Abstract

Metamaterial absorbers have been demonstrated across much of the electromagnetic spectrum and exhibit both broad and narrow-band absorption for normally incident radiation. Absorption diminishes for increasing angles of incidence and transverse electric polarization falls off much more rapidly than transverse magnetic. We unambiguously demonstrate that broad-angle TM behavior cannot be associated with periodicity, but rather is due to coupling with a surface electromagnetic mode that is both supported by, and well described via the effective optical constants of the metamaterial where we achieve a resonant wavelength that is 19.1 times larger than the unit cell. Experimental results are supported by simulations and we highlight the potential to modify the angular response of absorbers by tailoring the surface wave.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Subcell misalignment in vertically cascaded metamaterial absorbers

Qin Chen, Fuhe Sun, and Shichao Song
Opt. Express 21(13) 15896-15903 (2013)

Dual and broadband terahertz metamaterial absorber based on a compact resonator structure

Yongzhi Cheng, Haijun Zou, Jiaji Yang, Xuesong Mao, and Rongzhou Gong
Opt. Mater. Express 8(10) 3104-3114 (2018)

Transparently curved metamaterial with broadband millimeter wave absorption

Cheng Zhang, Jin Yang, Wenkang Cao, Wei Yuan, Junchen Ke, Liuxi Yang, Qiang Cheng, and Tiejun Cui
Photon. Res. 7(4) 478-485 (2019)

References

  • View by:
  • |
  • |
  • |

  1. D. Shrekenhamer, W. Xu, S. Venkatesh, D. Schurig, S. Sonkusale, and W. Padilla, “Metamaterial perfect absorber microwave focal plane array,” Phys. Rev. Lett. 109, 177401 (2012).
    [Crossref]
  2. J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).
    [Crossref]
  3. H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16, 7181 (2008).
    [Crossref] [PubMed]
  4. X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104, 207403 (2010)
    [Crossref] [PubMed]
  5. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342 (2010).
    [Crossref] [PubMed]
  6. X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
    [Crossref] [PubMed]
  7. K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
    [Crossref] [PubMed]
  8. D. Shrekenhamer, W.-C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110, 177403 (2013).
    [Crossref] [PubMed]
  9. C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24, OP181 (2012).
  10. D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett. 88, 041109 (2006).
    [Crossref]
  11. W. Padilla, M. Aronsson, C. Highstrete, M. Lee, A. Taylor, and R. Averitt, “Electrically resonant terahertz metamaterials: theoretical and experimental investigations,” Phys. Rev. B 75, 041102 (2007).
    [Crossref]
  12. C. Simovski, “Material parameters of metamaterials (a review),” Opt. Spectrosc. 107, 726 (2009).
    [Crossref]
  13. F. Costa, S. Genovesi, A. Monorchio, and G. Manara, “A circuit-based model for the interpretation of perfect metamaterial absorbers,” IEEE Trans. Antennas Propag. 61, 1201 (2013)
    [Crossref]
  14. J. B. Pendry, L. Mart’in-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847 (2004).
    [Crossref] [PubMed]
  15. L.-Y. Chen, W.-S. Tsai, W.-H. Hsu, K.-Y. Chen, and W.-S. Wang, “Fabrication and characterization of benzocyclobutene optical waveguides by UV pulsed-laser illumination,” IEEE J. Quantum Electron. 43, 303 (2007).
    [Crossref]
  16. M. A. Ordal, R. J. Bell, R. W. Alexander, L. L. Long, and M. R. Querry, “Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W.,” Appl. Opt. 24, 4493 (1985)
    [Crossref] [PubMed]
  17. A. Rusina, M. Durach, and M. I. Stockman, “Theory of spoof surface plasmons in real metals,” Appl. Phys. A 100, 375 (2010).
    [Crossref]
  18. W.-C. Chen, N. I. Landy, K. Kempa, and W. J. Padilla, “Optical transmission: a subwavelength extraordinaryopticaltransmission channel in babinet metamaterials,” Adv. Opt. Mat. 1, 221 (2013).
    [Crossref]
  19. A. Harvey, “Periodic and guiding structures at microwave frequencies,” IEEE Trans. Microwave Theory Tech. 8, 30 (1960).
    [Crossref]
  20. A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308, 670 (2005).
    [Crossref] [PubMed]
  21. F. J. Garcia-Vidal, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729 (2010).
    [Crossref]
  22. H. Raether, Surface plasmons on smooth and rough surfaces and on gratings, (Springer, 1988), Vol. 111, pp. 136.
  23. B. Reinhard, O. Paul, R. Beigang, and M. Rahm, “Experimental and numerical studies of terahertz surface waves on a thin metamaterial film,” Opt. Lett. 35, 1320 (2010).
    [Crossref] [PubMed]
  24. C.-F. Chen, C.-H. Park, B. W. Boudouris, J. Horng, B. Geng, C. Girit, A. ettl, M. F. Crommie, R. A. Segalman, S. G. Louie, and F. Wang, “Controlling inelastic light scattering quantum pathways in graphene,” Nature 471, 617 (2011).
    [Crossref] [PubMed]
  25. N. V. Ilin, I. G. Kondratiev, and A. I. irnov, “True surface waves guided by metamaterials,” Bull. Russian Acad. Sci. Phys. 72, 118 (2008).
  26. S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11, 426 (2012).
    [Crossref] [PubMed]
  27. D. R. Smith, S. Schultz, P. Markos, and C. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
    [Crossref]
  28. D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71, 036617 (2005).
    [Crossref]
  29. W.-C. Chen, A. Totachawattana, K. Fan, J. L. Ponsetto, A. C. Strikwerda, X. Zhang, R. D. Averitt, and W. J. Padilla, “Single-layer terahertz metamaterials with bulk optical constants,” Phy. Rev. B 85, 035112 (2012).
    [Crossref]
  30. J. Gollub, D. Smith, D. Vier, T. Perram, and J. Mock, “Experimental characterization of magnetic surface plasmons on metamaterials with negative permeability,” Phys. Rev. B 71, 195402 (2005).
    [Crossref]

2013 (3)

D. Shrekenhamer, W.-C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110, 177403 (2013).
[Crossref] [PubMed]

F. Costa, S. Genovesi, A. Monorchio, and G. Manara, “A circuit-based model for the interpretation of perfect metamaterial absorbers,” IEEE Trans. Antennas Propag. 61, 1201 (2013)
[Crossref]

W.-C. Chen, N. I. Landy, K. Kempa, and W. J. Padilla, “Optical transmission: a subwavelength extraordinaryopticaltransmission channel in babinet metamaterials,” Adv. Opt. Mat. 1, 221 (2013).
[Crossref]

2012 (4)

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24, OP181 (2012).

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11, 426 (2012).
[Crossref] [PubMed]

W.-C. Chen, A. Totachawattana, K. Fan, J. L. Ponsetto, A. C. Strikwerda, X. Zhang, R. D. Averitt, and W. J. Padilla, “Single-layer terahertz metamaterials with bulk optical constants,” Phy. Rev. B 85, 035112 (2012).
[Crossref]

D. Shrekenhamer, W. Xu, S. Venkatesh, D. Schurig, S. Sonkusale, and W. Padilla, “Metamaterial perfect absorber microwave focal plane array,” Phys. Rev. Lett. 109, 177401 (2012).
[Crossref]

2011 (3)

C.-F. Chen, C.-H. Park, B. W. Boudouris, J. Horng, B. Geng, C. Girit, A. ettl, M. F. Crommie, R. A. Segalman, S. G. Louie, and F. Wang, “Controlling inelastic light scattering quantum pathways in graphene,” Nature 471, 617 (2011).
[Crossref] [PubMed]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref] [PubMed]

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

2010 (6)

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104, 207403 (2010)
[Crossref] [PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342 (2010).
[Crossref] [PubMed]

F. J. Garcia-Vidal, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729 (2010).
[Crossref]

A. Rusina, M. Durach, and M. I. Stockman, “Theory of spoof surface plasmons in real metals,” Appl. Phys. A 100, 375 (2010).
[Crossref]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).
[Crossref]

B. Reinhard, O. Paul, R. Beigang, and M. Rahm, “Experimental and numerical studies of terahertz surface waves on a thin metamaterial film,” Opt. Lett. 35, 1320 (2010).
[Crossref] [PubMed]

2009 (1)

C. Simovski, “Material parameters of metamaterials (a review),” Opt. Spectrosc. 107, 726 (2009).
[Crossref]

2008 (2)

2007 (2)

W. Padilla, M. Aronsson, C. Highstrete, M. Lee, A. Taylor, and R. Averitt, “Electrically resonant terahertz metamaterials: theoretical and experimental investigations,” Phys. Rev. B 75, 041102 (2007).
[Crossref]

L.-Y. Chen, W.-S. Tsai, W.-H. Hsu, K.-Y. Chen, and W.-S. Wang, “Fabrication and characterization of benzocyclobutene optical waveguides by UV pulsed-laser illumination,” IEEE J. Quantum Electron. 43, 303 (2007).
[Crossref]

2006 (1)

D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett. 88, 041109 (2006).
[Crossref]

2005 (3)

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308, 670 (2005).
[Crossref] [PubMed]

J. Gollub, D. Smith, D. Vier, T. Perram, and J. Mock, “Experimental characterization of magnetic surface plasmons on metamaterials with negative permeability,” Phys. Rev. B 71, 195402 (2005).
[Crossref]

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71, 036617 (2005).
[Crossref]

2004 (1)

J. B. Pendry, L. Mart’in-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847 (2004).
[Crossref] [PubMed]

2002 (1)

D. R. Smith, S. Schultz, P. Markos, and C. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
[Crossref]

1985 (1)

1960 (1)

A. Harvey, “Periodic and guiding structures at microwave frequencies,” IEEE Trans. Microwave Theory Tech. 8, 30 (1960).
[Crossref]

Alexander, R. W.

Aronsson, M.

W. Padilla, M. Aronsson, C. Highstrete, M. Lee, A. Taylor, and R. Averitt, “Electrically resonant terahertz metamaterials: theoretical and experimental investigations,” Phys. Rev. B 75, 041102 (2007).
[Crossref]

Atwater, H. A.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

Averitt, R.

W. Padilla, M. Aronsson, C. Highstrete, M. Lee, A. Taylor, and R. Averitt, “Electrically resonant terahertz metamaterials: theoretical and experimental investigations,” Phys. Rev. B 75, 041102 (2007).
[Crossref]

Averitt, R. D.

W.-C. Chen, A. Totachawattana, K. Fan, J. L. Ponsetto, A. C. Strikwerda, X. Zhang, R. D. Averitt, and W. J. Padilla, “Single-layer terahertz metamaterials with bulk optical constants,” Phy. Rev. B 85, 035112 (2012).
[Crossref]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16, 7181 (2008).
[Crossref] [PubMed]

Aydin, K.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

Beigang, R.

Bell, R. J.

Bingham, C. M.

Boudouris, B. W.

C.-F. Chen, C.-H. Park, B. W. Boudouris, J. Horng, B. Geng, C. Girit, A. ettl, M. F. Crommie, R. A. Segalman, S. G. Louie, and F. Wang, “Controlling inelastic light scattering quantum pathways in graphene,” Nature 471, 617 (2011).
[Crossref] [PubMed]

Briggs, R. M.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

Chen, C.-F.

C.-F. Chen, C.-H. Park, B. W. Boudouris, J. Horng, B. Geng, C. Girit, A. ettl, M. F. Crommie, R. A. Segalman, S. G. Louie, and F. Wang, “Controlling inelastic light scattering quantum pathways in graphene,” Nature 471, 617 (2011).
[Crossref] [PubMed]

Chen, K.-Y.

L.-Y. Chen, W.-S. Tsai, W.-H. Hsu, K.-Y. Chen, and W.-S. Wang, “Fabrication and characterization of benzocyclobutene optical waveguides by UV pulsed-laser illumination,” IEEE J. Quantum Electron. 43, 303 (2007).
[Crossref]

Chen, L.-Y.

L.-Y. Chen, W.-S. Tsai, W.-H. Hsu, K.-Y. Chen, and W.-S. Wang, “Fabrication and characterization of benzocyclobutene optical waveguides by UV pulsed-laser illumination,” IEEE J. Quantum Electron. 43, 303 (2007).
[Crossref]

Chen, W.-C.

W.-C. Chen, N. I. Landy, K. Kempa, and W. J. Padilla, “Optical transmission: a subwavelength extraordinaryopticaltransmission channel in babinet metamaterials,” Adv. Opt. Mat. 1, 221 (2013).
[Crossref]

D. Shrekenhamer, W.-C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110, 177403 (2013).
[Crossref] [PubMed]

W.-C. Chen, A. Totachawattana, K. Fan, J. L. Ponsetto, A. C. Strikwerda, X. Zhang, R. D. Averitt, and W. J. Padilla, “Single-layer terahertz metamaterials with bulk optical constants,” Phy. Rev. B 85, 035112 (2012).
[Crossref]

Costa, F.

F. Costa, S. Genovesi, A. Monorchio, and G. Manara, “A circuit-based model for the interpretation of perfect metamaterial absorbers,” IEEE Trans. Antennas Propag. 61, 1201 (2013)
[Crossref]

Crommie, M. F.

C.-F. Chen, C.-H. Park, B. W. Boudouris, J. Horng, B. Geng, C. Girit, A. ettl, M. F. Crommie, R. A. Segalman, S. G. Louie, and F. Wang, “Controlling inelastic light scattering quantum pathways in graphene,” Nature 471, 617 (2011).
[Crossref] [PubMed]

Durach, M.

A. Rusina, M. Durach, and M. I. Stockman, “Theory of spoof surface plasmons in real metals,” Appl. Phys. A 100, 375 (2010).
[Crossref]

Ebbesen, T. W.

F. J. Garcia-Vidal, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729 (2010).
[Crossref]

ettl, A.

C.-F. Chen, C.-H. Park, B. W. Boudouris, J. Horng, B. Geng, C. Girit, A. ettl, M. F. Crommie, R. A. Segalman, S. G. Louie, and F. Wang, “Controlling inelastic light scattering quantum pathways in graphene,” Nature 471, 617 (2011).
[Crossref] [PubMed]

Evans, B. R.

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308, 670 (2005).
[Crossref] [PubMed]

Fan, K.

W.-C. Chen, A. Totachawattana, K. Fan, J. L. Ponsetto, A. C. Strikwerda, X. Zhang, R. D. Averitt, and W. J. Padilla, “Single-layer terahertz metamaterials with bulk optical constants,” Phy. Rev. B 85, 035112 (2012).
[Crossref]

Ferry, V. E.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

Garcia-Vidal, F. J.

F. J. Garcia-Vidal, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729 (2010).
[Crossref]

J. B. Pendry, L. Mart’in-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847 (2004).
[Crossref] [PubMed]

Geng, B.

C.-F. Chen, C.-H. Park, B. W. Boudouris, J. Horng, B. Geng, C. Girit, A. ettl, M. F. Crommie, R. A. Segalman, S. G. Louie, and F. Wang, “Controlling inelastic light scattering quantum pathways in graphene,” Nature 471, 617 (2011).
[Crossref] [PubMed]

Genovesi, S.

F. Costa, S. Genovesi, A. Monorchio, and G. Manara, “A circuit-based model for the interpretation of perfect metamaterial absorbers,” IEEE Trans. Antennas Propag. 61, 1201 (2013)
[Crossref]

Giessen, H.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342 (2010).
[Crossref] [PubMed]

Girit, C.

C.-F. Chen, C.-H. Park, B. W. Boudouris, J. Horng, B. Geng, C. Girit, A. ettl, M. F. Crommie, R. A. Segalman, S. G. Louie, and F. Wang, “Controlling inelastic light scattering quantum pathways in graphene,” Nature 471, 617 (2011).
[Crossref] [PubMed]

Gollub, J.

J. Gollub, D. Smith, D. Vier, T. Perram, and J. Mock, “Experimental characterization of magnetic surface plasmons on metamaterials with negative permeability,” Phys. Rev. B 71, 195402 (2005).
[Crossref]

Hao, J.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).
[Crossref]

Harvey, A.

A. Harvey, “Periodic and guiding structures at microwave frequencies,” IEEE Trans. Microwave Theory Tech. 8, 30 (1960).
[Crossref]

He, Q.

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11, 426 (2012).
[Crossref] [PubMed]

Hentschel, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342 (2010).
[Crossref] [PubMed]

Hibbins, A. P.

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308, 670 (2005).
[Crossref] [PubMed]

Highstrete, C.

W. Padilla, M. Aronsson, C. Highstrete, M. Lee, A. Taylor, and R. Averitt, “Electrically resonant terahertz metamaterials: theoretical and experimental investigations,” Phys. Rev. B 75, 041102 (2007).
[Crossref]

Horng, J.

C.-F. Chen, C.-H. Park, B. W. Boudouris, J. Horng, B. Geng, C. Girit, A. ettl, M. F. Crommie, R. A. Segalman, S. G. Louie, and F. Wang, “Controlling inelastic light scattering quantum pathways in graphene,” Nature 471, 617 (2011).
[Crossref] [PubMed]

Hsu, W.-H.

L.-Y. Chen, W.-S. Tsai, W.-H. Hsu, K.-Y. Chen, and W.-S. Wang, “Fabrication and characterization of benzocyclobutene optical waveguides by UV pulsed-laser illumination,” IEEE J. Quantum Electron. 43, 303 (2007).
[Crossref]

Ilin, N. V.

N. V. Ilin, I. G. Kondratiev, and A. I. irnov, “True surface waves guided by metamaterials,” Bull. Russian Acad. Sci. Phys. 72, 118 (2008).

irnov, A. I.

N. V. Ilin, I. G. Kondratiev, and A. I. irnov, “True surface waves guided by metamaterials,” Bull. Russian Acad. Sci. Phys. 72, 118 (2008).

Jokerst, N. M.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref] [PubMed]

Kempa, K.

W.-C. Chen, N. I. Landy, K. Kempa, and W. J. Padilla, “Optical transmission: a subwavelength extraordinaryopticaltransmission channel in babinet metamaterials,” Adv. Opt. Mat. 1, 221 (2013).
[Crossref]

Kondratiev, I. G.

N. V. Ilin, I. G. Kondratiev, and A. I. irnov, “True surface waves guided by metamaterials,” Bull. Russian Acad. Sci. Phys. 72, 118 (2008).

Koschny, T.

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71, 036617 (2005).
[Crossref]

Kuipers, L.

F. J. Garcia-Vidal, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729 (2010).
[Crossref]

Landy, N. I.

W.-C. Chen, N. I. Landy, K. Kempa, and W. J. Padilla, “Optical transmission: a subwavelength extraordinaryopticaltransmission channel in babinet metamaterials,” Adv. Opt. Mat. 1, 221 (2013).
[Crossref]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16, 7181 (2008).
[Crossref] [PubMed]

Lee, M.

W. Padilla, M. Aronsson, C. Highstrete, M. Lee, A. Taylor, and R. Averitt, “Electrically resonant terahertz metamaterials: theoretical and experimental investigations,” Phys. Rev. B 75, 041102 (2007).
[Crossref]

Li, X.

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11, 426 (2012).
[Crossref] [PubMed]

Liu, N.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342 (2010).
[Crossref] [PubMed]

Liu, X.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24, OP181 (2012).

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref] [PubMed]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104, 207403 (2010)
[Crossref] [PubMed]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).
[Crossref]

Long, L. L.

Louie, S. G.

C.-F. Chen, C.-H. Park, B. W. Boudouris, J. Horng, B. Geng, C. Girit, A. ettl, M. F. Crommie, R. A. Segalman, S. G. Louie, and F. Wang, “Controlling inelastic light scattering quantum pathways in graphene,” Nature 471, 617 (2011).
[Crossref] [PubMed]

Manara, G.

F. Costa, S. Genovesi, A. Monorchio, and G. Manara, “A circuit-based model for the interpretation of perfect metamaterial absorbers,” IEEE Trans. Antennas Propag. 61, 1201 (2013)
[Crossref]

Markos, P.

D. R. Smith, S. Schultz, P. Markos, and C. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
[Crossref]

Mart’in-Moreno, L.

J. B. Pendry, L. Mart’in-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847 (2004).
[Crossref] [PubMed]

Mesch, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342 (2010).
[Crossref] [PubMed]

Mock, J.

J. Gollub, D. Smith, D. Vier, T. Perram, and J. Mock, “Experimental characterization of magnetic surface plasmons on metamaterials with negative permeability,” Phys. Rev. B 71, 195402 (2005).
[Crossref]

Mock, J. J.

D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett. 88, 041109 (2006).
[Crossref]

Monorchio, A.

F. Costa, S. Genovesi, A. Monorchio, and G. Manara, “A circuit-based model for the interpretation of perfect metamaterial absorbers,” IEEE Trans. Antennas Propag. 61, 1201 (2013)
[Crossref]

Ordal, M. A.

Padilla, W.

D. Shrekenhamer, W. Xu, S. Venkatesh, D. Schurig, S. Sonkusale, and W. Padilla, “Metamaterial perfect absorber microwave focal plane array,” Phys. Rev. Lett. 109, 177401 (2012).
[Crossref]

W. Padilla, M. Aronsson, C. Highstrete, M. Lee, A. Taylor, and R. Averitt, “Electrically resonant terahertz metamaterials: theoretical and experimental investigations,” Phys. Rev. B 75, 041102 (2007).
[Crossref]

Padilla, W. J.

W.-C. Chen, N. I. Landy, K. Kempa, and W. J. Padilla, “Optical transmission: a subwavelength extraordinaryopticaltransmission channel in babinet metamaterials,” Adv. Opt. Mat. 1, 221 (2013).
[Crossref]

D. Shrekenhamer, W.-C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110, 177403 (2013).
[Crossref] [PubMed]

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24, OP181 (2012).

W.-C. Chen, A. Totachawattana, K. Fan, J. L. Ponsetto, A. C. Strikwerda, X. Zhang, R. D. Averitt, and W. J. Padilla, “Single-layer terahertz metamaterials with bulk optical constants,” Phy. Rev. B 85, 035112 (2012).
[Crossref]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref] [PubMed]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104, 207403 (2010)
[Crossref] [PubMed]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).
[Crossref]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16, 7181 (2008).
[Crossref] [PubMed]

Park, C.-H.

C.-F. Chen, C.-H. Park, B. W. Boudouris, J. Horng, B. Geng, C. Girit, A. ettl, M. F. Crommie, R. A. Segalman, S. G. Louie, and F. Wang, “Controlling inelastic light scattering quantum pathways in graphene,” Nature 471, 617 (2011).
[Crossref] [PubMed]

Paul, O.

Pendry, J. B.

J. B. Pendry, L. Mart’in-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847 (2004).
[Crossref] [PubMed]

Perram, T.

J. Gollub, D. Smith, D. Vier, T. Perram, and J. Mock, “Experimental characterization of magnetic surface plasmons on metamaterials with negative permeability,” Phys. Rev. B 71, 195402 (2005).
[Crossref]

Ponsetto, J. L.

W.-C. Chen, A. Totachawattana, K. Fan, J. L. Ponsetto, A. C. Strikwerda, X. Zhang, R. D. Averitt, and W. J. Padilla, “Single-layer terahertz metamaterials with bulk optical constants,” Phy. Rev. B 85, 035112 (2012).
[Crossref]

Qiu, M.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).
[Crossref]

Querry, M. R.

Raether, H.

H. Raether, Surface plasmons on smooth and rough surfaces and on gratings, (Springer, 1988), Vol. 111, pp. 136.

Rahm, M.

Reinhard, B.

Rusina, A.

A. Rusina, M. Durach, and M. I. Stockman, “Theory of spoof surface plasmons in real metals,” Appl. Phys. A 100, 375 (2010).
[Crossref]

Sambles, J. R.

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308, 670 (2005).
[Crossref] [PubMed]

Schultz, S.

D. R. Smith, S. Schultz, P. Markos, and C. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
[Crossref]

Schurig, D.

D. Shrekenhamer, W. Xu, S. Venkatesh, D. Schurig, S. Sonkusale, and W. Padilla, “Metamaterial perfect absorber microwave focal plane array,” Phys. Rev. Lett. 109, 177401 (2012).
[Crossref]

D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett. 88, 041109 (2006).
[Crossref]

Segalman, R. A.

C.-F. Chen, C.-H. Park, B. W. Boudouris, J. Horng, B. Geng, C. Girit, A. ettl, M. F. Crommie, R. A. Segalman, S. G. Louie, and F. Wang, “Controlling inelastic light scattering quantum pathways in graphene,” Nature 471, 617 (2011).
[Crossref] [PubMed]

Shrekenhamer, D.

D. Shrekenhamer, W.-C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110, 177403 (2013).
[Crossref] [PubMed]

D. Shrekenhamer, W. Xu, S. Venkatesh, D. Schurig, S. Sonkusale, and W. Padilla, “Metamaterial perfect absorber microwave focal plane array,” Phys. Rev. Lett. 109, 177401 (2012).
[Crossref]

Simovski, C.

C. Simovski, “Material parameters of metamaterials (a review),” Opt. Spectrosc. 107, 726 (2009).
[Crossref]

Smith, D.

J. Gollub, D. Smith, D. Vier, T. Perram, and J. Mock, “Experimental characterization of magnetic surface plasmons on metamaterials with negative permeability,” Phys. Rev. B 71, 195402 (2005).
[Crossref]

Smith, D. R.

D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett. 88, 041109 (2006).
[Crossref]

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71, 036617 (2005).
[Crossref]

D. R. Smith, S. Schultz, P. Markos, and C. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
[Crossref]

Sonkusale, S.

D. Shrekenhamer, W. Xu, S. Venkatesh, D. Schurig, S. Sonkusale, and W. Padilla, “Metamaterial perfect absorber microwave focal plane array,” Phys. Rev. Lett. 109, 177401 (2012).
[Crossref]

Soukoulis, C.

D. R. Smith, S. Schultz, P. Markos, and C. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
[Crossref]

Soukoulis, C. M.

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71, 036617 (2005).
[Crossref]

Starr, A. F.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref] [PubMed]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104, 207403 (2010)
[Crossref] [PubMed]

Starr, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref] [PubMed]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104, 207403 (2010)
[Crossref] [PubMed]

Stockman, M. I.

A. Rusina, M. Durach, and M. I. Stockman, “Theory of spoof surface plasmons in real metals,” Appl. Phys. A 100, 375 (2010).
[Crossref]

Strikwerda, A. C.

W.-C. Chen, A. Totachawattana, K. Fan, J. L. Ponsetto, A. C. Strikwerda, X. Zhang, R. D. Averitt, and W. J. Padilla, “Single-layer terahertz metamaterials with bulk optical constants,” Phy. Rev. B 85, 035112 (2012).
[Crossref]

Sun, S.

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11, 426 (2012).
[Crossref] [PubMed]

Tao, H.

Taylor, A.

W. Padilla, M. Aronsson, C. Highstrete, M. Lee, A. Taylor, and R. Averitt, “Electrically resonant terahertz metamaterials: theoretical and experimental investigations,” Phys. Rev. B 75, 041102 (2007).
[Crossref]

Totachawattana, A.

W.-C. Chen, A. Totachawattana, K. Fan, J. L. Ponsetto, A. C. Strikwerda, X. Zhang, R. D. Averitt, and W. J. Padilla, “Single-layer terahertz metamaterials with bulk optical constants,” Phy. Rev. B 85, 035112 (2012).
[Crossref]

Tsai, W.-S.

L.-Y. Chen, W.-S. Tsai, W.-H. Hsu, K.-Y. Chen, and W.-S. Wang, “Fabrication and characterization of benzocyclobutene optical waveguides by UV pulsed-laser illumination,” IEEE J. Quantum Electron. 43, 303 (2007).
[Crossref]

Tyler, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref] [PubMed]

Venkatesh, S.

D. Shrekenhamer, W. Xu, S. Venkatesh, D. Schurig, S. Sonkusale, and W. Padilla, “Metamaterial perfect absorber microwave focal plane array,” Phys. Rev. Lett. 109, 177401 (2012).
[Crossref]

Vier, D.

J. Gollub, D. Smith, D. Vier, T. Perram, and J. Mock, “Experimental characterization of magnetic surface plasmons on metamaterials with negative permeability,” Phys. Rev. B 71, 195402 (2005).
[Crossref]

Vier, D. C.

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71, 036617 (2005).
[Crossref]

Wang, F.

C.-F. Chen, C.-H. Park, B. W. Boudouris, J. Horng, B. Geng, C. Girit, A. ettl, M. F. Crommie, R. A. Segalman, S. G. Louie, and F. Wang, “Controlling inelastic light scattering quantum pathways in graphene,” Nature 471, 617 (2011).
[Crossref] [PubMed]

Wang, J.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).
[Crossref]

Wang, W.-S.

L.-Y. Chen, W.-S. Tsai, W.-H. Hsu, K.-Y. Chen, and W.-S. Wang, “Fabrication and characterization of benzocyclobutene optical waveguides by UV pulsed-laser illumination,” IEEE J. Quantum Electron. 43, 303 (2007).
[Crossref]

Watts, C. M.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24, OP181 (2012).

Weiss, T.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342 (2010).
[Crossref] [PubMed]

Xiao, S.

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11, 426 (2012).
[Crossref] [PubMed]

Xu, Q.

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11, 426 (2012).
[Crossref] [PubMed]

Xu, W.

D. Shrekenhamer, W. Xu, S. Venkatesh, D. Schurig, S. Sonkusale, and W. Padilla, “Metamaterial perfect absorber microwave focal plane array,” Phys. Rev. Lett. 109, 177401 (2012).
[Crossref]

Zhang, X.

W.-C. Chen, A. Totachawattana, K. Fan, J. L. Ponsetto, A. C. Strikwerda, X. Zhang, R. D. Averitt, and W. J. Padilla, “Single-layer terahertz metamaterials with bulk optical constants,” Phy. Rev. B 85, 035112 (2012).
[Crossref]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16, 7181 (2008).
[Crossref] [PubMed]

Zhou, L.

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11, 426 (2012).
[Crossref] [PubMed]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).
[Crossref]

Adv. Mater. (1)

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24, OP181 (2012).

Adv. Opt. Mat. (1)

W.-C. Chen, N. I. Landy, K. Kempa, and W. J. Padilla, “Optical transmission: a subwavelength extraordinaryopticaltransmission channel in babinet metamaterials,” Adv. Opt. Mat. 1, 221 (2013).
[Crossref]

Appl. Opt. (1)

Appl. Phys. A (1)

A. Rusina, M. Durach, and M. I. Stockman, “Theory of spoof surface plasmons in real metals,” Appl. Phys. A 100, 375 (2010).
[Crossref]

Appl. Phys. Lett. (2)

D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett. 88, 041109 (2006).
[Crossref]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).
[Crossref]

Bull. Russian Acad. Sci. Phys. (1)

N. V. Ilin, I. G. Kondratiev, and A. I. irnov, “True surface waves guided by metamaterials,” Bull. Russian Acad. Sci. Phys. 72, 118 (2008).

IEEE J. Quantum Electron. (1)

L.-Y. Chen, W.-S. Tsai, W.-H. Hsu, K.-Y. Chen, and W.-S. Wang, “Fabrication and characterization of benzocyclobutene optical waveguides by UV pulsed-laser illumination,” IEEE J. Quantum Electron. 43, 303 (2007).
[Crossref]

IEEE Trans. Antennas Propag. (1)

F. Costa, S. Genovesi, A. Monorchio, and G. Manara, “A circuit-based model for the interpretation of perfect metamaterial absorbers,” IEEE Trans. Antennas Propag. 61, 1201 (2013)
[Crossref]

IEEE Trans. Microwave Theory Tech. (1)

A. Harvey, “Periodic and guiding structures at microwave frequencies,” IEEE Trans. Microwave Theory Tech. 8, 30 (1960).
[Crossref]

Nano Lett. (1)

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342 (2010).
[Crossref] [PubMed]

Nat. Commun. (1)

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

Nat. Mater. (1)

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11, 426 (2012).
[Crossref] [PubMed]

Nature (1)

C.-F. Chen, C.-H. Park, B. W. Boudouris, J. Horng, B. Geng, C. Girit, A. ettl, M. F. Crommie, R. A. Segalman, S. G. Louie, and F. Wang, “Controlling inelastic light scattering quantum pathways in graphene,” Nature 471, 617 (2011).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Opt. Spectrosc. (1)

C. Simovski, “Material parameters of metamaterials (a review),” Opt. Spectrosc. 107, 726 (2009).
[Crossref]

Phy. Rev. B (1)

W.-C. Chen, A. Totachawattana, K. Fan, J. L. Ponsetto, A. C. Strikwerda, X. Zhang, R. D. Averitt, and W. J. Padilla, “Single-layer terahertz metamaterials with bulk optical constants,” Phy. Rev. B 85, 035112 (2012).
[Crossref]

Phys. Rev. B (3)

J. Gollub, D. Smith, D. Vier, T. Perram, and J. Mock, “Experimental characterization of magnetic surface plasmons on metamaterials with negative permeability,” Phys. Rev. B 71, 195402 (2005).
[Crossref]

D. R. Smith, S. Schultz, P. Markos, and C. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
[Crossref]

W. Padilla, M. Aronsson, C. Highstrete, M. Lee, A. Taylor, and R. Averitt, “Electrically resonant terahertz metamaterials: theoretical and experimental investigations,” Phys. Rev. B 75, 041102 (2007).
[Crossref]

Phys. Rev. E (1)

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71, 036617 (2005).
[Crossref]

Phys. Rev. Lett. (4)

D. Shrekenhamer, W.-C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110, 177403 (2013).
[Crossref] [PubMed]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104, 207403 (2010)
[Crossref] [PubMed]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref] [PubMed]

D. Shrekenhamer, W. Xu, S. Venkatesh, D. Schurig, S. Sonkusale, and W. Padilla, “Metamaterial perfect absorber microwave focal plane array,” Phys. Rev. Lett. 109, 177401 (2012).
[Crossref]

Rev. Mod. Phys. (1)

F. J. Garcia-Vidal, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729 (2010).
[Crossref]

Science (2)

J. B. Pendry, L. Mart’in-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847 (2004).
[Crossref] [PubMed]

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308, 670 (2005).
[Crossref] [PubMed]

Other (1)

H. Raether, Surface plasmons on smooth and rough surfaces and on gratings, (Springer, 1988), Vol. 111, pp. 136.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 Top panel shows the experimental (open symbols) and simulated absorbance (solid curves) as a function of incident angle for both transverse electric (blue) and transverse magnetic (red) polarization. Inset shows a schematic of a top view of the metamaterial absorber and a SEM picture of the fabricated sample. Experimental (left panels) and simulated (right panels) frequency dependent absorption for various incident angles (θ) for both TM (grey solid curves) and TE (black dash curves) polarizations. The labels P, A, and B indicate the principal absorbing mode, the angle independent mode (at the blue dashed line), and the angle dependent mode (tracked by the red arrow) of the absorber respectively.
Fig. 2
Fig. 2 (a) Experimental absorbtion at 15° for transverse-magnetic (TM) polarization. (b) Lossless dispersion relation simulated for the k-vector parallel (k||) to the metamaterial absorber surface for TM polarized light. (c) Dispersion relation calculated from Eq. (1) for TM polarized light is shown for the real (black curve) and imaginary (green curve) parallel k-vector. Note the blue and red horizontal lines indicate the peak value of Modes A and P respectively. (d) Simulated absorbance and (e) dispersion relation for a more subwavelength MMA for TM polarization, where ωa = c(2π/a). Inset: subwavelength design investigated. (f) A zoomed portion of (c) showing detail. Vertical purple line shows where k1|| intersects the dashed horizontal red line, i.e the peak value of Mode P.
Fig. 3
Fig. 3 Simulated electric field along the surface of the metamaterial absorber at (a) 4.83 μm and (b) 6.14 μm for both TE and TM polarizations. (c) |Ez| as a function of position in the x-direction at 4.83μm (open triangles) and 6.14 μm (open circles). The horizontal axis is in units of the free space wavelengths of λP and λA, where λA denotes free space wavelength of Mode A.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

k ˜ = k 1 + i k 2 = ω c ε x x 2 e x x μ y y ε x x 2 ε x x ε 0

Metrics