaguchi, A. Ide-Ektessabi, H. Nomura, and N. Yasui, “Characteristics of indium tin oxide thin films prepared using electron beam evaporation,” Thin Solid Films 447, 115–118 (2004).
[Crossref]

2003 (1)

H. Agura, A. Suzuki, T. Matsushita, T. Aoki, and M. Okuda, “Low resistivity transparent conducting Al-doped ZnO films prepared by pulsed laser deposition,” Thin Solid Films 445, 263–267 (2003).
[Crossref]

1999 (1)

Y. Akagi, K. Hanamoto, H. Suzuki, T. Katoh, M. Sasaki, S. Imai, M. Tsudagawa, Y. Nakayama, and H. Miki, “Low-Resistivity Highly Transparent Indium-Tin-Oxide Thin Films Prepared at Room Temperature by Synchrotron Radiation Ablation,” Jpn. J. Appl. Phys. 38, 6846–6850 (1999).
[Crossref]

1998 (1)

G. Aichmayr, D. Toet, M. Mulato, P. V. Santos, A. Spangenberg, and R.B. Bergmann, “Growth mechanisms in laser crystallization and laser interference crystallization,” J. Non-Cryst. Solids 227, 921–924 (1998).
[Crossref]

1988 (1)

T. Suzuki, T. Yamazaki, and H. Oda, “Properties of indium oxide/tin oxide multilayered films prepared by ion-beam sputtering,” J. Mater. Sci. 23, 3026–3030 (1988).
[Crossref]

1983 (1)

S. Ray, R. Banerjee, N. Basu, A. K. Batabyal, and A. Barua, “Properties of tin doped indium oxide thin films prepared by magnetron sputtering,” J. Appl. Phys. 54, 3497 (1983).
[Crossref]

1977 (1)

1970 (1)

A.F. Mayadas and M. Shatzkes, “Electrical-Resistivity Model for Polycrystalline Films: the Case of Arbitrary Reflection at External Surfaces,” Phys. Rev. B 1, 1382 (1970).
[Crossref]

Afshinmanesh, F.

F. Afshinmanesh, A.G. Curto, K.M. Milaninia, N.F. van Hulst, and M.L. Brongersma, “Transparent Metallic Fractal Electrodes for Semiconductor Devices,” Nano Lett. 14, 5068–5074 (2014).
[Crossref] [PubMed]

Agert, C.

Agura, H.

H. Agura, A. Suzuki, T. Matsushita, T. Aoki, and M. Okuda, “Low resistivity transparent conducting Al-doped ZnO films prepared by pulsed laser deposition,” Thin Solid Films 445, 263–267 (2003).
[Crossref]

Aichmayr, G.

G. Aichmayr, D. Toet, M. Mulato, P. V. Santos, A. Spangenberg, and R.B. Bergmann, “Growth mechanisms in laser crystallization and laser interference crystallization,” J. Non-Cryst. Solids 227, 921–924 (1998).
[Crossref]

Akagi, Y.

Y. Akagi, K. Hanamoto, H. Suzuki, T. Katoh, M. Sasaki, S. Imai, M. Tsudagawa, Y. Nakayama, and H. Miki, “Low-Resistivity Highly Transparent Indium-Tin-Oxide Thin Films Prepared at Room Temperature by Synchrotron Radiation Ablation,” Jpn. J. Appl. Phys. 38, 6846–6850 (1999).
[Crossref]

Alkaisi, M. M.

S. Sivasubramaniam and M. M. Alkaisi, “Inverted nanopyramid texturing for silicon solar cells using interference lithography,” Microelectron. Eng. 119, 146–150 (2014).
[Crossref]

Alù, A.

K.Q. Le and A. Alù, “Plasmonic gratings for enhanced light-trapping in thin-film organic solar cells,” in Conference on Lasers and Electro-Optics 2012, OSA Technical Digest (online) (Optical Society of America, 2012), paper CF3J.5.

Anderson, P.D.

R. Hultgren, R.L. Orr, P.D. Anderson, and K.K. Kelley, Selected Values of the Thermodynamic Properties of Metals and Alloys (John Wiley & Sons Inc., New York, Heidelberg, 1963).

Aoki, T.

H. Agura, A. Suzuki, T. Matsushita, T. Aoki, and M. Okuda, “Low resistivity transparent conducting Al-doped ZnO films prepared by pulsed laser deposition,” Thin Solid Films 445, 263–267 (2003).
[Crossref]

Aoyagi, N.

J. Lawrence, D.G. Waugh, and N. Aoyagi, Laser Surface Engineering: Processes and Applications (Woodhead Publishing, Cambridge, 2015).

Asakawa, K.

T. Nakanishi, E. Tsutsumi, K. Masunaga, A. Fujimoto, and K. Asakawa, “Transparent Aluminum Nanomesh Electrode Fabricated by Nanopatterning Using Self-Assembled Nanoparticles,” Appl. Phys. Express 4, 025201 (2011).
[Crossref]

Askari, H.

H. Askari, H. Fallah, M. Askari, and M.C. Mohmmadieyh, “Electrical and optical properties of ITO thin films prepared by DC magnetron sputtering for low-emitting coatings,” eprint arXiv:1409.5293 (2014).

Askari, M.

H. Askari, H. Fallah, M. Askari, and M.C. Mohmmadieyh, “Electrical and optical properties of ITO thin films prepared by DC magnetron sputtering for low-emitting coatings,” eprint arXiv:1409.5293 (2014).

Bailie, C.D.

G.Y. Margulis, M.G. Christoforo, D. Lam, Z.M. Beiley, A.R. Bowring, C.D. Bailie, A. Salleo, and M.D. McGehee, “Spray Deposition of Silver Nanowire Electrodes for Semitransparent Solid-State Dye-Sensitized Solar Cells,” Adv. Energy Mater. 3, 1657–1663 (2013).
[Crossref]

Banerjee, R.

S. Ray, R. Banerjee, N. Basu, A. K. Batabyal, and A. Barua, “Properties of tin doped indium oxide thin films prepared by magnetron sputtering,” J. Appl. Phys. 54, 3497 (1983).
[Crossref]

Barua, A.

S. Ray, R. Banerjee, N. Basu, A. K. Batabyal, and A. Barua, “Properties of tin doped indium oxide thin films prepared by magnetron sputtering,” J. Appl. Phys. 54, 3497 (1983).
[Crossref]

Basu, N.

S. Ray, R. Banerjee, N. Basu, A. K. Batabyal, and A. Barua, “Properties of tin doped indium oxide thin films prepared by magnetron sputtering,” J. Appl. Phys. 54, 3497 (1983).
[Crossref]

Batabyal, A. K.

S. Ray, R. Banerjee, N. Basu, A. K. Batabyal, and A. Barua, “Properties of tin doped indium oxide thin films prepared by magnetron sputtering,” J. Appl. Phys. 54, 3497 (1983).
[Crossref]

Beiley, Z.M.

G.Y. Margulis, M.G. Christoforo, D. Lam, Z.M. Beiley, A.R. Bowring, C.D. Bailie, A. Salleo, and M.D. McGehee, “Spray Deposition of Silver Nanowire Electrodes for Semitransparent Solid-State Dye-Sensitized Solar Cells,” Adv. Energy Mater. 3, 1657–1663 (2013).
[Crossref]

Bellew, A.T.

J.A. Fairfield, C. Ritter, A.T. Bellew, E.K. McCarthy, M.S. Ferreira, and J. J. Boland, “Effective Electrode Length Enhances Electrical Activation of Nanowire Networks: Experiment and Simulation,” ACS Nano 89542–9549 (2014).
[Crossref] [PubMed]

Benke, D.

A. Lasagni, T. Roch, M. Bieda, D. Benke, and E. Beyer, “High speed surface functionalization using direct laser interference patterning, towards 1 m2/min fabrication speed with sub-μm resolution,” Proc. SPIE 8968, 89680A (2014).
[Crossref]

Berger, J.

A. Lasagni, T. Roch, J. Berger, T. Kunze, V. Lang, and E. Beyer, “To use or not to use (direct laser interference patterning), that is the question,” Proc. SPIE 9351, 935115 (2015).
[Crossref]

Bergmann, R.B.

G. Aichmayr, D. Toet, M. Mulato, P. V. Santos, A. Spangenberg, and R.B. Bergmann, “Growth mechanisms in laser crystallization and laser interference crystallization,” J. Non-Cryst. Solids 227, 921–924 (1998).
[Crossref]

Beyer, E.

A. Lasagni, T. Roch, J. Berger, T. Kunze, V. Lang, and E. Beyer, “To use or not to use (direct laser interference patterning), that is the question,” Proc. SPIE 9351, 935115 (2015).
[Crossref]

A. Lasagni, T. Roch, M. Bieda, D. Benke, and E. Beyer, “High speed surface functionalization using direct laser interference patterning, towards 1 m2/min fabrication speed with sub-μm resolution,” Proc. SPIE 8968, 89680A (2014).
[Crossref]

Bieda, M.

A. Lasagni, T. Roch, M. Bieda, D. Benke, and E. Beyer, “High speed surface functionalization using direct laser interference patterning, towards 1 m2/min fabrication speed with sub-μm resolution,” Proc. SPIE 8968, 89680A (2014).
[Crossref]

Blau, W.J.

S. De, T.M. Higgins, P.E. Lyons, E.M. Doherty, P.N. Nirmalraj, W.J. Blau, J.J. Boland, and J.N. Coleman, “Silver Nanowire Networks as Flexible, Transparent, Conducting Films: Extremely High DC to Optical Conductivity Ratios,” ACS Nano 28, 1767–1774 (2009).
[Crossref]

Boland, J. J.

J.A. Fairfield, C. Ritter, A.T. Bellew, E.K. McCarthy, M.S. Ferreira, and J. J. Boland, “Effective Electrode Length Enhances Electrical Activation of Nanowire Networks: Experiment and Simulation,” ACS Nano 89542–9549 (2014).
[Crossref] [PubMed]

Boland, J.J.

S. De, T.M. Higgins, P.E. Lyons, E.M. Doherty, P.N. Nirmalraj, W.J. Blau, J.J. Boland, and J.N. Coleman, “Silver Nanowire Networks as Flexible, Transparent, Conducting Films: Extremely High DC to Optical Conductivity Ratios,” ACS Nano 28, 1767–1774 (2009).
[Crossref]

Bowring, A.R.

G.Y. Margulis, M.G. Christoforo, D. Lam, Z.M. Beiley, A.R. Bowring, C.D. Bailie, A. Salleo, and M.D. McGehee, “Spray Deposition of Silver Nanowire Electrodes for Semitransparent Solid-State Dye-Sensitized Solar Cells,” Adv. Energy Mater. 3, 1657–1663 (2013).
[Crossref]

Brongersma, M.L.

F. Afshinmanesh, A.G. Curto, K.M. Milaninia, N.F. van Hulst, and M.L. Brongersma, “Transparent Metallic Fractal Electrodes for Semiconductor Devices,” Nano Lett. 14, 5068–5074 (2014).
[Crossref] [PubMed]

E.C. Garnett, W. Cai, J.J. Cha, F. Mahmood, S.T. Connor, M.G. Christoforo, Y. Cui, M.D. McGehee, and M.L. Brongersma, “Self-limited plasmonic welding of silver nanowire junctions,” Nature Materials 11, 241–249 (2012).
[Crossref]

Bruder, I.

D.S. Ghosh, T.L. Chen, N. Formica, J. Hwang, I. Bruder, and V. Pruneri, “High figure-of-merit Ag/Al:ZnO nano-thick transparent electrodes for indium-free flexible photovoltaics, Solar Energy Materials and Solar Cells,” 107, 338–343 (2012).

Cai, W.

E.C. Garnett, W. Cai, J.J. Cha, F. Mahmood, S.T. Connor, M.G. Christoforo, Y. Cui, M.D. McGehee, and M.L. Brongersma, “Self-limited plasmonic welding of silver nanowire junctions,” Nature Materials 11, 241–249 (2012).
[Crossref]

Carney, T.J.

H. Wu, D. Kong, Z. Ruan, P.-C. Hsu, S. Wang, Z. Yu, T.J. Carney, L. Hu, S. Fan, and Y. Cui, “A transparent electrode based on a metal nanotrough network,” Nat. Nanotechnol. 8, 421–425 (2013).
[Crossref] [PubMed]

Cha, J.J.

E.C. Garnett, W. Cai, J.J. Cha, F. Mahmood, S.T. Connor, M.G. Christoforo, Y. Cui, M.D. McGehee, and M.L. Brongersma, “Self-limited plasmonic welding of silver nanowire junctions,” Nature Materials 11, 241–249 (2012).
[Crossref]

H. Wu, L. Hu, M.W. Rowell, D. Kong, J.J. Cha, J.R. McDonough, J. Zhu, Y. Yang, M.D. McGehee, and Y. Cui, “Electrospun Metal Nanofiber Webs as High-Performance Transparent Electrode,” Nano Lett. 10, 4242–4248 (2010).
[Crossref] [PubMed]

Chaplot, S.L.

S.L. Chaplot, R. Mittal, and N. Choudhury, Thermodynamic properties of solids: Experiment and modeling (Wiley-VCH, Weinheim, 2010).
[Crossref]

Chen, T.L.

D.S. Ghosh, T.L. Chen, N. Formica, J. Hwang, I. Bruder, and V. Pruneri, “High figure-of-merit Ag/Al:ZnO nano-thick transparent electrodes for indium-free flexible photovoltaics, Solar Energy Materials and Solar Cells,” 107, 338–343 (2012).

Choudhury, N.

S.L. Chaplot, R. Mittal, and N. Choudhury, Thermodynamic properties of solids: Experiment and modeling (Wiley-VCH, Weinheim, 2010).
[Crossref]

Christoforo, M.G.

G.Y. Margulis, M.G. Christoforo, D. Lam, Z.M. Beiley, A.R. Bowring, C.D. Bailie, A. Salleo, and M.D. McGehee, “Spray Deposition of Silver Nanowire Electrodes for Semitransparent Solid-State Dye-Sensitized Solar Cells,” Adv. Energy Mater. 3, 1657–1663 (2013).
[Crossref]

E.C. Garnett, W. Cai, J.J. Cha, F. Mahmood, S.T. Connor, M.G. Christoforo, Y. Cui, M.D. McGehee, and M.L. Brongersma, “Self-limited plasmonic welding of silver nanowire junctions,” Nature Materials 11, 241–249 (2012).
[Crossref]

Coleman, J.N.

S. De, T.M. Higgins, P.E. Lyons, E.M. Doherty, P.N. Nirmalraj, W.J. Blau, J.J. Boland, and J.N. Coleman, “Silver Nanowire Networks as Flexible, Transparent, Conducting Films: Extremely High DC to Optical Conductivity Ratios,” ACS Nano 28, 1767–1774 (2009).
[Crossref]

Connor, S.T.

E.C. Garnett, W. Cai, J.J. Cha, F. Mahmood, S.T. Connor, M.G. Christoforo, Y. Cui, M.D. McGehee, and M.L. Brongersma, “Self-limited plasmonic welding of silver nanowire junctions,” Nature Materials 11, 241–249 (2012).
[Crossref]

Cui, Y.

H. Wu, D. Kong, Z. Ruan, P.-C. Hsu, S. Wang, Z. Yu, T.J. Carney, L. Hu, S. Fan, and Y. Cui, “A transparent electrode based on a metal nanotrough network,” Nat. Nanotechnol. 8, 421–425 (2013).
[Crossref] [PubMed]

E.C. Garnett, W. Cai, J.J. Cha, F. Mahmood, S.T. Connor, M.G. Christoforo, Y. Cui, M.D. McGehee, and M.L. Brongersma, “Self-limited plasmonic welding of silver nanowire junctions,” Nature Materials 11, 241–249 (2012).
[Crossref]

H. Wu, L. Hu, M.W. Rowell, D. Kong, J.J. Cha, J.R. McDonough, J. Zhu, Y. Yang, M.D. McGehee, and Y. Cui, “Electrospun Metal Nanofiber Webs as High-Performance Transparent Electrode,” Nano Lett. 10, 4242–4248 (2010).
[Crossref] [PubMed]

L. Hu, H.S. Kim, J.-Y. Lee, P. Peumans, and Y. Cui, “Scalable Coating and Properties of Transparent, Flexible, Silver Nanowire Electrodes,” ACS Nano 4, 2955–2963 (2010).
[Crossref] [PubMed]

Curto, A.G.

F. Afshinmanesh, A.G. Curto, K.M. Milaninia, N.F. van Hulst, and M.L. Brongersma, “Transparent Metallic Fractal Electrodes for Semiconductor Devices,” Nano Lett. 14, 5068–5074 (2014).
[Crossref] [PubMed]

De, S.

S. De, T.M. Higgins, P.E. Lyons, E.M. Doherty, P.N. Nirmalraj, W.J. Blau, J.J. Boland, and J.N. Coleman, “Silver Nanowire Networks as Flexible, Transparent, Conducting Films: Extremely High DC to Optical Conductivity Ratios,” ACS Nano 28, 1767–1774 (2009).
[Crossref]

Deyev, D.G.

G F. Deyev and D.G. Deyev, Surface Phenomena in Fusion Welding Processes (CRC Taylor & Francis, Boca Raton, 2006).

Deyev, G F.

G F. Deyev and D.G. Deyev, Surface Phenomena in Fusion Welding Processes (CRC Taylor & Francis, Boca Raton, 2006).

Ding, B.

T. Gao, B. Wang, B. Ding, J. Lee, and P.W. Leu, “Uniform and Ordered Copper Nanomeshes by Microsphere Lithography for Transparent Electrodes,” Nano Lett. 14, 2105–2110 (2014).
[Crossref] [PubMed]

Doherty, E.M.

S. De, T.M. Higgins, P.E. Lyons, E.M. Doherty, P.N. Nirmalraj, W.J. Blau, J.J. Boland, and J.N. Coleman, “Silver Nanowire Networks as Flexible, Transparent, Conducting Films: Extremely High DC to Optical Conductivity Ratios,” ACS Nano 28, 1767–1774 (2009).
[Crossref]

Eckardt, S.

C. Fuchs, T. Schwab, T. Roch, S. Eckardt, A. Lasagni, S. Hofmann, B. Lssem, L. Müller-Meskamp, K. Leo, C. Gather, and R. Scholz, “Quantitative allocation of Bragg scattering effects in highly efficient OLEDs fabricated on periodically corrugated substrates,” Opt. Express 21, 16319–16330 (2013).
[Crossref] [PubMed]

L. Müller-Meskamp, Y.H. Kim, T. Roch, S. Hofmann, R. Scholz, S. Eckardt, K. Leo, and A.F. Lasagni, “Efficiency Enhancement of Organic Solar Cells by Fabricating Periodic Surface Textures using Direct Laser Interference Patterning,” Adv. Mater. 24, 906–910 (2012).
[Crossref] [PubMed]

Eckhardt, S.

S. Eckhardt, L. Müller-Meskamp, M. Loeser, M. Siebold, and A. F. Lasagni, “Fabrication of highly efficient transparent metal thin film electrodes using Direct Laser Interference Patterning,” Proc. SPIE 9351, 935116 (2014).

Eibl, O.

O. Eibl, Thermoelectric Bi2Te3 Nanomaterials (Wiley, Weinheim, 2015)

Fairfield, J.A.

J.A. Fairfield, C. Ritter, A.T. Bellew, E.K. McCarthy, M.S. Ferreira, and J. J. Boland, “Effective Electrode Length Enhances Electrical Activation of Nanowire Networks: Experiment and Simulation,” ACS Nano 89542–9549 (2014).
[Crossref] [PubMed]

Fallah, H.

H. Askari, H. Fallah, M. Askari, and M.C. Mohmmadieyh, “Electrical and optical properties of ITO thin films prepared by DC magnetron sputtering for low-emitting coatings,” eprint arXiv:1409.5293 (2014).

Fan, S.

H. Wu, D. Kong, Z. Ruan, P.-C. Hsu, S. Wang, Z. Yu, T.J. Carney, L. Hu, S. Fan, and Y. Cui, “A transparent electrode based on a metal nanotrough network,” Nat. Nanotechnol. 8, 421–425 (2013).
[Crossref] [PubMed]

Ferreira, M.S.

J.A. Fairfield, C. Ritter, A.T. Bellew, E.K. McCarthy, M.S. Ferreira, and J. J. Boland, “Effective Electrode Length Enhances Electrical Activation of Nanowire Networks: Experiment and Simulation,” ACS Nano 89542–9549 (2014).
[Crossref] [PubMed]

Formica, N.

D.S. Ghosh, T.L. Chen, N. Formica, J. Hwang, I. Bruder, and V. Pruneri, “High figure-of-merit Ag/Al:ZnO nano-thick transparent electrodes for indium-free flexible photovoltaics, Solar Energy Materials and Solar Cells,” 107, 338–343 (2012).

Fuchs, C.

Fujimoto, A.

T. Nakanishi, E. Tsutsumi, K. Masunaga, A. Fujimoto, and K. Asakawa, “Transparent Aluminum Nanomesh Electrode Fabricated by Nanopatterning Using Self-Assembled Nanoparticles,” Appl. Phys. Express 4, 025201 (2011).
[Crossref]

Gao, K.

X. Pang, H. Ma, K. Gao, H. Yang, X. Wu, and A. A. Volinsky, “Fracture Toughness and Adhesion of Transparent Al:ZnO Films Deposited on Glass Substrates,” J. Mater. Eng. Perform. 22, 3161–3167 (2013).
[Crossref]

Gao, Q.

B. Kang, J. Shi, and Q. Gao, in 2011 International Conference on Electrical and Control Engineering (ICECE): Sept. 16–18, 2011, Yichang, China Proceedings (Institute of Electrical and Electronics Engineers (IEEE)), IEEE. [Piscataway, N.J.] 2011, p. 3017.

Gao, T.

T. Gao, B. Wang, B. Ding, J. Lee, and P.W. Leu, “Uniform and Ordered Copper Nanomeshes by Microsphere Lithography for Transparent Electrodes,” Nano Lett. 14, 2105–2110 (2014).
[Crossref] [PubMed]

Garnett, E.C.

E.C. Garnett, W. Cai, J.J. Cha, F. Mahmood, S.T. Connor, M.G. Christoforo, Y. Cui, M.D. McGehee, and M.L. Brongersma, “Self-limited plasmonic welding of silver nanowire junctions,” Nature Materials 11, 241–249 (2012).
[Crossref]

Gather, C.

Gedvilas, M.

B. Voisiat, M. Gedvilas, S. Indrisinas, and G. Raciukaitis, “Picosecond-laser 4-beam-interference ablation as a flexible tool for thin film microstructuring,” Physics Procedia 12, 116–124 (2011).
[Crossref]

Geißendörfer, S.

Ghodssi, R.

R. Ghodssi and P. Lin, MEMS Materials and Processes Handbook (Springer, Boston, 2011).
[Crossref]

Ghosh, D.S.

D.S. Ghosh, Ultrathin Metal Transparent Electrodes for the Optoelectronics Industry (Springer, New York, 2013).
[Crossref]

D.S. Ghosh, T.L. Chen, N. Formica, J. Hwang, I. Bruder, and V. Pruneri, “High figure-of-merit Ag/Al:ZnO nano-thick transparent electrodes for indium-free flexible photovoltaics, Solar Energy Materials and Solar Cells,” 107, 338–343 (2012).

Groep, J.

J. Groep, P. Spinelli, and A. Polman, “Transparent Conducting Silver Nanowire Networks,” Nano Lett. 12, 3138–3144 (2012).
[Crossref] [PubMed]

Guo, L.J.

M.-G. Kang and L.J. Guo, “Nanoimprinted Semitransparent Metal Electrodes and Their Application in Organic Light-Emitting Diodes,” Adv. Mater. 19, 1391–1396 (2007).
[Crossref]

Gupta, F.

J. van de Groep, F. Gupta, M.A. Verschuuren, M.M. Wienk, R.A. Janssen, and A. Polman, “Large-area soft-imprinted nanowire networks as light trapping transparent conductors,” Sci. Rep. 5, 11414 (2015).
[Crossref] [PubMed]

Hanamoto, K.

Y. Akagi, K. Hanamoto, H. Suzuki, T. Katoh, M. Sasaki, S. Imai, M. Tsudagawa, Y. Nakayama, and H. Miki, “Low-Resistivity Highly Transparent Indium-Tin-Oxide Thin Films Prepared at Room Temperature by Synchrotron Radiation Ablation,” Jpn. J. Appl. Phys. 38, 6846–6850 (1999).
[Crossref]

Hatch, J.E.

J.E. Hatch, Aluminum: Properties and Physical Metallurgy, American Society for Metals (Metals Park, Ohio, 1984).

Higgins, T.M.

S. De, T.M. Higgins, P.E. Lyons, E.M. Doherty, P.N. Nirmalraj, W.J. Blau, J.J. Boland, and J.N. Coleman, “Silver Nanowire Networks as Flexible, Transparent, Conducting Films: Extremely High DC to Optical Conductivity Ratios,” ACS Nano 28, 1767–1774 (2009).
[Crossref]

Hofmann, S.

C. Fuchs, T. Schwab, T. Roch, S. Eckardt, A. Lasagni, S. Hofmann, B. Lssem, L. Müller-Meskamp, K. Leo, C. Gather, and R. Scholz, “Quantitative allocation of Bragg scattering effects in highly efficient OLEDs fabricated on periodically corrugated substrates,” Opt. Express 21, 16319–16330 (2013).
[Crossref] [PubMed]

L. Müller-Meskamp, Y.H. Kim, T. Roch, S. Hofmann, R. Scholz, S. Eckardt, K. Leo, and A.F. Lasagni, “Efficiency Enhancement of Organic Solar Cells by Fabricating Periodic Surface Textures using Direct Laser Interference Patterning,” Adv. Mater. 24, 906–910 (2012).
[Crossref] [PubMed]

Hsu, P.-C.

H. Wu, D. Kong, Z. Ruan, P.-C. Hsu, S. Wang, Z. Yu, T.J. Carney, L. Hu, S. Fan, and Y. Cui, “A transparent electrode based on a metal nanotrough network,” Nat. Nanotechnol. 8, 421–425 (2013).
[Crossref] [PubMed]

Hu, L.

H. Wu, D. Kong, Z. Ruan, P.-C. Hsu, S. Wang, Z. Yu, T.J. Carney, L. Hu, S. Fan, and Y. Cui, “A transparent electrode based on a metal nanotrough network,” Nat. Nanotechnol. 8, 421–425 (2013).
[Crossref] [PubMed]

H. Wu, L. Hu, M.W. Rowell, D. Kong, J.J. Cha, J.R. McDonough, J. Zhu, Y. Yang, M.D. McGehee, and Y. Cui, “Electrospun Metal Nanofiber Webs as High-Performance Transparent Electrode,” Nano Lett. 10, 4242–4248 (2010).
[Crossref] [PubMed]

L. Hu, H.S. Kim, J.-Y. Lee, P. Peumans, and Y. Cui, “Scalable Coating and Properties of Transparent, Flexible, Silver Nanowire Electrodes,” ACS Nano 4, 2955–2963 (2010).
[Crossref] [PubMed]

Hultgren, R.

R. Hultgren, R.L. Orr, P.D. Anderson, and K.K. Kelley, Selected Values of the Thermodynamic Properties of Metals and Alloys (John Wiley & Sons Inc., New York, Heidelberg, 1963).

Hwang, J.

D.S. Ghosh, T.L. Chen, N. Formica, J. Hwang, I. Bruder, and V. Pruneri, “High figure-of-merit Ag/Al:ZnO nano-thick transparent electrodes for indium-free flexible photovoltaics, Solar Energy Materials and Solar Cells,” 107, 338–343 (2012).

Ide-Ektessabi, A.

M. Yamaguchi, A. Ide-Ektessabi, H. Nomura, and N. Yasui, “Characteristics of indium tin oxide thin films prepared using electron beam evaporation,” Thin Solid Films 447, 115–118 (2004).
[Crossref]

Imai, S.

Y. Akagi, K. Hanamoto, H. Suzuki, T. Katoh, M. Sasaki, S. Imai, M. Tsudagawa, Y. Nakayama, and H. Miki, “Low-Resistivity Highly Transparent Indium-Tin-Oxide Thin Films Prepared at Room Temperature by Synchrotron Radiation Ablation,” Jpn. J. Appl. Phys. 38, 6846–6850 (1999).
[Crossref]

Indrisinas, S.

B. Voisiat, M. Gedvilas, S. Indrisinas, and G. Raciukaitis, “Picosecond-laser 4-beam-interference ablation as a flexible tool for thin film microstructuring,” Physics Procedia 12, 116–124 (2011).
[Crossref]

Janssen, R.A.

J. van de Groep, F. Gupta, M.A. Verschuuren, M.M. Wienk, R.A. Janssen, and A. Polman, “Large-area soft-imprinted nanowire networks as light trapping transparent conductors,” Sci. Rep. 5, 11414 (2015).
[Crossref] [PubMed]

Joseph, I.

L.D. Pye, A. Montenero, and I. Joseph, Properties of Glass-Forming Melts (Taylor & Francis, Boca Raton, 2005).
[Crossref]

Kang, B.

B. Kang, J. Shi, and Q. Gao, in 2011 International Conference on Electrical and Control Engineering (ICECE): Sept. 16–18, 2011, Yichang, China Proceedings (Institute of Electrical and Electronics Engineers (IEEE)), IEEE. [Piscataway, N.J.] 2011, p. 3017.

Kang, M.-G.

M.-G. Kang and L.J. Guo, “Nanoimprinted Semitransparent Metal Electrodes and Their Application in Organic Light-Emitting Diodes,” Adv. Mater. 19, 1391–1396 (2007).
[Crossref]

Katoh, T.

Y. Akagi, K. Hanamoto, H. Suzuki, T. Katoh, M. Sasaki, S. Imai, M. Tsudagawa, Y. Nakayama, and H. Miki, “Low-Resistivity Highly Transparent Indium-Tin-Oxide Thin Films Prepared at Room Temperature by Synchrotron Radiation Ablation,” Jpn. J. Appl. Phys. 38, 6846–6850 (1999).
[Crossref]

Kelley, K.K.

R. Hultgren, R.L. Orr, P.D. Anderson, and K.K. Kelley, Selected Values of the Thermodynamic Properties of Metals and Alloys (John Wiley & Sons Inc., New York, Heidelberg, 1963).

Kim, H.S.

L. Hu, H.S. Kim, J.-Y. Lee, P. Peumans, and Y. Cui, “Scalable Coating and Properties of Transparent, Flexible, Silver Nanowire Electrodes,” ACS Nano 4, 2955–2963 (2010).
[Crossref] [PubMed]

Kim, Y.H.

L. Müller-Meskamp, Y.H. Kim, T. Roch, S. Hofmann, R. Scholz, S. Eckardt, K. Leo, and A.F. Lasagni, “Efficiency Enhancement of Organic Solar Cells by Fabricating Periodic Surface Textures using Direct Laser Interference Patterning,” Adv. Mater. 24, 906–910 (2012).
[Crossref] [PubMed]

Kong, D.

H. Wu, D. Kong, Z. Ruan, P.-C. Hsu, S. Wang, Z. Yu, T.J. Carney, L. Hu, S. Fan, and Y. Cui, “A transparent electrode based on a metal nanotrough network,” Nat. Nanotechnol. 8, 421–425 (2013).
[Crossref] [PubMed]

H. Wu, L. Hu, M.W. Rowell, D. Kong, J.J. Cha, J.R. McDonough, J. Zhu, Y. Yang, M.D. McGehee, and Y. Cui, “Electrospun Metal Nanofiber Webs as High-Performance Transparent Electrode,” Nano Lett. 10, 4242–4248 (2010).
[Crossref] [PubMed]

Kudo, K.

M. Wakaki, K. Kudo, and T. Shibuya, Physical Properties and Data of Optical Materials (CRC Press, Boca Raton, 2007).
[Crossref]

Kunze, T.

A. Lasagni, T. Roch, J. Berger, T. Kunze, V. Lang, and E. Beyer, “To use or not to use (direct laser interference patterning), that is the question,” Proc. SPIE 9351, 935115 (2015).
[Crossref]

Lam, D.

G.Y. Margulis, M.G. Christoforo, D. Lam, Z.M. Beiley, A.R. Bowring, C.D. Bailie, A. Salleo, and M.D. McGehee, “Spray Deposition of Silver Nanowire Electrodes for Semitransparent Solid-State Dye-Sensitized Solar Cells,” Adv. Energy Mater. 3, 1657–1663 (2013).
[Crossref]

Lang, V.

A. Lasagni, T. Roch, J. Berger, T. Kunze, V. Lang, and E. Beyer, “To use or not to use (direct laser interference patterning), that is the question,” Proc. SPIE 9351, 935115 (2015).
[Crossref]

Lasagni, A.

A. Lasagni, T. Roch, J. Berger, T. Kunze, V. Lang, and E. Beyer, “To use or not to use (direct laser interference patterning), that is the question,” Proc. SPIE 9351, 935115 (2015).
[Crossref]

A. Lasagni, T. Roch, M. Bieda, D. Benke, and E. Beyer, “High speed surface functionalization using direct laser interference patterning, towards 1 m2/min fabrication speed with sub-μm resolution,” Proc. SPIE 8968, 89680A (2014).
[Crossref]

C. Fuchs, T. Schwab, T. Roch, S. Eckardt, A. Lasagni, S. Hofmann, B. Lssem, L. Müller-Meskamp, K. Leo, C. Gather, and R. Scholz, “Quantitative allocation of Bragg scattering effects in highly efficient OLEDs fabricated on periodically corrugated substrates,” Opt. Express 21, 16319–16330 (2013).
[Crossref] [PubMed]

A. Lasagni and F. Mücklich, “FEM simulation of periodical local heating caused by Laser Interference Metallurgy,” J. Mater. Process. Tech. 209, 202–209 (2009).
[Crossref]

Lasagni, A. F.

S. Eckhardt, L. Müller-Meskamp, M. Loeser, M. Siebold, and A. F. Lasagni, “Fabrication of highly efficient transparent metal thin film electrodes using Direct Laser Interference Patterning,” Proc. SPIE 9351, 935116 (2014).

Lasagni, A.F.

L. Müller-Meskamp, Y.H. Kim, T. Roch, S. Hofmann, R. Scholz, S. Eckardt, K. Leo, and A.F. Lasagni, “Efficiency Enhancement of Organic Solar Cells by Fabricating Periodic Surface Textures using Direct Laser Interference Patterning,” Adv. Mater. 24, 906–910 (2012).
[Crossref] [PubMed]

Lawrence, J.

J. Lawrence, D.G. Waugh, and N. Aoyagi, Laser Surface Engineering: Processes and Applications (Woodhead Publishing, Cambridge, 2015).

Le, K.Q.

K.Q. Le and A. Alù, “Plasmonic gratings for enhanced light-trapping in thin-film organic solar cells,” in Conference on Lasers and Electro-Optics 2012, OSA Technical Digest (online) (Optical Society of America, 2012), paper CF3J.5.

Lee, J.

T. Gao, B. Wang, B. Ding, J. Lee, and P.W. Leu, “Uniform and Ordered Copper Nanomeshes by Microsphere Lithography for Transparent Electrodes,” Nano Lett. 14, 2105–2110 (2014).
[Crossref] [PubMed]

Lee, J.-Y.

L. Hu, H.S. Kim, J.-Y. Lee, P. Peumans, and Y. Cui, “Scalable Coating and Properties of Transparent, Flexible, Silver Nanowire Electrodes,” ACS Nano 4, 2955–2963 (2010).
[Crossref] [PubMed]

Lee, Y.T.

Leo, K.

C. Fuchs, T. Schwab, T. Roch, S. Eckardt, A. Lasagni, S. Hofmann, B. Lssem, L. Müller-Meskamp, K. Leo, C. Gather, and R. Scholz, “Quantitative allocation of Bragg scattering effects in highly efficient OLEDs fabricated on periodically corrugated substrates,” Opt. Express 21, 16319–16330 (2013).
[Crossref] [PubMed]

L. Müller-Meskamp, Y.H. Kim, T. Roch, S. Hofmann, R. Scholz, S. Eckardt, K. Leo, and A.F. Lasagni, “Efficiency Enhancement of Organic Solar Cells by Fabricating Periodic Surface Textures using Direct Laser Interference Patterning,” Adv. Mater. 24, 906–910 (2012).
[Crossref] [PubMed]

Leu, P.W.

T. Gao, B. Wang, B. Ding, J. Lee, and P.W. Leu, “Uniform and Ordered Copper Nanomeshes by Microsphere Lithography for Transparent Electrodes,” Nano Lett. 14, 2105–2110 (2014).
[Crossref] [PubMed]

Lin, P.

R. Ghodssi and P. Lin, MEMS Materials and Processes Handbook (Springer, Boston, 2011).
[Crossref]

Loeser, M.

S. Eckhardt, L. Müller-Meskamp, M. Loeser, M. Siebold, and A. F. Lasagni, “Fabrication of highly efficient transparent metal thin film electrodes using Direct Laser Interference Patterning,” Proc. SPIE 9351, 935116 (2014).

Loewen, E.G.

Lssem, B.

Lyons, P.E.

S. De, T.M. Higgins, P.E. Lyons, E.M. Doherty, P.N. Nirmalraj, W.J. Blau, J.J. Boland, and J.N. Coleman, “Silver Nanowire Networks as Flexible, Transparent, Conducting Films: Extremely High DC to Optical Conductivity Ratios,” ACS Nano 28, 1767–1774 (2009).
[Crossref]

Ma, H.

X. Pang, H. Ma, K. Gao, H. Yang, X. Wu, and A. A. Volinsky, “Fracture Toughness and Adhesion of Transparent Al:ZnO Films Deposited on Glass Substrates,” J. Mater. Eng. Perform. 22, 3161–3167 (2013).
[Crossref]

Mahmood, F.

E.C. Garnett, W. Cai, J.J. Cha, F. Mahmood, S.T. Connor, M.G. Christoforo, Y. Cui, M.D. McGehee, and M.L. Brongersma, “Self-limited plasmonic welding of silver nanowire junctions,” Nature Materials 11, 241–249 (2012).
[Crossref]

Margulis, G.Y.

G.Y. Margulis, M.G. Christoforo, D. Lam, Z.M. Beiley, A.R. Bowring, C.D. Bailie, A. Salleo, and M.D. McGehee, “Spray Deposition of Silver Nanowire Electrodes for Semitransparent Solid-State Dye-Sensitized Solar Cells,” Adv. Energy Mater. 3, 1657–1663 (2013).
[Crossref]

Masunaga, K.

T. Nakanishi, E. Tsutsumi, K. Masunaga, A. Fujimoto, and K. Asakawa, “Transparent Aluminum Nanomesh Electrode Fabricated by Nanopatterning Using Self-Assembled Nanoparticles,” Appl. Phys. Express 4, 025201 (2011).
[Crossref]

Matsushita, T.

H. Agura, A. Suzuki, T. Matsushita, T. Aoki, and M. Okuda, “Low resistivity transparent conducting Al-doped ZnO films prepared by pulsed laser deposition,” Thin Solid Films 445, 263–267 (2003).
[Crossref]

Mayadas, A.F.

A.F. Mayadas and M. Shatzkes, “Electrical-Resistivity Model for Polycrystalline Films: the Case of Arbitrary Reflection at External Surfaces,” Phys. Rev. B 1, 1382 (1970).
[Crossref]

Maystre, D.

McCarthy, E.K.

J.A. Fairfield, C. Ritter, A.T. Bellew, E.K. McCarthy, M.S. Ferreira, and J. J. Boland, “Effective Electrode Length Enhances Electrical Activation of Nanowire Networks: Experiment and Simulation,” ACS Nano 89542–9549 (2014).
[Crossref] [PubMed]

McDonough, J.R.

H. Wu, L. Hu, M.W. Rowell, D. Kong, J.J. Cha, J.R. McDonough, J. Zhu, Y. Yang, M.D. McGehee, and Y. Cui, “Electrospun Metal Nanofiber Webs as High-Performance Transparent Electrode,” Nano Lett. 10, 4242–4248 (2010).
[Crossref] [PubMed]

McGehee, M.D.

G.Y. Margulis, M.G. Christoforo, D. Lam, Z.M. Beiley, A.R. Bowring, C.D. Bailie, A. Salleo, and M.D. McGehee, “Spray Deposition of Silver Nanowire Electrodes for Semitransparent Solid-State Dye-Sensitized Solar Cells,” Adv. Energy Mater. 3, 1657–1663 (2013).
[Crossref]

E.C. Garnett, W. Cai, J.J. Cha, F. Mahmood, S.T. Connor, M.G. Christoforo, Y. Cui, M.D. McGehee, and M.L. Brongersma, “Self-limited plasmonic welding of silver nanowire junctions,” Nature Materials 11, 241–249 (2012).
[Crossref]

H. Wu, L. Hu, M.W. Rowell, D. Kong, J.J. Cha, J.R. McDonough, J. Zhu, Y. Yang, M.D. McGehee, and Y. Cui, “Electrospun Metal Nanofiber Webs as High-Performance Transparent Electrode,” Nano Lett. 10, 4242–4248 (2010).
[Crossref] [PubMed]

Meiß, J.

J. Meiß, New Material Concepts for Organic Solar Cells (Optimus Mostafa Verlag, Göttingen, 2011).

Mertens, K.

K. Mertens, Photovoltaics: Fundamentals, Technology and Practice (John Wiley & Sons, 2014).

Miki, H.

Y. Akagi, K. Hanamoto, H. Suzuki, T. Katoh, M. Sasaki, S. Imai, M. Tsudagawa, Y. Nakayama, and H. Miki, “Low-Resistivity Highly Transparent Indium-Tin-Oxide Thin Films Prepared at Room Temperature by Synchrotron Radiation Ablation,” Jpn. J. Appl. Phys. 38, 6846–6850 (1999).
[Crossref]

Milaninia, K.M.

F. Afshinmanesh, A.G. Curto, K.M. Milaninia, N.F. van Hulst, and M.L. Brongersma, “Transparent Metallic Fractal Electrodes for Semiconductor Devices,” Nano Lett. 14, 5068–5074 (2014).
[Crossref] [PubMed]

Mittal, R.

S.L. Chaplot, R. Mittal, and N. Choudhury, Thermodynamic properties of solids: Experiment and modeling (Wiley-VCH, Weinheim, 2010).
[Crossref]

Mohmmadieyh, M.C.

H. Askari, H. Fallah, M. Askari, and M.C. Mohmmadieyh, “Electrical and optical properties of ITO thin films prepared by DC magnetron sputtering for low-emitting coatings,” eprint arXiv:1409.5293 (2014).

Montenero, A.

L.D. Pye, A. Montenero, and I. Joseph, Properties of Glass-Forming Melts (Taylor & Francis, Boca Raton, 2005).
[Crossref]

Mücklich, F.

A. Lasagni and F. Mücklich, “FEM simulation of periodical local heating caused by Laser Interference Metallurgy,” J. Mater. Process. Tech. 209, 202–209 (2009).
[Crossref]

Mulato, M.

G. Aichmayr, D. Toet, M. Mulato, P. V. Santos, A. Spangenberg, and R.B. Bergmann, “Growth mechanisms in laser crystallization and laser interference crystallization,” J. Non-Cryst. Solids 227, 921–924 (1998).
[Crossref]

Müller-Meskamp, L.

S. Eckhardt, L. Müller-Meskamp, M. Loeser, M. Siebold, and A. F. Lasagni, “Fabrication of highly efficient transparent metal thin film electrodes using Direct Laser Interference Patterning,” Proc. SPIE 9351, 935116 (2014).

C. Fuchs, T. Schwab, T. Roch, S. Eckardt, A. Lasagni, S. Hofmann, B. Lssem, L. Müller-Meskamp, K. Leo, C. Gather, and R. Scholz, “Quantitative allocation of Bragg scattering effects in highly efficient OLEDs fabricated on periodically corrugated substrates,” Opt. Express 21, 16319–16330 (2013).
[Crossref] [PubMed]

L. Müller-Meskamp, Y.H. Kim, T. Roch, S. Hofmann, R. Scholz, S. Eckardt, K. Leo, and A.F. Lasagni, “Efficiency Enhancement of Organic Solar Cells by Fabricating Periodic Surface Textures using Direct Laser Interference Patterning,” Adv. Mater. 24, 906–910 (2012).
[Crossref] [PubMed]

Nakanishi, T.

T. Nakanishi, E. Tsutsumi, K. Masunaga, A. Fujimoto, and K. Asakawa, “Transparent Aluminum Nanomesh Electrode Fabricated by Nanopatterning Using Self-Assembled Nanoparticles,” Appl. Phys. Express 4, 025201 (2011).
[Crossref]

Nakayama, Y.

Y. Akagi, K. Hanamoto, H. Suzuki, T. Katoh, M. Sasaki, S. Imai, M. Tsudagawa, Y. Nakayama, and H. Miki, “Low-Resistivity Highly Transparent Indium-Tin-Oxide Thin Films Prepared at Room Temperature by Synchrotron Radiation Ablation,” Jpn. J. Appl. Phys. 38, 6846–6850 (1999).
[Crossref]

Nevière, M.

Nirmalraj, P.N.

S. De, T.M. Higgins, P.E. Lyons, E.M. Doherty, P.N. Nirmalraj, W.J. Blau, J.J. Boland, and J.N. Coleman, “Silver Nanowire Networks as Flexible, Transparent, Conducting Films: Extremely High DC to Optical Conductivity Ratios,” ACS Nano 28, 1767–1774 (2009).
[Crossref]

Nomura, H.

M. Yamaguchi, A. Ide-Ektessabi, H. Nomura, and N. Yasui, “Characteristics of indium tin oxide thin films prepared using electron beam evaporation,” Thin Solid Films 447, 115–118 (2004).
[Crossref]

Oda, H.

T. Suzuki, T. Yamazaki, and H. Oda, “Properties of indium oxide/tin oxide multilayered films prepared by ion-beam sputtering,” J. Mater. Sci. 23, 3026–3030 (1988).
[Crossref]

Okuda, M.

H. Agura, A. Suzuki, T. Matsushita, T. Aoki, and M. Okuda, “Low resistivity transparent conducting Al-doped ZnO films prepared by pulsed laser deposition,” Thin Solid Films 445, 263–267 (2003).
[Crossref]

Orr, R.L.

R. Hultgren, R.L. Orr, P.D. Anderson, and K.K. Kelley, Selected Values of the Thermodynamic Properties of Metals and Alloys (John Wiley & Sons Inc., New York, Heidelberg, 1963).

Pang, X.

X. Pang, H. Ma, K. Gao, H. Yang, X. Wu, and A. A. Volinsky, “Fracture Toughness and Adhesion of Transparent Al:ZnO Films Deposited on Glass Substrates,” J. Mater. Eng. Perform. 22, 3161–3167 (2013).
[Crossref]

Paul, H.

H. Paul, Lexikon der Optik (Spektrum, Akad. Verl., Heidelberg, Berlin, 2003).

Peumans, P.

L. Hu, H.S. Kim, J.-Y. Lee, P. Peumans, and Y. Cui, “Scalable Coating and Properties of Transparent, Flexible, Silver Nanowire Electrodes,” ACS Nano 4, 2955–2963 (2010).
[Crossref] [PubMed]

Polman, A.

J. van de Groep, F. Gupta, M.A. Verschuuren, M.M. Wienk, R.A. Janssen, and A. Polman, “Large-area soft-imprinted nanowire networks as light trapping transparent conductors,” Sci. Rep. 5, 11414 (2015).
[Crossref] [PubMed]

J. Groep, P. Spinelli, and A. Polman, “Transparent Conducting Silver Nanowire Networks,” Nano Lett. 12, 3138–3144 (2012).
[Crossref] [PubMed]

Pruneri, V.

D.S. Ghosh, T.L. Chen, N. Formica, J. Hwang, I. Bruder, and V. Pruneri, “High figure-of-merit Ag/Al:ZnO nano-thick transparent electrodes for indium-free flexible photovoltaics, Solar Energy Materials and Solar Cells,” 107, 338–343 (2012).

Pye, L.D.

L.D. Pye, A. Montenero, and I. Joseph, Properties of Glass-Forming Melts (Taylor & Francis, Boca Raton, 2005).
[Crossref]

Raciukaitis, G.

B. Voisiat, M. Gedvilas, S. Indrisinas, and G. Raciukaitis, “Picosecond-laser 4-beam-interference ablation as a flexible tool for thin film microstructuring,” Physics Procedia 12, 116–124 (2011).
[Crossref]

Ray, S.

S. Ray, R. Banerjee, N. Basu, A. K. Batabyal, and A. Barua, “Properties of tin doped indium oxide thin films prepared by magnetron sputtering,” J. Appl. Phys. 54, 3497 (1983).
[Crossref]

Ritter, C.

J.A. Fairfield, C. Ritter, A.T. Bellew, E.K. McCarthy, M.S. Ferreira, and J. J. Boland, “Effective Electrode Length Enhances Electrical Activation of Nanowire Networks: Experiment and Simulation,” ACS Nano 89542–9549 (2014).
[Crossref] [PubMed]

Roch, T.

A. Lasagni, T. Roch, J. Berger, T. Kunze, V. Lang, and E. Beyer, “To use or not to use (direct laser interference patterning), that is the question,” Proc. SPIE 9351, 935115 (2015).
[Crossref]

A. Lasagni, T. Roch, M. Bieda, D. Benke, and E. Beyer, “High speed surface functionalization using direct laser interference patterning, towards 1 m2/min fabrication speed with sub-μm resolution,” Proc. SPIE 8968, 89680A (2014).
[Crossref]

C. Fuchs, T. Schwab, T. Roch, S. Eckardt, A. Lasagni, S. Hofmann, B. Lssem, L. Müller-Meskamp, K. Leo, C. Gather, and R. Scholz, “Quantitative allocation of Bragg scattering effects in highly efficient OLEDs fabricated on periodically corrugated substrates,” Opt. Express 21, 16319–16330 (2013).
[Crossref] [PubMed]

L. Müller-Meskamp, Y.H. Kim, T. Roch, S. Hofmann, R. Scholz, S. Eckardt, K. Leo, and A.F. Lasagni, “Efficiency Enhancement of Organic Solar Cells by Fabricating Periodic Surface Textures using Direct Laser Interference Patterning,” Adv. Mater. 24, 906–910 (2012).
[Crossref] [PubMed]

Rowell, M.W.

H. Wu, L. Hu, M.W. Rowell, D. Kong, J.J. Cha, J.R. McDonough, J. Zhu, Y. Yang, M.D. McGehee, and Y. Cui, “Electrospun Metal Nanofiber Webs as High-Performance Transparent Electrode,” Nano Lett. 10, 4242–4248 (2010).
[Crossref] [PubMed]

Ruan, Z.

H. Wu, D. Kong, Z. Ruan, P.-C. Hsu, S. Wang, Z. Yu, T.J. Carney, L. Hu, S. Fan, and Y. Cui, “A transparent electrode based on a metal nanotrough network,” Nat. Nanotechnol. 8, 421–425 (2013).
[Crossref] [PubMed]

Salleo, A.

G.Y. Margulis, M.G. Christoforo, D. Lam, Z.M. Beiley, A.R. Bowring, C.D. Bailie, A. Salleo, and M.D. McGehee, “Spray Deposition of Silver Nanowire Electrodes for Semitransparent Solid-State Dye-Sensitized Solar Cells,” Adv. Energy Mater. 3, 1657–1663 (2013).
[Crossref]

Santos, P. V.

G. Aichmayr, D. Toet, M. Mulato, P. V. Santos, A. Spangenberg, and R.B. Bergmann, “Growth mechanisms in laser crystallization and laser interference crystallization,” J. Non-Cryst. Solids 227, 921–924 (1998).
[Crossref]

Sariciftci, N.S.

N.S. Sariciftci and S.-S. Sun, Organic Photovoltaics: Mechanism, Materials, and Devices (Taylor & Francis, Boca Raton, 2005).
[Crossref]

Sasaki, M.

Y. Akagi, K. Hanamoto, H. Suzuki, T. Katoh, M. Sasaki, S. Imai, M. Tsudagawa, Y. Nakayama, and H. Miki, “Low-Resistivity Highly Transparent Indium-Tin-Oxide Thin Films Prepared at Room Temperature by Synchrotron Radiation Ablation,” Jpn. J. Appl. Phys. 38, 6846–6850 (1999).
[Crossref]

Scholz, R.

C. Fuchs, T. Schwab, T. Roch, S. Eckardt, A. Lasagni, S. Hofmann, B. Lssem, L. Müller-Meskamp, K. Leo, C. Gather, and R. Scholz, “Quantitative allocation of Bragg scattering effects in highly efficient OLEDs fabricated on periodically corrugated substrates,” Opt. Express 21, 16319–16330 (2013).
[Crossref] [PubMed]

L. Müller-Meskamp, Y.H. Kim, T. Roch, S. Hofmann, R. Scholz, S. Eckardt, K. Leo, and A.F. Lasagni, “Efficiency Enhancement of Organic Solar Cells by Fabricating Periodic Surface Textures using Direct Laser Interference Patterning,” Adv. Mater. 24, 906–910 (2012).
[Crossref] [PubMed]

Schwab, T.

Sedlmayr, A.

A. Sedlmayr, Experimental Investigations of Deformation Pathways in Nanowires (KIT Scientific Publishing, Karlsruhe, 2012)

Shatzkes, M.

A.F. Mayadas and M. Shatzkes, “Electrical-Resistivity Model for Polycrystalline Films: the Case of Arbitrary Reflection at External Surfaces,” Phys. Rev. B 1, 1382 (1970).
[Crossref]

Shi, J.

B. Kang, J. Shi, and Q. Gao, in 2011 International Conference on Electrical and Control Engineering (ICECE): Sept. 16–18, 2011, Yichang, China Proceedings (Institute of Electrical and Electronics Engineers (IEEE)), IEEE. [Piscataway, N.J.] 2011, p. 3017.

Shibuya, T.

M. Wakaki, K. Kudo, and T. Shibuya, Physical Properties and Data of Optical Materials (CRC Press, Boca Raton, 2007).
[Crossref]

Siebold, M.

S. Eckhardt, L. Müller-Meskamp, M. Loeser, M. Siebold, and A. F. Lasagni, “Fabrication of highly efficient transparent metal thin film electrodes using Direct Laser Interference Patterning,” Proc. SPIE 9351, 935116 (2014).

Sivasubramaniam, S.

S. Sivasubramaniam and M. M. Alkaisi, “Inverted nanopyramid texturing for silicon solar cells using interference lithography,” Microelectron. Eng. 119, 146–150 (2014).
[Crossref]

Song, Y.M.

Spangenberg, A.

G. Aichmayr, D. Toet, M. Mulato, P. V. Santos, A. Spangenberg, and R.B. Bergmann, “Growth mechanisms in laser crystallization and laser interference crystallization,” J. Non-Cryst. Solids 227, 921–924 (1998).
[Crossref]

Spinelli, P.

J. Groep, P. Spinelli, and A. Polman, “Transparent Conducting Silver Nanowire Networks,” Nano Lett. 12, 3138–3144 (2012).
[Crossref] [PubMed]

Steenhoff, V.

Sun, S.-S.

N.S. Sariciftci and S.-S. Sun, Organic Photovoltaics: Mechanism, Materials, and Devices (Taylor & Francis, Boca Raton, 2005).
[Crossref]

Suzuki, A.

H. Agura, A. Suzuki, T. Matsushita, T. Aoki, and M. Okuda, “Low resistivity transparent conducting Al-doped ZnO films prepared by pulsed laser deposition,” Thin Solid Films 445, 263–267 (2003).
[Crossref]

Suzuki, H.

Y. Akagi, K. Hanamoto, H. Suzuki, T. Katoh, M. Sasaki, S. Imai, M. Tsudagawa, Y. Nakayama, and H. Miki, “Low-Resistivity Highly Transparent Indium-Tin-Oxide Thin Films Prepared at Room Temperature by Synchrotron Radiation Ablation,” Jpn. J. Appl. Phys. 38, 6846–6850 (1999).
[Crossref]

Suzuki, T.

T. Suzuki, T. Yamazaki, and H. Oda, “Properties of indium oxide/tin oxide multilayered films prepared by ion-beam sputtering,” J. Mater. Sci. 23, 3026–3030 (1988).
[Crossref]

Theuring, M.

Toet, D.

G. Aichmayr, D. Toet, M. Mulato, P. V. Santos, A. Spangenberg, and R.B. Bergmann, “Growth mechanisms in laser crystallization and laser interference crystallization,” J. Non-Cryst. Solids 227, 921–924 (1998).
[Crossref]

Toguri, J. M.

Y. Waseda and J. M. Toguri, The Structure and Properties of Oxide Melts: Application of Basic Science to Metallurgical Processing (World Scientific, Singapore, River Edge, 1998).
[Crossref]

Tsudagawa, M.

Y. Akagi, K. Hanamoto, H. Suzuki, T. Katoh, M. Sasaki, S. Imai, M. Tsudagawa, Y. Nakayama, and H. Miki, “Low-Resistivity Highly Transparent Indium-Tin-Oxide Thin Films Prepared at Room Temperature by Synchrotron Radiation Ablation,” Jpn. J. Appl. Phys. 38, 6846–6850 (1999).
[Crossref]

Tsutsumi, E.

T. Nakanishi, E. Tsutsumi, K. Masunaga, A. Fujimoto, and K. Asakawa, “Transparent Aluminum Nanomesh Electrode Fabricated by Nanopatterning Using Self-Assembled Nanoparticles,” Appl. Phys. Express 4, 025201 (2011).
[Crossref]

van de Groep, J.

J. van de Groep, F. Gupta, M.A. Verschuuren, M.M. Wienk, R.A. Janssen, and A. Polman, “Large-area soft-imprinted nanowire networks as light trapping transparent conductors,” Sci. Rep. 5, 11414 (2015).
[Crossref] [PubMed]

van Hulst, N.F.

F. Afshinmanesh, A.G. Curto, K.M. Milaninia, N.F. van Hulst, and M.L. Brongersma, “Transparent Metallic Fractal Electrodes for Semiconductor Devices,” Nano Lett. 14, 5068–5074 (2014).
[Crossref] [PubMed]

Vehse, M.

Verschuuren, M.A.

J. van de Groep, F. Gupta, M.A. Verschuuren, M.M. Wienk, R.A. Janssen, and A. Polman, “Large-area soft-imprinted nanowire networks as light trapping transparent conductors,” Sci. Rep. 5, 11414 (2015).
[Crossref] [PubMed]

Voisiat, B.

B. Voisiat, M. Gedvilas, S. Indrisinas, and G. Raciukaitis, “Picosecond-laser 4-beam-interference ablation as a flexible tool for thin film microstructuring,” Physics Procedia 12, 116–124 (2011).
[Crossref]

Volinsky, A. A.

X. Pang, H. Ma, K. Gao, H. Yang, X. Wu, and A. A. Volinsky, “Fracture Toughness and Adhesion of Transparent Al:ZnO Films Deposited on Glass Substrates,” J. Mater. Eng. Perform. 22, 3161–3167 (2013).
[Crossref]

von Maydell, K.

Wakaki, M.

M. Wakaki, K. Kudo, and T. Shibuya, Physical Properties and Data of Optical Materials (CRC Press, Boca Raton, 2007).
[Crossref]

Wang, B.

T. Gao, B. Wang, B. Ding, J. Lee, and P.W. Leu, “Uniform and Ordered Copper Nanomeshes by Microsphere Lithography for Transparent Electrodes,” Nano Lett. 14, 2105–2110 (2014).
[Crossref] [PubMed]

Wang, S.

H. Wu, D. Kong, Z. Ruan, P.-C. Hsu, S. Wang, Z. Yu, T.J. Carney, L. Hu, S. Fan, and Y. Cui, “A transparent electrode based on a metal nanotrough network,” Nat. Nanotechnol. 8, 421–425 (2013).
[Crossref] [PubMed]

Wang, Z.L.

Z.L. Wang, Nanowires and Nanobelts. Materials, Properties and Devices. Volume 1: Metal and Semiconductor Nanowires (Sringer, Boston, 2003).

Ward, L.

L. Ward, The Optical Constants of Bulk Materials and Films (Institute of Physics Pub, Bristol, Philadelphia, 1994).

Waseda, Y.

Y. Waseda and J. M. Toguri, The Structure and Properties of Oxide Melts: Application of Basic Science to Metallurgical Processing (World Scientific, Singapore, River Edge, 1998).
[Crossref]

Waugh, D.G.

J. Lawrence, D.G. Waugh, and N. Aoyagi, Laser Surface Engineering: Processes and Applications (Woodhead Publishing, Cambridge, 2015).

Wienk, M.M.

J. van de Groep, F. Gupta, M.A. Verschuuren, M.M. Wienk, R.A. Janssen, and A. Polman, “Large-area soft-imprinted nanowire networks as light trapping transparent conductors,” Sci. Rep. 5, 11414 (2015).
[Crossref] [PubMed]

Wu, H.

H. Wu, D. Kong, Z. Ruan, P.-C. Hsu, S. Wang, Z. Yu, T.J. Carney, L. Hu, S. Fan, and Y. Cui, “A transparent electrode based on a metal nanotrough network,” Nat. Nanotechnol. 8, 421–425 (2013).
[Crossref] [PubMed]

H. Wu, L. Hu, M.W. Rowell, D. Kong, J.J. Cha, J.R. McDonough, J. Zhu, Y. Yang, M.D. McGehee, and Y. Cui, “Electrospun Metal Nanofiber Webs as High-Performance Transparent Electrode,” Nano Lett. 10, 4242–4248 (2010).
[Crossref] [PubMed]

Wu, X.

X. Pang, H. Ma, K. Gao, H. Yang, X. Wu, and A. A. Volinsky, “Fracture Toughness and Adhesion of Transparent Al:ZnO Films Deposited on Glass Substrates,” J. Mater. Eng. Perform. 22, 3161–3167 (2013).
[Crossref]

Yamaguchi, M.

M. Yamaguchi, A. Ide-Ektessabi, H. Nomura, and N. Yasui, “Characteristics of indium tin oxide thin films prepared using electron beam evaporation,” Thin Solid Films 447, 115–118 (2004).
[Crossref]

Yamazaki, T.

T. Suzuki, T. Yamazaki, and H. Oda, “Properties of indium oxide/tin oxide multilayered films prepared by ion-beam sputtering,” J. Mater. Sci. 23, 3026–3030 (1988).
[Crossref]

Yang, H.

X. Pang, H. Ma, K. Gao, H. Yang, X. Wu, and A. A. Volinsky, “Fracture Toughness and Adhesion of Transparent Al:ZnO Films Deposited on Glass Substrates,” J. Mater. Eng. Perform. 22, 3161–3167 (2013).
[Crossref]

Yang, Y.

H. Wu, L. Hu, M.W. Rowell, D. Kong, J.J. Cha, J.R. McDonough, J. Zhu, Y. Yang, M.D. McGehee, and Y. Cui, “Electrospun Metal Nanofiber Webs as High-Performance Transparent Electrode,” Nano Lett. 10, 4242–4248 (2010).
[Crossref] [PubMed]

Yasui, N.

M. Yamaguchi, A. Ide-Ektessabi, H. Nomura, and N. Yasui, “Characteristics of indium tin oxide thin films prepared using electron beam evaporation,” Thin Solid Films 447, 115–118 (2004).
[Crossref]

Yu, J.S.

Yu, Z.

H. Wu, D. Kong, Z. Ruan, P.-C. Hsu, S. Wang, Z. Yu, T.J. Carney, L. Hu, S. Fan, and Y. Cui, “A transparent electrode based on a metal nanotrough network,” Nat. Nanotechnol. 8, 421–425 (2013).
[Crossref] [PubMed]

Zhu, J.

H. Wu, L. Hu, M.W. Rowell, D. Kong, J.J. Cha, J.R. McDonough, J. Zhu, Y. Yang, M.D. McGehee, and Y. Cui, “Electrospun Metal Nanofiber Webs as High-Performance Transparent Electrode,” Nano Lett. 10, 4242–4248 (2010).
[Crossref] [PubMed]

ACS Nano (3)

S. De, T.M. Higgins, P.E. Lyons, E.M. Doherty, P.N. Nirmalraj, W.J. Blau, J.J. Boland, and J.N. Coleman, “Silver Nanowire Networks as Flexible, Transparent, Conducting Films: Extremely High DC to Optical Conductivity Ratios,” ACS Nano 28, 1767–1774 (2009).
[Crossref]

L. Hu, H.S. Kim, J.-Y. Lee, P. Peumans, and Y. Cui, “Scalable Coating and Properties of Transparent, Flexible, Silver Nanowire Electrodes,” ACS Nano 4, 2955–2963 (2010).
[Crossref] [PubMed]

J.A. Fairfield, C. Ritter, A.T. Bellew, E.K. McCarthy, M.S. Ferreira, and J. J. Boland, “Effective Electrode Length Enhances Electrical Activation of Nanowire Networks: Experiment and Simulation,” ACS Nano 89542–9549 (2014).
[Crossref] [PubMed]

Adv. Energy Mater. (1)

G.Y. Margulis, M.G. Christoforo, D. Lam, Z.M. Beiley, A.R. Bowring, C.D. Bailie, A. Salleo, and M.D. McGehee, “Spray Deposition of Silver Nanowire Electrodes for Semitransparent Solid-State Dye-Sensitized Solar Cells,” Adv. Energy Mater. 3, 1657–1663 (2013).
[Crossref]

Adv. Mater. (2)

L. Müller-Meskamp, Y.H. Kim, T. Roch, S. Hofmann, R. Scholz, S. Eckardt, K. Leo, and A.F. Lasagni, “Efficiency Enhancement of Organic Solar Cells by Fabricating Periodic Surface Textures using Direct Laser Interference Patterning,” Adv. Mater. 24, 906–910 (2012).
[Crossref] [PubMed]

M.-G. Kang and L.J. Guo, “Nanoimprinted Semitransparent Metal Electrodes and Their Application in Organic Light-Emitting Diodes,” Adv. Mater. 19, 1391–1396 (2007).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Express (1)

T. Nakanishi, E. Tsutsumi, K. Masunaga, A. Fujimoto, and K. Asakawa, “Transparent Aluminum Nanomesh Electrode Fabricated by Nanopatterning Using Self-Assembled Nanoparticles,” Appl. Phys. Express 4, 025201 (2011).
[Crossref]

J. Appl. Phys. (1)

S. Ray, R. Banerjee, N. Basu, A. K. Batabyal, and A. Barua, “Properties of tin doped indium oxide thin films prepared by magnetron sputtering,” J. Appl. Phys. 54, 3497 (1983).
[Crossref]

J. Mater. Eng. Perform. (1)

X. Pang, H. Ma, K. Gao, H. Yang, X. Wu, and A. A. Volinsky, “Fracture Toughness and Adhesion of Transparent Al:ZnO Films Deposited on Glass Substrates,” J. Mater. Eng. Perform. 22, 3161–3167 (2013).
[Crossref]

J. Mater. Process. Tech. (1)

A. Lasagni and F. Mücklich, “FEM simulation of periodical local heating caused by Laser Interference Metallurgy,” J. Mater. Process. Tech. 209, 202–209 (2009).
[Crossref]

J. Mater. Sci. (1)

T. Suzuki, T. Yamazaki, and H. Oda, “Properties of indium oxide/tin oxide multilayered films prepared by ion-beam sputtering,” J. Mater. Sci. 23, 3026–3030 (1988).
[Crossref]

J. Non-Cryst. Solids (1)

G. Aichmayr, D. Toet, M. Mulato, P. V. Santos, A. Spangenberg, and R.B. Bergmann, “Growth mechanisms in laser crystallization and laser interference crystallization,” J. Non-Cryst. Solids 227, 921–924 (1998).
[Crossref]

Jpn. J. Appl. Phys. (1)

Y. Akagi, K. Hanamoto, H. Suzuki, T. Katoh, M. Sasaki, S. Imai, M. Tsudagawa, Y. Nakayama, and H. Miki, “Low-Resistivity Highly Transparent Indium-Tin-Oxide Thin Films Prepared at Room Temperature by Synchrotron Radiation Ablation,” Jpn. J. Appl. Phys. 38, 6846–6850 (1999).
[Crossref]

Microelectron. Eng. (1)

S. Sivasubramaniam and M. M. Alkaisi, “Inverted nanopyramid texturing for silicon solar cells using interference lithography,” Microelectron. Eng. 119, 146–150 (2014).
[Crossref]

Nano Lett. (4)

F. Afshinmanesh, A.G. Curto, K.M. Milaninia, N.F. van Hulst, and M.L. Brongersma, “Transparent Metallic Fractal Electrodes for Semiconductor Devices,” Nano Lett. 14, 5068–5074 (2014).
[Crossref] [PubMed]

T. Gao, B. Wang, B. Ding, J. Lee, and P.W. Leu, “Uniform and Ordered Copper Nanomeshes by Microsphere Lithography for Transparent Electrodes,” Nano Lett. 14, 2105–2110 (2014).
[Crossref] [PubMed]

H. Wu, L. Hu, M.W. Rowell, D. Kong, J.J. Cha, J.R. McDonough, J. Zhu, Y. Yang, M.D. McGehee, and Y. Cui, “Electrospun Metal Nanofiber Webs as High-Performance Transparent Electrode,” Nano Lett. 10, 4242–4248 (2010).
[Crossref] [PubMed]

J. Groep, P. Spinelli, and A. Polman, “Transparent Conducting Silver Nanowire Networks,” Nano Lett. 12, 3138–3144 (2012).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

H. Wu, D. Kong, Z. Ruan, P.-C. Hsu, S. Wang, Z. Yu, T.J. Carney, L. Hu, S. Fan, and Y. Cui, “A transparent electrode based on a metal nanotrough network,” Nat. Nanotechnol. 8, 421–425 (2013).
[Crossref] [PubMed]

Nature Materials (1)

E.C. Garnett, W. Cai, J.J. Cha, F. Mahmood, S.T. Connor, M.G. Christoforo, Y. Cui, M.D. McGehee, and M.L. Brongersma, “Self-limited plasmonic welding of silver nanowire junctions,” Nature Materials 11, 241–249 (2012).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. B (1)

A.F. Mayadas and M. Shatzkes, “Electrical-Resistivity Model for Polycrystalline Films: the Case of Arbitrary Reflection at External Surfaces,” Phys. Rev. B 1, 1382 (1970).
[Crossref]

Physics Procedia (1)

B. Voisiat, M. Gedvilas, S. Indrisinas, and G. Raciukaitis, “Picosecond-laser 4-beam-interference ablation as a flexible tool for thin film microstructuring,” Physics Procedia 12, 116–124 (2011).
[Crossref]

Proc. SPIE (3)

A. Lasagni, T. Roch, M. Bieda, D. Benke, and E. Beyer, “High speed surface functionalization using direct laser interference patterning, towards 1 m2/min fabrication speed with sub-μm resolution,” Proc. SPIE 8968, 89680A (2014).
[Crossref]

A. Lasagni, T. Roch, J. Berger, T. Kunze, V. Lang, and E. Beyer, “To use or not to use (direct laser interference patterning), that is the question,” Proc. SPIE 9351, 935115 (2015).
[Crossref]

S. Eckhardt, L. Müller-Meskamp, M. Loeser, M. Siebold, and A. F. Lasagni, “Fabrication of highly efficient transparent metal thin film electrodes using Direct Laser Interference Patterning,” Proc. SPIE 9351, 935116 (2014).

Sci. Rep. (1)

J. van de Groep, F. Gupta, M.A. Verschuuren, M.M. Wienk, R.A. Janssen, and A. Polman, “Large-area soft-imprinted nanowire networks as light trapping transparent conductors,” Sci. Rep. 5, 11414 (2015).
[Crossref] [PubMed]

Thin Solid Films (2)

H. Agura, A. Suzuki, T. Matsushita, T. Aoki, and M. Okuda, “Low resistivity transparent conducting Al-doped ZnO films prepared by pulsed laser deposition,” Thin Solid Films 445, 263–267 (2003).
[Crossref]

M. Yamaguchi, A. Ide-Ektessabi, H. Nomura, and N. Yasui, “Characteristics of indium tin oxide thin films prepared using electron beam evaporation,” Thin Solid Films 447, 115–118 (2004).
[Crossref]

Other (24)

Y. Waseda and J. M. Toguri, The Structure and Properties of Oxide Melts: Application of Basic Science to Metallurgical Processing (World Scientific, Singapore, River Edge, 1998).
[Crossref]

J. Meiß, New Material Concepts for Organic Solar Cells (Optimus Mostafa Verlag, Göttingen, 2011).

N.S. Sariciftci and S.-S. Sun, Organic Photovoltaics: Mechanism, Materials, and Devices (Taylor & Francis, Boca Raton, 2005).
[Crossref]

B. Kang, J. Shi, and Q. Gao, in 2011 International Conference on Electrical and Control Engineering (ICECE): Sept. 16–18, 2011, Yichang, China Proceedings (Institute of Electrical and Electronics Engineers (IEEE)), IEEE. [Piscataway, N.J.] 2011, p. 3017.

D.S. Ghosh, T.L. Chen, N. Formica, J. Hwang, I. Bruder, and V. Pruneri, “High figure-of-merit Ag/Al:ZnO nano-thick transparent electrodes for indium-free flexible photovoltaics, Solar Energy Materials and Solar Cells,” 107, 338–343 (2012).

Polinares Consortium, Fact Sheet: Indium (European Research Area, Dundee, 2012).

H. Paul, Lexikon der Optik (Spektrum, Akad. Verl., Heidelberg, Berlin, 2003).

Z.L. Wang, Nanowires and Nanobelts. Materials, Properties and Devices. Volume 1: Metal and Semiconductor Nanowires (Sringer, Boston, 2003).

A. Sedlmayr, Experimental Investigations of Deformation Pathways in Nanowires (KIT Scientific Publishing, Karlsruhe, 2012)

K.Q. Le and A. Alù, “Plasmonic gratings for enhanced light-trapping in thin-film organic solar cells,” in Conference on Lasers and Electro-Optics 2012, OSA Technical Digest (online) (Optical Society of America, 2012), paper CF3J.5.

O. Eibl, Thermoelectric Bi2Te3 Nanomaterials (Wiley, Weinheim, 2015)

J. Lawrence, D.G. Waugh, and N. Aoyagi, Laser Surface Engineering: Processes and Applications (Woodhead Publishing, Cambridge, 2015).

G F. Deyev and D.G. Deyev, Surface Phenomena in Fusion Welding Processes (CRC Taylor & Francis, Boca Raton, 2006).

J.E. Hatch, Aluminum: Properties and Physical Metallurgy, American Society for Metals (Metals Park, Ohio, 1984).

R. Ghodssi and P. Lin, MEMS Materials and Processes Handbook (Springer, Boston, 2011).
[Crossref]

H. Askari, H. Fallah, M. Askari, and M.C. Mohmmadieyh, “Electrical and optical properties of ITO thin films prepared by DC magnetron sputtering for low-emitting coatings,” eprint arXiv:1409.5293 (2014).

D.S. Ghosh, Ultrathin Metal Transparent Electrodes for the Optoelectronics Industry (Springer, New York, 2013).
[Crossref]

S.L. Chaplot, R. Mittal, and N. Choudhury, Thermodynamic properties of solids: Experiment and modeling (Wiley-VCH, Weinheim, 2010).
[Crossref]

R. Hultgren, R.L. Orr, P.D. Anderson, and K.K. Kelley, Selected Values of the Thermodynamic Properties of Metals and Alloys (John Wiley & Sons Inc., New York, Heidelberg, 1963).

IAEA, Thermophysical Properties of Materials for Nuclear Engineering: A Tutorial and Collection of Data (International Atomic Energy Agency, Vienna, 2008).

L.D. Pye, A. Montenero, and I. Joseph, Properties of Glass-Forming Melts (Taylor & Francis, Boca Raton, 2005).
[Crossref]

M. Wakaki, K. Kudo, and T. Shibuya, Physical Properties and Data of Optical Materials (CRC Press, Boca Raton, 2007).
[Crossref]

L. Ward, The Optical Constants of Bulk Materials and Films (Institute of Physics Pub, Bristol, Philadelphia, 1994).

K. Mertens, Photovoltaics: Fundamentals, Technology and Practice (John Wiley & Sons, 2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Experimental setup: The spatial period Λ is changed by moving the prism along the A-axis. The beam profile is optimized by moving the substrate along the Z-axis.
Fig. 2
Fig. 2 (a – c) AFM images of structured aluminum thin films with 20 nm thickness and a spatial period of Λ = 1.7 μm. The surfaces were irradiated at (a) 1.0 J cm−2, (b) 1.3 J cm−2 and (c) 1.6 J cm−2. In (d), a SEM image of an Al sample exposed to 1.3 J cm−2 is shown. The pulse duration was 6 ns.
Fig. 3
Fig. 3 AFM images of ns-structured copper thin films with a thickness of 20 nm. (a) Cu film treated with a single laser pulse at 2.1 J cm−2 and a spatial period of 1.7 μm. In this case, the whole metal layer has been molten by the laser treatment. (b) Cu film treated with 1 laser pulse at 2.3 J cm−2 and a spatial period of 2.7 μm. Although the textures are characterized by many irregularities, the holes are pronounced clearly. The pulse duration was 6 ns.
Fig. 4
Fig. 4 Surface topography of ps-structured Cu (a, c) and Al (b, d) thin films with a spatial period of Λ = 2.0 μm. Samples irradiated with a single laser pulse and laser fluences of (a) 0.76 and (c) 0.90 J cm−2 for Cu, (b, d) 0.54 J cm−2 for Al. The pulse duration was 35 ps.
Fig. 5
Fig. 5 Numeric simulation of DLIP-based ablation on metallic thin films with a thickness of 20 nm. Four monitoring points i – iv are set while points i and iii are situated at an interference maximum and points ii and iv at a minimum. Points i and ii are placed at the film surface and iii and iv 20 nm below the surface. The pulse arrival corresponds to t = 0 and a spatial period of 1.7 μm was chosen. (a – c) Results for aluminum films at nanosecond pulses (6 ns) with a fluence of 1.5 J cm−2; (d – f) Results for copper films at picosecond pulses (35 ps) with a fluence of 0.9 J cm−2; Temperature distribution of five spatial periods (b, e) and molten regions of eight interference periods (c, f) at 10 ns for ns-pulses and 50 ps for ps-pulses.
Fig. 6
Fig. 6 Optical characterization of DLIP structured metallic thin films, for aluminum (a – d) and copper (e – h) films; Representative total (a, e) and diffuse (b, f) transmission spectra; AM1.5 weighted total transmission (c, g) and haze as function (d, h) vs. layer thickness (5 – 40 nm) at various laser process parameters (spatial period, laser fluence, pulse duration). The used laser fluences are given in terms of the ablation threshold (AT) for a better representation of the results.
Fig. 7
Fig. 7 Electrical characterization of laser treated (a) Cu and (b) Al thin films with spatial periods of 2.7 μm for ns- and 2.0 μm for ps-pulses.
Fig. 8
Fig. 8 Optical and electrical properties of selected Al and Cu films, structured using ps and ns-pulses. Only structured substrates exceeding the limits of 40% in total transmittance and sheet resistances bellow 250 Ω/sq, with a haze higher than 5% are shown. The target range denotes electrical and optical parameters of ITO thin film electrodes given in [50–54].

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ρ c p T t = q L q f q V + χ Δ T ( x , y , t )
I ( x ) = 2 I 0 cos ( k x sin α ) 2
q L = 2 I 0 ( 1 R ) e α y ( I ( x ) + 1 ) e ( t 5 t p ) / σ
τ g S = λ 1 λ 2 S ( λ ) τ ( λ ) d λ / λ 1 λ 2 S ( λ ) d λ
H = τ d τ t = τ t τ 0 τ t

Metrics