Abstract

Two compact TDLAS sensor systems based on different structural optical cores were developed. The two optical cores combine two recent developments, gallium antimonide (GaSb)-based ICL and a compact multipass gas cell (MPGC) with the goal to create compact TDLAS based sensors for the mid-IR gas detection with high detection sensitivity and low power consumption. The sensors achieved minimum detection limits of ~5 ppbv and ~8 ppbv, respectively, for CH4 and C2H6 concentration measurements with a 3.7-W power consumption.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Mid-infrared dual-gas sensor for simultaneous detection of methane and ethane using a single continuous-wave interband cascade laser

Weilin Ye, Chunguang Li, Chuantao Zheng, Nancy P. Sanchez, Aleksander K. Gluszek, Arkadiusz J. Hudzikowski, Lei Dong, Robert J. Griffin, and Frank K. Tittel
Opt. Express 24(15) 16973-16985 (2016)

Ppb-level formaldehyde detection using a CW room-temperature interband cascade laser and a miniature dense pattern multipass gas cell

Lei Dong, Yajun Yu, Chunguang Li, Stephen So, and Frank K. Tittel
Opt. Express 23(15) 19821-19830 (2015)

Dual interband cascade laser based trace-gas sensor for environmental monitoring

Gerard Wysocki, Yury Bakhirkin, Stephen So, Frank K. Tittel, Cory J. Hill, Rui Q. Yang, and Matthew P. Fraser
Appl. Opt. 46(33) 8202-8210 (2007)

References

  • View by:
  • |
  • |
  • |

  1. H. I. Schiff, G. I. Mackay, and J. Bechara, “The use of tunable diode laser absorption spectroscopy for atmospheric measurements,” Res. Chem. Intermed. 20(3-5), 525–556 (1994).
    [Crossref]
  2. K. Krzempek, R. Lewicki, L. Nähle, M. Fischer, J. Koeth, S. Belahsene, Y. Rouillard, L. Worschech, and F. K. Tittel, “Continuous wave, distributed feedback diode laser based sensor for trace gas detection of ethane,” Appl. Phys. B 106(2), 251–255 (2012).
    [Crossref]
  3. M. Köhring, S. Huang, M. Jahjah, W. Jiang, W. Ren, U. Willer, C. Caneba, L. Yang, D. Nagrath, W. Schade, and F. K. Tittel, “QCL based TDLAS sensor for detection of NO towards emission measurements from ovarian cancer cells,” Appl. Phys. B 117(1), 445–451 (2014).
    [Crossref]
  4. B. H. Lee, E. C. Wood, M. S. Zahniser, J. B. McManus, D. D. Nelson, S. C. Herndon, G. W. Santoni, S. C. Wofsy, and J. W. Munger, “Simultaneous measurement of atmospheric HONO and NO2 via absorption spectroscopy using tunable mid-infrared contimuous-wave quantum cascade lasers,” Appl. Phys. B 102, 417–423 (2011).
  5. J. B. McManus, M. S. Zahniser, D. D. Nelson, J. H. Shorter, S. Herndon, E. Wood, and R. Wehr, “Application of quantum cascade lasers to high-precision atmospheric trace gas measurements,” Opt. Eng. 49(11), 111124 (2010).
    [Crossref]
  6. K. Liu, L. Wang, T. Tan, G. Wang, W. Zhang, W. Chen, and X. Gao, “Highly sensitive detection of methane by near-infrared laser absorption spectroscopy using a compact dense-pattern multipass cell,” Sensor Actuat. B 220, 1000–1005 (2015).
  7. G. Durry, J. S. Li, I. Vinogradov, A. Titov, L. Joly, J. Cousin, T. Decarpenterie, N. Amarouche, X. Liu, B. Parvitte, O. Korablev, M. Gerasimov, and V. Zéninari, “Near infrared diode laser spectroscopy of C2H2, H2O, CO2 and their isotopologues and the application to TDLAS, a tunable diode laser spectrometer for the martian PHOBOS-GRUNT space mission,” Appl. Phys. B 99(1-2), 339–351 (2010).
    [Crossref]
  8. S. Suchalkin, G. Belenky, and M. A. Belkin, “Rapidly tunable quantum cascade lasers,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1200509 (2015).
    [Crossref]
  9. I. Vurgaftman, W. W. Bewley, C. L. Canedy, S. K. Chul, K. Mijin, C. D. Merritt, J. Abell, and J. R. Meyer, “Interband cascade lasers with low threshold power and high output powers,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1200210 (2013).
    [Crossref]
  10. A. Bauer, F. Langer, M. Dallner, M. Kamp, M. Motyka, G. Sek, K. Ryczko, J. Misiewicz, S. Höfling, and A. Forchel, “Emission wavelength tuning of interband cascade lasers in the 3-4 μm spectral range,”',” Appl. Phys. Lett. 95(25), 251103 (2009).
    [Crossref]
  11. C. L. Canedy, C. S. Kim, C. D. Merritt, W. W. Bewley, I. Vurgaftman, J. R. Meyer, and M. Kim, “Interband cascade lasers with >40% continuous-wave wall plug efficiency at cryogenic temperatures,” Appl. Phys. Lett. 107(12), 121102 (2015).
    [Crossref]
  12. L. Nähle, L. Hildebrandt, M. Kamp, and S. Höfling, “ICLs open opportunities for mid-IR sensing,” Laser Focus World 49, 70–73 (2013).
  13. L. Hidebrandt and L. Nähle, “DFB laser diodes expand hydrocarbon sensing beyond 3 μm,” Laser Focus World 48, 87–90 (2012).
  14. T. Nguyen Ba, M. Triki, G. Desbrosses, and A. Vicet, “Quartz-enhanced photoacoustic spectroscopy sensor for ethylene detection with a 3.32 μm distributed feedback laser diode,” Rev. Sci. Instrum. 86(2), 023111 (2015).
    [Crossref] [PubMed]
  15. I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nat. Commun. 2, 585 (2011).
    [Crossref] [PubMed]
  16. K. Krzempek, M. Jahjah, R. Lewicki, P. Stefanski, S. So, D. Thomazy, and F. K. Tittel, “CW DFB RT diode laser based sensor for trace-gas detection of ethane using novel compact multipass gas absorption cell,” Appl. Phys. B 112(4), 461–465 (2013).
    [Crossref]
  17. G. Overton, “New multipass gas cells beat conventional designs,” Laser Focus World 49, 17 (2013).
  18. I. Bamberger, J. Stieger, N. Buchmann, and W. Eugster, “Spatial variability of methane: attributing atmospheric concentrations to emissions,” Environ. Pollut. 190, 65–74 (2014).
    [Crossref] [PubMed]
  19. F. A. Smith, S. Elliott, D. R. Blake, and F. S. Rowland, “Spatiotemporal variation of methane and other trace hydrocarbon concentration in the Valley of Mexico,” Environ. Sci. Policy 5(6), 449–461 (2002).
    [Crossref]
  20. I. J. Simpson, F. S. Rowland, S. Meinardi, and D. R. Blake, “Influence of biomass burning during recent fluctuations in the slow growth of global tropospheric methane,” Geophys. Res. Lett. 33(22), L22808 (2006).
    [Crossref]
  21. Y. Xiao, J. A. Logan, D. J. Jacob, R. C. Hudman, R. Yantosca, and D. R. Blake, “Global budget of ethane and regional constraints on U.S. sources,” J. Geophys. Res. 113(D21), D2130 (2008).
    [Crossref]
  22. K. Sun, L. Tao, D. J. Miller, M. Amir Khan, and M. A. Zondlo, “Inline multi-harmonic calibration method for open-path atmospheric ammonia measurement,” Appl. Phys. B 110(2), 213–222 (2013).
    [Crossref]
  23. L. Tao, K. Sun, D. J. Miller, D. Pan, L. M. Golston, and M. A. Zondlo, “Low-power, open-path mobile sensing platform for high-resolution measurements of greenhouse gases and air pollutants,” Appl. Phys. B 119(1), 153–164 (2015).
    [Crossref]
  24. D. Rehle, D. Leleux, M. Erdelyi, F. Tittel, M. Fraser, and S. Friedfeld, “Ambient formaldehyde detection with a laser spectrometer based on difference-frequency generation in PPLN,” Appl. Phys. B 72(8), 947–952 (2001).
    [Crossref] [PubMed]
  25. M. Seiter and M. W. Sigrist, “On-line multicomponent trace-gas analysis with a broadly tunable pulsed difference-frequency laser spectrometer,” Appl. Opt. 38(21), 4691–4698 (1999).
    [Crossref] [PubMed]
  26. C. Li, L. Dong, C. Zheng, and F. K. Tittel, “Compact TDLAS based optical sensor for ppb-level ethane detection by use of a 3.34 μm room-temperature CW interband cascade laser,” Sens. Actuators B Chem.submitted.

2015 (5)

K. Liu, L. Wang, T. Tan, G. Wang, W. Zhang, W. Chen, and X. Gao, “Highly sensitive detection of methane by near-infrared laser absorption spectroscopy using a compact dense-pattern multipass cell,” Sensor Actuat. B 220, 1000–1005 (2015).

S. Suchalkin, G. Belenky, and M. A. Belkin, “Rapidly tunable quantum cascade lasers,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1200509 (2015).
[Crossref]

C. L. Canedy, C. S. Kim, C. D. Merritt, W. W. Bewley, I. Vurgaftman, J. R. Meyer, and M. Kim, “Interband cascade lasers with >40% continuous-wave wall plug efficiency at cryogenic temperatures,” Appl. Phys. Lett. 107(12), 121102 (2015).
[Crossref]

T. Nguyen Ba, M. Triki, G. Desbrosses, and A. Vicet, “Quartz-enhanced photoacoustic spectroscopy sensor for ethylene detection with a 3.32 μm distributed feedback laser diode,” Rev. Sci. Instrum. 86(2), 023111 (2015).
[Crossref] [PubMed]

L. Tao, K. Sun, D. J. Miller, D. Pan, L. M. Golston, and M. A. Zondlo, “Low-power, open-path mobile sensing platform for high-resolution measurements of greenhouse gases and air pollutants,” Appl. Phys. B 119(1), 153–164 (2015).
[Crossref]

2014 (2)

I. Bamberger, J. Stieger, N. Buchmann, and W. Eugster, “Spatial variability of methane: attributing atmospheric concentrations to emissions,” Environ. Pollut. 190, 65–74 (2014).
[Crossref] [PubMed]

M. Köhring, S. Huang, M. Jahjah, W. Jiang, W. Ren, U. Willer, C. Caneba, L. Yang, D. Nagrath, W. Schade, and F. K. Tittel, “QCL based TDLAS sensor for detection of NO towards emission measurements from ovarian cancer cells,” Appl. Phys. B 117(1), 445–451 (2014).
[Crossref]

2013 (5)

I. Vurgaftman, W. W. Bewley, C. L. Canedy, S. K. Chul, K. Mijin, C. D. Merritt, J. Abell, and J. R. Meyer, “Interband cascade lasers with low threshold power and high output powers,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1200210 (2013).
[Crossref]

K. Krzempek, M. Jahjah, R. Lewicki, P. Stefanski, S. So, D. Thomazy, and F. K. Tittel, “CW DFB RT diode laser based sensor for trace-gas detection of ethane using novel compact multipass gas absorption cell,” Appl. Phys. B 112(4), 461–465 (2013).
[Crossref]

G. Overton, “New multipass gas cells beat conventional designs,” Laser Focus World 49, 17 (2013).

L. Nähle, L. Hildebrandt, M. Kamp, and S. Höfling, “ICLs open opportunities for mid-IR sensing,” Laser Focus World 49, 70–73 (2013).

K. Sun, L. Tao, D. J. Miller, M. Amir Khan, and M. A. Zondlo, “Inline multi-harmonic calibration method for open-path atmospheric ammonia measurement,” Appl. Phys. B 110(2), 213–222 (2013).
[Crossref]

2012 (2)

L. Hidebrandt and L. Nähle, “DFB laser diodes expand hydrocarbon sensing beyond 3 μm,” Laser Focus World 48, 87–90 (2012).

K. Krzempek, R. Lewicki, L. Nähle, M. Fischer, J. Koeth, S. Belahsene, Y. Rouillard, L. Worschech, and F. K. Tittel, “Continuous wave, distributed feedback diode laser based sensor for trace gas detection of ethane,” Appl. Phys. B 106(2), 251–255 (2012).
[Crossref]

2011 (2)

B. H. Lee, E. C. Wood, M. S. Zahniser, J. B. McManus, D. D. Nelson, S. C. Herndon, G. W. Santoni, S. C. Wofsy, and J. W. Munger, “Simultaneous measurement of atmospheric HONO and NO2 via absorption spectroscopy using tunable mid-infrared contimuous-wave quantum cascade lasers,” Appl. Phys. B 102, 417–423 (2011).

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nat. Commun. 2, 585 (2011).
[Crossref] [PubMed]

2010 (2)

J. B. McManus, M. S. Zahniser, D. D. Nelson, J. H. Shorter, S. Herndon, E. Wood, and R. Wehr, “Application of quantum cascade lasers to high-precision atmospheric trace gas measurements,” Opt. Eng. 49(11), 111124 (2010).
[Crossref]

G. Durry, J. S. Li, I. Vinogradov, A. Titov, L. Joly, J. Cousin, T. Decarpenterie, N. Amarouche, X. Liu, B. Parvitte, O. Korablev, M. Gerasimov, and V. Zéninari, “Near infrared diode laser spectroscopy of C2H2, H2O, CO2 and their isotopologues and the application to TDLAS, a tunable diode laser spectrometer for the martian PHOBOS-GRUNT space mission,” Appl. Phys. B 99(1-2), 339–351 (2010).
[Crossref]

2009 (1)

A. Bauer, F. Langer, M. Dallner, M. Kamp, M. Motyka, G. Sek, K. Ryczko, J. Misiewicz, S. Höfling, and A. Forchel, “Emission wavelength tuning of interband cascade lasers in the 3-4 μm spectral range,”',” Appl. Phys. Lett. 95(25), 251103 (2009).
[Crossref]

2008 (1)

Y. Xiao, J. A. Logan, D. J. Jacob, R. C. Hudman, R. Yantosca, and D. R. Blake, “Global budget of ethane and regional constraints on U.S. sources,” J. Geophys. Res. 113(D21), D2130 (2008).
[Crossref]

2006 (1)

I. J. Simpson, F. S. Rowland, S. Meinardi, and D. R. Blake, “Influence of biomass burning during recent fluctuations in the slow growth of global tropospheric methane,” Geophys. Res. Lett. 33(22), L22808 (2006).
[Crossref]

2002 (1)

F. A. Smith, S. Elliott, D. R. Blake, and F. S. Rowland, “Spatiotemporal variation of methane and other trace hydrocarbon concentration in the Valley of Mexico,” Environ. Sci. Policy 5(6), 449–461 (2002).
[Crossref]

2001 (1)

D. Rehle, D. Leleux, M. Erdelyi, F. Tittel, M. Fraser, and S. Friedfeld, “Ambient formaldehyde detection with a laser spectrometer based on difference-frequency generation in PPLN,” Appl. Phys. B 72(8), 947–952 (2001).
[Crossref] [PubMed]

1999 (1)

1994 (1)

H. I. Schiff, G. I. Mackay, and J. Bechara, “The use of tunable diode laser absorption spectroscopy for atmospheric measurements,” Res. Chem. Intermed. 20(3-5), 525–556 (1994).
[Crossref]

Abell, J.

I. Vurgaftman, W. W. Bewley, C. L. Canedy, S. K. Chul, K. Mijin, C. D. Merritt, J. Abell, and J. R. Meyer, “Interband cascade lasers with low threshold power and high output powers,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1200210 (2013).
[Crossref]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nat. Commun. 2, 585 (2011).
[Crossref] [PubMed]

Amarouche, N.

G. Durry, J. S. Li, I. Vinogradov, A. Titov, L. Joly, J. Cousin, T. Decarpenterie, N. Amarouche, X. Liu, B. Parvitte, O. Korablev, M. Gerasimov, and V. Zéninari, “Near infrared diode laser spectroscopy of C2H2, H2O, CO2 and their isotopologues and the application to TDLAS, a tunable diode laser spectrometer for the martian PHOBOS-GRUNT space mission,” Appl. Phys. B 99(1-2), 339–351 (2010).
[Crossref]

Amir Khan, M.

K. Sun, L. Tao, D. J. Miller, M. Amir Khan, and M. A. Zondlo, “Inline multi-harmonic calibration method for open-path atmospheric ammonia measurement,” Appl. Phys. B 110(2), 213–222 (2013).
[Crossref]

Bamberger, I.

I. Bamberger, J. Stieger, N. Buchmann, and W. Eugster, “Spatial variability of methane: attributing atmospheric concentrations to emissions,” Environ. Pollut. 190, 65–74 (2014).
[Crossref] [PubMed]

Bauer, A.

A. Bauer, F. Langer, M. Dallner, M. Kamp, M. Motyka, G. Sek, K. Ryczko, J. Misiewicz, S. Höfling, and A. Forchel, “Emission wavelength tuning of interband cascade lasers in the 3-4 μm spectral range,”',” Appl. Phys. Lett. 95(25), 251103 (2009).
[Crossref]

Bechara, J.

H. I. Schiff, G. I. Mackay, and J. Bechara, “The use of tunable diode laser absorption spectroscopy for atmospheric measurements,” Res. Chem. Intermed. 20(3-5), 525–556 (1994).
[Crossref]

Belahsene, S.

K. Krzempek, R. Lewicki, L. Nähle, M. Fischer, J. Koeth, S. Belahsene, Y. Rouillard, L. Worschech, and F. K. Tittel, “Continuous wave, distributed feedback diode laser based sensor for trace gas detection of ethane,” Appl. Phys. B 106(2), 251–255 (2012).
[Crossref]

Belenky, G.

S. Suchalkin, G. Belenky, and M. A. Belkin, “Rapidly tunable quantum cascade lasers,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1200509 (2015).
[Crossref]

Belkin, M. A.

S. Suchalkin, G. Belenky, and M. A. Belkin, “Rapidly tunable quantum cascade lasers,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1200509 (2015).
[Crossref]

Bewley, W. W.

C. L. Canedy, C. S. Kim, C. D. Merritt, W. W. Bewley, I. Vurgaftman, J. R. Meyer, and M. Kim, “Interband cascade lasers with >40% continuous-wave wall plug efficiency at cryogenic temperatures,” Appl. Phys. Lett. 107(12), 121102 (2015).
[Crossref]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, S. K. Chul, K. Mijin, C. D. Merritt, J. Abell, and J. R. Meyer, “Interband cascade lasers with low threshold power and high output powers,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1200210 (2013).
[Crossref]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nat. Commun. 2, 585 (2011).
[Crossref] [PubMed]

Blake, D. R.

Y. Xiao, J. A. Logan, D. J. Jacob, R. C. Hudman, R. Yantosca, and D. R. Blake, “Global budget of ethane and regional constraints on U.S. sources,” J. Geophys. Res. 113(D21), D2130 (2008).
[Crossref]

I. J. Simpson, F. S. Rowland, S. Meinardi, and D. R. Blake, “Influence of biomass burning during recent fluctuations in the slow growth of global tropospheric methane,” Geophys. Res. Lett. 33(22), L22808 (2006).
[Crossref]

F. A. Smith, S. Elliott, D. R. Blake, and F. S. Rowland, “Spatiotemporal variation of methane and other trace hydrocarbon concentration in the Valley of Mexico,” Environ. Sci. Policy 5(6), 449–461 (2002).
[Crossref]

Buchmann, N.

I. Bamberger, J. Stieger, N. Buchmann, and W. Eugster, “Spatial variability of methane: attributing atmospheric concentrations to emissions,” Environ. Pollut. 190, 65–74 (2014).
[Crossref] [PubMed]

Caneba, C.

M. Köhring, S. Huang, M. Jahjah, W. Jiang, W. Ren, U. Willer, C. Caneba, L. Yang, D. Nagrath, W. Schade, and F. K. Tittel, “QCL based TDLAS sensor for detection of NO towards emission measurements from ovarian cancer cells,” Appl. Phys. B 117(1), 445–451 (2014).
[Crossref]

Canedy, C. L.

C. L. Canedy, C. S. Kim, C. D. Merritt, W. W. Bewley, I. Vurgaftman, J. R. Meyer, and M. Kim, “Interband cascade lasers with >40% continuous-wave wall plug efficiency at cryogenic temperatures,” Appl. Phys. Lett. 107(12), 121102 (2015).
[Crossref]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, S. K. Chul, K. Mijin, C. D. Merritt, J. Abell, and J. R. Meyer, “Interband cascade lasers with low threshold power and high output powers,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1200210 (2013).
[Crossref]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nat. Commun. 2, 585 (2011).
[Crossref] [PubMed]

Chen, W.

K. Liu, L. Wang, T. Tan, G. Wang, W. Zhang, W. Chen, and X. Gao, “Highly sensitive detection of methane by near-infrared laser absorption spectroscopy using a compact dense-pattern multipass cell,” Sensor Actuat. B 220, 1000–1005 (2015).

Chul, S. K.

I. Vurgaftman, W. W. Bewley, C. L. Canedy, S. K. Chul, K. Mijin, C. D. Merritt, J. Abell, and J. R. Meyer, “Interband cascade lasers with low threshold power and high output powers,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1200210 (2013).
[Crossref]

Cousin, J.

G. Durry, J. S. Li, I. Vinogradov, A. Titov, L. Joly, J. Cousin, T. Decarpenterie, N. Amarouche, X. Liu, B. Parvitte, O. Korablev, M. Gerasimov, and V. Zéninari, “Near infrared diode laser spectroscopy of C2H2, H2O, CO2 and their isotopologues and the application to TDLAS, a tunable diode laser spectrometer for the martian PHOBOS-GRUNT space mission,” Appl. Phys. B 99(1-2), 339–351 (2010).
[Crossref]

Dallner, M.

A. Bauer, F. Langer, M. Dallner, M. Kamp, M. Motyka, G. Sek, K. Ryczko, J. Misiewicz, S. Höfling, and A. Forchel, “Emission wavelength tuning of interband cascade lasers in the 3-4 μm spectral range,”',” Appl. Phys. Lett. 95(25), 251103 (2009).
[Crossref]

Decarpenterie, T.

G. Durry, J. S. Li, I. Vinogradov, A. Titov, L. Joly, J. Cousin, T. Decarpenterie, N. Amarouche, X. Liu, B. Parvitte, O. Korablev, M. Gerasimov, and V. Zéninari, “Near infrared diode laser spectroscopy of C2H2, H2O, CO2 and their isotopologues and the application to TDLAS, a tunable diode laser spectrometer for the martian PHOBOS-GRUNT space mission,” Appl. Phys. B 99(1-2), 339–351 (2010).
[Crossref]

Desbrosses, G.

T. Nguyen Ba, M. Triki, G. Desbrosses, and A. Vicet, “Quartz-enhanced photoacoustic spectroscopy sensor for ethylene detection with a 3.32 μm distributed feedback laser diode,” Rev. Sci. Instrum. 86(2), 023111 (2015).
[Crossref] [PubMed]

Dong, L.

C. Li, L. Dong, C. Zheng, and F. K. Tittel, “Compact TDLAS based optical sensor for ppb-level ethane detection by use of a 3.34 μm room-temperature CW interband cascade laser,” Sens. Actuators B Chem.submitted.

Durry, G.

G. Durry, J. S. Li, I. Vinogradov, A. Titov, L. Joly, J. Cousin, T. Decarpenterie, N. Amarouche, X. Liu, B. Parvitte, O. Korablev, M. Gerasimov, and V. Zéninari, “Near infrared diode laser spectroscopy of C2H2, H2O, CO2 and their isotopologues and the application to TDLAS, a tunable diode laser spectrometer for the martian PHOBOS-GRUNT space mission,” Appl. Phys. B 99(1-2), 339–351 (2010).
[Crossref]

Elliott, S.

F. A. Smith, S. Elliott, D. R. Blake, and F. S. Rowland, “Spatiotemporal variation of methane and other trace hydrocarbon concentration in the Valley of Mexico,” Environ. Sci. Policy 5(6), 449–461 (2002).
[Crossref]

Erdelyi, M.

D. Rehle, D. Leleux, M. Erdelyi, F. Tittel, M. Fraser, and S. Friedfeld, “Ambient formaldehyde detection with a laser spectrometer based on difference-frequency generation in PPLN,” Appl. Phys. B 72(8), 947–952 (2001).
[Crossref] [PubMed]

Eugster, W.

I. Bamberger, J. Stieger, N. Buchmann, and W. Eugster, “Spatial variability of methane: attributing atmospheric concentrations to emissions,” Environ. Pollut. 190, 65–74 (2014).
[Crossref] [PubMed]

Fischer, M.

K. Krzempek, R. Lewicki, L. Nähle, M. Fischer, J. Koeth, S. Belahsene, Y. Rouillard, L. Worschech, and F. K. Tittel, “Continuous wave, distributed feedback diode laser based sensor for trace gas detection of ethane,” Appl. Phys. B 106(2), 251–255 (2012).
[Crossref]

Forchel, A.

A. Bauer, F. Langer, M. Dallner, M. Kamp, M. Motyka, G. Sek, K. Ryczko, J. Misiewicz, S. Höfling, and A. Forchel, “Emission wavelength tuning of interband cascade lasers in the 3-4 μm spectral range,”',” Appl. Phys. Lett. 95(25), 251103 (2009).
[Crossref]

Fraser, M.

D. Rehle, D. Leleux, M. Erdelyi, F. Tittel, M. Fraser, and S. Friedfeld, “Ambient formaldehyde detection with a laser spectrometer based on difference-frequency generation in PPLN,” Appl. Phys. B 72(8), 947–952 (2001).
[Crossref] [PubMed]

Friedfeld, S.

D. Rehle, D. Leleux, M. Erdelyi, F. Tittel, M. Fraser, and S. Friedfeld, “Ambient formaldehyde detection with a laser spectrometer based on difference-frequency generation in PPLN,” Appl. Phys. B 72(8), 947–952 (2001).
[Crossref] [PubMed]

Gao, X.

K. Liu, L. Wang, T. Tan, G. Wang, W. Zhang, W. Chen, and X. Gao, “Highly sensitive detection of methane by near-infrared laser absorption spectroscopy using a compact dense-pattern multipass cell,” Sensor Actuat. B 220, 1000–1005 (2015).

Gerasimov, M.

G. Durry, J. S. Li, I. Vinogradov, A. Titov, L. Joly, J. Cousin, T. Decarpenterie, N. Amarouche, X. Liu, B. Parvitte, O. Korablev, M. Gerasimov, and V. Zéninari, “Near infrared diode laser spectroscopy of C2H2, H2O, CO2 and their isotopologues and the application to TDLAS, a tunable diode laser spectrometer for the martian PHOBOS-GRUNT space mission,” Appl. Phys. B 99(1-2), 339–351 (2010).
[Crossref]

Golston, L. M.

L. Tao, K. Sun, D. J. Miller, D. Pan, L. M. Golston, and M. A. Zondlo, “Low-power, open-path mobile sensing platform for high-resolution measurements of greenhouse gases and air pollutants,” Appl. Phys. B 119(1), 153–164 (2015).
[Crossref]

Herndon, S.

J. B. McManus, M. S. Zahniser, D. D. Nelson, J. H. Shorter, S. Herndon, E. Wood, and R. Wehr, “Application of quantum cascade lasers to high-precision atmospheric trace gas measurements,” Opt. Eng. 49(11), 111124 (2010).
[Crossref]

Herndon, S. C.

B. H. Lee, E. C. Wood, M. S. Zahniser, J. B. McManus, D. D. Nelson, S. C. Herndon, G. W. Santoni, S. C. Wofsy, and J. W. Munger, “Simultaneous measurement of atmospheric HONO and NO2 via absorption spectroscopy using tunable mid-infrared contimuous-wave quantum cascade lasers,” Appl. Phys. B 102, 417–423 (2011).

Hidebrandt, L.

L. Hidebrandt and L. Nähle, “DFB laser diodes expand hydrocarbon sensing beyond 3 μm,” Laser Focus World 48, 87–90 (2012).

Hildebrandt, L.

L. Nähle, L. Hildebrandt, M. Kamp, and S. Höfling, “ICLs open opportunities for mid-IR sensing,” Laser Focus World 49, 70–73 (2013).

Höfling, S.

L. Nähle, L. Hildebrandt, M. Kamp, and S. Höfling, “ICLs open opportunities for mid-IR sensing,” Laser Focus World 49, 70–73 (2013).

A. Bauer, F. Langer, M. Dallner, M. Kamp, M. Motyka, G. Sek, K. Ryczko, J. Misiewicz, S. Höfling, and A. Forchel, “Emission wavelength tuning of interband cascade lasers in the 3-4 μm spectral range,”',” Appl. Phys. Lett. 95(25), 251103 (2009).
[Crossref]

Huang, S.

M. Köhring, S. Huang, M. Jahjah, W. Jiang, W. Ren, U. Willer, C. Caneba, L. Yang, D. Nagrath, W. Schade, and F. K. Tittel, “QCL based TDLAS sensor for detection of NO towards emission measurements from ovarian cancer cells,” Appl. Phys. B 117(1), 445–451 (2014).
[Crossref]

Hudman, R. C.

Y. Xiao, J. A. Logan, D. J. Jacob, R. C. Hudman, R. Yantosca, and D. R. Blake, “Global budget of ethane and regional constraints on U.S. sources,” J. Geophys. Res. 113(D21), D2130 (2008).
[Crossref]

Jacob, D. J.

Y. Xiao, J. A. Logan, D. J. Jacob, R. C. Hudman, R. Yantosca, and D. R. Blake, “Global budget of ethane and regional constraints on U.S. sources,” J. Geophys. Res. 113(D21), D2130 (2008).
[Crossref]

Jahjah, M.

M. Köhring, S. Huang, M. Jahjah, W. Jiang, W. Ren, U. Willer, C. Caneba, L. Yang, D. Nagrath, W. Schade, and F. K. Tittel, “QCL based TDLAS sensor for detection of NO towards emission measurements from ovarian cancer cells,” Appl. Phys. B 117(1), 445–451 (2014).
[Crossref]

K. Krzempek, M. Jahjah, R. Lewicki, P. Stefanski, S. So, D. Thomazy, and F. K. Tittel, “CW DFB RT diode laser based sensor for trace-gas detection of ethane using novel compact multipass gas absorption cell,” Appl. Phys. B 112(4), 461–465 (2013).
[Crossref]

Jiang, W.

M. Köhring, S. Huang, M. Jahjah, W. Jiang, W. Ren, U. Willer, C. Caneba, L. Yang, D. Nagrath, W. Schade, and F. K. Tittel, “QCL based TDLAS sensor for detection of NO towards emission measurements from ovarian cancer cells,” Appl. Phys. B 117(1), 445–451 (2014).
[Crossref]

Joly, L.

G. Durry, J. S. Li, I. Vinogradov, A. Titov, L. Joly, J. Cousin, T. Decarpenterie, N. Amarouche, X. Liu, B. Parvitte, O. Korablev, M. Gerasimov, and V. Zéninari, “Near infrared diode laser spectroscopy of C2H2, H2O, CO2 and their isotopologues and the application to TDLAS, a tunable diode laser spectrometer for the martian PHOBOS-GRUNT space mission,” Appl. Phys. B 99(1-2), 339–351 (2010).
[Crossref]

Kamp, M.

L. Nähle, L. Hildebrandt, M. Kamp, and S. Höfling, “ICLs open opportunities for mid-IR sensing,” Laser Focus World 49, 70–73 (2013).

A. Bauer, F. Langer, M. Dallner, M. Kamp, M. Motyka, G. Sek, K. Ryczko, J. Misiewicz, S. Höfling, and A. Forchel, “Emission wavelength tuning of interband cascade lasers in the 3-4 μm spectral range,”',” Appl. Phys. Lett. 95(25), 251103 (2009).
[Crossref]

Kim, C. S.

C. L. Canedy, C. S. Kim, C. D. Merritt, W. W. Bewley, I. Vurgaftman, J. R. Meyer, and M. Kim, “Interband cascade lasers with >40% continuous-wave wall plug efficiency at cryogenic temperatures,” Appl. Phys. Lett. 107(12), 121102 (2015).
[Crossref]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nat. Commun. 2, 585 (2011).
[Crossref] [PubMed]

Kim, M.

C. L. Canedy, C. S. Kim, C. D. Merritt, W. W. Bewley, I. Vurgaftman, J. R. Meyer, and M. Kim, “Interband cascade lasers with >40% continuous-wave wall plug efficiency at cryogenic temperatures,” Appl. Phys. Lett. 107(12), 121102 (2015).
[Crossref]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nat. Commun. 2, 585 (2011).
[Crossref] [PubMed]

Koeth, J.

K. Krzempek, R. Lewicki, L. Nähle, M. Fischer, J. Koeth, S. Belahsene, Y. Rouillard, L. Worschech, and F. K. Tittel, “Continuous wave, distributed feedback diode laser based sensor for trace gas detection of ethane,” Appl. Phys. B 106(2), 251–255 (2012).
[Crossref]

Köhring, M.

M. Köhring, S. Huang, M. Jahjah, W. Jiang, W. Ren, U. Willer, C. Caneba, L. Yang, D. Nagrath, W. Schade, and F. K. Tittel, “QCL based TDLAS sensor for detection of NO towards emission measurements from ovarian cancer cells,” Appl. Phys. B 117(1), 445–451 (2014).
[Crossref]

Korablev, O.

G. Durry, J. S. Li, I. Vinogradov, A. Titov, L. Joly, J. Cousin, T. Decarpenterie, N. Amarouche, X. Liu, B. Parvitte, O. Korablev, M. Gerasimov, and V. Zéninari, “Near infrared diode laser spectroscopy of C2H2, H2O, CO2 and their isotopologues and the application to TDLAS, a tunable diode laser spectrometer for the martian PHOBOS-GRUNT space mission,” Appl. Phys. B 99(1-2), 339–351 (2010).
[Crossref]

Krzempek, K.

K. Krzempek, M. Jahjah, R. Lewicki, P. Stefanski, S. So, D. Thomazy, and F. K. Tittel, “CW DFB RT diode laser based sensor for trace-gas detection of ethane using novel compact multipass gas absorption cell,” Appl. Phys. B 112(4), 461–465 (2013).
[Crossref]

K. Krzempek, R. Lewicki, L. Nähle, M. Fischer, J. Koeth, S. Belahsene, Y. Rouillard, L. Worschech, and F. K. Tittel, “Continuous wave, distributed feedback diode laser based sensor for trace gas detection of ethane,” Appl. Phys. B 106(2), 251–255 (2012).
[Crossref]

Langer, F.

A. Bauer, F. Langer, M. Dallner, M. Kamp, M. Motyka, G. Sek, K. Ryczko, J. Misiewicz, S. Höfling, and A. Forchel, “Emission wavelength tuning of interband cascade lasers in the 3-4 μm spectral range,”',” Appl. Phys. Lett. 95(25), 251103 (2009).
[Crossref]

Lee, B. H.

B. H. Lee, E. C. Wood, M. S. Zahniser, J. B. McManus, D. D. Nelson, S. C. Herndon, G. W. Santoni, S. C. Wofsy, and J. W. Munger, “Simultaneous measurement of atmospheric HONO and NO2 via absorption spectroscopy using tunable mid-infrared contimuous-wave quantum cascade lasers,” Appl. Phys. B 102, 417–423 (2011).

Leleux, D.

D. Rehle, D. Leleux, M. Erdelyi, F. Tittel, M. Fraser, and S. Friedfeld, “Ambient formaldehyde detection with a laser spectrometer based on difference-frequency generation in PPLN,” Appl. Phys. B 72(8), 947–952 (2001).
[Crossref] [PubMed]

Lewicki, R.

K. Krzempek, M. Jahjah, R. Lewicki, P. Stefanski, S. So, D. Thomazy, and F. K. Tittel, “CW DFB RT diode laser based sensor for trace-gas detection of ethane using novel compact multipass gas absorption cell,” Appl. Phys. B 112(4), 461–465 (2013).
[Crossref]

K. Krzempek, R. Lewicki, L. Nähle, M. Fischer, J. Koeth, S. Belahsene, Y. Rouillard, L. Worschech, and F. K. Tittel, “Continuous wave, distributed feedback diode laser based sensor for trace gas detection of ethane,” Appl. Phys. B 106(2), 251–255 (2012).
[Crossref]

Li, C.

C. Li, L. Dong, C. Zheng, and F. K. Tittel, “Compact TDLAS based optical sensor for ppb-level ethane detection by use of a 3.34 μm room-temperature CW interband cascade laser,” Sens. Actuators B Chem.submitted.

Li, J. S.

G. Durry, J. S. Li, I. Vinogradov, A. Titov, L. Joly, J. Cousin, T. Decarpenterie, N. Amarouche, X. Liu, B. Parvitte, O. Korablev, M. Gerasimov, and V. Zéninari, “Near infrared diode laser spectroscopy of C2H2, H2O, CO2 and their isotopologues and the application to TDLAS, a tunable diode laser spectrometer for the martian PHOBOS-GRUNT space mission,” Appl. Phys. B 99(1-2), 339–351 (2010).
[Crossref]

Lindle, J. R.

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nat. Commun. 2, 585 (2011).
[Crossref] [PubMed]

Liu, K.

K. Liu, L. Wang, T. Tan, G. Wang, W. Zhang, W. Chen, and X. Gao, “Highly sensitive detection of methane by near-infrared laser absorption spectroscopy using a compact dense-pattern multipass cell,” Sensor Actuat. B 220, 1000–1005 (2015).

Liu, X.

G. Durry, J. S. Li, I. Vinogradov, A. Titov, L. Joly, J. Cousin, T. Decarpenterie, N. Amarouche, X. Liu, B. Parvitte, O. Korablev, M. Gerasimov, and V. Zéninari, “Near infrared diode laser spectroscopy of C2H2, H2O, CO2 and their isotopologues and the application to TDLAS, a tunable diode laser spectrometer for the martian PHOBOS-GRUNT space mission,” Appl. Phys. B 99(1-2), 339–351 (2010).
[Crossref]

Logan, J. A.

Y. Xiao, J. A. Logan, D. J. Jacob, R. C. Hudman, R. Yantosca, and D. R. Blake, “Global budget of ethane and regional constraints on U.S. sources,” J. Geophys. Res. 113(D21), D2130 (2008).
[Crossref]

Mackay, G. I.

H. I. Schiff, G. I. Mackay, and J. Bechara, “The use of tunable diode laser absorption spectroscopy for atmospheric measurements,” Res. Chem. Intermed. 20(3-5), 525–556 (1994).
[Crossref]

McManus, J. B.

B. H. Lee, E. C. Wood, M. S. Zahniser, J. B. McManus, D. D. Nelson, S. C. Herndon, G. W. Santoni, S. C. Wofsy, and J. W. Munger, “Simultaneous measurement of atmospheric HONO and NO2 via absorption spectroscopy using tunable mid-infrared contimuous-wave quantum cascade lasers,” Appl. Phys. B 102, 417–423 (2011).

J. B. McManus, M. S. Zahniser, D. D. Nelson, J. H. Shorter, S. Herndon, E. Wood, and R. Wehr, “Application of quantum cascade lasers to high-precision atmospheric trace gas measurements,” Opt. Eng. 49(11), 111124 (2010).
[Crossref]

Meinardi, S.

I. J. Simpson, F. S. Rowland, S. Meinardi, and D. R. Blake, “Influence of biomass burning during recent fluctuations in the slow growth of global tropospheric methane,” Geophys. Res. Lett. 33(22), L22808 (2006).
[Crossref]

Merritt, C. D.

C. L. Canedy, C. S. Kim, C. D. Merritt, W. W. Bewley, I. Vurgaftman, J. R. Meyer, and M. Kim, “Interband cascade lasers with >40% continuous-wave wall plug efficiency at cryogenic temperatures,” Appl. Phys. Lett. 107(12), 121102 (2015).
[Crossref]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, S. K. Chul, K. Mijin, C. D. Merritt, J. Abell, and J. R. Meyer, “Interband cascade lasers with low threshold power and high output powers,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1200210 (2013).
[Crossref]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nat. Commun. 2, 585 (2011).
[Crossref] [PubMed]

Meyer, J. R.

C. L. Canedy, C. S. Kim, C. D. Merritt, W. W. Bewley, I. Vurgaftman, J. R. Meyer, and M. Kim, “Interband cascade lasers with >40% continuous-wave wall plug efficiency at cryogenic temperatures,” Appl. Phys. Lett. 107(12), 121102 (2015).
[Crossref]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, S. K. Chul, K. Mijin, C. D. Merritt, J. Abell, and J. R. Meyer, “Interband cascade lasers with low threshold power and high output powers,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1200210 (2013).
[Crossref]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nat. Commun. 2, 585 (2011).
[Crossref] [PubMed]

Mijin, K.

I. Vurgaftman, W. W. Bewley, C. L. Canedy, S. K. Chul, K. Mijin, C. D. Merritt, J. Abell, and J. R. Meyer, “Interband cascade lasers with low threshold power and high output powers,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1200210 (2013).
[Crossref]

Miller, D. J.

L. Tao, K. Sun, D. J. Miller, D. Pan, L. M. Golston, and M. A. Zondlo, “Low-power, open-path mobile sensing platform for high-resolution measurements of greenhouse gases and air pollutants,” Appl. Phys. B 119(1), 153–164 (2015).
[Crossref]

K. Sun, L. Tao, D. J. Miller, M. Amir Khan, and M. A. Zondlo, “Inline multi-harmonic calibration method for open-path atmospheric ammonia measurement,” Appl. Phys. B 110(2), 213–222 (2013).
[Crossref]

Misiewicz, J.

A. Bauer, F. Langer, M. Dallner, M. Kamp, M. Motyka, G. Sek, K. Ryczko, J. Misiewicz, S. Höfling, and A. Forchel, “Emission wavelength tuning of interband cascade lasers in the 3-4 μm spectral range,”',” Appl. Phys. Lett. 95(25), 251103 (2009).
[Crossref]

Motyka, M.

A. Bauer, F. Langer, M. Dallner, M. Kamp, M. Motyka, G. Sek, K. Ryczko, J. Misiewicz, S. Höfling, and A. Forchel, “Emission wavelength tuning of interband cascade lasers in the 3-4 μm spectral range,”',” Appl. Phys. Lett. 95(25), 251103 (2009).
[Crossref]

Munger, J. W.

B. H. Lee, E. C. Wood, M. S. Zahniser, J. B. McManus, D. D. Nelson, S. C. Herndon, G. W. Santoni, S. C. Wofsy, and J. W. Munger, “Simultaneous measurement of atmospheric HONO and NO2 via absorption spectroscopy using tunable mid-infrared contimuous-wave quantum cascade lasers,” Appl. Phys. B 102, 417–423 (2011).

Nagrath, D.

M. Köhring, S. Huang, M. Jahjah, W. Jiang, W. Ren, U. Willer, C. Caneba, L. Yang, D. Nagrath, W. Schade, and F. K. Tittel, “QCL based TDLAS sensor for detection of NO towards emission measurements from ovarian cancer cells,” Appl. Phys. B 117(1), 445–451 (2014).
[Crossref]

Nähle, L.

L. Nähle, L. Hildebrandt, M. Kamp, and S. Höfling, “ICLs open opportunities for mid-IR sensing,” Laser Focus World 49, 70–73 (2013).

L. Hidebrandt and L. Nähle, “DFB laser diodes expand hydrocarbon sensing beyond 3 μm,” Laser Focus World 48, 87–90 (2012).

K. Krzempek, R. Lewicki, L. Nähle, M. Fischer, J. Koeth, S. Belahsene, Y. Rouillard, L. Worschech, and F. K. Tittel, “Continuous wave, distributed feedback diode laser based sensor for trace gas detection of ethane,” Appl. Phys. B 106(2), 251–255 (2012).
[Crossref]

Nelson, D. D.

B. H. Lee, E. C. Wood, M. S. Zahniser, J. B. McManus, D. D. Nelson, S. C. Herndon, G. W. Santoni, S. C. Wofsy, and J. W. Munger, “Simultaneous measurement of atmospheric HONO and NO2 via absorption spectroscopy using tunable mid-infrared contimuous-wave quantum cascade lasers,” Appl. Phys. B 102, 417–423 (2011).

J. B. McManus, M. S. Zahniser, D. D. Nelson, J. H. Shorter, S. Herndon, E. Wood, and R. Wehr, “Application of quantum cascade lasers to high-precision atmospheric trace gas measurements,” Opt. Eng. 49(11), 111124 (2010).
[Crossref]

Nguyen Ba, T.

T. Nguyen Ba, M. Triki, G. Desbrosses, and A. Vicet, “Quartz-enhanced photoacoustic spectroscopy sensor for ethylene detection with a 3.32 μm distributed feedback laser diode,” Rev. Sci. Instrum. 86(2), 023111 (2015).
[Crossref] [PubMed]

Overton, G.

G. Overton, “New multipass gas cells beat conventional designs,” Laser Focus World 49, 17 (2013).

Pan, D.

L. Tao, K. Sun, D. J. Miller, D. Pan, L. M. Golston, and M. A. Zondlo, “Low-power, open-path mobile sensing platform for high-resolution measurements of greenhouse gases and air pollutants,” Appl. Phys. B 119(1), 153–164 (2015).
[Crossref]

Parvitte, B.

G. Durry, J. S. Li, I. Vinogradov, A. Titov, L. Joly, J. Cousin, T. Decarpenterie, N. Amarouche, X. Liu, B. Parvitte, O. Korablev, M. Gerasimov, and V. Zéninari, “Near infrared diode laser spectroscopy of C2H2, H2O, CO2 and their isotopologues and the application to TDLAS, a tunable diode laser spectrometer for the martian PHOBOS-GRUNT space mission,” Appl. Phys. B 99(1-2), 339–351 (2010).
[Crossref]

Rehle, D.

D. Rehle, D. Leleux, M. Erdelyi, F. Tittel, M. Fraser, and S. Friedfeld, “Ambient formaldehyde detection with a laser spectrometer based on difference-frequency generation in PPLN,” Appl. Phys. B 72(8), 947–952 (2001).
[Crossref] [PubMed]

Ren, W.

M. Köhring, S. Huang, M. Jahjah, W. Jiang, W. Ren, U. Willer, C. Caneba, L. Yang, D. Nagrath, W. Schade, and F. K. Tittel, “QCL based TDLAS sensor for detection of NO towards emission measurements from ovarian cancer cells,” Appl. Phys. B 117(1), 445–451 (2014).
[Crossref]

Rouillard, Y.

K. Krzempek, R. Lewicki, L. Nähle, M. Fischer, J. Koeth, S. Belahsene, Y. Rouillard, L. Worschech, and F. K. Tittel, “Continuous wave, distributed feedback diode laser based sensor for trace gas detection of ethane,” Appl. Phys. B 106(2), 251–255 (2012).
[Crossref]

Rowland, F. S.

I. J. Simpson, F. S. Rowland, S. Meinardi, and D. R. Blake, “Influence of biomass burning during recent fluctuations in the slow growth of global tropospheric methane,” Geophys. Res. Lett. 33(22), L22808 (2006).
[Crossref]

F. A. Smith, S. Elliott, D. R. Blake, and F. S. Rowland, “Spatiotemporal variation of methane and other trace hydrocarbon concentration in the Valley of Mexico,” Environ. Sci. Policy 5(6), 449–461 (2002).
[Crossref]

Ryczko, K.

A. Bauer, F. Langer, M. Dallner, M. Kamp, M. Motyka, G. Sek, K. Ryczko, J. Misiewicz, S. Höfling, and A. Forchel, “Emission wavelength tuning of interband cascade lasers in the 3-4 μm spectral range,”',” Appl. Phys. Lett. 95(25), 251103 (2009).
[Crossref]

Santoni, G. W.

B. H. Lee, E. C. Wood, M. S. Zahniser, J. B. McManus, D. D. Nelson, S. C. Herndon, G. W. Santoni, S. C. Wofsy, and J. W. Munger, “Simultaneous measurement of atmospheric HONO and NO2 via absorption spectroscopy using tunable mid-infrared contimuous-wave quantum cascade lasers,” Appl. Phys. B 102, 417–423 (2011).

Schade, W.

M. Köhring, S. Huang, M. Jahjah, W. Jiang, W. Ren, U. Willer, C. Caneba, L. Yang, D. Nagrath, W. Schade, and F. K. Tittel, “QCL based TDLAS sensor for detection of NO towards emission measurements from ovarian cancer cells,” Appl. Phys. B 117(1), 445–451 (2014).
[Crossref]

Schiff, H. I.

H. I. Schiff, G. I. Mackay, and J. Bechara, “The use of tunable diode laser absorption spectroscopy for atmospheric measurements,” Res. Chem. Intermed. 20(3-5), 525–556 (1994).
[Crossref]

Seiter, M.

Sek, G.

A. Bauer, F. Langer, M. Dallner, M. Kamp, M. Motyka, G. Sek, K. Ryczko, J. Misiewicz, S. Höfling, and A. Forchel, “Emission wavelength tuning of interband cascade lasers in the 3-4 μm spectral range,”',” Appl. Phys. Lett. 95(25), 251103 (2009).
[Crossref]

Shorter, J. H.

J. B. McManus, M. S. Zahniser, D. D. Nelson, J. H. Shorter, S. Herndon, E. Wood, and R. Wehr, “Application of quantum cascade lasers to high-precision atmospheric trace gas measurements,” Opt. Eng. 49(11), 111124 (2010).
[Crossref]

Sigrist, M. W.

Simpson, I. J.

I. J. Simpson, F. S. Rowland, S. Meinardi, and D. R. Blake, “Influence of biomass burning during recent fluctuations in the slow growth of global tropospheric methane,” Geophys. Res. Lett. 33(22), L22808 (2006).
[Crossref]

Smith, F. A.

F. A. Smith, S. Elliott, D. R. Blake, and F. S. Rowland, “Spatiotemporal variation of methane and other trace hydrocarbon concentration in the Valley of Mexico,” Environ. Sci. Policy 5(6), 449–461 (2002).
[Crossref]

So, S.

K. Krzempek, M. Jahjah, R. Lewicki, P. Stefanski, S. So, D. Thomazy, and F. K. Tittel, “CW DFB RT diode laser based sensor for trace-gas detection of ethane using novel compact multipass gas absorption cell,” Appl. Phys. B 112(4), 461–465 (2013).
[Crossref]

Stefanski, P.

K. Krzempek, M. Jahjah, R. Lewicki, P. Stefanski, S. So, D. Thomazy, and F. K. Tittel, “CW DFB RT diode laser based sensor for trace-gas detection of ethane using novel compact multipass gas absorption cell,” Appl. Phys. B 112(4), 461–465 (2013).
[Crossref]

Stieger, J.

I. Bamberger, J. Stieger, N. Buchmann, and W. Eugster, “Spatial variability of methane: attributing atmospheric concentrations to emissions,” Environ. Pollut. 190, 65–74 (2014).
[Crossref] [PubMed]

Suchalkin, S.

S. Suchalkin, G. Belenky, and M. A. Belkin, “Rapidly tunable quantum cascade lasers,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1200509 (2015).
[Crossref]

Sun, K.

L. Tao, K. Sun, D. J. Miller, D. Pan, L. M. Golston, and M. A. Zondlo, “Low-power, open-path mobile sensing platform for high-resolution measurements of greenhouse gases and air pollutants,” Appl. Phys. B 119(1), 153–164 (2015).
[Crossref]

K. Sun, L. Tao, D. J. Miller, M. Amir Khan, and M. A. Zondlo, “Inline multi-harmonic calibration method for open-path atmospheric ammonia measurement,” Appl. Phys. B 110(2), 213–222 (2013).
[Crossref]

Tan, T.

K. Liu, L. Wang, T. Tan, G. Wang, W. Zhang, W. Chen, and X. Gao, “Highly sensitive detection of methane by near-infrared laser absorption spectroscopy using a compact dense-pattern multipass cell,” Sensor Actuat. B 220, 1000–1005 (2015).

Tao, L.

L. Tao, K. Sun, D. J. Miller, D. Pan, L. M. Golston, and M. A. Zondlo, “Low-power, open-path mobile sensing platform for high-resolution measurements of greenhouse gases and air pollutants,” Appl. Phys. B 119(1), 153–164 (2015).
[Crossref]

K. Sun, L. Tao, D. J. Miller, M. Amir Khan, and M. A. Zondlo, “Inline multi-harmonic calibration method for open-path atmospheric ammonia measurement,” Appl. Phys. B 110(2), 213–222 (2013).
[Crossref]

Thomazy, D.

K. Krzempek, M. Jahjah, R. Lewicki, P. Stefanski, S. So, D. Thomazy, and F. K. Tittel, “CW DFB RT diode laser based sensor for trace-gas detection of ethane using novel compact multipass gas absorption cell,” Appl. Phys. B 112(4), 461–465 (2013).
[Crossref]

Titov, A.

G. Durry, J. S. Li, I. Vinogradov, A. Titov, L. Joly, J. Cousin, T. Decarpenterie, N. Amarouche, X. Liu, B. Parvitte, O. Korablev, M. Gerasimov, and V. Zéninari, “Near infrared diode laser spectroscopy of C2H2, H2O, CO2 and their isotopologues and the application to TDLAS, a tunable diode laser spectrometer for the martian PHOBOS-GRUNT space mission,” Appl. Phys. B 99(1-2), 339–351 (2010).
[Crossref]

Tittel, F.

D. Rehle, D. Leleux, M. Erdelyi, F. Tittel, M. Fraser, and S. Friedfeld, “Ambient formaldehyde detection with a laser spectrometer based on difference-frequency generation in PPLN,” Appl. Phys. B 72(8), 947–952 (2001).
[Crossref] [PubMed]

Tittel, F. K.

M. Köhring, S. Huang, M. Jahjah, W. Jiang, W. Ren, U. Willer, C. Caneba, L. Yang, D. Nagrath, W. Schade, and F. K. Tittel, “QCL based TDLAS sensor for detection of NO towards emission measurements from ovarian cancer cells,” Appl. Phys. B 117(1), 445–451 (2014).
[Crossref]

K. Krzempek, M. Jahjah, R. Lewicki, P. Stefanski, S. So, D. Thomazy, and F. K. Tittel, “CW DFB RT diode laser based sensor for trace-gas detection of ethane using novel compact multipass gas absorption cell,” Appl. Phys. B 112(4), 461–465 (2013).
[Crossref]

K. Krzempek, R. Lewicki, L. Nähle, M. Fischer, J. Koeth, S. Belahsene, Y. Rouillard, L. Worschech, and F. K. Tittel, “Continuous wave, distributed feedback diode laser based sensor for trace gas detection of ethane,” Appl. Phys. B 106(2), 251–255 (2012).
[Crossref]

C. Li, L. Dong, C. Zheng, and F. K. Tittel, “Compact TDLAS based optical sensor for ppb-level ethane detection by use of a 3.34 μm room-temperature CW interband cascade laser,” Sens. Actuators B Chem.submitted.

Triki, M.

T. Nguyen Ba, M. Triki, G. Desbrosses, and A. Vicet, “Quartz-enhanced photoacoustic spectroscopy sensor for ethylene detection with a 3.32 μm distributed feedback laser diode,” Rev. Sci. Instrum. 86(2), 023111 (2015).
[Crossref] [PubMed]

Vicet, A.

T. Nguyen Ba, M. Triki, G. Desbrosses, and A. Vicet, “Quartz-enhanced photoacoustic spectroscopy sensor for ethylene detection with a 3.32 μm distributed feedback laser diode,” Rev. Sci. Instrum. 86(2), 023111 (2015).
[Crossref] [PubMed]

Vinogradov, I.

G. Durry, J. S. Li, I. Vinogradov, A. Titov, L. Joly, J. Cousin, T. Decarpenterie, N. Amarouche, X. Liu, B. Parvitte, O. Korablev, M. Gerasimov, and V. Zéninari, “Near infrared diode laser spectroscopy of C2H2, H2O, CO2 and their isotopologues and the application to TDLAS, a tunable diode laser spectrometer for the martian PHOBOS-GRUNT space mission,” Appl. Phys. B 99(1-2), 339–351 (2010).
[Crossref]

Vurgaftman, I.

C. L. Canedy, C. S. Kim, C. D. Merritt, W. W. Bewley, I. Vurgaftman, J. R. Meyer, and M. Kim, “Interband cascade lasers with >40% continuous-wave wall plug efficiency at cryogenic temperatures,” Appl. Phys. Lett. 107(12), 121102 (2015).
[Crossref]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, S. K. Chul, K. Mijin, C. D. Merritt, J. Abell, and J. R. Meyer, “Interband cascade lasers with low threshold power and high output powers,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1200210 (2013).
[Crossref]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nat. Commun. 2, 585 (2011).
[Crossref] [PubMed]

Wang, G.

K. Liu, L. Wang, T. Tan, G. Wang, W. Zhang, W. Chen, and X. Gao, “Highly sensitive detection of methane by near-infrared laser absorption spectroscopy using a compact dense-pattern multipass cell,” Sensor Actuat. B 220, 1000–1005 (2015).

Wang, L.

K. Liu, L. Wang, T. Tan, G. Wang, W. Zhang, W. Chen, and X. Gao, “Highly sensitive detection of methane by near-infrared laser absorption spectroscopy using a compact dense-pattern multipass cell,” Sensor Actuat. B 220, 1000–1005 (2015).

Wehr, R.

J. B. McManus, M. S. Zahniser, D. D. Nelson, J. H. Shorter, S. Herndon, E. Wood, and R. Wehr, “Application of quantum cascade lasers to high-precision atmospheric trace gas measurements,” Opt. Eng. 49(11), 111124 (2010).
[Crossref]

Willer, U.

M. Köhring, S. Huang, M. Jahjah, W. Jiang, W. Ren, U. Willer, C. Caneba, L. Yang, D. Nagrath, W. Schade, and F. K. Tittel, “QCL based TDLAS sensor for detection of NO towards emission measurements from ovarian cancer cells,” Appl. Phys. B 117(1), 445–451 (2014).
[Crossref]

Wofsy, S. C.

B. H. Lee, E. C. Wood, M. S. Zahniser, J. B. McManus, D. D. Nelson, S. C. Herndon, G. W. Santoni, S. C. Wofsy, and J. W. Munger, “Simultaneous measurement of atmospheric HONO and NO2 via absorption spectroscopy using tunable mid-infrared contimuous-wave quantum cascade lasers,” Appl. Phys. B 102, 417–423 (2011).

Wood, E.

J. B. McManus, M. S. Zahniser, D. D. Nelson, J. H. Shorter, S. Herndon, E. Wood, and R. Wehr, “Application of quantum cascade lasers to high-precision atmospheric trace gas measurements,” Opt. Eng. 49(11), 111124 (2010).
[Crossref]

Wood, E. C.

B. H. Lee, E. C. Wood, M. S. Zahniser, J. B. McManus, D. D. Nelson, S. C. Herndon, G. W. Santoni, S. C. Wofsy, and J. W. Munger, “Simultaneous measurement of atmospheric HONO and NO2 via absorption spectroscopy using tunable mid-infrared contimuous-wave quantum cascade lasers,” Appl. Phys. B 102, 417–423 (2011).

Worschech, L.

K. Krzempek, R. Lewicki, L. Nähle, M. Fischer, J. Koeth, S. Belahsene, Y. Rouillard, L. Worschech, and F. K. Tittel, “Continuous wave, distributed feedback diode laser based sensor for trace gas detection of ethane,” Appl. Phys. B 106(2), 251–255 (2012).
[Crossref]

Xiao, Y.

Y. Xiao, J. A. Logan, D. J. Jacob, R. C. Hudman, R. Yantosca, and D. R. Blake, “Global budget of ethane and regional constraints on U.S. sources,” J. Geophys. Res. 113(D21), D2130 (2008).
[Crossref]

Yang, L.

M. Köhring, S. Huang, M. Jahjah, W. Jiang, W. Ren, U. Willer, C. Caneba, L. Yang, D. Nagrath, W. Schade, and F. K. Tittel, “QCL based TDLAS sensor for detection of NO towards emission measurements from ovarian cancer cells,” Appl. Phys. B 117(1), 445–451 (2014).
[Crossref]

Yantosca, R.

Y. Xiao, J. A. Logan, D. J. Jacob, R. C. Hudman, R. Yantosca, and D. R. Blake, “Global budget of ethane and regional constraints on U.S. sources,” J. Geophys. Res. 113(D21), D2130 (2008).
[Crossref]

Zahniser, M. S.

B. H. Lee, E. C. Wood, M. S. Zahniser, J. B. McManus, D. D. Nelson, S. C. Herndon, G. W. Santoni, S. C. Wofsy, and J. W. Munger, “Simultaneous measurement of atmospheric HONO and NO2 via absorption spectroscopy using tunable mid-infrared contimuous-wave quantum cascade lasers,” Appl. Phys. B 102, 417–423 (2011).

J. B. McManus, M. S. Zahniser, D. D. Nelson, J. H. Shorter, S. Herndon, E. Wood, and R. Wehr, “Application of quantum cascade lasers to high-precision atmospheric trace gas measurements,” Opt. Eng. 49(11), 111124 (2010).
[Crossref]

Zéninari, V.

G. Durry, J. S. Li, I. Vinogradov, A. Titov, L. Joly, J. Cousin, T. Decarpenterie, N. Amarouche, X. Liu, B. Parvitte, O. Korablev, M. Gerasimov, and V. Zéninari, “Near infrared diode laser spectroscopy of C2H2, H2O, CO2 and their isotopologues and the application to TDLAS, a tunable diode laser spectrometer for the martian PHOBOS-GRUNT space mission,” Appl. Phys. B 99(1-2), 339–351 (2010).
[Crossref]

Zhang, W.

K. Liu, L. Wang, T. Tan, G. Wang, W. Zhang, W. Chen, and X. Gao, “Highly sensitive detection of methane by near-infrared laser absorption spectroscopy using a compact dense-pattern multipass cell,” Sensor Actuat. B 220, 1000–1005 (2015).

Zheng, C.

C. Li, L. Dong, C. Zheng, and F. K. Tittel, “Compact TDLAS based optical sensor for ppb-level ethane detection by use of a 3.34 μm room-temperature CW interband cascade laser,” Sens. Actuators B Chem.submitted.

Zondlo, M. A.

L. Tao, K. Sun, D. J. Miller, D. Pan, L. M. Golston, and M. A. Zondlo, “Low-power, open-path mobile sensing platform for high-resolution measurements of greenhouse gases and air pollutants,” Appl. Phys. B 119(1), 153–164 (2015).
[Crossref]

K. Sun, L. Tao, D. J. Miller, M. Amir Khan, and M. A. Zondlo, “Inline multi-harmonic calibration method for open-path atmospheric ammonia measurement,” Appl. Phys. B 110(2), 213–222 (2013).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (8)

K. Krzempek, M. Jahjah, R. Lewicki, P. Stefanski, S. So, D. Thomazy, and F. K. Tittel, “CW DFB RT diode laser based sensor for trace-gas detection of ethane using novel compact multipass gas absorption cell,” Appl. Phys. B 112(4), 461–465 (2013).
[Crossref]

K. Sun, L. Tao, D. J. Miller, M. Amir Khan, and M. A. Zondlo, “Inline multi-harmonic calibration method for open-path atmospheric ammonia measurement,” Appl. Phys. B 110(2), 213–222 (2013).
[Crossref]

L. Tao, K. Sun, D. J. Miller, D. Pan, L. M. Golston, and M. A. Zondlo, “Low-power, open-path mobile sensing platform for high-resolution measurements of greenhouse gases and air pollutants,” Appl. Phys. B 119(1), 153–164 (2015).
[Crossref]

D. Rehle, D. Leleux, M. Erdelyi, F. Tittel, M. Fraser, and S. Friedfeld, “Ambient formaldehyde detection with a laser spectrometer based on difference-frequency generation in PPLN,” Appl. Phys. B 72(8), 947–952 (2001).
[Crossref] [PubMed]

K. Krzempek, R. Lewicki, L. Nähle, M. Fischer, J. Koeth, S. Belahsene, Y. Rouillard, L. Worschech, and F. K. Tittel, “Continuous wave, distributed feedback diode laser based sensor for trace gas detection of ethane,” Appl. Phys. B 106(2), 251–255 (2012).
[Crossref]

M. Köhring, S. Huang, M. Jahjah, W. Jiang, W. Ren, U. Willer, C. Caneba, L. Yang, D. Nagrath, W. Schade, and F. K. Tittel, “QCL based TDLAS sensor for detection of NO towards emission measurements from ovarian cancer cells,” Appl. Phys. B 117(1), 445–451 (2014).
[Crossref]

B. H. Lee, E. C. Wood, M. S. Zahniser, J. B. McManus, D. D. Nelson, S. C. Herndon, G. W. Santoni, S. C. Wofsy, and J. W. Munger, “Simultaneous measurement of atmospheric HONO and NO2 via absorption spectroscopy using tunable mid-infrared contimuous-wave quantum cascade lasers,” Appl. Phys. B 102, 417–423 (2011).

G. Durry, J. S. Li, I. Vinogradov, A. Titov, L. Joly, J. Cousin, T. Decarpenterie, N. Amarouche, X. Liu, B. Parvitte, O. Korablev, M. Gerasimov, and V. Zéninari, “Near infrared diode laser spectroscopy of C2H2, H2O, CO2 and their isotopologues and the application to TDLAS, a tunable diode laser spectrometer for the martian PHOBOS-GRUNT space mission,” Appl. Phys. B 99(1-2), 339–351 (2010).
[Crossref]

Appl. Phys. Lett. (2)

A. Bauer, F. Langer, M. Dallner, M. Kamp, M. Motyka, G. Sek, K. Ryczko, J. Misiewicz, S. Höfling, and A. Forchel, “Emission wavelength tuning of interband cascade lasers in the 3-4 μm spectral range,”',” Appl. Phys. Lett. 95(25), 251103 (2009).
[Crossref]

C. L. Canedy, C. S. Kim, C. D. Merritt, W. W. Bewley, I. Vurgaftman, J. R. Meyer, and M. Kim, “Interband cascade lasers with >40% continuous-wave wall plug efficiency at cryogenic temperatures,” Appl. Phys. Lett. 107(12), 121102 (2015).
[Crossref]

Environ. Pollut. (1)

I. Bamberger, J. Stieger, N. Buchmann, and W. Eugster, “Spatial variability of methane: attributing atmospheric concentrations to emissions,” Environ. Pollut. 190, 65–74 (2014).
[Crossref] [PubMed]

Environ. Sci. Policy (1)

F. A. Smith, S. Elliott, D. R. Blake, and F. S. Rowland, “Spatiotemporal variation of methane and other trace hydrocarbon concentration in the Valley of Mexico,” Environ. Sci. Policy 5(6), 449–461 (2002).
[Crossref]

Geophys. Res. Lett. (1)

I. J. Simpson, F. S. Rowland, S. Meinardi, and D. R. Blake, “Influence of biomass burning during recent fluctuations in the slow growth of global tropospheric methane,” Geophys. Res. Lett. 33(22), L22808 (2006).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

S. Suchalkin, G. Belenky, and M. A. Belkin, “Rapidly tunable quantum cascade lasers,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1200509 (2015).
[Crossref]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, S. K. Chul, K. Mijin, C. D. Merritt, J. Abell, and J. R. Meyer, “Interband cascade lasers with low threshold power and high output powers,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1200210 (2013).
[Crossref]

J. Geophys. Res. (1)

Y. Xiao, J. A. Logan, D. J. Jacob, R. C. Hudman, R. Yantosca, and D. R. Blake, “Global budget of ethane and regional constraints on U.S. sources,” J. Geophys. Res. 113(D21), D2130 (2008).
[Crossref]

Laser Focus World (3)

L. Nähle, L. Hildebrandt, M. Kamp, and S. Höfling, “ICLs open opportunities for mid-IR sensing,” Laser Focus World 49, 70–73 (2013).

L. Hidebrandt and L. Nähle, “DFB laser diodes expand hydrocarbon sensing beyond 3 μm,” Laser Focus World 48, 87–90 (2012).

G. Overton, “New multipass gas cells beat conventional designs,” Laser Focus World 49, 17 (2013).

Nat. Commun. (1)

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nat. Commun. 2, 585 (2011).
[Crossref] [PubMed]

Opt. Eng. (1)

J. B. McManus, M. S. Zahniser, D. D. Nelson, J. H. Shorter, S. Herndon, E. Wood, and R. Wehr, “Application of quantum cascade lasers to high-precision atmospheric trace gas measurements,” Opt. Eng. 49(11), 111124 (2010).
[Crossref]

Res. Chem. Intermed. (1)

H. I. Schiff, G. I. Mackay, and J. Bechara, “The use of tunable diode laser absorption spectroscopy for atmospheric measurements,” Res. Chem. Intermed. 20(3-5), 525–556 (1994).
[Crossref]

Rev. Sci. Instrum. (1)

T. Nguyen Ba, M. Triki, G. Desbrosses, and A. Vicet, “Quartz-enhanced photoacoustic spectroscopy sensor for ethylene detection with a 3.32 μm distributed feedback laser diode,” Rev. Sci. Instrum. 86(2), 023111 (2015).
[Crossref] [PubMed]

Sensor Actuat. B (1)

K. Liu, L. Wang, T. Tan, G. Wang, W. Zhang, W. Chen, and X. Gao, “Highly sensitive detection of methane by near-infrared laser absorption spectroscopy using a compact dense-pattern multipass cell,” Sensor Actuat. B 220, 1000–1005 (2015).

Other (1)

C. Li, L. Dong, C. Zheng, and F. K. Tittel, “Compact TDLAS based optical sensor for ppb-level ethane detection by use of a 3.34 μm room-temperature CW interband cascade laser,” Sens. Actuators B Chem.submitted.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematic of the sensor depicts the two-floor optical core. (b) CAD image of the optical core with dimensions of length (32 cm), width (20 cm), and height (17 cm). Inserted image: photograph of the two-floor optical core. ICL: interband cascade laser; L: lens; M: plane mirror; MCT: mercury-cadmium-telluride detector; MPGC: multi-pass gas cell; PM: parabolic mirror.

Fig. 2
Fig. 2

(a) Schematic of the sensor optical core based on a single-floor structure. (b) CAD image of the optical core with reduced dimensions of length (35.5 cm), width (18 cm), and height (8 cm). Inserted image: photograph of a single-floor optical core. ICL: interband cascade laser; DM: dichroic mirror; L: lens; M: plane mirror; MCT: mercury-cadmium-telluride detector; MPGC: multi-pass gas cell; PM: parabolic mirror; RC: reference cell.

Fig. 3
Fig. 3

Schematic of control unit of the TDLAS based sensor system.

Fig. 4
Fig. 4

(a) CH4 absorption line at 3038.5 cm−1 with a fitting baseline. (b) Calculated linearized absorbance as a function of wavenumber with a Voigt line shape fitting.

Fig. 5
Fig. 5

(a) Raw C2H6 absorption line at 2996.88 cm−1 with a fitting baseline. (b) Calculated linearized absorbance of C2H6 as a function of wavenumber with a Voigt line shape fitting.

Fig. 6
Fig. 6

(a) Photograph of vehicle mounted with a compact TDLAS based CH4 sensor system at a Clean Energy compressed natural gas (CNG) station operated by O’Rourke in northwest Houston, TX. (b) CH4 concentrations measured at the Clean Energy CNG O’Rourke Station for a ~10 minute sampling period.

Metrics