Abstract

Luminescent solar concentrators (LSCs) are an emerging technology that aims primarily to reduce the cost of solar energy, with great potential for building integrated photovoltaic (PV) structures. However, realizing LSCs with commercially viable efficiency is currently hindered by reabsorption losses. Here, we introduce an approach to reducing reabsorption as well as improving directional emission in LSCs by using stimulated emission. Light from a seed laser (potentially an inexpensive laser diode) passes through the entire area of the LSC panel, modifying the emission spectrum of excited dye molecules such that it is spectrally narrower, at wavelengths that minimize reabsorption to allow net gain in the system, and directed towards a small PV cell. A mathematical model, taking into account thermodynamic considerations, of such a system is presented which identifies key parameters and allows evaluation in terms of net effective output power.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Gain investigation of Perylene-Red-doped PMMA for stimulated luminescent solar concentrators

MD. Rejvi Kaysir, Simon Fleming, and Alexander Argyros
Appl. Opt. 57(10) 2459-2466 (2018)

Electromagnetic simulations of a photonic luminescent solar concentrator

Johannes Gutmann, Marius Peters, Benedikt Bläsi, Martin Hermle, Andreas Gombert, Hans Zappe, and Jan Christoph Goldschmidt
Opt. Express 20(S2) A157-A167 (2012)

References

  • View by:
  • |
  • |
  • |

  1. W. G. J. H. M. van Sark, K. W. J. Barnham, L. H. Slooff, A. J. Chatten, A. Büchtemann, A. Meyer, S. J. McCormack, R. Koole, D. J. Farrell, R. Bose, E. E. Bende, A. R. Burgers, T. Budel, J. Quilitz, M. Kennedy, T. Meyer, C. M. Donegá, A. Meijerink, and D. Vanmaekelbergh, “Luminescent solar concentrators - a review of recent results,” Opt. Express 16(26), 21773–21792 (2008).
    [Crossref] [PubMed]
  2. M. G. Debije and P. P. C. Verbunt, “Thirty years of luminescent solar concentrator research: solar energy for the built environment,” Adv. Energy Mater. 2(1), 12–35 (2012).
    [Crossref]
  3. D. Chemisana, “Building integrated concentrating photovoltaics: a review,” Renew. Sustain. Energy Rev. 15(1), 603–611 (2011).
    [Crossref]
  4. D. J. Farrell and M. Yoshida, “Operating regimes for second generation luminescent solar concentrators,” Prog. Photovolt. Res. Appl. 20(1), 93–99 (2012).
    [Crossref]
  5. J. M. Drake, M. L. Lesiecki, J. Sansregret, and W. R. Thomas, “Organic dyes in PMMA in a planar luminescent solar collector: a performance evaluation,” Appl. Opt. 21(16), 2945–2952 (1982).
    [Crossref] [PubMed]
  6. R. O. Al-Kaysi, T. Sang Ahn, A. M. Müller, and C. J. Bardeen, “The photophysical properties of chromophores at high (100 mM and above) concentrations in polymers and as neat solids,” Phys. Chem. Chem. Phys. 8(29), 3453–3459 (2006).
    [Crossref] [PubMed]
  7. A. Sanguineti, M. Sassi, R. Turrisi, R. Ruffo, G. Vaccaro, F. Meinardi, and L. Beverina, “High Stokes shift perylene dyes for luminescent solar concentrators,” Chem. Commun. (Camb.) 49(16), 1618–1620 (2013).
    [Crossref] [PubMed]
  8. S. J. Gallagher, B. Norton, and P. C. Eames, “Quantum dot solar concentrators: electrical conversion efficiencies and comparative concentrating factors of fabricated devices,” Sol. Energy 81(6), 813–821 (2007).
    [Crossref]
  9. S. M. Reda, “Synthesis and optical properties of CdS quantum dots embedded in silica matrix thin films and their applications as luminescent solar concentrators,” Acta Mater. 56(2), 259–264 (2008).
    [Crossref]
  10. F. Meinardi, A. Colombo, K. A. Velizhanin, R. Simonutti, M. Lorenzon, R. Viswanatha, V. I. Klimov, and S. Brovelli, “Large-area luminescent solar concentrators based on ‘Stokes-shift-engineered’ nanocrystals in a mass-polymerized PMMA matrix,” Nat. Photonics 8(5), 392–399 (2014).
    [Crossref]
  11. O. Moudam, B. C. Rowan, M. Alamiry, P. Richardson, B. S. Richards, A. C. Jones, and N. Robertson, “Europium complexes with high total photoluminescence quantum yields in solution and in PMMA,” Chem. Commun. (Camb.) 43(43), 6649–6651 (2009).
    [Crossref] [PubMed]
  12. L. J. Andrews, B. C. McCollum, and A. Lempicki, “Luminescent solar collectors based on fluorescent glasses,” J. Lumin. 24–25(2), 877–880 (1981).
    [Crossref]
  13. G. Smestad, H. Ries, R. Winston, and E. Yablonovitch, “The thermodynamic limits of light concentrators,” Sol. Energy Mater. 21(2–3), 99–111 (1990).
    [Crossref]
  14. E. Yablonovitch, “Thermodynamics of the fluorescent planar concentrator,” J. Opt. Soc. Am. 70(11), 1362–1363 (1980).
    [Crossref]
  15. S. F. Daorta, A. Proto, R. Fusco, L. C. Andreani, and M. Liscidini, “Cascade luminescent solar concentrators,” Appl. Phys. Lett. 104(15), 153901 (2014).
    [Crossref]
  16. N. C. Giebink, G. P. Wiederrecht, and M. R. Wasielewski, “Resonance-shifting to circumvent reabsorption loss in luminescent solar concentrators,” Nat. Photonics 5(11), 694–701 (2011).
    [Crossref]
  17. M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, “High-efficiency organic solar concentrators for photovoltaics,” Science 321(5886), 226–228 (2008).
    [Crossref] [PubMed]
  18. A. Goetzberger and W. Greubel, “Solar energy conversion with fluorescent collectors,” Appl. Phys. (Berl.) 14(2), 123–139 (1977).
    [Crossref]
  19. S. Tsoi, D. J. Broer, C. W. Bastiaansen, and M. G. Debije, “Patterned dye structures limit reabsorption in luminescent solar concentrators,” Opt. Express 18(S4), A536–A543 (2010).
    [Crossref] [PubMed]
  20. T. K. Sau, A. L. Rogach, F. Jäckel, T. A. Klar, and J. Feldmann, “Properties and applications of colloidal nonspherical noble metal nanoparticles,” Adv. Mater. 22(16), 1805–1825 (2010).
    [Crossref] [PubMed]
  21. H. R. Wilson, “Fluorescent dyes interacting with small silver particles; a system extending the spectral range of fluorescent solar concentrators,” Sol. Energy Mater. 16(1–3), 223–234 (1987).
    [Crossref]
  22. A. Goetzberger, “Fluorescent solar energy collectors: Operating conditions with diffuse light,” Appl. Phys. (Berl.) 16(4), 399–404 (1978).
    [Crossref]
  23. R. Sóti, É. Farkas, M. Hilbert, Z. Farkas, and I. Ketskeméty, “Photon transport in luminescent solar concentrators,” J. Lumin. 68(2–4), 105–114 (1996).
    [Crossref]
  24. M. Sidrach de Cardona, M. Carrascosa, F. Meseguer, F. Cusso, and F. Jaque, “Edge effect on luminescent solar concentrators,” Sol. Cells 15(3), 225–230 (1985).
    [Crossref]
  25. A. H. Zewail and J. S. Batchelder, United States Patent 4,227,939 (October 14, 1980).
  26. J. S. Batchelder, A. H. Zewail, and T. Cole, “Luminescent solar concentrators. 2: Experimental and theoretical analysis of their possible efficiencies,” Appl. Opt. 20(21), 3733–3754 (1981).
    [Crossref] [PubMed]
  27. K. R. McIntosh, N. Yamada, and B. S. Richards, “Theoretical comparison of cylindrical and square-planar luminescent solar concentrators,” Appl. Phys. B 88(2), 285–290 (2007).
    [Crossref]
  28. M. R. Kaysir, A. Argyros, R. W. MacQueen, T. W. Schmidt, and S. Fleming, “Novel approach for reducing reabsorption in luminescent solar concentrators,” 2013 Australia and New Zealand Conference on Optics and Photonics (ANZCOP, 2013).
  29. J. P. Morgan and P. Dufour, United States Patent 0319377 (October 30, 2014).
  30. C. B. Roxlo and E. Yablonovitch, “Thermodynamics of daylight-pumped lasers,” Opt. Lett. 8(5), 271–273 (1983).
    [Crossref] [PubMed]
  31. T. Dienel, C. Bauer, I. Dolamic, and D. Brühwiler, “Spectral-based analysis of thin film luminescent solar concentrators,” Sol. Energy 84(8), 1366–1369 (2010).
    [Crossref]
  32. A. Argyros, “Microstructured Polymer Optical Fibers,” J. Lightwave Technol. 27(11), 1571–1579 (2009).
    [Crossref]
  33. http://www.ise.fraunhofer.de/en/business-areas/iii-v-and-concentrator-photovoltaics/research-topics/power-by-light/projects/optowind
  34. W. G. J. H. M. van Sark, “Luminescent solar concentrator-A low cost photovoltaics alternative,” Renew. Energy 49, 207–210 (2013).
    [Crossref]
  35. H. Manaa, “Self-absorption and light amplification in perylimide dyes-doped poly(methyl-methacrylate),” J. Alloys Compd. 393(1–2), 219–222 (2005).
    [Crossref]

2014 (2)

F. Meinardi, A. Colombo, K. A. Velizhanin, R. Simonutti, M. Lorenzon, R. Viswanatha, V. I. Klimov, and S. Brovelli, “Large-area luminescent solar concentrators based on ‘Stokes-shift-engineered’ nanocrystals in a mass-polymerized PMMA matrix,” Nat. Photonics 8(5), 392–399 (2014).
[Crossref]

S. F. Daorta, A. Proto, R. Fusco, L. C. Andreani, and M. Liscidini, “Cascade luminescent solar concentrators,” Appl. Phys. Lett. 104(15), 153901 (2014).
[Crossref]

2013 (2)

A. Sanguineti, M. Sassi, R. Turrisi, R. Ruffo, G. Vaccaro, F. Meinardi, and L. Beverina, “High Stokes shift perylene dyes for luminescent solar concentrators,” Chem. Commun. (Camb.) 49(16), 1618–1620 (2013).
[Crossref] [PubMed]

W. G. J. H. M. van Sark, “Luminescent solar concentrator-A low cost photovoltaics alternative,” Renew. Energy 49, 207–210 (2013).
[Crossref]

2012 (2)

M. G. Debije and P. P. C. Verbunt, “Thirty years of luminescent solar concentrator research: solar energy for the built environment,” Adv. Energy Mater. 2(1), 12–35 (2012).
[Crossref]

D. J. Farrell and M. Yoshida, “Operating regimes for second generation luminescent solar concentrators,” Prog. Photovolt. Res. Appl. 20(1), 93–99 (2012).
[Crossref]

2011 (2)

D. Chemisana, “Building integrated concentrating photovoltaics: a review,” Renew. Sustain. Energy Rev. 15(1), 603–611 (2011).
[Crossref]

N. C. Giebink, G. P. Wiederrecht, and M. R. Wasielewski, “Resonance-shifting to circumvent reabsorption loss in luminescent solar concentrators,” Nat. Photonics 5(11), 694–701 (2011).
[Crossref]

2010 (3)

T. Dienel, C. Bauer, I. Dolamic, and D. Brühwiler, “Spectral-based analysis of thin film luminescent solar concentrators,” Sol. Energy 84(8), 1366–1369 (2010).
[Crossref]

S. Tsoi, D. J. Broer, C. W. Bastiaansen, and M. G. Debije, “Patterned dye structures limit reabsorption in luminescent solar concentrators,” Opt. Express 18(S4), A536–A543 (2010).
[Crossref] [PubMed]

T. K. Sau, A. L. Rogach, F. Jäckel, T. A. Klar, and J. Feldmann, “Properties and applications of colloidal nonspherical noble metal nanoparticles,” Adv. Mater. 22(16), 1805–1825 (2010).
[Crossref] [PubMed]

2009 (2)

A. Argyros, “Microstructured Polymer Optical Fibers,” J. Lightwave Technol. 27(11), 1571–1579 (2009).
[Crossref]

O. Moudam, B. C. Rowan, M. Alamiry, P. Richardson, B. S. Richards, A. C. Jones, and N. Robertson, “Europium complexes with high total photoluminescence quantum yields in solution and in PMMA,” Chem. Commun. (Camb.) 43(43), 6649–6651 (2009).
[Crossref] [PubMed]

2008 (3)

M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, “High-efficiency organic solar concentrators for photovoltaics,” Science 321(5886), 226–228 (2008).
[Crossref] [PubMed]

W. G. J. H. M. van Sark, K. W. J. Barnham, L. H. Slooff, A. J. Chatten, A. Büchtemann, A. Meyer, S. J. McCormack, R. Koole, D. J. Farrell, R. Bose, E. E. Bende, A. R. Burgers, T. Budel, J. Quilitz, M. Kennedy, T. Meyer, C. M. Donegá, A. Meijerink, and D. Vanmaekelbergh, “Luminescent solar concentrators - a review of recent results,” Opt. Express 16(26), 21773–21792 (2008).
[Crossref] [PubMed]

S. M. Reda, “Synthesis and optical properties of CdS quantum dots embedded in silica matrix thin films and their applications as luminescent solar concentrators,” Acta Mater. 56(2), 259–264 (2008).
[Crossref]

2007 (2)

K. R. McIntosh, N. Yamada, and B. S. Richards, “Theoretical comparison of cylindrical and square-planar luminescent solar concentrators,” Appl. Phys. B 88(2), 285–290 (2007).
[Crossref]

S. J. Gallagher, B. Norton, and P. C. Eames, “Quantum dot solar concentrators: electrical conversion efficiencies and comparative concentrating factors of fabricated devices,” Sol. Energy 81(6), 813–821 (2007).
[Crossref]

2006 (1)

R. O. Al-Kaysi, T. Sang Ahn, A. M. Müller, and C. J. Bardeen, “The photophysical properties of chromophores at high (100 mM and above) concentrations in polymers and as neat solids,” Phys. Chem. Chem. Phys. 8(29), 3453–3459 (2006).
[Crossref] [PubMed]

2005 (1)

H. Manaa, “Self-absorption and light amplification in perylimide dyes-doped poly(methyl-methacrylate),” J. Alloys Compd. 393(1–2), 219–222 (2005).
[Crossref]

1996 (1)

R. Sóti, É. Farkas, M. Hilbert, Z. Farkas, and I. Ketskeméty, “Photon transport in luminescent solar concentrators,” J. Lumin. 68(2–4), 105–114 (1996).
[Crossref]

1990 (1)

G. Smestad, H. Ries, R. Winston, and E. Yablonovitch, “The thermodynamic limits of light concentrators,” Sol. Energy Mater. 21(2–3), 99–111 (1990).
[Crossref]

1987 (1)

H. R. Wilson, “Fluorescent dyes interacting with small silver particles; a system extending the spectral range of fluorescent solar concentrators,” Sol. Energy Mater. 16(1–3), 223–234 (1987).
[Crossref]

1985 (1)

M. Sidrach de Cardona, M. Carrascosa, F. Meseguer, F. Cusso, and F. Jaque, “Edge effect on luminescent solar concentrators,” Sol. Cells 15(3), 225–230 (1985).
[Crossref]

1983 (1)

1982 (1)

1981 (2)

L. J. Andrews, B. C. McCollum, and A. Lempicki, “Luminescent solar collectors based on fluorescent glasses,” J. Lumin. 24–25(2), 877–880 (1981).
[Crossref]

J. S. Batchelder, A. H. Zewail, and T. Cole, “Luminescent solar concentrators. 2: Experimental and theoretical analysis of their possible efficiencies,” Appl. Opt. 20(21), 3733–3754 (1981).
[Crossref] [PubMed]

1980 (1)

1978 (1)

A. Goetzberger, “Fluorescent solar energy collectors: Operating conditions with diffuse light,” Appl. Phys. (Berl.) 16(4), 399–404 (1978).
[Crossref]

1977 (1)

A. Goetzberger and W. Greubel, “Solar energy conversion with fluorescent collectors,” Appl. Phys. (Berl.) 14(2), 123–139 (1977).
[Crossref]

Alamiry, M.

O. Moudam, B. C. Rowan, M. Alamiry, P. Richardson, B. S. Richards, A. C. Jones, and N. Robertson, “Europium complexes with high total photoluminescence quantum yields in solution and in PMMA,” Chem. Commun. (Camb.) 43(43), 6649–6651 (2009).
[Crossref] [PubMed]

Al-Kaysi, R. O.

R. O. Al-Kaysi, T. Sang Ahn, A. M. Müller, and C. J. Bardeen, “The photophysical properties of chromophores at high (100 mM and above) concentrations in polymers and as neat solids,” Phys. Chem. Chem. Phys. 8(29), 3453–3459 (2006).
[Crossref] [PubMed]

Andreani, L. C.

S. F. Daorta, A. Proto, R. Fusco, L. C. Andreani, and M. Liscidini, “Cascade luminescent solar concentrators,” Appl. Phys. Lett. 104(15), 153901 (2014).
[Crossref]

Andrews, L. J.

L. J. Andrews, B. C. McCollum, and A. Lempicki, “Luminescent solar collectors based on fluorescent glasses,” J. Lumin. 24–25(2), 877–880 (1981).
[Crossref]

Argyros, A.

A. Argyros, “Microstructured Polymer Optical Fibers,” J. Lightwave Technol. 27(11), 1571–1579 (2009).
[Crossref]

M. R. Kaysir, A. Argyros, R. W. MacQueen, T. W. Schmidt, and S. Fleming, “Novel approach for reducing reabsorption in luminescent solar concentrators,” 2013 Australia and New Zealand Conference on Optics and Photonics (ANZCOP, 2013).

Baldo, M. A.

M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, “High-efficiency organic solar concentrators for photovoltaics,” Science 321(5886), 226–228 (2008).
[Crossref] [PubMed]

Bardeen, C. J.

R. O. Al-Kaysi, T. Sang Ahn, A. M. Müller, and C. J. Bardeen, “The photophysical properties of chromophores at high (100 mM and above) concentrations in polymers and as neat solids,” Phys. Chem. Chem. Phys. 8(29), 3453–3459 (2006).
[Crossref] [PubMed]

Barnham, K. W. J.

Bastiaansen, C. W.

Batchelder, J. S.

Bauer, C.

T. Dienel, C. Bauer, I. Dolamic, and D. Brühwiler, “Spectral-based analysis of thin film luminescent solar concentrators,” Sol. Energy 84(8), 1366–1369 (2010).
[Crossref]

Bende, E. E.

Beverina, L.

A. Sanguineti, M. Sassi, R. Turrisi, R. Ruffo, G. Vaccaro, F. Meinardi, and L. Beverina, “High Stokes shift perylene dyes for luminescent solar concentrators,” Chem. Commun. (Camb.) 49(16), 1618–1620 (2013).
[Crossref] [PubMed]

Bose, R.

Broer, D. J.

Brovelli, S.

F. Meinardi, A. Colombo, K. A. Velizhanin, R. Simonutti, M. Lorenzon, R. Viswanatha, V. I. Klimov, and S. Brovelli, “Large-area luminescent solar concentrators based on ‘Stokes-shift-engineered’ nanocrystals in a mass-polymerized PMMA matrix,” Nat. Photonics 8(5), 392–399 (2014).
[Crossref]

Brühwiler, D.

T. Dienel, C. Bauer, I. Dolamic, and D. Brühwiler, “Spectral-based analysis of thin film luminescent solar concentrators,” Sol. Energy 84(8), 1366–1369 (2010).
[Crossref]

Büchtemann, A.

Budel, T.

Burgers, A. R.

Carrascosa, M.

M. Sidrach de Cardona, M. Carrascosa, F. Meseguer, F. Cusso, and F. Jaque, “Edge effect on luminescent solar concentrators,” Sol. Cells 15(3), 225–230 (1985).
[Crossref]

Chatten, A. J.

Chemisana, D.

D. Chemisana, “Building integrated concentrating photovoltaics: a review,” Renew. Sustain. Energy Rev. 15(1), 603–611 (2011).
[Crossref]

Cole, T.

Colombo, A.

F. Meinardi, A. Colombo, K. A. Velizhanin, R. Simonutti, M. Lorenzon, R. Viswanatha, V. I. Klimov, and S. Brovelli, “Large-area luminescent solar concentrators based on ‘Stokes-shift-engineered’ nanocrystals in a mass-polymerized PMMA matrix,” Nat. Photonics 8(5), 392–399 (2014).
[Crossref]

Currie, M. J.

M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, “High-efficiency organic solar concentrators for photovoltaics,” Science 321(5886), 226–228 (2008).
[Crossref] [PubMed]

Cusso, F.

M. Sidrach de Cardona, M. Carrascosa, F. Meseguer, F. Cusso, and F. Jaque, “Edge effect on luminescent solar concentrators,” Sol. Cells 15(3), 225–230 (1985).
[Crossref]

Daorta, S. F.

S. F. Daorta, A. Proto, R. Fusco, L. C. Andreani, and M. Liscidini, “Cascade luminescent solar concentrators,” Appl. Phys. Lett. 104(15), 153901 (2014).
[Crossref]

Debije, M. G.

M. G. Debije and P. P. C. Verbunt, “Thirty years of luminescent solar concentrator research: solar energy for the built environment,” Adv. Energy Mater. 2(1), 12–35 (2012).
[Crossref]

S. Tsoi, D. J. Broer, C. W. Bastiaansen, and M. G. Debije, “Patterned dye structures limit reabsorption in luminescent solar concentrators,” Opt. Express 18(S4), A536–A543 (2010).
[Crossref] [PubMed]

Dienel, T.

T. Dienel, C. Bauer, I. Dolamic, and D. Brühwiler, “Spectral-based analysis of thin film luminescent solar concentrators,” Sol. Energy 84(8), 1366–1369 (2010).
[Crossref]

Dolamic, I.

T. Dienel, C. Bauer, I. Dolamic, and D. Brühwiler, “Spectral-based analysis of thin film luminescent solar concentrators,” Sol. Energy 84(8), 1366–1369 (2010).
[Crossref]

Donegá, C. M.

Drake, J. M.

Eames, P. C.

S. J. Gallagher, B. Norton, and P. C. Eames, “Quantum dot solar concentrators: electrical conversion efficiencies and comparative concentrating factors of fabricated devices,” Sol. Energy 81(6), 813–821 (2007).
[Crossref]

Farkas, É.

R. Sóti, É. Farkas, M. Hilbert, Z. Farkas, and I. Ketskeméty, “Photon transport in luminescent solar concentrators,” J. Lumin. 68(2–4), 105–114 (1996).
[Crossref]

Farkas, Z.

R. Sóti, É. Farkas, M. Hilbert, Z. Farkas, and I. Ketskeméty, “Photon transport in luminescent solar concentrators,” J. Lumin. 68(2–4), 105–114 (1996).
[Crossref]

Farrell, D. J.

Feldmann, J.

T. K. Sau, A. L. Rogach, F. Jäckel, T. A. Klar, and J. Feldmann, “Properties and applications of colloidal nonspherical noble metal nanoparticles,” Adv. Mater. 22(16), 1805–1825 (2010).
[Crossref] [PubMed]

Fleming, S.

M. R. Kaysir, A. Argyros, R. W. MacQueen, T. W. Schmidt, and S. Fleming, “Novel approach for reducing reabsorption in luminescent solar concentrators,” 2013 Australia and New Zealand Conference on Optics and Photonics (ANZCOP, 2013).

Fusco, R.

S. F. Daorta, A. Proto, R. Fusco, L. C. Andreani, and M. Liscidini, “Cascade luminescent solar concentrators,” Appl. Phys. Lett. 104(15), 153901 (2014).
[Crossref]

Gallagher, S. J.

S. J. Gallagher, B. Norton, and P. C. Eames, “Quantum dot solar concentrators: electrical conversion efficiencies and comparative concentrating factors of fabricated devices,” Sol. Energy 81(6), 813–821 (2007).
[Crossref]

Giebink, N. C.

N. C. Giebink, G. P. Wiederrecht, and M. R. Wasielewski, “Resonance-shifting to circumvent reabsorption loss in luminescent solar concentrators,” Nat. Photonics 5(11), 694–701 (2011).
[Crossref]

Goetzberger, A.

A. Goetzberger, “Fluorescent solar energy collectors: Operating conditions with diffuse light,” Appl. Phys. (Berl.) 16(4), 399–404 (1978).
[Crossref]

A. Goetzberger and W. Greubel, “Solar energy conversion with fluorescent collectors,” Appl. Phys. (Berl.) 14(2), 123–139 (1977).
[Crossref]

Goffri, S.

M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, “High-efficiency organic solar concentrators for photovoltaics,” Science 321(5886), 226–228 (2008).
[Crossref] [PubMed]

Greubel, W.

A. Goetzberger and W. Greubel, “Solar energy conversion with fluorescent collectors,” Appl. Phys. (Berl.) 14(2), 123–139 (1977).
[Crossref]

Heidel, T. D.

M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, “High-efficiency organic solar concentrators for photovoltaics,” Science 321(5886), 226–228 (2008).
[Crossref] [PubMed]

Hilbert, M.

R. Sóti, É. Farkas, M. Hilbert, Z. Farkas, and I. Ketskeméty, “Photon transport in luminescent solar concentrators,” J. Lumin. 68(2–4), 105–114 (1996).
[Crossref]

Jäckel, F.

T. K. Sau, A. L. Rogach, F. Jäckel, T. A. Klar, and J. Feldmann, “Properties and applications of colloidal nonspherical noble metal nanoparticles,” Adv. Mater. 22(16), 1805–1825 (2010).
[Crossref] [PubMed]

Jaque, F.

M. Sidrach de Cardona, M. Carrascosa, F. Meseguer, F. Cusso, and F. Jaque, “Edge effect on luminescent solar concentrators,” Sol. Cells 15(3), 225–230 (1985).
[Crossref]

Jones, A. C.

O. Moudam, B. C. Rowan, M. Alamiry, P. Richardson, B. S. Richards, A. C. Jones, and N. Robertson, “Europium complexes with high total photoluminescence quantum yields in solution and in PMMA,” Chem. Commun. (Camb.) 43(43), 6649–6651 (2009).
[Crossref] [PubMed]

Kaysir, M. R.

M. R. Kaysir, A. Argyros, R. W. MacQueen, T. W. Schmidt, and S. Fleming, “Novel approach for reducing reabsorption in luminescent solar concentrators,” 2013 Australia and New Zealand Conference on Optics and Photonics (ANZCOP, 2013).

Kennedy, M.

Ketskeméty, I.

R. Sóti, É. Farkas, M. Hilbert, Z. Farkas, and I. Ketskeméty, “Photon transport in luminescent solar concentrators,” J. Lumin. 68(2–4), 105–114 (1996).
[Crossref]

Klar, T. A.

T. K. Sau, A. L. Rogach, F. Jäckel, T. A. Klar, and J. Feldmann, “Properties and applications of colloidal nonspherical noble metal nanoparticles,” Adv. Mater. 22(16), 1805–1825 (2010).
[Crossref] [PubMed]

Klimov, V. I.

F. Meinardi, A. Colombo, K. A. Velizhanin, R. Simonutti, M. Lorenzon, R. Viswanatha, V. I. Klimov, and S. Brovelli, “Large-area luminescent solar concentrators based on ‘Stokes-shift-engineered’ nanocrystals in a mass-polymerized PMMA matrix,” Nat. Photonics 8(5), 392–399 (2014).
[Crossref]

Koole, R.

Lempicki, A.

L. J. Andrews, B. C. McCollum, and A. Lempicki, “Luminescent solar collectors based on fluorescent glasses,” J. Lumin. 24–25(2), 877–880 (1981).
[Crossref]

Lesiecki, M. L.

Liscidini, M.

S. F. Daorta, A. Proto, R. Fusco, L. C. Andreani, and M. Liscidini, “Cascade luminescent solar concentrators,” Appl. Phys. Lett. 104(15), 153901 (2014).
[Crossref]

Lorenzon, M.

F. Meinardi, A. Colombo, K. A. Velizhanin, R. Simonutti, M. Lorenzon, R. Viswanatha, V. I. Klimov, and S. Brovelli, “Large-area luminescent solar concentrators based on ‘Stokes-shift-engineered’ nanocrystals in a mass-polymerized PMMA matrix,” Nat. Photonics 8(5), 392–399 (2014).
[Crossref]

MacQueen, R. W.

M. R. Kaysir, A. Argyros, R. W. MacQueen, T. W. Schmidt, and S. Fleming, “Novel approach for reducing reabsorption in luminescent solar concentrators,” 2013 Australia and New Zealand Conference on Optics and Photonics (ANZCOP, 2013).

Manaa, H.

H. Manaa, “Self-absorption and light amplification in perylimide dyes-doped poly(methyl-methacrylate),” J. Alloys Compd. 393(1–2), 219–222 (2005).
[Crossref]

Mapel, J. K.

M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, “High-efficiency organic solar concentrators for photovoltaics,” Science 321(5886), 226–228 (2008).
[Crossref] [PubMed]

McCollum, B. C.

L. J. Andrews, B. C. McCollum, and A. Lempicki, “Luminescent solar collectors based on fluorescent glasses,” J. Lumin. 24–25(2), 877–880 (1981).
[Crossref]

McCormack, S. J.

McIntosh, K. R.

K. R. McIntosh, N. Yamada, and B. S. Richards, “Theoretical comparison of cylindrical and square-planar luminescent solar concentrators,” Appl. Phys. B 88(2), 285–290 (2007).
[Crossref]

Meijerink, A.

Meinardi, F.

F. Meinardi, A. Colombo, K. A. Velizhanin, R. Simonutti, M. Lorenzon, R. Viswanatha, V. I. Klimov, and S. Brovelli, “Large-area luminescent solar concentrators based on ‘Stokes-shift-engineered’ nanocrystals in a mass-polymerized PMMA matrix,” Nat. Photonics 8(5), 392–399 (2014).
[Crossref]

A. Sanguineti, M. Sassi, R. Turrisi, R. Ruffo, G. Vaccaro, F. Meinardi, and L. Beverina, “High Stokes shift perylene dyes for luminescent solar concentrators,” Chem. Commun. (Camb.) 49(16), 1618–1620 (2013).
[Crossref] [PubMed]

Meseguer, F.

M. Sidrach de Cardona, M. Carrascosa, F. Meseguer, F. Cusso, and F. Jaque, “Edge effect on luminescent solar concentrators,” Sol. Cells 15(3), 225–230 (1985).
[Crossref]

Meyer, A.

Meyer, T.

Moudam, O.

O. Moudam, B. C. Rowan, M. Alamiry, P. Richardson, B. S. Richards, A. C. Jones, and N. Robertson, “Europium complexes with high total photoluminescence quantum yields in solution and in PMMA,” Chem. Commun. (Camb.) 43(43), 6649–6651 (2009).
[Crossref] [PubMed]

Müller, A. M.

R. O. Al-Kaysi, T. Sang Ahn, A. M. Müller, and C. J. Bardeen, “The photophysical properties of chromophores at high (100 mM and above) concentrations in polymers and as neat solids,” Phys. Chem. Chem. Phys. 8(29), 3453–3459 (2006).
[Crossref] [PubMed]

Norton, B.

S. J. Gallagher, B. Norton, and P. C. Eames, “Quantum dot solar concentrators: electrical conversion efficiencies and comparative concentrating factors of fabricated devices,” Sol. Energy 81(6), 813–821 (2007).
[Crossref]

Proto, A.

S. F. Daorta, A. Proto, R. Fusco, L. C. Andreani, and M. Liscidini, “Cascade luminescent solar concentrators,” Appl. Phys. Lett. 104(15), 153901 (2014).
[Crossref]

Quilitz, J.

Reda, S. M.

S. M. Reda, “Synthesis and optical properties of CdS quantum dots embedded in silica matrix thin films and their applications as luminescent solar concentrators,” Acta Mater. 56(2), 259–264 (2008).
[Crossref]

Richards, B. S.

O. Moudam, B. C. Rowan, M. Alamiry, P. Richardson, B. S. Richards, A. C. Jones, and N. Robertson, “Europium complexes with high total photoluminescence quantum yields in solution and in PMMA,” Chem. Commun. (Camb.) 43(43), 6649–6651 (2009).
[Crossref] [PubMed]

K. R. McIntosh, N. Yamada, and B. S. Richards, “Theoretical comparison of cylindrical and square-planar luminescent solar concentrators,” Appl. Phys. B 88(2), 285–290 (2007).
[Crossref]

Richardson, P.

O. Moudam, B. C. Rowan, M. Alamiry, P. Richardson, B. S. Richards, A. C. Jones, and N. Robertson, “Europium complexes with high total photoluminescence quantum yields in solution and in PMMA,” Chem. Commun. (Camb.) 43(43), 6649–6651 (2009).
[Crossref] [PubMed]

Ries, H.

G. Smestad, H. Ries, R. Winston, and E. Yablonovitch, “The thermodynamic limits of light concentrators,” Sol. Energy Mater. 21(2–3), 99–111 (1990).
[Crossref]

Robertson, N.

O. Moudam, B. C. Rowan, M. Alamiry, P. Richardson, B. S. Richards, A. C. Jones, and N. Robertson, “Europium complexes with high total photoluminescence quantum yields in solution and in PMMA,” Chem. Commun. (Camb.) 43(43), 6649–6651 (2009).
[Crossref] [PubMed]

Rogach, A. L.

T. K. Sau, A. L. Rogach, F. Jäckel, T. A. Klar, and J. Feldmann, “Properties and applications of colloidal nonspherical noble metal nanoparticles,” Adv. Mater. 22(16), 1805–1825 (2010).
[Crossref] [PubMed]

Rowan, B. C.

O. Moudam, B. C. Rowan, M. Alamiry, P. Richardson, B. S. Richards, A. C. Jones, and N. Robertson, “Europium complexes with high total photoluminescence quantum yields in solution and in PMMA,” Chem. Commun. (Camb.) 43(43), 6649–6651 (2009).
[Crossref] [PubMed]

Roxlo, C. B.

Ruffo, R.

A. Sanguineti, M. Sassi, R. Turrisi, R. Ruffo, G. Vaccaro, F. Meinardi, and L. Beverina, “High Stokes shift perylene dyes for luminescent solar concentrators,” Chem. Commun. (Camb.) 49(16), 1618–1620 (2013).
[Crossref] [PubMed]

Sang Ahn, T.

R. O. Al-Kaysi, T. Sang Ahn, A. M. Müller, and C. J. Bardeen, “The photophysical properties of chromophores at high (100 mM and above) concentrations in polymers and as neat solids,” Phys. Chem. Chem. Phys. 8(29), 3453–3459 (2006).
[Crossref] [PubMed]

Sanguineti, A.

A. Sanguineti, M. Sassi, R. Turrisi, R. Ruffo, G. Vaccaro, F. Meinardi, and L. Beverina, “High Stokes shift perylene dyes for luminescent solar concentrators,” Chem. Commun. (Camb.) 49(16), 1618–1620 (2013).
[Crossref] [PubMed]

Sansregret, J.

Sassi, M.

A. Sanguineti, M. Sassi, R. Turrisi, R. Ruffo, G. Vaccaro, F. Meinardi, and L. Beverina, “High Stokes shift perylene dyes for luminescent solar concentrators,” Chem. Commun. (Camb.) 49(16), 1618–1620 (2013).
[Crossref] [PubMed]

Sau, T. K.

T. K. Sau, A. L. Rogach, F. Jäckel, T. A. Klar, and J. Feldmann, “Properties and applications of colloidal nonspherical noble metal nanoparticles,” Adv. Mater. 22(16), 1805–1825 (2010).
[Crossref] [PubMed]

Schmidt, T. W.

M. R. Kaysir, A. Argyros, R. W. MacQueen, T. W. Schmidt, and S. Fleming, “Novel approach for reducing reabsorption in luminescent solar concentrators,” 2013 Australia and New Zealand Conference on Optics and Photonics (ANZCOP, 2013).

Sidrach de Cardona, M.

M. Sidrach de Cardona, M. Carrascosa, F. Meseguer, F. Cusso, and F. Jaque, “Edge effect on luminescent solar concentrators,” Sol. Cells 15(3), 225–230 (1985).
[Crossref]

Simonutti, R.

F. Meinardi, A. Colombo, K. A. Velizhanin, R. Simonutti, M. Lorenzon, R. Viswanatha, V. I. Klimov, and S. Brovelli, “Large-area luminescent solar concentrators based on ‘Stokes-shift-engineered’ nanocrystals in a mass-polymerized PMMA matrix,” Nat. Photonics 8(5), 392–399 (2014).
[Crossref]

Slooff, L. H.

Smestad, G.

G. Smestad, H. Ries, R. Winston, and E. Yablonovitch, “The thermodynamic limits of light concentrators,” Sol. Energy Mater. 21(2–3), 99–111 (1990).
[Crossref]

Sóti, R.

R. Sóti, É. Farkas, M. Hilbert, Z. Farkas, and I. Ketskeméty, “Photon transport in luminescent solar concentrators,” J. Lumin. 68(2–4), 105–114 (1996).
[Crossref]

Thomas, W. R.

Tsoi, S.

Turrisi, R.

A. Sanguineti, M. Sassi, R. Turrisi, R. Ruffo, G. Vaccaro, F. Meinardi, and L. Beverina, “High Stokes shift perylene dyes for luminescent solar concentrators,” Chem. Commun. (Camb.) 49(16), 1618–1620 (2013).
[Crossref] [PubMed]

Vaccaro, G.

A. Sanguineti, M. Sassi, R. Turrisi, R. Ruffo, G. Vaccaro, F. Meinardi, and L. Beverina, “High Stokes shift perylene dyes for luminescent solar concentrators,” Chem. Commun. (Camb.) 49(16), 1618–1620 (2013).
[Crossref] [PubMed]

van Sark, W. G. J. H. M.

Vanmaekelbergh, D.

Velizhanin, K. A.

F. Meinardi, A. Colombo, K. A. Velizhanin, R. Simonutti, M. Lorenzon, R. Viswanatha, V. I. Klimov, and S. Brovelli, “Large-area luminescent solar concentrators based on ‘Stokes-shift-engineered’ nanocrystals in a mass-polymerized PMMA matrix,” Nat. Photonics 8(5), 392–399 (2014).
[Crossref]

Verbunt, P. P. C.

M. G. Debije and P. P. C. Verbunt, “Thirty years of luminescent solar concentrator research: solar energy for the built environment,” Adv. Energy Mater. 2(1), 12–35 (2012).
[Crossref]

Viswanatha, R.

F. Meinardi, A. Colombo, K. A. Velizhanin, R. Simonutti, M. Lorenzon, R. Viswanatha, V. I. Klimov, and S. Brovelli, “Large-area luminescent solar concentrators based on ‘Stokes-shift-engineered’ nanocrystals in a mass-polymerized PMMA matrix,” Nat. Photonics 8(5), 392–399 (2014).
[Crossref]

Wasielewski, M. R.

N. C. Giebink, G. P. Wiederrecht, and M. R. Wasielewski, “Resonance-shifting to circumvent reabsorption loss in luminescent solar concentrators,” Nat. Photonics 5(11), 694–701 (2011).
[Crossref]

Wiederrecht, G. P.

N. C. Giebink, G. P. Wiederrecht, and M. R. Wasielewski, “Resonance-shifting to circumvent reabsorption loss in luminescent solar concentrators,” Nat. Photonics 5(11), 694–701 (2011).
[Crossref]

Wilson, H. R.

H. R. Wilson, “Fluorescent dyes interacting with small silver particles; a system extending the spectral range of fluorescent solar concentrators,” Sol. Energy Mater. 16(1–3), 223–234 (1987).
[Crossref]

Winston, R.

G. Smestad, H. Ries, R. Winston, and E. Yablonovitch, “The thermodynamic limits of light concentrators,” Sol. Energy Mater. 21(2–3), 99–111 (1990).
[Crossref]

Yablonovitch, E.

Yamada, N.

K. R. McIntosh, N. Yamada, and B. S. Richards, “Theoretical comparison of cylindrical and square-planar luminescent solar concentrators,” Appl. Phys. B 88(2), 285–290 (2007).
[Crossref]

Yoshida, M.

D. J. Farrell and M. Yoshida, “Operating regimes for second generation luminescent solar concentrators,” Prog. Photovolt. Res. Appl. 20(1), 93–99 (2012).
[Crossref]

Zewail, A. H.

Acta Mater. (1)

S. M. Reda, “Synthesis and optical properties of CdS quantum dots embedded in silica matrix thin films and their applications as luminescent solar concentrators,” Acta Mater. 56(2), 259–264 (2008).
[Crossref]

Adv. Energy Mater. (1)

M. G. Debije and P. P. C. Verbunt, “Thirty years of luminescent solar concentrator research: solar energy for the built environment,” Adv. Energy Mater. 2(1), 12–35 (2012).
[Crossref]

Adv. Mater. (1)

T. K. Sau, A. L. Rogach, F. Jäckel, T. A. Klar, and J. Feldmann, “Properties and applications of colloidal nonspherical noble metal nanoparticles,” Adv. Mater. 22(16), 1805–1825 (2010).
[Crossref] [PubMed]

Appl. Opt. (2)

Appl. Phys. (Berl.) (2)

A. Goetzberger and W. Greubel, “Solar energy conversion with fluorescent collectors,” Appl. Phys. (Berl.) 14(2), 123–139 (1977).
[Crossref]

A. Goetzberger, “Fluorescent solar energy collectors: Operating conditions with diffuse light,” Appl. Phys. (Berl.) 16(4), 399–404 (1978).
[Crossref]

Appl. Phys. B (1)

K. R. McIntosh, N. Yamada, and B. S. Richards, “Theoretical comparison of cylindrical and square-planar luminescent solar concentrators,” Appl. Phys. B 88(2), 285–290 (2007).
[Crossref]

Appl. Phys. Lett. (1)

S. F. Daorta, A. Proto, R. Fusco, L. C. Andreani, and M. Liscidini, “Cascade luminescent solar concentrators,” Appl. Phys. Lett. 104(15), 153901 (2014).
[Crossref]

Chem. Commun. (Camb.) (2)

O. Moudam, B. C. Rowan, M. Alamiry, P. Richardson, B. S. Richards, A. C. Jones, and N. Robertson, “Europium complexes with high total photoluminescence quantum yields in solution and in PMMA,” Chem. Commun. (Camb.) 43(43), 6649–6651 (2009).
[Crossref] [PubMed]

A. Sanguineti, M. Sassi, R. Turrisi, R. Ruffo, G. Vaccaro, F. Meinardi, and L. Beverina, “High Stokes shift perylene dyes for luminescent solar concentrators,” Chem. Commun. (Camb.) 49(16), 1618–1620 (2013).
[Crossref] [PubMed]

J. Alloys Compd. (1)

H. Manaa, “Self-absorption and light amplification in perylimide dyes-doped poly(methyl-methacrylate),” J. Alloys Compd. 393(1–2), 219–222 (2005).
[Crossref]

J. Lightwave Technol. (1)

J. Lumin. (2)

R. Sóti, É. Farkas, M. Hilbert, Z. Farkas, and I. Ketskeméty, “Photon transport in luminescent solar concentrators,” J. Lumin. 68(2–4), 105–114 (1996).
[Crossref]

L. J. Andrews, B. C. McCollum, and A. Lempicki, “Luminescent solar collectors based on fluorescent glasses,” J. Lumin. 24–25(2), 877–880 (1981).
[Crossref]

J. Opt. Soc. Am. (1)

Nat. Photonics (2)

F. Meinardi, A. Colombo, K. A. Velizhanin, R. Simonutti, M. Lorenzon, R. Viswanatha, V. I. Klimov, and S. Brovelli, “Large-area luminescent solar concentrators based on ‘Stokes-shift-engineered’ nanocrystals in a mass-polymerized PMMA matrix,” Nat. Photonics 8(5), 392–399 (2014).
[Crossref]

N. C. Giebink, G. P. Wiederrecht, and M. R. Wasielewski, “Resonance-shifting to circumvent reabsorption loss in luminescent solar concentrators,” Nat. Photonics 5(11), 694–701 (2011).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Phys. Chem. Chem. Phys. (1)

R. O. Al-Kaysi, T. Sang Ahn, A. M. Müller, and C. J. Bardeen, “The photophysical properties of chromophores at high (100 mM and above) concentrations in polymers and as neat solids,” Phys. Chem. Chem. Phys. 8(29), 3453–3459 (2006).
[Crossref] [PubMed]

Prog. Photovolt. Res. Appl. (1)

D. J. Farrell and M. Yoshida, “Operating regimes for second generation luminescent solar concentrators,” Prog. Photovolt. Res. Appl. 20(1), 93–99 (2012).
[Crossref]

Renew. Energy (1)

W. G. J. H. M. van Sark, “Luminescent solar concentrator-A low cost photovoltaics alternative,” Renew. Energy 49, 207–210 (2013).
[Crossref]

Renew. Sustain. Energy Rev. (1)

D. Chemisana, “Building integrated concentrating photovoltaics: a review,” Renew. Sustain. Energy Rev. 15(1), 603–611 (2011).
[Crossref]

Science (1)

M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, “High-efficiency organic solar concentrators for photovoltaics,” Science 321(5886), 226–228 (2008).
[Crossref] [PubMed]

Sol. Cells (1)

M. Sidrach de Cardona, M. Carrascosa, F. Meseguer, F. Cusso, and F. Jaque, “Edge effect on luminescent solar concentrators,” Sol. Cells 15(3), 225–230 (1985).
[Crossref]

Sol. Energy (2)

T. Dienel, C. Bauer, I. Dolamic, and D. Brühwiler, “Spectral-based analysis of thin film luminescent solar concentrators,” Sol. Energy 84(8), 1366–1369 (2010).
[Crossref]

S. J. Gallagher, B. Norton, and P. C. Eames, “Quantum dot solar concentrators: electrical conversion efficiencies and comparative concentrating factors of fabricated devices,” Sol. Energy 81(6), 813–821 (2007).
[Crossref]

Sol. Energy Mater. (2)

G. Smestad, H. Ries, R. Winston, and E. Yablonovitch, “The thermodynamic limits of light concentrators,” Sol. Energy Mater. 21(2–3), 99–111 (1990).
[Crossref]

H. R. Wilson, “Fluorescent dyes interacting with small silver particles; a system extending the spectral range of fluorescent solar concentrators,” Sol. Energy Mater. 16(1–3), 223–234 (1987).
[Crossref]

Other (4)

http://www.ise.fraunhofer.de/en/business-areas/iii-v-and-concentrator-photovoltaics/research-topics/power-by-light/projects/optowind

A. H. Zewail and J. S. Batchelder, United States Patent 4,227,939 (October 14, 1980).

M. R. Kaysir, A. Argyros, R. W. MacQueen, T. W. Schmidt, and S. Fleming, “Novel approach for reducing reabsorption in luminescent solar concentrators,” 2013 Australia and New Zealand Conference on Optics and Photonics (ANZCOP, 2013).

J. P. Morgan and P. Dufour, United States Patent 0319377 (October 30, 2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Schematic diagram of the s-LSC system concept with two side mirrors and a feedback seed laser. NB: this is a simplified schematic – in practice the concentrator would be much thinner and much larger in area and the seed laser would traverse many more times, sweeping out the whole area.
Fig. 2
Fig. 2 Schematic diagram for the gain characterization of the s-LSC from the change in the electrical output power of the PV cell with only signal, only pump and both signal and pump.
Fig. 3
Fig. 3 Mathematical block diagram of the s-LSC system with an effective output power to drive the external load.
Fig. 4
Fig. 4 Variation of total extracted power with optical gain of s-LSC system for (a) small area & (b) large area. Comparison between the s-LSC and conventional LSC is also presented.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

G T = P (P+S)E P PE P SE
G T = G opt G eff
G T = η 3 ( η t G opt P SO + η sp P PO ) η 1 η sp P PO η 2 η t P SO
G opt = η 2 η 3 G T (1 η 1 η 3 ) η sp P PO η t P SO
G eff = G T G opt = η 3 η 2 + ( η 3 η 1 ) η sp P PO η 2 η t G opt P SO
P TEE = P (P+S)E P PE P SE =( G opt G eff 1) P SE =( η 3 η 2 G opt 1) P SE +( η 3 η 1 1) P PE ,
P EO =( G opt 1) η t P SO
P EE = P TEE η cp η 3 P EO
P SL = η cp η 3 η sp P PO +( η cp η 3 η t G opt 1 η L ) P SO
η cp η 3 η t G opt > 1 η L

Metrics