Abstract

Photon upconversion is promising for many applications. However, the potential of lanthanide doped upconverter materials is typically limited by low absorption coefficients and low upconversion quantum yields (UCQY) under practical irradiance of the excitation. Modifying the photonic environment can strongly enhance the spontaneous emission and therefore also the upconversion luminescence. Additionally, the non-linear nature of the upconversion processes can be exploited by an increased local optical field introduced by photonic or plasmonic structures. In combination, both processes may lead to a strong enhancement of the UCQY at simultaneously lower incident irradiances. Here, we use a comprehensive 3D computation-based approach to investigate how absorption, upconversion luminescence, and UCQY of an upconverter are altered in the vicinity of spherical gold nanoparticles (GNPs). We use Mie theory and electrodynamic theory to compute the properties of GNPs. The parameters obtained in these calculations were used as input parameters in a rate equation model of the upconverter β-NaYF4: 20% Er3+. We consider different diameters of the GNP and determine the behavior of the system as a function of the incident irradiance. Whether the UCQY is increased or actually decreased depends heavily on the position of the upconverter in respect to the GNP. Whereas the upconversion luminescence enhancement reaches a maximum around a distance of 35 nm to the surface of the GNP, we observe strong quenching of the UCQY for distances <40 nm and a UCQY maximum around 125 to 150 nm, in the case of a 300 nm diameter GNP. Hence, the upconverter material needs to be placed at different positions, depending on whether absorption, upconversion luminescence, or UCQY should be maximized. At the optimum position, we determine a maximum UCQY enhancement of 117% for a 300 nm diameter GNP at a low incident irradiance of 0.01 W/cm2. As the irradiance increases, the maximum UCQY enhancement decreases to 20% at 1 W/cm2. However, this UCQY enhancement translates into a significant improvement of the UCQY from 12.0% to 14.4% absolute.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Increased upconversion quantum yield in photonic structures due to local field enhancement and modification of the local density of states – a simulation-based analysis

Barbara Herter, Sebastian Wolf, Stefan Fischer, Johannes Gutmann, Benedikt Bläsi, and Jan Christoph Goldschmidt
Opt. Express 21(S5) A883-A900 (2013)

Plasmon enhanced upconversion luminescence near gold nanoparticles–simulation and analysis of the interactions

Stefan Fischer, Florian Hallermann, Toni Eichelkraut, Gero von Plessen, Karl W. Krämer, Daniel Biner, Heiko Steinkemper, Martin Hermle, and Jan C. Goldschmidt
Opt. Express 20(1) 271-282 (2012)

Upconversion in a Bragg structure: photonic effects of a modified local density of states and irradiance on luminescence and upconversion quantum yield

Clarissa L. M. Hofmann, Barbara Herter, Stefan Fischer, Johannes Gutmann, and Jan Christoph Goldschmidt
Opt. Express 24(13) 14895-14914 (2016)

References

  • View by:
  • |
  • |
  • |

  1. D. K. Chatterjee, M. K. Gnanasammandhan, and Y. Zhang, “Small upconverting fluorescent nanoparticles for biomedical applications,” Small 6(24), 2781–2795 (2010).
    [Crossref] [PubMed]
  2. W. Deng, L. Sudheendra, J. Zhao, J. Fu, D. Jin, I. M. Kennedy, and E. M. Goldys, “Upconversion in NaYF4:Yb, Er nanoparticles amplified by metal nanostructures,” Nanotechnology 22(32), 325604 (2011).
    [Crossref] [PubMed]
  3. G. Chen, H. Qiu, P. N. Prasad, and X. Chen, “Upconversion nanoparticles: design, nanochemistry, and applications in theranostics,” Chem. Rev. 114(10), 5161–5214 (2014).
    [Crossref] [PubMed]
  4. A. Shalav, B. S. Richards, and M. A. Green, “Luminescent layers for enhanced silicon solar cell performance: up-conversion,” Sol. Energy Mater. Sol. Cells 91(9), 829–842 (2007).
    [Crossref]
  5. S. Fischer, J. C. Goldschmidt, P. Löper, G. H. Bauer, R. Brüggemann, K. Krämer, D. Biner, M. Hermle, and S. W. Glunz, “Enhancement of silicon solar cell efficiency by upconversion: optical and electrical characterization,” J. Appl. Phys. 108(4), 044912 (2010).
    [Crossref]
  6. X. Huang, S. Han, W. Huang, and X. Liu, “Enhancing solar cell efficiency: the search for luminescent materials as spectral converters,” Chem. Soc. Rev. 42(1), 173–201 (2013).
    [Crossref] [PubMed]
  7. J. C. Goldschmidt and S. Fischer, “Upconversion for photovoltaics - a review of materials, devices and concepts for performance enhancement,” Adv. Opt. Mater. 3(4), 510–535 (2015).
    [Crossref]
  8. J. Gersten and A. Nitzan, “Spectroscopic properties of molecules interacting with small dielectric particles,” J. Chem. Phys. 75(3), 1139–1152 (1981).
    [Crossref]
  9. Y. Xu, R. Lee, and A. Yariv, “Quantum analysis and the classical analysis of spontaneous emission in a microcavity,” Phys. Rev. A 61(3), 033807 (2000).
    [Crossref]
  10. H. Mertens, A. F. Koenderink, and A. Polman, “Plasmon-enhanced luminescence near noble-metal nanospheres: Comparison of exact theory and an improved Gersten and Nitzan model,” Phys. Rev. B 76(11), 115123 (2007).
    [Crossref]
  11. Y. Zhang, R. Zhang, Q. Wang, Z. Zhang, H. Zhu, J. Liu, F. Song, S. Lin, and E. Y. B. Pun, “Fluorescence enhancement of quantum emitters with different energy systems near a single spherical metal nanoparticle,” Opt. Express 18(5), 4316–4328 (2010).
    [Crossref] [PubMed]
  12. R. Esteban, M. Laroche, and J. J. Greffet, “Influence of metallic nanoparticles on upconversion processes,” J. Appl. Phys. 105(3), 033107 (2009).
    [Crossref]
  13. S. Fischer, F. Hallermann, T. Eichelkraut, G. von Plessen, K. W. Krämer, D. Biner, H. Steinkemper, M. Hermle, and J. C. Goldschmidt, “Plasmon enhanced upconversion luminescence near gold nanoparticles-simulation and analysis of the interactions,” Opt. Express 20(1), 271–282 (2012).
    [Crossref] [PubMed]
  14. S. Fischer, F. Hallermann, T. Eichelkraut, G. von Plessen, K. W. Krämer, D. Biner, H. Steinkemper, M. Hermle, and J. C. Goldschmidt, “Plasmon enhanced upconversion luminescence near gold nanoparticles--simulation and analysis of the interactions: errata,” Opt. Express 21(9), 10606–10611 (2013).
    [Crossref] [PubMed]
  15. B. Herter, S. Wolf, S. Fischer, J. Gutmann, B. Bläsi, and J. C. Goldschmidt, “Increased upconversion quantum yield in photonic structures due to local field enhancement and modification of the local density of states--a simulation-based analysis,” Opt. Express 21(S5), A883–A900 (2013).
    [Crossref] [PubMed]
  16. D. M. Wu, A. García-Etxarri, A. Salleo, and J. A. Dionne, “Plasmon-Enhanced Upconversion,” J. Phys. Chem. Lett. 5(22), 4020–4031 (2014).
    [Crossref] [PubMed]
  17. H. Mertens and A. Polman, “Plasmon-enhanced erbium luminescence,” Appl. Phys. Lett. 89(21), 211107 (2006).
    [Crossref]
  18. S. Schietinger, T. Aichele, H.-Q. Wang, T. Nann, and O. Benson, “Plasmon-enhanced upconversion in single NaYF4:Yb3+/Er3+ codoped nanocrystals,” Nano Lett. 10(1), 134–138 (2010).
    [Crossref] [PubMed]
  19. H. P. Paudel, L. Zhong, K. Bayat, M. F. Baroughi, S. Smith, C. Lin, C. Jiang, M. T. Berry, and P. S. May, “Enhancement of near-infrared-to-visible upconversion luminescence using engineered plasmonic gold surfaces,” J. Phys. Chem. C 115(39), 19028–19036 (2011).
    [Crossref]
  20. J. T. van Wijngaarden, M. M. van Schooneveld, C. de Mello Donegá, and A. Meijerink, “Enhancement of the decay rate by plasmon coupling for Eu3+ in an Au nanoparticle model system,” Europhys. Lett. 93(5), 57005 (2011).
    [Crossref]
  21. J. Liao, Z. Yang, S. Lai, B. Shao, J. Li, J. Qiu, Z. Song, and Y. Yang, “Upconversion emission enhancement of NaYF4 :Yb,Er nanoparticles by coupling silver nanoparticle plasmons and photonic crystal effects,” J. Phys. Chem. C 118(31), 17992–17999 (2014).
    [Crossref]
  22. Q. C. Sun, H. Mundoor, J. C. Ribot, V. Singh, I. I. Smalyukh, and P. Nagpal, “Plasmon-enhanced energy transfer for improved upconversion of infrared radiation in doped-lanthanide nanocrystals,” Nano Lett. 14(1), 101–106 (2014).
    [Crossref] [PubMed]
  23. N. Liu, W. Qin, G. Qin, T. Jiang, and D. Zhao, “Highly plasmon-enhanced upconversion emissions from Au@β-NaYF4:Yb,Tm hybrid nanostructures,” Chem. Commun. (Camb.) 47(27), 7671–7673 (2011).
    [Crossref] [PubMed]
  24. B. Dong, S. Xu, J. Sun, S. Bi, D. Li, X. Bai, Y. Wang, L. Wang, and H. Song, “Multifunctional NaYF4 : Yb3+,Er3+@Ag core/shell nanocomposites: integration of upconversion imaging and photothermal therapy,” J. Mater. Chem. 21(17), 6193 (2011).
    [Crossref]
  25. O. L. Malta, P. Santa-Cruz, G. F. de Sá, and F. Auzel, “Up-conversion yield in glass ceramics containing silver,” J. Solid State Chem. 68(2), 314–319 (1987).
    [Crossref]
  26. T. Aisaka, M. Fujii, and S. Hayashi, “Enhancement of upconversion luminescence of Er doped Al2O3 films by Ag island films,” Appl. Phys. Lett. 92(13), 132105 (2008).
    [Crossref]
  27. E. Verhagen, L. Kuipers, and A. Polman, “Field enhancement in metallic subwavelength aperture arrays probed by erbium upconversion luminescence,” Opt. Express 17(17), 14586–14598 (2009).
    [Crossref] [PubMed]
  28. E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. Möller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89(20), 203002 (2002).
    [Crossref] [PubMed]
  29. W. Park, D. Lu, and S. Ahn, “Plasmon enhancement of luminescence upconversion,” Chem. Soc. Rev. 44(10), 2940–2962 (2015).
    [Crossref] [PubMed]
  30. S. Fischer, H. Steinkemper, P. Löper, M. Hermle, and J. C. Goldschmidt, “Modeling upconversion of erbium doped microcrystals based on experimentally determined Einstein coefficients,” J. Appl. Phys. 111(1), 013109 (2012).
    [Crossref]
  31. S. Fischer, R. Martín-Rodríguez, B. Fröhlich, K. W. Krämer, A. Meijerink, and J. C. Goldschmidt, “Upconversion quantum yield of Er3+-doped β-NaYF4 and Gd2O2S: the effects of host lattice, Er3+ doping, and excitation spectrum bandwidth,” J. Lumin. 153, 281–287 (2014).
    [Crossref]
  32. S. K. W. MacDougall, A. Ivaturi, J. Marques-Hueso, K. W. Krämer, and B. S. Richards, “Broadband photoluminescent quantum yield optimisation of Er3+-doped β-NaYF4 for upconversion in silicon solar cells,” Sol. Energy Mater. Sol. Cells 128, 18–26 (2014).
    [Crossref]
  33. S. Fischer, N. J. J. Johnson, J. Pichaandi, J. C. Goldschmidt, and F. C. J. M. van Veggel, “Upconverting core-shell nanocrystals with high quantum yield under low irradiance: On the role of isotropic and thick shells,” J. Appl. Phys. 118(19), 193105 (2015).
    [Crossref]
  34. F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. V. Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi Appl. Mater. Sci. 205(12), 2844–2861 (2008).
    [Crossref]
  35. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  36. C. F. Bohren, “How can a particle absorb more than the light incident on it?” Am. J. Phys. 51(4), 323–327 (1983).
    [Crossref]
  37. L. Rogobete, F. Kaminski, M. Agio, and V. Sandoghdar, “Design of plasmonic nanoantennae for enhancing spontaneous emission,” Opt. Lett. 32(12), 1623–1625 (2007).
    [Crossref] [PubMed]
  38. Y. S. Kim, P. T. Leung, and T. F. George, “Classical decay rates for molecules in the presence of a spherical surface: a complete treatment,” Surf. Sci. 195(1-2), 1–14 (1988).
    [Crossref]
  39. F. Kaminski, V. Sandoghdar, and M. Agio, “Finite-difference time-domain modeling of decay rates in the near field of metal nanostructures,” J. Comput. Theor. Nanosci. 4, 635–643 (2007).
  40. T. Nakamura, M. Fujii, S. Miura, M. Inui, and S. Hayashi, “Enhancement and suppression of energy transfer from Si nanocrystals to Er ions through a control of the photonic mode density,” Phys. Rev. B 74(4), 045302 (2006).
    [Crossref]
  41. A. O. Govorov, J. Lee, and N. A. Kotov, “Theory of plasmon-enhanced Förster energy transfer in optically excited semiconductor and metal nanoparticles,” Phys. Rev. B 76(12), 125308 (2007).
    [Crossref]
  42. F. Reil, U. Hohenester, J. R. Krenn, and A. Leitner, “Förster-type resonant energy transfer influenced by metal nanoparticles,” Nano Lett. 8(12), 4128–4133 (2008).
    [Crossref] [PubMed]
  43. M. Lessard-Viger, M. Rioux, L. Rainville, and D. Boudreau, “FRET enhancement in multilayer core-shell nanoparticles,” Nano Lett. 9(8), 3066–3071 (2009).
    [Crossref] [PubMed]
  44. C. Blum, N. Zijlstra, A. Lagendijk, M. Wubs, A. P. Mosk, V. Subramaniam, and W. L. Vos, “Nanophotonic control of the Förster resonance energy transfer efficiency,” Phys. Rev. Lett. 109(20), 203601 (2012).
    [Crossref] [PubMed]
  45. M. J. A. De Dood, J. Knoester, A. Tip, and A. Polman, “Förster transfer and the local optical density of states in erbium-doped silica,” Phys. Rev. B 71, 1–5 (2005).
  46. F. T. Rabouw, S. A. den Hartog, T. Senden, and A. Meijerink, “Photonic effects on the Förster resonance energy transfer efficiency,” Nat. Commun. 5, 3610 (2014).
    [Crossref] [PubMed]
  47. J. A. Gonzaga-Galeana and J. R. Zurita-Sánchez, “A revisitation of the Förster energy transfer near a metallic spherical nanoparticle: (1) Efficiency enhancement or reduction? (2) The control of the Förster radius of the unbounded medium. (3) The impact of the local density of states,” J. Chem. Phys. 139(24), 244302 (2013).
    [Crossref] [PubMed]
  48. H. T. Dung, L. Knöll, and D.-G. Welsch, “Intermolecular energy transfer in the presence of dispersing and absorbing media,” Phys. Rev. A 65(4), 043813 (2002).
    [Crossref]
  49. R. E. Thoma, H. Insley, and G. M. Hebert, “The sodium fluoride-lanthanide trifluoride systems,” Inorg. Chem. 5(7), 1222–1229 (1966).
    [Crossref]
  50. S. Fischer, B. Fröhlich, K. W. Krämer, and J. C. Goldschmidt, “Relation between excitation power density and Er3+ doping yielding the highest absolute upconversion quantum yield,” J. Phys. Chem. C 118(51), 30106–30114 (2014).
    [Crossref]
  51. A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7(7), 1929–1934 (2007).
    [Crossref] [PubMed]

2015 (3)

J. C. Goldschmidt and S. Fischer, “Upconversion for photovoltaics - a review of materials, devices and concepts for performance enhancement,” Adv. Opt. Mater. 3(4), 510–535 (2015).
[Crossref]

W. Park, D. Lu, and S. Ahn, “Plasmon enhancement of luminescence upconversion,” Chem. Soc. Rev. 44(10), 2940–2962 (2015).
[Crossref] [PubMed]

S. Fischer, N. J. J. Johnson, J. Pichaandi, J. C. Goldschmidt, and F. C. J. M. van Veggel, “Upconverting core-shell nanocrystals with high quantum yield under low irradiance: On the role of isotropic and thick shells,” J. Appl. Phys. 118(19), 193105 (2015).
[Crossref]

2014 (8)

S. Fischer, R. Martín-Rodríguez, B. Fröhlich, K. W. Krämer, A. Meijerink, and J. C. Goldschmidt, “Upconversion quantum yield of Er3+-doped β-NaYF4 and Gd2O2S: the effects of host lattice, Er3+ doping, and excitation spectrum bandwidth,” J. Lumin. 153, 281–287 (2014).
[Crossref]

S. K. W. MacDougall, A. Ivaturi, J. Marques-Hueso, K. W. Krämer, and B. S. Richards, “Broadband photoluminescent quantum yield optimisation of Er3+-doped β-NaYF4 for upconversion in silicon solar cells,” Sol. Energy Mater. Sol. Cells 128, 18–26 (2014).
[Crossref]

G. Chen, H. Qiu, P. N. Prasad, and X. Chen, “Upconversion nanoparticles: design, nanochemistry, and applications in theranostics,” Chem. Rev. 114(10), 5161–5214 (2014).
[Crossref] [PubMed]

D. M. Wu, A. García-Etxarri, A. Salleo, and J. A. Dionne, “Plasmon-Enhanced Upconversion,” J. Phys. Chem. Lett. 5(22), 4020–4031 (2014).
[Crossref] [PubMed]

J. Liao, Z. Yang, S. Lai, B. Shao, J. Li, J. Qiu, Z. Song, and Y. Yang, “Upconversion emission enhancement of NaYF4 :Yb,Er nanoparticles by coupling silver nanoparticle plasmons and photonic crystal effects,” J. Phys. Chem. C 118(31), 17992–17999 (2014).
[Crossref]

Q. C. Sun, H. Mundoor, J. C. Ribot, V. Singh, I. I. Smalyukh, and P. Nagpal, “Plasmon-enhanced energy transfer for improved upconversion of infrared radiation in doped-lanthanide nanocrystals,” Nano Lett. 14(1), 101–106 (2014).
[Crossref] [PubMed]

F. T. Rabouw, S. A. den Hartog, T. Senden, and A. Meijerink, “Photonic effects on the Förster resonance energy transfer efficiency,” Nat. Commun. 5, 3610 (2014).
[Crossref] [PubMed]

S. Fischer, B. Fröhlich, K. W. Krämer, and J. C. Goldschmidt, “Relation between excitation power density and Er3+ doping yielding the highest absolute upconversion quantum yield,” J. Phys. Chem. C 118(51), 30106–30114 (2014).
[Crossref]

2013 (4)

J. A. Gonzaga-Galeana and J. R. Zurita-Sánchez, “A revisitation of the Förster energy transfer near a metallic spherical nanoparticle: (1) Efficiency enhancement or reduction? (2) The control of the Förster radius of the unbounded medium. (3) The impact of the local density of states,” J. Chem. Phys. 139(24), 244302 (2013).
[Crossref] [PubMed]

S. Fischer, F. Hallermann, T. Eichelkraut, G. von Plessen, K. W. Krämer, D. Biner, H. Steinkemper, M. Hermle, and J. C. Goldschmidt, “Plasmon enhanced upconversion luminescence near gold nanoparticles--simulation and analysis of the interactions: errata,” Opt. Express 21(9), 10606–10611 (2013).
[Crossref] [PubMed]

B. Herter, S. Wolf, S. Fischer, J. Gutmann, B. Bläsi, and J. C. Goldschmidt, “Increased upconversion quantum yield in photonic structures due to local field enhancement and modification of the local density of states--a simulation-based analysis,” Opt. Express 21(S5), A883–A900 (2013).
[Crossref] [PubMed]

X. Huang, S. Han, W. Huang, and X. Liu, “Enhancing solar cell efficiency: the search for luminescent materials as spectral converters,” Chem. Soc. Rev. 42(1), 173–201 (2013).
[Crossref] [PubMed]

2012 (3)

S. Fischer, H. Steinkemper, P. Löper, M. Hermle, and J. C. Goldschmidt, “Modeling upconversion of erbium doped microcrystals based on experimentally determined Einstein coefficients,” J. Appl. Phys. 111(1), 013109 (2012).
[Crossref]

S. Fischer, F. Hallermann, T. Eichelkraut, G. von Plessen, K. W. Krämer, D. Biner, H. Steinkemper, M. Hermle, and J. C. Goldschmidt, “Plasmon enhanced upconversion luminescence near gold nanoparticles-simulation and analysis of the interactions,” Opt. Express 20(1), 271–282 (2012).
[Crossref] [PubMed]

C. Blum, N. Zijlstra, A. Lagendijk, M. Wubs, A. P. Mosk, V. Subramaniam, and W. L. Vos, “Nanophotonic control of the Förster resonance energy transfer efficiency,” Phys. Rev. Lett. 109(20), 203601 (2012).
[Crossref] [PubMed]

2011 (5)

H. P. Paudel, L. Zhong, K. Bayat, M. F. Baroughi, S. Smith, C. Lin, C. Jiang, M. T. Berry, and P. S. May, “Enhancement of near-infrared-to-visible upconversion luminescence using engineered plasmonic gold surfaces,” J. Phys. Chem. C 115(39), 19028–19036 (2011).
[Crossref]

J. T. van Wijngaarden, M. M. van Schooneveld, C. de Mello Donegá, and A. Meijerink, “Enhancement of the decay rate by plasmon coupling for Eu3+ in an Au nanoparticle model system,” Europhys. Lett. 93(5), 57005 (2011).
[Crossref]

W. Deng, L. Sudheendra, J. Zhao, J. Fu, D. Jin, I. M. Kennedy, and E. M. Goldys, “Upconversion in NaYF4:Yb, Er nanoparticles amplified by metal nanostructures,” Nanotechnology 22(32), 325604 (2011).
[Crossref] [PubMed]

N. Liu, W. Qin, G. Qin, T. Jiang, and D. Zhao, “Highly plasmon-enhanced upconversion emissions from Au@β-NaYF4:Yb,Tm hybrid nanostructures,” Chem. Commun. (Camb.) 47(27), 7671–7673 (2011).
[Crossref] [PubMed]

B. Dong, S. Xu, J. Sun, S. Bi, D. Li, X. Bai, Y. Wang, L. Wang, and H. Song, “Multifunctional NaYF4 : Yb3+,Er3+@Ag core/shell nanocomposites: integration of upconversion imaging and photothermal therapy,” J. Mater. Chem. 21(17), 6193 (2011).
[Crossref]

2010 (4)

D. K. Chatterjee, M. K. Gnanasammandhan, and Y. Zhang, “Small upconverting fluorescent nanoparticles for biomedical applications,” Small 6(24), 2781–2795 (2010).
[Crossref] [PubMed]

S. Fischer, J. C. Goldschmidt, P. Löper, G. H. Bauer, R. Brüggemann, K. Krämer, D. Biner, M. Hermle, and S. W. Glunz, “Enhancement of silicon solar cell efficiency by upconversion: optical and electrical characterization,” J. Appl. Phys. 108(4), 044912 (2010).
[Crossref]

S. Schietinger, T. Aichele, H.-Q. Wang, T. Nann, and O. Benson, “Plasmon-enhanced upconversion in single NaYF4:Yb3+/Er3+ codoped nanocrystals,” Nano Lett. 10(1), 134–138 (2010).
[Crossref] [PubMed]

Y. Zhang, R. Zhang, Q. Wang, Z. Zhang, H. Zhu, J. Liu, F. Song, S. Lin, and E. Y. B. Pun, “Fluorescence enhancement of quantum emitters with different energy systems near a single spherical metal nanoparticle,” Opt. Express 18(5), 4316–4328 (2010).
[Crossref] [PubMed]

2009 (3)

R. Esteban, M. Laroche, and J. J. Greffet, “Influence of metallic nanoparticles on upconversion processes,” J. Appl. Phys. 105(3), 033107 (2009).
[Crossref]

M. Lessard-Viger, M. Rioux, L. Rainville, and D. Boudreau, “FRET enhancement in multilayer core-shell nanoparticles,” Nano Lett. 9(8), 3066–3071 (2009).
[Crossref] [PubMed]

E. Verhagen, L. Kuipers, and A. Polman, “Field enhancement in metallic subwavelength aperture arrays probed by erbium upconversion luminescence,” Opt. Express 17(17), 14586–14598 (2009).
[Crossref] [PubMed]

2008 (3)

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. V. Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi Appl. Mater. Sci. 205(12), 2844–2861 (2008).
[Crossref]

F. Reil, U. Hohenester, J. R. Krenn, and A. Leitner, “Förster-type resonant energy transfer influenced by metal nanoparticles,” Nano Lett. 8(12), 4128–4133 (2008).
[Crossref] [PubMed]

T. Aisaka, M. Fujii, and S. Hayashi, “Enhancement of upconversion luminescence of Er doped Al2O3 films by Ag island films,” Appl. Phys. Lett. 92(13), 132105 (2008).
[Crossref]

2007 (6)

A. O. Govorov, J. Lee, and N. A. Kotov, “Theory of plasmon-enhanced Förster energy transfer in optically excited semiconductor and metal nanoparticles,” Phys. Rev. B 76(12), 125308 (2007).
[Crossref]

F. Kaminski, V. Sandoghdar, and M. Agio, “Finite-difference time-domain modeling of decay rates in the near field of metal nanostructures,” J. Comput. Theor. Nanosci. 4, 635–643 (2007).

A. Shalav, B. S. Richards, and M. A. Green, “Luminescent layers for enhanced silicon solar cell performance: up-conversion,” Sol. Energy Mater. Sol. Cells 91(9), 829–842 (2007).
[Crossref]

H. Mertens, A. F. Koenderink, and A. Polman, “Plasmon-enhanced luminescence near noble-metal nanospheres: Comparison of exact theory and an improved Gersten and Nitzan model,” Phys. Rev. B 76(11), 115123 (2007).
[Crossref]

L. Rogobete, F. Kaminski, M. Agio, and V. Sandoghdar, “Design of plasmonic nanoantennae for enhancing spontaneous emission,” Opt. Lett. 32(12), 1623–1625 (2007).
[Crossref] [PubMed]

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7(7), 1929–1934 (2007).
[Crossref] [PubMed]

2006 (2)

H. Mertens and A. Polman, “Plasmon-enhanced erbium luminescence,” Appl. Phys. Lett. 89(21), 211107 (2006).
[Crossref]

T. Nakamura, M. Fujii, S. Miura, M. Inui, and S. Hayashi, “Enhancement and suppression of energy transfer from Si nanocrystals to Er ions through a control of the photonic mode density,” Phys. Rev. B 74(4), 045302 (2006).
[Crossref]

2005 (1)

M. J. A. De Dood, J. Knoester, A. Tip, and A. Polman, “Förster transfer and the local optical density of states in erbium-doped silica,” Phys. Rev. B 71, 1–5 (2005).

2002 (2)

H. T. Dung, L. Knöll, and D.-G. Welsch, “Intermolecular energy transfer in the presence of dispersing and absorbing media,” Phys. Rev. A 65(4), 043813 (2002).
[Crossref]

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. Möller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89(20), 203002 (2002).
[Crossref] [PubMed]

2000 (1)

Y. Xu, R. Lee, and A. Yariv, “Quantum analysis and the classical analysis of spontaneous emission in a microcavity,” Phys. Rev. A 61(3), 033807 (2000).
[Crossref]

1988 (1)

Y. S. Kim, P. T. Leung, and T. F. George, “Classical decay rates for molecules in the presence of a spherical surface: a complete treatment,” Surf. Sci. 195(1-2), 1–14 (1988).
[Crossref]

1987 (1)

O. L. Malta, P. Santa-Cruz, G. F. de Sá, and F. Auzel, “Up-conversion yield in glass ceramics containing silver,” J. Solid State Chem. 68(2), 314–319 (1987).
[Crossref]

1983 (1)

C. F. Bohren, “How can a particle absorb more than the light incident on it?” Am. J. Phys. 51(4), 323–327 (1983).
[Crossref]

1981 (1)

J. Gersten and A. Nitzan, “Spectroscopic properties of molecules interacting with small dielectric particles,” J. Chem. Phys. 75(3), 1139–1152 (1981).
[Crossref]

1966 (1)

R. E. Thoma, H. Insley, and G. M. Hebert, “The sodium fluoride-lanthanide trifluoride systems,” Inorg. Chem. 5(7), 1222–1229 (1966).
[Crossref]

Agio, M.

F. Kaminski, V. Sandoghdar, and M. Agio, “Finite-difference time-domain modeling of decay rates in the near field of metal nanostructures,” J. Comput. Theor. Nanosci. 4, 635–643 (2007).

L. Rogobete, F. Kaminski, M. Agio, and V. Sandoghdar, “Design of plasmonic nanoantennae for enhancing spontaneous emission,” Opt. Lett. 32(12), 1623–1625 (2007).
[Crossref] [PubMed]

Ahn, S.

W. Park, D. Lu, and S. Ahn, “Plasmon enhancement of luminescence upconversion,” Chem. Soc. Rev. 44(10), 2940–2962 (2015).
[Crossref] [PubMed]

Aichele, T.

S. Schietinger, T. Aichele, H.-Q. Wang, T. Nann, and O. Benson, “Plasmon-enhanced upconversion in single NaYF4:Yb3+/Er3+ codoped nanocrystals,” Nano Lett. 10(1), 134–138 (2010).
[Crossref] [PubMed]

Aisaka, T.

T. Aisaka, M. Fujii, and S. Hayashi, “Enhancement of upconversion luminescence of Er doped Al2O3 films by Ag island films,” Appl. Phys. Lett. 92(13), 132105 (2008).
[Crossref]

Auzel, F.

O. L. Malta, P. Santa-Cruz, G. F. de Sá, and F. Auzel, “Up-conversion yield in glass ceramics containing silver,” J. Solid State Chem. 68(2), 314–319 (1987).
[Crossref]

Bai, X.

B. Dong, S. Xu, J. Sun, S. Bi, D. Li, X. Bai, Y. Wang, L. Wang, and H. Song, “Multifunctional NaYF4 : Yb3+,Er3+@Ag core/shell nanocomposites: integration of upconversion imaging and photothermal therapy,” J. Mater. Chem. 21(17), 6193 (2011).
[Crossref]

Baroughi, M. F.

H. P. Paudel, L. Zhong, K. Bayat, M. F. Baroughi, S. Smith, C. Lin, C. Jiang, M. T. Berry, and P. S. May, “Enhancement of near-infrared-to-visible upconversion luminescence using engineered plasmonic gold surfaces,” J. Phys. Chem. C 115(39), 19028–19036 (2011).
[Crossref]

Bauer, G. H.

S. Fischer, J. C. Goldschmidt, P. Löper, G. H. Bauer, R. Brüggemann, K. Krämer, D. Biner, M. Hermle, and S. W. Glunz, “Enhancement of silicon solar cell efficiency by upconversion: optical and electrical characterization,” J. Appl. Phys. 108(4), 044912 (2010).
[Crossref]

Bayat, K.

H. P. Paudel, L. Zhong, K. Bayat, M. F. Baroughi, S. Smith, C. Lin, C. Jiang, M. T. Berry, and P. S. May, “Enhancement of near-infrared-to-visible upconversion luminescence using engineered plasmonic gold surfaces,” J. Phys. Chem. C 115(39), 19028–19036 (2011).
[Crossref]

Benson, O.

S. Schietinger, T. Aichele, H.-Q. Wang, T. Nann, and O. Benson, “Plasmon-enhanced upconversion in single NaYF4:Yb3+/Er3+ codoped nanocrystals,” Nano Lett. 10(1), 134–138 (2010).
[Crossref] [PubMed]

Berry, M. T.

H. P. Paudel, L. Zhong, K. Bayat, M. F. Baroughi, S. Smith, C. Lin, C. Jiang, M. T. Berry, and P. S. May, “Enhancement of near-infrared-to-visible upconversion luminescence using engineered plasmonic gold surfaces,” J. Phys. Chem. C 115(39), 19028–19036 (2011).
[Crossref]

Bi, S.

B. Dong, S. Xu, J. Sun, S. Bi, D. Li, X. Bai, Y. Wang, L. Wang, and H. Song, “Multifunctional NaYF4 : Yb3+,Er3+@Ag core/shell nanocomposites: integration of upconversion imaging and photothermal therapy,” J. Mater. Chem. 21(17), 6193 (2011).
[Crossref]

Biner, D.

Bläsi, B.

Blum, C.

C. Blum, N. Zijlstra, A. Lagendijk, M. Wubs, A. P. Mosk, V. Subramaniam, and W. L. Vos, “Nanophotonic control of the Förster resonance energy transfer efficiency,” Phys. Rev. Lett. 109(20), 203601 (2012).
[Crossref] [PubMed]

Bohren, C. F.

C. F. Bohren, “How can a particle absorb more than the light incident on it?” Am. J. Phys. 51(4), 323–327 (1983).
[Crossref]

Boudreau, D.

M. Lessard-Viger, M. Rioux, L. Rainville, and D. Boudreau, “FRET enhancement in multilayer core-shell nanoparticles,” Nano Lett. 9(8), 3066–3071 (2009).
[Crossref] [PubMed]

Brüggemann, R.

S. Fischer, J. C. Goldschmidt, P. Löper, G. H. Bauer, R. Brüggemann, K. Krämer, D. Biner, M. Hermle, and S. W. Glunz, “Enhancement of silicon solar cell efficiency by upconversion: optical and electrical characterization,” J. Appl. Phys. 108(4), 044912 (2010).
[Crossref]

Chatterjee, D. K.

D. K. Chatterjee, M. K. Gnanasammandhan, and Y. Zhang, “Small upconverting fluorescent nanoparticles for biomedical applications,” Small 6(24), 2781–2795 (2010).
[Crossref] [PubMed]

Chen, G.

G. Chen, H. Qiu, P. N. Prasad, and X. Chen, “Upconversion nanoparticles: design, nanochemistry, and applications in theranostics,” Chem. Rev. 114(10), 5161–5214 (2014).
[Crossref] [PubMed]

Chen, X.

G. Chen, H. Qiu, P. N. Prasad, and X. Chen, “Upconversion nanoparticles: design, nanochemistry, and applications in theranostics,” Chem. Rev. 114(10), 5161–5214 (2014).
[Crossref] [PubMed]

De Dood, M. J. A.

M. J. A. De Dood, J. Knoester, A. Tip, and A. Polman, “Förster transfer and the local optical density of states in erbium-doped silica,” Phys. Rev. B 71, 1–5 (2005).

de Mello Donegá, C.

J. T. van Wijngaarden, M. M. van Schooneveld, C. de Mello Donegá, and A. Meijerink, “Enhancement of the decay rate by plasmon coupling for Eu3+ in an Au nanoparticle model system,” Europhys. Lett. 93(5), 57005 (2011).
[Crossref]

de Sá, G. F.

O. L. Malta, P. Santa-Cruz, G. F. de Sá, and F. Auzel, “Up-conversion yield in glass ceramics containing silver,” J. Solid State Chem. 68(2), 314–319 (1987).
[Crossref]

den Hartog, S. A.

F. T. Rabouw, S. A. den Hartog, T. Senden, and A. Meijerink, “Photonic effects on the Förster resonance energy transfer efficiency,” Nat. Commun. 5, 3610 (2014).
[Crossref] [PubMed]

Deng, W.

W. Deng, L. Sudheendra, J. Zhao, J. Fu, D. Jin, I. M. Kennedy, and E. M. Goldys, “Upconversion in NaYF4:Yb, Er nanoparticles amplified by metal nanostructures,” Nanotechnology 22(32), 325604 (2011).
[Crossref] [PubMed]

Dionne, J. A.

D. M. Wu, A. García-Etxarri, A. Salleo, and J. A. Dionne, “Plasmon-Enhanced Upconversion,” J. Phys. Chem. Lett. 5(22), 4020–4031 (2014).
[Crossref] [PubMed]

Dong, B.

B. Dong, S. Xu, J. Sun, S. Bi, D. Li, X. Bai, Y. Wang, L. Wang, and H. Song, “Multifunctional NaYF4 : Yb3+,Er3+@Ag core/shell nanocomposites: integration of upconversion imaging and photothermal therapy,” J. Mater. Chem. 21(17), 6193 (2011).
[Crossref]

Drezek, R. A.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7(7), 1929–1934 (2007).
[Crossref] [PubMed]

Dulkeith, E.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. Möller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89(20), 203002 (2002).
[Crossref] [PubMed]

Dung, H. T.

H. T. Dung, L. Knöll, and D.-G. Welsch, “Intermolecular energy transfer in the presence of dispersing and absorbing media,” Phys. Rev. A 65(4), 043813 (2002).
[Crossref]

Eichelkraut, T.

Esteban, R.

R. Esteban, M. Laroche, and J. J. Greffet, “Influence of metallic nanoparticles on upconversion processes,” J. Appl. Phys. 105(3), 033107 (2009).
[Crossref]

Fahr, S.

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. V. Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi Appl. Mater. Sci. 205(12), 2844–2861 (2008).
[Crossref]

Feldmann, J.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. Möller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89(20), 203002 (2002).
[Crossref] [PubMed]

Fischer, S.

S. Fischer, N. J. J. Johnson, J. Pichaandi, J. C. Goldschmidt, and F. C. J. M. van Veggel, “Upconverting core-shell nanocrystals with high quantum yield under low irradiance: On the role of isotropic and thick shells,” J. Appl. Phys. 118(19), 193105 (2015).
[Crossref]

J. C. Goldschmidt and S. Fischer, “Upconversion for photovoltaics - a review of materials, devices and concepts for performance enhancement,” Adv. Opt. Mater. 3(4), 510–535 (2015).
[Crossref]

S. Fischer, R. Martín-Rodríguez, B. Fröhlich, K. W. Krämer, A. Meijerink, and J. C. Goldschmidt, “Upconversion quantum yield of Er3+-doped β-NaYF4 and Gd2O2S: the effects of host lattice, Er3+ doping, and excitation spectrum bandwidth,” J. Lumin. 153, 281–287 (2014).
[Crossref]

S. Fischer, B. Fröhlich, K. W. Krämer, and J. C. Goldschmidt, “Relation between excitation power density and Er3+ doping yielding the highest absolute upconversion quantum yield,” J. Phys. Chem. C 118(51), 30106–30114 (2014).
[Crossref]

S. Fischer, F. Hallermann, T. Eichelkraut, G. von Plessen, K. W. Krämer, D. Biner, H. Steinkemper, M. Hermle, and J. C. Goldschmidt, “Plasmon enhanced upconversion luminescence near gold nanoparticles--simulation and analysis of the interactions: errata,” Opt. Express 21(9), 10606–10611 (2013).
[Crossref] [PubMed]

B. Herter, S. Wolf, S. Fischer, J. Gutmann, B. Bläsi, and J. C. Goldschmidt, “Increased upconversion quantum yield in photonic structures due to local field enhancement and modification of the local density of states--a simulation-based analysis,” Opt. Express 21(S5), A883–A900 (2013).
[Crossref] [PubMed]

S. Fischer, F. Hallermann, T. Eichelkraut, G. von Plessen, K. W. Krämer, D. Biner, H. Steinkemper, M. Hermle, and J. C. Goldschmidt, “Plasmon enhanced upconversion luminescence near gold nanoparticles-simulation and analysis of the interactions,” Opt. Express 20(1), 271–282 (2012).
[Crossref] [PubMed]

S. Fischer, H. Steinkemper, P. Löper, M. Hermle, and J. C. Goldschmidt, “Modeling upconversion of erbium doped microcrystals based on experimentally determined Einstein coefficients,” J. Appl. Phys. 111(1), 013109 (2012).
[Crossref]

S. Fischer, J. C. Goldschmidt, P. Löper, G. H. Bauer, R. Brüggemann, K. Krämer, D. Biner, M. Hermle, and S. W. Glunz, “Enhancement of silicon solar cell efficiency by upconversion: optical and electrical characterization,” J. Appl. Phys. 108(4), 044912 (2010).
[Crossref]

Fröhlich, B.

S. Fischer, R. Martín-Rodríguez, B. Fröhlich, K. W. Krämer, A. Meijerink, and J. C. Goldschmidt, “Upconversion quantum yield of Er3+-doped β-NaYF4 and Gd2O2S: the effects of host lattice, Er3+ doping, and excitation spectrum bandwidth,” J. Lumin. 153, 281–287 (2014).
[Crossref]

S. Fischer, B. Fröhlich, K. W. Krämer, and J. C. Goldschmidt, “Relation between excitation power density and Er3+ doping yielding the highest absolute upconversion quantum yield,” J. Phys. Chem. C 118(51), 30106–30114 (2014).
[Crossref]

Fu, J.

W. Deng, L. Sudheendra, J. Zhao, J. Fu, D. Jin, I. M. Kennedy, and E. M. Goldys, “Upconversion in NaYF4:Yb, Er nanoparticles amplified by metal nanostructures,” Nanotechnology 22(32), 325604 (2011).
[Crossref] [PubMed]

Fujii, M.

T. Aisaka, M. Fujii, and S. Hayashi, “Enhancement of upconversion luminescence of Er doped Al2O3 films by Ag island films,” Appl. Phys. Lett. 92(13), 132105 (2008).
[Crossref]

T. Nakamura, M. Fujii, S. Miura, M. Inui, and S. Hayashi, “Enhancement and suppression of energy transfer from Si nanocrystals to Er ions through a control of the photonic mode density,” Phys. Rev. B 74(4), 045302 (2006).
[Crossref]

García-Etxarri, A.

D. M. Wu, A. García-Etxarri, A. Salleo, and J. A. Dionne, “Plasmon-Enhanced Upconversion,” J. Phys. Chem. Lett. 5(22), 4020–4031 (2014).
[Crossref] [PubMed]

George, T. F.

Y. S. Kim, P. T. Leung, and T. F. George, “Classical decay rates for molecules in the presence of a spherical surface: a complete treatment,” Surf. Sci. 195(1-2), 1–14 (1988).
[Crossref]

Gersten, J.

J. Gersten and A. Nitzan, “Spectroscopic properties of molecules interacting with small dielectric particles,” J. Chem. Phys. 75(3), 1139–1152 (1981).
[Crossref]

Gittins, D. I.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. Möller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89(20), 203002 (2002).
[Crossref] [PubMed]

Glunz, S. W.

S. Fischer, J. C. Goldschmidt, P. Löper, G. H. Bauer, R. Brüggemann, K. Krämer, D. Biner, M. Hermle, and S. W. Glunz, “Enhancement of silicon solar cell efficiency by upconversion: optical and electrical characterization,” J. Appl. Phys. 108(4), 044912 (2010).
[Crossref]

Gnanasammandhan, M. K.

D. K. Chatterjee, M. K. Gnanasammandhan, and Y. Zhang, “Small upconverting fluorescent nanoparticles for biomedical applications,” Small 6(24), 2781–2795 (2010).
[Crossref] [PubMed]

Gobin, A. M.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7(7), 1929–1934 (2007).
[Crossref] [PubMed]

Goldschmidt, J. C.

J. C. Goldschmidt and S. Fischer, “Upconversion for photovoltaics - a review of materials, devices and concepts for performance enhancement,” Adv. Opt. Mater. 3(4), 510–535 (2015).
[Crossref]

S. Fischer, N. J. J. Johnson, J. Pichaandi, J. C. Goldschmidt, and F. C. J. M. van Veggel, “Upconverting core-shell nanocrystals with high quantum yield under low irradiance: On the role of isotropic and thick shells,” J. Appl. Phys. 118(19), 193105 (2015).
[Crossref]

S. Fischer, R. Martín-Rodríguez, B. Fröhlich, K. W. Krämer, A. Meijerink, and J. C. Goldschmidt, “Upconversion quantum yield of Er3+-doped β-NaYF4 and Gd2O2S: the effects of host lattice, Er3+ doping, and excitation spectrum bandwidth,” J. Lumin. 153, 281–287 (2014).
[Crossref]

S. Fischer, B. Fröhlich, K. W. Krämer, and J. C. Goldschmidt, “Relation between excitation power density and Er3+ doping yielding the highest absolute upconversion quantum yield,” J. Phys. Chem. C 118(51), 30106–30114 (2014).
[Crossref]

B. Herter, S. Wolf, S. Fischer, J. Gutmann, B. Bläsi, and J. C. Goldschmidt, “Increased upconversion quantum yield in photonic structures due to local field enhancement and modification of the local density of states--a simulation-based analysis,” Opt. Express 21(S5), A883–A900 (2013).
[Crossref] [PubMed]

S. Fischer, F. Hallermann, T. Eichelkraut, G. von Plessen, K. W. Krämer, D. Biner, H. Steinkemper, M. Hermle, and J. C. Goldschmidt, “Plasmon enhanced upconversion luminescence near gold nanoparticles--simulation and analysis of the interactions: errata,” Opt. Express 21(9), 10606–10611 (2013).
[Crossref] [PubMed]

S. Fischer, F. Hallermann, T. Eichelkraut, G. von Plessen, K. W. Krämer, D. Biner, H. Steinkemper, M. Hermle, and J. C. Goldschmidt, “Plasmon enhanced upconversion luminescence near gold nanoparticles-simulation and analysis of the interactions,” Opt. Express 20(1), 271–282 (2012).
[Crossref] [PubMed]

S. Fischer, H. Steinkemper, P. Löper, M. Hermle, and J. C. Goldschmidt, “Modeling upconversion of erbium doped microcrystals based on experimentally determined Einstein coefficients,” J. Appl. Phys. 111(1), 013109 (2012).
[Crossref]

S. Fischer, J. C. Goldschmidt, P. Löper, G. H. Bauer, R. Brüggemann, K. Krämer, D. Biner, M. Hermle, and S. W. Glunz, “Enhancement of silicon solar cell efficiency by upconversion: optical and electrical characterization,” J. Appl. Phys. 108(4), 044912 (2010).
[Crossref]

Goldys, E. M.

W. Deng, L. Sudheendra, J. Zhao, J. Fu, D. Jin, I. M. Kennedy, and E. M. Goldys, “Upconversion in NaYF4:Yb, Er nanoparticles amplified by metal nanostructures,” Nanotechnology 22(32), 325604 (2011).
[Crossref] [PubMed]

Gonzaga-Galeana, J. A.

J. A. Gonzaga-Galeana and J. R. Zurita-Sánchez, “A revisitation of the Förster energy transfer near a metallic spherical nanoparticle: (1) Efficiency enhancement or reduction? (2) The control of the Förster radius of the unbounded medium. (3) The impact of the local density of states,” J. Chem. Phys. 139(24), 244302 (2013).
[Crossref] [PubMed]

Govorov, A. O.

A. O. Govorov, J. Lee, and N. A. Kotov, “Theory of plasmon-enhanced Förster energy transfer in optically excited semiconductor and metal nanoparticles,” Phys. Rev. B 76(12), 125308 (2007).
[Crossref]

Graener, H.

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. V. Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi Appl. Mater. Sci. 205(12), 2844–2861 (2008).
[Crossref]

Green, M. A.

A. Shalav, B. S. Richards, and M. A. Green, “Luminescent layers for enhanced silicon solar cell performance: up-conversion,” Sol. Energy Mater. Sol. Cells 91(9), 829–842 (2007).
[Crossref]

Greffet, J. J.

R. Esteban, M. Laroche, and J. J. Greffet, “Influence of metallic nanoparticles on upconversion processes,” J. Appl. Phys. 105(3), 033107 (2009).
[Crossref]

Gutmann, J.

Halas, N. J.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7(7), 1929–1934 (2007).
[Crossref] [PubMed]

Hallermann, F.

Han, S.

X. Huang, S. Han, W. Huang, and X. Liu, “Enhancing solar cell efficiency: the search for luminescent materials as spectral converters,” Chem. Soc. Rev. 42(1), 173–201 (2013).
[Crossref] [PubMed]

Hayashi, S.

T. Aisaka, M. Fujii, and S. Hayashi, “Enhancement of upconversion luminescence of Er doped Al2O3 films by Ag island films,” Appl. Phys. Lett. 92(13), 132105 (2008).
[Crossref]

T. Nakamura, M. Fujii, S. Miura, M. Inui, and S. Hayashi, “Enhancement and suppression of energy transfer from Si nanocrystals to Er ions through a control of the photonic mode density,” Phys. Rev. B 74(4), 045302 (2006).
[Crossref]

Hebert, G. M.

R. E. Thoma, H. Insley, and G. M. Hebert, “The sodium fluoride-lanthanide trifluoride systems,” Inorg. Chem. 5(7), 1222–1229 (1966).
[Crossref]

Hermle, M.

S. Fischer, F. Hallermann, T. Eichelkraut, G. von Plessen, K. W. Krämer, D. Biner, H. Steinkemper, M. Hermle, and J. C. Goldschmidt, “Plasmon enhanced upconversion luminescence near gold nanoparticles--simulation and analysis of the interactions: errata,” Opt. Express 21(9), 10606–10611 (2013).
[Crossref] [PubMed]

S. Fischer, F. Hallermann, T. Eichelkraut, G. von Plessen, K. W. Krämer, D. Biner, H. Steinkemper, M. Hermle, and J. C. Goldschmidt, “Plasmon enhanced upconversion luminescence near gold nanoparticles-simulation and analysis of the interactions,” Opt. Express 20(1), 271–282 (2012).
[Crossref] [PubMed]

S. Fischer, H. Steinkemper, P. Löper, M. Hermle, and J. C. Goldschmidt, “Modeling upconversion of erbium doped microcrystals based on experimentally determined Einstein coefficients,” J. Appl. Phys. 111(1), 013109 (2012).
[Crossref]

S. Fischer, J. C. Goldschmidt, P. Löper, G. H. Bauer, R. Brüggemann, K. Krämer, D. Biner, M. Hermle, and S. W. Glunz, “Enhancement of silicon solar cell efficiency by upconversion: optical and electrical characterization,” J. Appl. Phys. 108(4), 044912 (2010).
[Crossref]

Herter, B.

Hohenester, U.

F. Reil, U. Hohenester, J. R. Krenn, and A. Leitner, “Förster-type resonant energy transfer influenced by metal nanoparticles,” Nano Lett. 8(12), 4128–4133 (2008).
[Crossref] [PubMed]

Huang, W.

X. Huang, S. Han, W. Huang, and X. Liu, “Enhancing solar cell efficiency: the search for luminescent materials as spectral converters,” Chem. Soc. Rev. 42(1), 173–201 (2013).
[Crossref] [PubMed]

Huang, X.

X. Huang, S. Han, W. Huang, and X. Liu, “Enhancing solar cell efficiency: the search for luminescent materials as spectral converters,” Chem. Soc. Rev. 42(1), 173–201 (2013).
[Crossref] [PubMed]

Insley, H.

R. E. Thoma, H. Insley, and G. M. Hebert, “The sodium fluoride-lanthanide trifluoride systems,” Inorg. Chem. 5(7), 1222–1229 (1966).
[Crossref]

Inui, M.

T. Nakamura, M. Fujii, S. Miura, M. Inui, and S. Hayashi, “Enhancement and suppression of energy transfer from Si nanocrystals to Er ions through a control of the photonic mode density,” Phys. Rev. B 74(4), 045302 (2006).
[Crossref]

Ivaturi, A.

S. K. W. MacDougall, A. Ivaturi, J. Marques-Hueso, K. W. Krämer, and B. S. Richards, “Broadband photoluminescent quantum yield optimisation of Er3+-doped β-NaYF4 for upconversion in silicon solar cells,” Sol. Energy Mater. Sol. Cells 128, 18–26 (2014).
[Crossref]

James, W. D.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7(7), 1929–1934 (2007).
[Crossref] [PubMed]

Jiang, C.

H. P. Paudel, L. Zhong, K. Bayat, M. F. Baroughi, S. Smith, C. Lin, C. Jiang, M. T. Berry, and P. S. May, “Enhancement of near-infrared-to-visible upconversion luminescence using engineered plasmonic gold surfaces,” J. Phys. Chem. C 115(39), 19028–19036 (2011).
[Crossref]

Jiang, T.

N. Liu, W. Qin, G. Qin, T. Jiang, and D. Zhao, “Highly plasmon-enhanced upconversion emissions from Au@β-NaYF4:Yb,Tm hybrid nanostructures,” Chem. Commun. (Camb.) 47(27), 7671–7673 (2011).
[Crossref] [PubMed]

Jin, D.

W. Deng, L. Sudheendra, J. Zhao, J. Fu, D. Jin, I. M. Kennedy, and E. M. Goldys, “Upconversion in NaYF4:Yb, Er nanoparticles amplified by metal nanostructures,” Nanotechnology 22(32), 325604 (2011).
[Crossref] [PubMed]

Johnson, N. J. J.

S. Fischer, N. J. J. Johnson, J. Pichaandi, J. C. Goldschmidt, and F. C. J. M. van Veggel, “Upconverting core-shell nanocrystals with high quantum yield under low irradiance: On the role of isotropic and thick shells,” J. Appl. Phys. 118(19), 193105 (2015).
[Crossref]

Kaminski, F.

F. Kaminski, V. Sandoghdar, and M. Agio, “Finite-difference time-domain modeling of decay rates in the near field of metal nanostructures,” J. Comput. Theor. Nanosci. 4, 635–643 (2007).

L. Rogobete, F. Kaminski, M. Agio, and V. Sandoghdar, “Design of plasmonic nanoantennae for enhancing spontaneous emission,” Opt. Lett. 32(12), 1623–1625 (2007).
[Crossref] [PubMed]

Kennedy, I. M.

W. Deng, L. Sudheendra, J. Zhao, J. Fu, D. Jin, I. M. Kennedy, and E. M. Goldys, “Upconversion in NaYF4:Yb, Er nanoparticles amplified by metal nanostructures,” Nanotechnology 22(32), 325604 (2011).
[Crossref] [PubMed]

Kim, Y. S.

Y. S. Kim, P. T. Leung, and T. F. George, “Classical decay rates for molecules in the presence of a spherical surface: a complete treatment,” Surf. Sci. 195(1-2), 1–14 (1988).
[Crossref]

Klar, T. A.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. Möller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89(20), 203002 (2002).
[Crossref] [PubMed]

Knoester, J.

M. J. A. De Dood, J. Knoester, A. Tip, and A. Polman, “Förster transfer and the local optical density of states in erbium-doped silica,” Phys. Rev. B 71, 1–5 (2005).

Knöll, L.

H. T. Dung, L. Knöll, and D.-G. Welsch, “Intermolecular energy transfer in the presence of dispersing and absorbing media,” Phys. Rev. A 65(4), 043813 (2002).
[Crossref]

Koenderink, A. F.

H. Mertens, A. F. Koenderink, and A. Polman, “Plasmon-enhanced luminescence near noble-metal nanospheres: Comparison of exact theory and an improved Gersten and Nitzan model,” Phys. Rev. B 76(11), 115123 (2007).
[Crossref]

Kotov, N. A.

A. O. Govorov, J. Lee, and N. A. Kotov, “Theory of plasmon-enhanced Förster energy transfer in optically excited semiconductor and metal nanoparticles,” Phys. Rev. B 76(12), 125308 (2007).
[Crossref]

Krämer, K.

S. Fischer, J. C. Goldschmidt, P. Löper, G. H. Bauer, R. Brüggemann, K. Krämer, D. Biner, M. Hermle, and S. W. Glunz, “Enhancement of silicon solar cell efficiency by upconversion: optical and electrical characterization,” J. Appl. Phys. 108(4), 044912 (2010).
[Crossref]

Krämer, K. W.

S. K. W. MacDougall, A. Ivaturi, J. Marques-Hueso, K. W. Krämer, and B. S. Richards, “Broadband photoluminescent quantum yield optimisation of Er3+-doped β-NaYF4 for upconversion in silicon solar cells,” Sol. Energy Mater. Sol. Cells 128, 18–26 (2014).
[Crossref]

S. Fischer, R. Martín-Rodríguez, B. Fröhlich, K. W. Krämer, A. Meijerink, and J. C. Goldschmidt, “Upconversion quantum yield of Er3+-doped β-NaYF4 and Gd2O2S: the effects of host lattice, Er3+ doping, and excitation spectrum bandwidth,” J. Lumin. 153, 281–287 (2014).
[Crossref]

S. Fischer, B. Fröhlich, K. W. Krämer, and J. C. Goldschmidt, “Relation between excitation power density and Er3+ doping yielding the highest absolute upconversion quantum yield,” J. Phys. Chem. C 118(51), 30106–30114 (2014).
[Crossref]

S. Fischer, F. Hallermann, T. Eichelkraut, G. von Plessen, K. W. Krämer, D. Biner, H. Steinkemper, M. Hermle, and J. C. Goldschmidt, “Plasmon enhanced upconversion luminescence near gold nanoparticles--simulation and analysis of the interactions: errata,” Opt. Express 21(9), 10606–10611 (2013).
[Crossref] [PubMed]

S. Fischer, F. Hallermann, T. Eichelkraut, G. von Plessen, K. W. Krämer, D. Biner, H. Steinkemper, M. Hermle, and J. C. Goldschmidt, “Plasmon enhanced upconversion luminescence near gold nanoparticles-simulation and analysis of the interactions,” Opt. Express 20(1), 271–282 (2012).
[Crossref] [PubMed]

Krenn, J. R.

F. Reil, U. Hohenester, J. R. Krenn, and A. Leitner, “Förster-type resonant energy transfer influenced by metal nanoparticles,” Nano Lett. 8(12), 4128–4133 (2008).
[Crossref] [PubMed]

Kuipers, L.

Lagendijk, A.

C. Blum, N. Zijlstra, A. Lagendijk, M. Wubs, A. P. Mosk, V. Subramaniam, and W. L. Vos, “Nanophotonic control of the Förster resonance energy transfer efficiency,” Phys. Rev. Lett. 109(20), 203601 (2012).
[Crossref] [PubMed]

Lai, S.

J. Liao, Z. Yang, S. Lai, B. Shao, J. Li, J. Qiu, Z. Song, and Y. Yang, “Upconversion emission enhancement of NaYF4 :Yb,Er nanoparticles by coupling silver nanoparticle plasmons and photonic crystal effects,” J. Phys. Chem. C 118(31), 17992–17999 (2014).
[Crossref]

Laroche, M.

R. Esteban, M. Laroche, and J. J. Greffet, “Influence of metallic nanoparticles on upconversion processes,” J. Appl. Phys. 105(3), 033107 (2009).
[Crossref]

Lederer, F.

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. V. Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi Appl. Mater. Sci. 205(12), 2844–2861 (2008).
[Crossref]

Lee, J.

A. O. Govorov, J. Lee, and N. A. Kotov, “Theory of plasmon-enhanced Förster energy transfer in optically excited semiconductor and metal nanoparticles,” Phys. Rev. B 76(12), 125308 (2007).
[Crossref]

Lee, M. H.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7(7), 1929–1934 (2007).
[Crossref] [PubMed]

Lee, R.

Y. Xu, R. Lee, and A. Yariv, “Quantum analysis and the classical analysis of spontaneous emission in a microcavity,” Phys. Rev. A 61(3), 033807 (2000).
[Crossref]

Leitner, A.

F. Reil, U. Hohenester, J. R. Krenn, and A. Leitner, “Förster-type resonant energy transfer influenced by metal nanoparticles,” Nano Lett. 8(12), 4128–4133 (2008).
[Crossref] [PubMed]

Lessard-Viger, M.

M. Lessard-Viger, M. Rioux, L. Rainville, and D. Boudreau, “FRET enhancement in multilayer core-shell nanoparticles,” Nano Lett. 9(8), 3066–3071 (2009).
[Crossref] [PubMed]

Leung, P. T.

Y. S. Kim, P. T. Leung, and T. F. George, “Classical decay rates for molecules in the presence of a spherical surface: a complete treatment,” Surf. Sci. 195(1-2), 1–14 (1988).
[Crossref]

Levi, S. A.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. Möller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89(20), 203002 (2002).
[Crossref] [PubMed]

Li, D.

B. Dong, S. Xu, J. Sun, S. Bi, D. Li, X. Bai, Y. Wang, L. Wang, and H. Song, “Multifunctional NaYF4 : Yb3+,Er3+@Ag core/shell nanocomposites: integration of upconversion imaging and photothermal therapy,” J. Mater. Chem. 21(17), 6193 (2011).
[Crossref]

Li, J.

J. Liao, Z. Yang, S. Lai, B. Shao, J. Li, J. Qiu, Z. Song, and Y. Yang, “Upconversion emission enhancement of NaYF4 :Yb,Er nanoparticles by coupling silver nanoparticle plasmons and photonic crystal effects,” J. Phys. Chem. C 118(31), 17992–17999 (2014).
[Crossref]

Liao, J.

J. Liao, Z. Yang, S. Lai, B. Shao, J. Li, J. Qiu, Z. Song, and Y. Yang, “Upconversion emission enhancement of NaYF4 :Yb,Er nanoparticles by coupling silver nanoparticle plasmons and photonic crystal effects,” J. Phys. Chem. C 118(31), 17992–17999 (2014).
[Crossref]

Lin, C.

H. P. Paudel, L. Zhong, K. Bayat, M. F. Baroughi, S. Smith, C. Lin, C. Jiang, M. T. Berry, and P. S. May, “Enhancement of near-infrared-to-visible upconversion luminescence using engineered plasmonic gold surfaces,” J. Phys. Chem. C 115(39), 19028–19036 (2011).
[Crossref]

Lin, S.

Liu, J.

Liu, N.

N. Liu, W. Qin, G. Qin, T. Jiang, and D. Zhao, “Highly plasmon-enhanced upconversion emissions from Au@β-NaYF4:Yb,Tm hybrid nanostructures,” Chem. Commun. (Camb.) 47(27), 7671–7673 (2011).
[Crossref] [PubMed]

Liu, X.

X. Huang, S. Han, W. Huang, and X. Liu, “Enhancing solar cell efficiency: the search for luminescent materials as spectral converters,” Chem. Soc. Rev. 42(1), 173–201 (2013).
[Crossref] [PubMed]

Löper, P.

S. Fischer, H. Steinkemper, P. Löper, M. Hermle, and J. C. Goldschmidt, “Modeling upconversion of erbium doped microcrystals based on experimentally determined Einstein coefficients,” J. Appl. Phys. 111(1), 013109 (2012).
[Crossref]

S. Fischer, J. C. Goldschmidt, P. Löper, G. H. Bauer, R. Brüggemann, K. Krämer, D. Biner, M. Hermle, and S. W. Glunz, “Enhancement of silicon solar cell efficiency by upconversion: optical and electrical characterization,” J. Appl. Phys. 108(4), 044912 (2010).
[Crossref]

Lu, D.

W. Park, D. Lu, and S. Ahn, “Plasmon enhancement of luminescence upconversion,” Chem. Soc. Rev. 44(10), 2940–2962 (2015).
[Crossref] [PubMed]

MacDougall, S. K. W.

S. K. W. MacDougall, A. Ivaturi, J. Marques-Hueso, K. W. Krämer, and B. S. Richards, “Broadband photoluminescent quantum yield optimisation of Er3+-doped β-NaYF4 for upconversion in silicon solar cells,” Sol. Energy Mater. Sol. Cells 128, 18–26 (2014).
[Crossref]

Malta, O. L.

O. L. Malta, P. Santa-Cruz, G. F. de Sá, and F. Auzel, “Up-conversion yield in glass ceramics containing silver,” J. Solid State Chem. 68(2), 314–319 (1987).
[Crossref]

Marques-Hueso, J.

S. K. W. MacDougall, A. Ivaturi, J. Marques-Hueso, K. W. Krämer, and B. S. Richards, “Broadband photoluminescent quantum yield optimisation of Er3+-doped β-NaYF4 for upconversion in silicon solar cells,” Sol. Energy Mater. Sol. Cells 128, 18–26 (2014).
[Crossref]

Martín-Rodríguez, R.

S. Fischer, R. Martín-Rodríguez, B. Fröhlich, K. W. Krämer, A. Meijerink, and J. C. Goldschmidt, “Upconversion quantum yield of Er3+-doped β-NaYF4 and Gd2O2S: the effects of host lattice, Er3+ doping, and excitation spectrum bandwidth,” J. Lumin. 153, 281–287 (2014).
[Crossref]

May, P. S.

H. P. Paudel, L. Zhong, K. Bayat, M. F. Baroughi, S. Smith, C. Lin, C. Jiang, M. T. Berry, and P. S. May, “Enhancement of near-infrared-to-visible upconversion luminescence using engineered plasmonic gold surfaces,” J. Phys. Chem. C 115(39), 19028–19036 (2011).
[Crossref]

Meijerink, A.

S. Fischer, R. Martín-Rodríguez, B. Fröhlich, K. W. Krämer, A. Meijerink, and J. C. Goldschmidt, “Upconversion quantum yield of Er3+-doped β-NaYF4 and Gd2O2S: the effects of host lattice, Er3+ doping, and excitation spectrum bandwidth,” J. Lumin. 153, 281–287 (2014).
[Crossref]

F. T. Rabouw, S. A. den Hartog, T. Senden, and A. Meijerink, “Photonic effects on the Förster resonance energy transfer efficiency,” Nat. Commun. 5, 3610 (2014).
[Crossref] [PubMed]

J. T. van Wijngaarden, M. M. van Schooneveld, C. de Mello Donegá, and A. Meijerink, “Enhancement of the decay rate by plasmon coupling for Eu3+ in an Au nanoparticle model system,” Europhys. Lett. 93(5), 57005 (2011).
[Crossref]

Mertens, H.

H. Mertens, A. F. Koenderink, and A. Polman, “Plasmon-enhanced luminescence near noble-metal nanospheres: Comparison of exact theory and an improved Gersten and Nitzan model,” Phys. Rev. B 76(11), 115123 (2007).
[Crossref]

H. Mertens and A. Polman, “Plasmon-enhanced erbium luminescence,” Appl. Phys. Lett. 89(21), 211107 (2006).
[Crossref]

Miura, S.

T. Nakamura, M. Fujii, S. Miura, M. Inui, and S. Hayashi, “Enhancement and suppression of energy transfer from Si nanocrystals to Er ions through a control of the photonic mode density,” Phys. Rev. B 74(4), 045302 (2006).
[Crossref]

Möller, M.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. Möller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89(20), 203002 (2002).
[Crossref] [PubMed]

Morteani, A. C.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. Möller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89(20), 203002 (2002).
[Crossref] [PubMed]

Mosk, A. P.

C. Blum, N. Zijlstra, A. Lagendijk, M. Wubs, A. P. Mosk, V. Subramaniam, and W. L. Vos, “Nanophotonic control of the Förster resonance energy transfer efficiency,” Phys. Rev. Lett. 109(20), 203601 (2012).
[Crossref] [PubMed]

Mundoor, H.

Q. C. Sun, H. Mundoor, J. C. Ribot, V. Singh, I. I. Smalyukh, and P. Nagpal, “Plasmon-enhanced energy transfer for improved upconversion of infrared radiation in doped-lanthanide nanocrystals,” Nano Lett. 14(1), 101–106 (2014).
[Crossref] [PubMed]

Nagpal, P.

Q. C. Sun, H. Mundoor, J. C. Ribot, V. Singh, I. I. Smalyukh, and P. Nagpal, “Plasmon-enhanced energy transfer for improved upconversion of infrared radiation in doped-lanthanide nanocrystals,” Nano Lett. 14(1), 101–106 (2014).
[Crossref] [PubMed]

Nakamura, T.

T. Nakamura, M. Fujii, S. Miura, M. Inui, and S. Hayashi, “Enhancement and suppression of energy transfer from Si nanocrystals to Er ions through a control of the photonic mode density,” Phys. Rev. B 74(4), 045302 (2006).
[Crossref]

Nann, T.

S. Schietinger, T. Aichele, H.-Q. Wang, T. Nann, and O. Benson, “Plasmon-enhanced upconversion in single NaYF4:Yb3+/Er3+ codoped nanocrystals,” Nano Lett. 10(1), 134–138 (2010).
[Crossref] [PubMed]

Niedereichholz, T.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. Möller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89(20), 203002 (2002).
[Crossref] [PubMed]

Nitzan, A.

J. Gersten and A. Nitzan, “Spectroscopic properties of molecules interacting with small dielectric particles,” J. Chem. Phys. 75(3), 1139–1152 (1981).
[Crossref]

Park, W.

W. Park, D. Lu, and S. Ahn, “Plasmon enhancement of luminescence upconversion,” Chem. Soc. Rev. 44(10), 2940–2962 (2015).
[Crossref] [PubMed]

Paudel, H. P.

H. P. Paudel, L. Zhong, K. Bayat, M. F. Baroughi, S. Smith, C. Lin, C. Jiang, M. T. Berry, and P. S. May, “Enhancement of near-infrared-to-visible upconversion luminescence using engineered plasmonic gold surfaces,” J. Phys. Chem. C 115(39), 19028–19036 (2011).
[Crossref]

Pichaandi, J.

S. Fischer, N. J. J. Johnson, J. Pichaandi, J. C. Goldschmidt, and F. C. J. M. van Veggel, “Upconverting core-shell nanocrystals with high quantum yield under low irradiance: On the role of isotropic and thick shells,” J. Appl. Phys. 118(19), 193105 (2015).
[Crossref]

Plessen, G. V.

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. V. Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi Appl. Mater. Sci. 205(12), 2844–2861 (2008).
[Crossref]

Polman, A.

E. Verhagen, L. Kuipers, and A. Polman, “Field enhancement in metallic subwavelength aperture arrays probed by erbium upconversion luminescence,” Opt. Express 17(17), 14586–14598 (2009).
[Crossref] [PubMed]

H. Mertens, A. F. Koenderink, and A. Polman, “Plasmon-enhanced luminescence near noble-metal nanospheres: Comparison of exact theory and an improved Gersten and Nitzan model,” Phys. Rev. B 76(11), 115123 (2007).
[Crossref]

H. Mertens and A. Polman, “Plasmon-enhanced erbium luminescence,” Appl. Phys. Lett. 89(21), 211107 (2006).
[Crossref]

M. J. A. De Dood, J. Knoester, A. Tip, and A. Polman, “Förster transfer and the local optical density of states in erbium-doped silica,” Phys. Rev. B 71, 1–5 (2005).

Prasad, P. N.

G. Chen, H. Qiu, P. N. Prasad, and X. Chen, “Upconversion nanoparticles: design, nanochemistry, and applications in theranostics,” Chem. Rev. 114(10), 5161–5214 (2014).
[Crossref] [PubMed]

Pun, E. Y. B.

Qin, G.

N. Liu, W. Qin, G. Qin, T. Jiang, and D. Zhao, “Highly plasmon-enhanced upconversion emissions from Au@β-NaYF4:Yb,Tm hybrid nanostructures,” Chem. Commun. (Camb.) 47(27), 7671–7673 (2011).
[Crossref] [PubMed]

Qin, W.

N. Liu, W. Qin, G. Qin, T. Jiang, and D. Zhao, “Highly plasmon-enhanced upconversion emissions from Au@β-NaYF4:Yb,Tm hybrid nanostructures,” Chem. Commun. (Camb.) 47(27), 7671–7673 (2011).
[Crossref] [PubMed]

Qiu, H.

G. Chen, H. Qiu, P. N. Prasad, and X. Chen, “Upconversion nanoparticles: design, nanochemistry, and applications in theranostics,” Chem. Rev. 114(10), 5161–5214 (2014).
[Crossref] [PubMed]

Qiu, J.

J. Liao, Z. Yang, S. Lai, B. Shao, J. Li, J. Qiu, Z. Song, and Y. Yang, “Upconversion emission enhancement of NaYF4 :Yb,Er nanoparticles by coupling silver nanoparticle plasmons and photonic crystal effects,” J. Phys. Chem. C 118(31), 17992–17999 (2014).
[Crossref]

Rabouw, F. T.

F. T. Rabouw, S. A. den Hartog, T. Senden, and A. Meijerink, “Photonic effects on the Förster resonance energy transfer efficiency,” Nat. Commun. 5, 3610 (2014).
[Crossref] [PubMed]

Rainville, L.

M. Lessard-Viger, M. Rioux, L. Rainville, and D. Boudreau, “FRET enhancement in multilayer core-shell nanoparticles,” Nano Lett. 9(8), 3066–3071 (2009).
[Crossref] [PubMed]

Reil, F.

F. Reil, U. Hohenester, J. R. Krenn, and A. Leitner, “Förster-type resonant energy transfer influenced by metal nanoparticles,” Nano Lett. 8(12), 4128–4133 (2008).
[Crossref] [PubMed]

Reinhoudt, D. N.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. Möller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89(20), 203002 (2002).
[Crossref] [PubMed]

Ribot, J. C.

Q. C. Sun, H. Mundoor, J. C. Ribot, V. Singh, I. I. Smalyukh, and P. Nagpal, “Plasmon-enhanced energy transfer for improved upconversion of infrared radiation in doped-lanthanide nanocrystals,” Nano Lett. 14(1), 101–106 (2014).
[Crossref] [PubMed]

Richards, B. S.

S. K. W. MacDougall, A. Ivaturi, J. Marques-Hueso, K. W. Krämer, and B. S. Richards, “Broadband photoluminescent quantum yield optimisation of Er3+-doped β-NaYF4 for upconversion in silicon solar cells,” Sol. Energy Mater. Sol. Cells 128, 18–26 (2014).
[Crossref]

A. Shalav, B. S. Richards, and M. A. Green, “Luminescent layers for enhanced silicon solar cell performance: up-conversion,” Sol. Energy Mater. Sol. Cells 91(9), 829–842 (2007).
[Crossref]

Rioux, M.

M. Lessard-Viger, M. Rioux, L. Rainville, and D. Boudreau, “FRET enhancement in multilayer core-shell nanoparticles,” Nano Lett. 9(8), 3066–3071 (2009).
[Crossref] [PubMed]

Rockstuhl, C.

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. V. Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi Appl. Mater. Sci. 205(12), 2844–2861 (2008).
[Crossref]

Rogobete, L.

Salleo, A.

D. M. Wu, A. García-Etxarri, A. Salleo, and J. A. Dionne, “Plasmon-Enhanced Upconversion,” J. Phys. Chem. Lett. 5(22), 4020–4031 (2014).
[Crossref] [PubMed]

Sandoghdar, V.

F. Kaminski, V. Sandoghdar, and M. Agio, “Finite-difference time-domain modeling of decay rates in the near field of metal nanostructures,” J. Comput. Theor. Nanosci. 4, 635–643 (2007).

L. Rogobete, F. Kaminski, M. Agio, and V. Sandoghdar, “Design of plasmonic nanoantennae for enhancing spontaneous emission,” Opt. Lett. 32(12), 1623–1625 (2007).
[Crossref] [PubMed]

Santa-Cruz, P.

O. L. Malta, P. Santa-Cruz, G. F. de Sá, and F. Auzel, “Up-conversion yield in glass ceramics containing silver,” J. Solid State Chem. 68(2), 314–319 (1987).
[Crossref]

Schietinger, S.

S. Schietinger, T. Aichele, H.-Q. Wang, T. Nann, and O. Benson, “Plasmon-enhanced upconversion in single NaYF4:Yb3+/Er3+ codoped nanocrystals,” Nano Lett. 10(1), 134–138 (2010).
[Crossref] [PubMed]

Seifert, G.

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. V. Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi Appl. Mater. Sci. 205(12), 2844–2861 (2008).
[Crossref]

Senden, T.

F. T. Rabouw, S. A. den Hartog, T. Senden, and A. Meijerink, “Photonic effects on the Förster resonance energy transfer efficiency,” Nat. Commun. 5, 3610 (2014).
[Crossref] [PubMed]

Shalav, A.

A. Shalav, B. S. Richards, and M. A. Green, “Luminescent layers for enhanced silicon solar cell performance: up-conversion,” Sol. Energy Mater. Sol. Cells 91(9), 829–842 (2007).
[Crossref]

Shao, B.

J. Liao, Z. Yang, S. Lai, B. Shao, J. Li, J. Qiu, Z. Song, and Y. Yang, “Upconversion emission enhancement of NaYF4 :Yb,Er nanoparticles by coupling silver nanoparticle plasmons and photonic crystal effects,” J. Phys. Chem. C 118(31), 17992–17999 (2014).
[Crossref]

Singh, V.

Q. C. Sun, H. Mundoor, J. C. Ribot, V. Singh, I. I. Smalyukh, and P. Nagpal, “Plasmon-enhanced energy transfer for improved upconversion of infrared radiation in doped-lanthanide nanocrystals,” Nano Lett. 14(1), 101–106 (2014).
[Crossref] [PubMed]

Smalyukh, I. I.

Q. C. Sun, H. Mundoor, J. C. Ribot, V. Singh, I. I. Smalyukh, and P. Nagpal, “Plasmon-enhanced energy transfer for improved upconversion of infrared radiation in doped-lanthanide nanocrystals,” Nano Lett. 14(1), 101–106 (2014).
[Crossref] [PubMed]

Smith, S.

H. P. Paudel, L. Zhong, K. Bayat, M. F. Baroughi, S. Smith, C. Lin, C. Jiang, M. T. Berry, and P. S. May, “Enhancement of near-infrared-to-visible upconversion luminescence using engineered plasmonic gold surfaces,” J. Phys. Chem. C 115(39), 19028–19036 (2011).
[Crossref]

Song, F.

Song, H.

B. Dong, S. Xu, J. Sun, S. Bi, D. Li, X. Bai, Y. Wang, L. Wang, and H. Song, “Multifunctional NaYF4 : Yb3+,Er3+@Ag core/shell nanocomposites: integration of upconversion imaging and photothermal therapy,” J. Mater. Chem. 21(17), 6193 (2011).
[Crossref]

Song, Z.

J. Liao, Z. Yang, S. Lai, B. Shao, J. Li, J. Qiu, Z. Song, and Y. Yang, “Upconversion emission enhancement of NaYF4 :Yb,Er nanoparticles by coupling silver nanoparticle plasmons and photonic crystal effects,” J. Phys. Chem. C 118(31), 17992–17999 (2014).
[Crossref]

Steinkemper, H.

Subramaniam, V.

C. Blum, N. Zijlstra, A. Lagendijk, M. Wubs, A. P. Mosk, V. Subramaniam, and W. L. Vos, “Nanophotonic control of the Förster resonance energy transfer efficiency,” Phys. Rev. Lett. 109(20), 203601 (2012).
[Crossref] [PubMed]

Sudheendra, L.

W. Deng, L. Sudheendra, J. Zhao, J. Fu, D. Jin, I. M. Kennedy, and E. M. Goldys, “Upconversion in NaYF4:Yb, Er nanoparticles amplified by metal nanostructures,” Nanotechnology 22(32), 325604 (2011).
[Crossref] [PubMed]

Sun, J.

B. Dong, S. Xu, J. Sun, S. Bi, D. Li, X. Bai, Y. Wang, L. Wang, and H. Song, “Multifunctional NaYF4 : Yb3+,Er3+@Ag core/shell nanocomposites: integration of upconversion imaging and photothermal therapy,” J. Mater. Chem. 21(17), 6193 (2011).
[Crossref]

Sun, Q. C.

Q. C. Sun, H. Mundoor, J. C. Ribot, V. Singh, I. I. Smalyukh, and P. Nagpal, “Plasmon-enhanced energy transfer for improved upconversion of infrared radiation in doped-lanthanide nanocrystals,” Nano Lett. 14(1), 101–106 (2014).
[Crossref] [PubMed]

Thoma, R. E.

R. E. Thoma, H. Insley, and G. M. Hebert, “The sodium fluoride-lanthanide trifluoride systems,” Inorg. Chem. 5(7), 1222–1229 (1966).
[Crossref]

Tip, A.

M. J. A. De Dood, J. Knoester, A. Tip, and A. Polman, “Förster transfer and the local optical density of states in erbium-doped silica,” Phys. Rev. B 71, 1–5 (2005).

van Schooneveld, M. M.

J. T. van Wijngaarden, M. M. van Schooneveld, C. de Mello Donegá, and A. Meijerink, “Enhancement of the decay rate by plasmon coupling for Eu3+ in an Au nanoparticle model system,” Europhys. Lett. 93(5), 57005 (2011).
[Crossref]

van Veggel, F. C. J. M.

S. Fischer, N. J. J. Johnson, J. Pichaandi, J. C. Goldschmidt, and F. C. J. M. van Veggel, “Upconverting core-shell nanocrystals with high quantum yield under low irradiance: On the role of isotropic and thick shells,” J. Appl. Phys. 118(19), 193105 (2015).
[Crossref]

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. Möller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89(20), 203002 (2002).
[Crossref] [PubMed]

van Wijngaarden, J. T.

J. T. van Wijngaarden, M. M. van Schooneveld, C. de Mello Donegá, and A. Meijerink, “Enhancement of the decay rate by plasmon coupling for Eu3+ in an Au nanoparticle model system,” Europhys. Lett. 93(5), 57005 (2011).
[Crossref]

Verhagen, E.

von Plessen, G.

Vos, W. L.

C. Blum, N. Zijlstra, A. Lagendijk, M. Wubs, A. P. Mosk, V. Subramaniam, and W. L. Vos, “Nanophotonic control of the Förster resonance energy transfer efficiency,” Phys. Rev. Lett. 109(20), 203601 (2012).
[Crossref] [PubMed]

Wackerow, S.

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. V. Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi Appl. Mater. Sci. 205(12), 2844–2861 (2008).
[Crossref]

Wang, H.-Q.

S. Schietinger, T. Aichele, H.-Q. Wang, T. Nann, and O. Benson, “Plasmon-enhanced upconversion in single NaYF4:Yb3+/Er3+ codoped nanocrystals,” Nano Lett. 10(1), 134–138 (2010).
[Crossref] [PubMed]

Wang, L.

B. Dong, S. Xu, J. Sun, S. Bi, D. Li, X. Bai, Y. Wang, L. Wang, and H. Song, “Multifunctional NaYF4 : Yb3+,Er3+@Ag core/shell nanocomposites: integration of upconversion imaging and photothermal therapy,” J. Mater. Chem. 21(17), 6193 (2011).
[Crossref]

Wang, Q.

Wang, Y.

B. Dong, S. Xu, J. Sun, S. Bi, D. Li, X. Bai, Y. Wang, L. Wang, and H. Song, “Multifunctional NaYF4 : Yb3+,Er3+@Ag core/shell nanocomposites: integration of upconversion imaging and photothermal therapy,” J. Mater. Chem. 21(17), 6193 (2011).
[Crossref]

Welsch, D.-G.

H. T. Dung, L. Knöll, and D.-G. Welsch, “Intermolecular energy transfer in the presence of dispersing and absorbing media,” Phys. Rev. A 65(4), 043813 (2002).
[Crossref]

West, J. L.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7(7), 1929–1934 (2007).
[Crossref] [PubMed]

Wolf, S.

Wu, D. M.

D. M. Wu, A. García-Etxarri, A. Salleo, and J. A. Dionne, “Plasmon-Enhanced Upconversion,” J. Phys. Chem. Lett. 5(22), 4020–4031 (2014).
[Crossref] [PubMed]

Wubs, M.

C. Blum, N. Zijlstra, A. Lagendijk, M. Wubs, A. P. Mosk, V. Subramaniam, and W. L. Vos, “Nanophotonic control of the Förster resonance energy transfer efficiency,” Phys. Rev. Lett. 109(20), 203601 (2012).
[Crossref] [PubMed]

Xu, S.

B. Dong, S. Xu, J. Sun, S. Bi, D. Li, X. Bai, Y. Wang, L. Wang, and H. Song, “Multifunctional NaYF4 : Yb3+,Er3+@Ag core/shell nanocomposites: integration of upconversion imaging and photothermal therapy,” J. Mater. Chem. 21(17), 6193 (2011).
[Crossref]

Xu, Y.

Y. Xu, R. Lee, and A. Yariv, “Quantum analysis and the classical analysis of spontaneous emission in a microcavity,” Phys. Rev. A 61(3), 033807 (2000).
[Crossref]

Yang, Y.

J. Liao, Z. Yang, S. Lai, B. Shao, J. Li, J. Qiu, Z. Song, and Y. Yang, “Upconversion emission enhancement of NaYF4 :Yb,Er nanoparticles by coupling silver nanoparticle plasmons and photonic crystal effects,” J. Phys. Chem. C 118(31), 17992–17999 (2014).
[Crossref]

Yang, Z.

J. Liao, Z. Yang, S. Lai, B. Shao, J. Li, J. Qiu, Z. Song, and Y. Yang, “Upconversion emission enhancement of NaYF4 :Yb,Er nanoparticles by coupling silver nanoparticle plasmons and photonic crystal effects,” J. Phys. Chem. C 118(31), 17992–17999 (2014).
[Crossref]

Yariv, A.

Y. Xu, R. Lee, and A. Yariv, “Quantum analysis and the classical analysis of spontaneous emission in a microcavity,” Phys. Rev. A 61(3), 033807 (2000).
[Crossref]

Zhang, R.

Zhang, Y.

Zhang, Z.

Zhao, D.

N. Liu, W. Qin, G. Qin, T. Jiang, and D. Zhao, “Highly plasmon-enhanced upconversion emissions from Au@β-NaYF4:Yb,Tm hybrid nanostructures,” Chem. Commun. (Camb.) 47(27), 7671–7673 (2011).
[Crossref] [PubMed]

Zhao, J.

W. Deng, L. Sudheendra, J. Zhao, J. Fu, D. Jin, I. M. Kennedy, and E. M. Goldys, “Upconversion in NaYF4:Yb, Er nanoparticles amplified by metal nanostructures,” Nanotechnology 22(32), 325604 (2011).
[Crossref] [PubMed]

Zhong, L.

H. P. Paudel, L. Zhong, K. Bayat, M. F. Baroughi, S. Smith, C. Lin, C. Jiang, M. T. Berry, and P. S. May, “Enhancement of near-infrared-to-visible upconversion luminescence using engineered plasmonic gold surfaces,” J. Phys. Chem. C 115(39), 19028–19036 (2011).
[Crossref]

Zhu, H.

Zijlstra, N.

C. Blum, N. Zijlstra, A. Lagendijk, M. Wubs, A. P. Mosk, V. Subramaniam, and W. L. Vos, “Nanophotonic control of the Förster resonance energy transfer efficiency,” Phys. Rev. Lett. 109(20), 203601 (2012).
[Crossref] [PubMed]

Zurita-Sánchez, J. R.

J. A. Gonzaga-Galeana and J. R. Zurita-Sánchez, “A revisitation of the Förster energy transfer near a metallic spherical nanoparticle: (1) Efficiency enhancement or reduction? (2) The control of the Förster radius of the unbounded medium. (3) The impact of the local density of states,” J. Chem. Phys. 139(24), 244302 (2013).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

J. C. Goldschmidt and S. Fischer, “Upconversion for photovoltaics - a review of materials, devices and concepts for performance enhancement,” Adv. Opt. Mater. 3(4), 510–535 (2015).
[Crossref]

Am. J. Phys. (1)

C. F. Bohren, “How can a particle absorb more than the light incident on it?” Am. J. Phys. 51(4), 323–327 (1983).
[Crossref]

Appl. Phys. Lett. (2)

H. Mertens and A. Polman, “Plasmon-enhanced erbium luminescence,” Appl. Phys. Lett. 89(21), 211107 (2006).
[Crossref]

T. Aisaka, M. Fujii, and S. Hayashi, “Enhancement of upconversion luminescence of Er doped Al2O3 films by Ag island films,” Appl. Phys. Lett. 92(13), 132105 (2008).
[Crossref]

Chem. Commun. (Camb.) (1)

N. Liu, W. Qin, G. Qin, T. Jiang, and D. Zhao, “Highly plasmon-enhanced upconversion emissions from Au@β-NaYF4:Yb,Tm hybrid nanostructures,” Chem. Commun. (Camb.) 47(27), 7671–7673 (2011).
[Crossref] [PubMed]

Chem. Rev. (1)

G. Chen, H. Qiu, P. N. Prasad, and X. Chen, “Upconversion nanoparticles: design, nanochemistry, and applications in theranostics,” Chem. Rev. 114(10), 5161–5214 (2014).
[Crossref] [PubMed]

Chem. Soc. Rev. (2)

X. Huang, S. Han, W. Huang, and X. Liu, “Enhancing solar cell efficiency: the search for luminescent materials as spectral converters,” Chem. Soc. Rev. 42(1), 173–201 (2013).
[Crossref] [PubMed]

W. Park, D. Lu, and S. Ahn, “Plasmon enhancement of luminescence upconversion,” Chem. Soc. Rev. 44(10), 2940–2962 (2015).
[Crossref] [PubMed]

Europhys. Lett. (1)

J. T. van Wijngaarden, M. M. van Schooneveld, C. de Mello Donegá, and A. Meijerink, “Enhancement of the decay rate by plasmon coupling for Eu3+ in an Au nanoparticle model system,” Europhys. Lett. 93(5), 57005 (2011).
[Crossref]

Inorg. Chem. (1)

R. E. Thoma, H. Insley, and G. M. Hebert, “The sodium fluoride-lanthanide trifluoride systems,” Inorg. Chem. 5(7), 1222–1229 (1966).
[Crossref]

J. Appl. Phys. (4)

S. Fischer, H. Steinkemper, P. Löper, M. Hermle, and J. C. Goldschmidt, “Modeling upconversion of erbium doped microcrystals based on experimentally determined Einstein coefficients,” J. Appl. Phys. 111(1), 013109 (2012).
[Crossref]

S. Fischer, N. J. J. Johnson, J. Pichaandi, J. C. Goldschmidt, and F. C. J. M. van Veggel, “Upconverting core-shell nanocrystals with high quantum yield under low irradiance: On the role of isotropic and thick shells,” J. Appl. Phys. 118(19), 193105 (2015).
[Crossref]

S. Fischer, J. C. Goldschmidt, P. Löper, G. H. Bauer, R. Brüggemann, K. Krämer, D. Biner, M. Hermle, and S. W. Glunz, “Enhancement of silicon solar cell efficiency by upconversion: optical and electrical characterization,” J. Appl. Phys. 108(4), 044912 (2010).
[Crossref]

R. Esteban, M. Laroche, and J. J. Greffet, “Influence of metallic nanoparticles on upconversion processes,” J. Appl. Phys. 105(3), 033107 (2009).
[Crossref]

J. Chem. Phys. (2)

J. Gersten and A. Nitzan, “Spectroscopic properties of molecules interacting with small dielectric particles,” J. Chem. Phys. 75(3), 1139–1152 (1981).
[Crossref]

J. A. Gonzaga-Galeana and J. R. Zurita-Sánchez, “A revisitation of the Förster energy transfer near a metallic spherical nanoparticle: (1) Efficiency enhancement or reduction? (2) The control of the Förster radius of the unbounded medium. (3) The impact of the local density of states,” J. Chem. Phys. 139(24), 244302 (2013).
[Crossref] [PubMed]

J. Comput. Theor. Nanosci. (1)

F. Kaminski, V. Sandoghdar, and M. Agio, “Finite-difference time-domain modeling of decay rates in the near field of metal nanostructures,” J. Comput. Theor. Nanosci. 4, 635–643 (2007).

J. Lumin. (1)

S. Fischer, R. Martín-Rodríguez, B. Fröhlich, K. W. Krämer, A. Meijerink, and J. C. Goldschmidt, “Upconversion quantum yield of Er3+-doped β-NaYF4 and Gd2O2S: the effects of host lattice, Er3+ doping, and excitation spectrum bandwidth,” J. Lumin. 153, 281–287 (2014).
[Crossref]

J. Mater. Chem. (1)

B. Dong, S. Xu, J. Sun, S. Bi, D. Li, X. Bai, Y. Wang, L. Wang, and H. Song, “Multifunctional NaYF4 : Yb3+,Er3+@Ag core/shell nanocomposites: integration of upconversion imaging and photothermal therapy,” J. Mater. Chem. 21(17), 6193 (2011).
[Crossref]

J. Phys. Chem. C (3)

J. Liao, Z. Yang, S. Lai, B. Shao, J. Li, J. Qiu, Z. Song, and Y. Yang, “Upconversion emission enhancement of NaYF4 :Yb,Er nanoparticles by coupling silver nanoparticle plasmons and photonic crystal effects,” J. Phys. Chem. C 118(31), 17992–17999 (2014).
[Crossref]

H. P. Paudel, L. Zhong, K. Bayat, M. F. Baroughi, S. Smith, C. Lin, C. Jiang, M. T. Berry, and P. S. May, “Enhancement of near-infrared-to-visible upconversion luminescence using engineered plasmonic gold surfaces,” J. Phys. Chem. C 115(39), 19028–19036 (2011).
[Crossref]

S. Fischer, B. Fröhlich, K. W. Krämer, and J. C. Goldschmidt, “Relation between excitation power density and Er3+ doping yielding the highest absolute upconversion quantum yield,” J. Phys. Chem. C 118(51), 30106–30114 (2014).
[Crossref]

J. Phys. Chem. Lett. (1)

D. M. Wu, A. García-Etxarri, A. Salleo, and J. A. Dionne, “Plasmon-Enhanced Upconversion,” J. Phys. Chem. Lett. 5(22), 4020–4031 (2014).
[Crossref] [PubMed]

J. Solid State Chem. (1)

O. L. Malta, P. Santa-Cruz, G. F. de Sá, and F. Auzel, “Up-conversion yield in glass ceramics containing silver,” J. Solid State Chem. 68(2), 314–319 (1987).
[Crossref]

Nano Lett. (5)

Q. C. Sun, H. Mundoor, J. C. Ribot, V. Singh, I. I. Smalyukh, and P. Nagpal, “Plasmon-enhanced energy transfer for improved upconversion of infrared radiation in doped-lanthanide nanocrystals,” Nano Lett. 14(1), 101–106 (2014).
[Crossref] [PubMed]

S. Schietinger, T. Aichele, H.-Q. Wang, T. Nann, and O. Benson, “Plasmon-enhanced upconversion in single NaYF4:Yb3+/Er3+ codoped nanocrystals,” Nano Lett. 10(1), 134–138 (2010).
[Crossref] [PubMed]

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7(7), 1929–1934 (2007).
[Crossref] [PubMed]

F. Reil, U. Hohenester, J. R. Krenn, and A. Leitner, “Förster-type resonant energy transfer influenced by metal nanoparticles,” Nano Lett. 8(12), 4128–4133 (2008).
[Crossref] [PubMed]

M. Lessard-Viger, M. Rioux, L. Rainville, and D. Boudreau, “FRET enhancement in multilayer core-shell nanoparticles,” Nano Lett. 9(8), 3066–3071 (2009).
[Crossref] [PubMed]

Nanotechnology (1)

W. Deng, L. Sudheendra, J. Zhao, J. Fu, D. Jin, I. M. Kennedy, and E. M. Goldys, “Upconversion in NaYF4:Yb, Er nanoparticles amplified by metal nanostructures,” Nanotechnology 22(32), 325604 (2011).
[Crossref] [PubMed]

Nat. Commun. (1)

F. T. Rabouw, S. A. den Hartog, T. Senden, and A. Meijerink, “Photonic effects on the Förster resonance energy transfer efficiency,” Nat. Commun. 5, 3610 (2014).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (1)

Phys. Rev. A (2)

Y. Xu, R. Lee, and A. Yariv, “Quantum analysis and the classical analysis of spontaneous emission in a microcavity,” Phys. Rev. A 61(3), 033807 (2000).
[Crossref]

H. T. Dung, L. Knöll, and D.-G. Welsch, “Intermolecular energy transfer in the presence of dispersing and absorbing media,” Phys. Rev. A 65(4), 043813 (2002).
[Crossref]

Phys. Rev. B (4)

M. J. A. De Dood, J. Knoester, A. Tip, and A. Polman, “Förster transfer and the local optical density of states in erbium-doped silica,” Phys. Rev. B 71, 1–5 (2005).

T. Nakamura, M. Fujii, S. Miura, M. Inui, and S. Hayashi, “Enhancement and suppression of energy transfer from Si nanocrystals to Er ions through a control of the photonic mode density,” Phys. Rev. B 74(4), 045302 (2006).
[Crossref]

A. O. Govorov, J. Lee, and N. A. Kotov, “Theory of plasmon-enhanced Förster energy transfer in optically excited semiconductor and metal nanoparticles,” Phys. Rev. B 76(12), 125308 (2007).
[Crossref]

H. Mertens, A. F. Koenderink, and A. Polman, “Plasmon-enhanced luminescence near noble-metal nanospheres: Comparison of exact theory and an improved Gersten and Nitzan model,” Phys. Rev. B 76(11), 115123 (2007).
[Crossref]

Phys. Rev. Lett. (2)

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. Möller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89(20), 203002 (2002).
[Crossref] [PubMed]

C. Blum, N. Zijlstra, A. Lagendijk, M. Wubs, A. P. Mosk, V. Subramaniam, and W. L. Vos, “Nanophotonic control of the Förster resonance energy transfer efficiency,” Phys. Rev. Lett. 109(20), 203601 (2012).
[Crossref] [PubMed]

Phys. Status Solidi Appl. Mater. Sci. (1)

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. V. Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi Appl. Mater. Sci. 205(12), 2844–2861 (2008).
[Crossref]

Small (1)

D. K. Chatterjee, M. K. Gnanasammandhan, and Y. Zhang, “Small upconverting fluorescent nanoparticles for biomedical applications,” Small 6(24), 2781–2795 (2010).
[Crossref] [PubMed]

Sol. Energy Mater. Sol. Cells (2)

A. Shalav, B. S. Richards, and M. A. Green, “Luminescent layers for enhanced silicon solar cell performance: up-conversion,” Sol. Energy Mater. Sol. Cells 91(9), 829–842 (2007).
[Crossref]

S. K. W. MacDougall, A. Ivaturi, J. Marques-Hueso, K. W. Krämer, and B. S. Richards, “Broadband photoluminescent quantum yield optimisation of Er3+-doped β-NaYF4 for upconversion in silicon solar cells,” Sol. Energy Mater. Sol. Cells 128, 18–26 (2014).
[Crossref]

Surf. Sci. (1)

Y. S. Kim, P. T. Leung, and T. F. George, “Classical decay rates for molecules in the presence of a spherical surface: a complete treatment,” Surf. Sci. 195(1-2), 1–14 (1988).
[Crossref]

Other (1)

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Energy level diagram of Er3+ and upconversion processes under 4I13/24I15/2 excitation. The upconversion rate equation model considers ground and excited state absorption (GSA, ESA) as well as spontaneous emission (SPE), multi-phonon relaxation (MPR), energy transfer upconversion (ETU) and its reverse process, cross-relaxation (CR). Details can be found in [30].
Fig. 2
Fig. 2 Two different photonic effects have been considered in the simulations. (a) The local optical field is a result of the incident optical field and the near-field generated by the electron oscillation in the nanoparticle. (b) The coupling of the electric dipole emitter (Er3+) with the metal nanoparticle for two polarizations of the dipole oscillation relative to the surface of the metal nanoparticle, parallel (PPOL) and perpendicular (SPOL). This coupling only depends on the distance between the dipole emitter and the metal nanoparticle due to the spherical symmetry.
Fig. 3
Fig. 3 Change factors of the spontaneous emission and additional non-radiative loss channels due to the presence of the GNP for PPOL and SPOL polarization of the electric dipole emitter as a function of the distance to the GNP with a diameter of 300 nm for (a) 1523 nm and (b) 980 nm dipole emitters. The radiative and non-radiative change factors averaged over the polarizations are shown in (c). An enlargement to better display the values close to 1 is shown in (d). The non-radiative losses are particularly strong at very short distances between the dipole emitter and the GNP. For distances larger than approximately 50 nm the non-radiative loss rates become lower than 10% of the intrinsic spontaneous emission rate.
Fig. 4
Fig. 4 (a-c) Illustration of the cubic simulation volume and the different planes used to show the data in the contour plots below. (d-f) Local absorption change factor γAbs in the planes indicated in (a-c) for a spherical GNP with a diameter of 300 nm in the center at x = y = z = 0 nm at a wavelength of 1523 nm. (g-i). Luminescence enhancement factors γ31,Lum for the transition 4I11/24I15/2 with a center wavelength of 980 nm. (j-l) The local UCQY of the 980 nm transition γ31,UCQY can be strongly enhanced. However, strong quenching of the internal UCQY occurs for distances shorter than 40 nm between the GNP and the upconverter. For each enhancement factor (rows) the same color scale was used in all three plots. All results were determined for an incident irradiance of 0.1 W/cm2. The dotted lines in (j) and (k) frame a large volume where significant UCQY enhancement can be achieved with moderate requirements on polarization of the excitation and positioning of the upconverter material.
Fig. 5
Fig. 5 Enhancement factor of the upconversion luminescence γLum for a 300 nm diameter GNP and an irradiance of 0.1 W/cm2 in the x-z-plane at y = 0 nm for the transitions to the ground state 4I15/2 from (a) 4I9/2 with 805 nm, (b) 4F9/2 with 655 nm, and (c) (2H11/2, 4S3/2) at 540 nm. (d), (e), and (f) show the corresponding enhancement factors of the upconversion quantum yield γUCQY. Whereas the UCQY of the transitions 4F9/2 and the (2H11/2, 4S3/2) to 4I15/2 can be strongly enhanced at a larger distance of >100 nm to the GNP, a much weaker enhancement is determined for the 4I9/2 transition. This can be mainly attributed to the strong multiphonon relaxation 4I9/24I11/2, which remains the dominanting de-excitation processes of the 4I9/2 population.
Fig. 6
Fig. 6 Change factors of absorption, upconversion luminescence, and UCQY as functions of distance between the upconverter and the surface of the GNP along the x-axis for y = z = 0 nm. For distances <10 nm, the upconversion luminescence and UCQY are strongly quenched. For larger distances the upconversion luminescence is enhanced, by up to a factor of 4.5 × at a distance of 35 nm. At this distance the UCQY is still quenched but starts to be enhanced at distances >45 nm and peaks with a γ31,UCQY of 1.45 × at around 125 nm.
Fig. 7
Fig. 7 Highest locally determined values of the enhancement factors for (a) the upconversion luminescence and (b) the UCQY as a function of the diameter of the GNPs for the 980 nm transition 4I11/24I15/2. Higher enhancement factors were computed for larger diameters of the spherical GNPs due to the plasmonic resonance shift to the NIR with increasing size.
Fig. 8
Fig. 8 Scattering efficiency Qscat of spherical gold nanoparticles (GNPs) with different diameters. The resonance peaks shift further into the NIR for larger particles. Furthermore, the first order resonance peak broadens for larger particles. Additionally, higher order resonances at shorter wavelengths are more pronounced for larger gold particles.
Fig. 9
Fig. 9 Upconversion quantum yield (UCQY) values calculated for different gold nanoparticle diameters as a function of the incident irradiance. UCQY values are shown for the transition from (a) 4I11/2, (b) 4I9/2, (c) 4F9/2, and (d) 4S3/2 + 2H11/2 to the ground state 4I15/2 with center emission wavelengths (λem) of 980, 805, 655, and 540 nm, respectively. The values were determined at the hot spots and therefore represent the upper limit of the UCQY enhancement in our analysis.

Tables (1)

Tables Icon

Table 1 Coordinates of the maximum enhancement factor of the UCQY for different GNP diameters and different irradiances of the incident excitation. The values of the enhancement factor are shown in Fig. 7. The coordinate y equals 0 nm in all cases and the values in parentheses are the distances between the surface of the GNP and the upconverter.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I ω,plasmon (ω,r)= γ E (r) I ω (ω),
A if,plasmon (r)= A if ( γ if,rad (r)+ γ if,nonrad (r)).
L if (r, I ω )= N i (r, I ω ) γ if,rad (r) A if ,
a UC (r, I ω )= γ E (r) n c I ω ( B 12 N 1 (r, I ω )+ B 24 N 2 (r, I ω )+ B 46 N 4 (r, I ω )), = γ E (r) a UC,0 ( I ω )
UCQY if (r, I ω )= L if (r, I ω ) a UC (r, I ω ) .

Metrics