Abstract

This paper presents a 3.89 kW 1123 nm Raman all-fiber laser with an overall optical-to-optical efficiency of 70.9%. The system consists of a single-wavelength (1070nm) seed and one-stage bidirectional 976 nm non-wavelength-stabilized laser diodes (LDs) pumped Yb-doped fiber amplifier. The unique part of this system is the application of non-wavelength-stabilized LDs in high power bidirectional pumping configuration fiber amplifier via refractive index valley fiber combiners. This approach not only increases the pump power, but also shortens the length of fiber by avoiding the usage of multi-stage amplifier. Through both theoretical research and experiment, the bidirectional pumping configuration presented in this paper proves to be able to convert 976 nm pump laser to 1070 nm laser via Yb3+ transfer, which is then converted into 1123 nm Raman laser via the first-order Raman effect without the appearance of any higher-order Raman laser.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High power Yb-Raman combined nonlinear fiber amplifier

Hanwei Zhang, Hu Xiao, Pu Zhou, Xiaolin Wang, and Xiaojun Xu
Opt. Express 22(9) 10248-10255 (2014)

Kilowatt Ytterbium-Raman fiber laser

Lei Zhang, Chi Liu, Huawei Jiang, Yunfeng Qi, Bing He, Jun Zhou, Xijia Gu, and Yan Feng
Opt. Express 22(15) 18483-18489 (2014)

Mitigating transverse mode instability in all-fiber laser oscillator and scaling power up to 2.5 kW employing bidirectional-pump scheme

Baolai Yang, Hanwei Zhang, Chen Shi, Xiaolin Wang, Pu Zhou, Xiaojun Xu, Jinbao Chen, Zejin Liu, and Qisheng Lu
Opt. Express 24(24) 27828-27835 (2016)

References

  • View by:
  • |
  • |
  • |

  1. G. Qin, S. Huang, Y. Feng, A. Shirakawa, and K. Ueda, “784-nm amplified spontaneous emission from Tm3+-doped fluoride glass fiber pumped by an 1120-nm fiber laser,” Opt. Lett. 30(3), 269–271 (2005).
    [Crossref] [PubMed]
  2. X. Zhu, J. Zong, K. Wiersma, R. A. Norwood, N. S. Prasad, M. D. Obland, A. Chavez-Pirson, and N. Peyghambarian, “Watt-level short-length holmium-doped ZBLAN fiber lasers at 1.2 μm,” Opt. Lett. 39(6), 1533–1536 (2014).
    [Crossref] [PubMed]
  3. H. Zhang, P. Zhou, X. Wang, X. Du, H. Xiao, and X. Xu, “Hundred-watt-level high power random distributed feedback Raman fiber laser at 1150 nm and its application in mid-infrared laser generation,” Opt. Express 23(13), 17138–17144 (2015).
    [Crossref] [PubMed]
  4. Y. Feng, L. R. Taylor, and D. B. Calia, “150 W highly-efficient Raman fiber laser,” Opt. Express 17(26), 23678–23683 (2009).
    [Crossref] [PubMed]
  5. M. Rekas, O. Schmidt, H. Zimer, T. Schreiber, R. Eberhardt, and A. Tünnermann, “Over 200 W average power tunable Raman amplifier based on fused silica step index fiber,” Appl. Phys. B 107(3), 711–716 (2012).
    [Crossref]
  6. V. R. Supradeepa, J. W. Nichsolson, C. E. Headley, M. F. Yan, B. Palsdottir, and D. Jakobsen, “A high efficiency architecture for cascaded Raman fiber lasers,” Opt. Express 21(6), 7148–7155 (2013).
    [Crossref] [PubMed]
  7. V. R. Supradeepa and J. W. Nicholson, “Power scaling of high-efficiency 1.5 μm cascaded Raman fiber lasers,” Opt. Lett. 38(14), 2538–2541 (2013).
    [Crossref] [PubMed]
  8. L. Zhang, H. Jiang, S. Cui, and Y. Feng, “Integrated ytterbium-Raman fiber amplifier,” Opt. Lett. 39(7), 1933–1936 (2014).
    [Crossref] [PubMed]
  9. L. Zhang, C. Liu, H. Jiang, Y. Qi, B. He, J. Zhou, X. Gu, and Y. Feng, “Kilowatt Ytterbium-Raman fiber laser,” Opt. Express 22(15), 18483–18489 (2014).
    [Crossref] [PubMed]
  10. H. Zhang, H. Xiao, P. Zhou, X. Wang, and X. Xu, “High power Yb-Raman combined nonlinear fiber amplifier,” Opt. Express 22(9), 10248–10255 (2014).
    [Crossref] [PubMed]
  11. H. Zhang, R. Tao, P. Zhou, X. Wang, and X. Xu, “1.5-kW Yb-Raman Combined Nonlinear Fiber Amplifier at 1120 nm,” IEEE Photonics Technol. Lett. 27(6), 628–630 (2015).
    [Crossref]
  12. R. K. Huang, B. Chann, J. Burgess, M. Kaiman, R. Overman, J. D. Glenn, and P. Tayebati, “Direct diode lasers with comparable beam quality to fiber, CO2, and solid state lasers,” Proc. SPIE 8241, 824102 (2012).
    [Crossref]
  13. Q. Xiao, P. Yan, H. Ren, X. Chen, and M. Gong, “A Side-Pump Coupler With Refractive Index Valley Configuration for Fiber Lasers and Amplifiers,” J. Lightwave Technol. 31(16), 3015–3022 (2013).
    [Crossref]
  14. F. Becker, B. Neumann, L. Winkelmann, S. Belke, S. Ruppik, U. Hefter, B. Köhler, P. Wolf, and J. Biesenbach, “Multi-kW cw fiber oscillator pumped by wavelength stabilized fiber coupled diode lasers,” Proc. SPIE 8601, 860131 (2013).
    [Crossref]
  15. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2013), Chap. 8.
  16. C. Jauregui, T. Eidam, H.-J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Physical origin of mode instabilities in high-power fiber laser systems,” Opt. Express 20(12), 12912–12925 (2012).
    [Crossref] [PubMed]

2015 (2)

2014 (4)

2013 (4)

2012 (3)

M. Rekas, O. Schmidt, H. Zimer, T. Schreiber, R. Eberhardt, and A. Tünnermann, “Over 200 W average power tunable Raman amplifier based on fused silica step index fiber,” Appl. Phys. B 107(3), 711–716 (2012).
[Crossref]

R. K. Huang, B. Chann, J. Burgess, M. Kaiman, R. Overman, J. D. Glenn, and P. Tayebati, “Direct diode lasers with comparable beam quality to fiber, CO2, and solid state lasers,” Proc. SPIE 8241, 824102 (2012).
[Crossref]

C. Jauregui, T. Eidam, H.-J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Physical origin of mode instabilities in high-power fiber laser systems,” Opt. Express 20(12), 12912–12925 (2012).
[Crossref] [PubMed]

2009 (1)

2005 (1)

Becker, F.

F. Becker, B. Neumann, L. Winkelmann, S. Belke, S. Ruppik, U. Hefter, B. Köhler, P. Wolf, and J. Biesenbach, “Multi-kW cw fiber oscillator pumped by wavelength stabilized fiber coupled diode lasers,” Proc. SPIE 8601, 860131 (2013).
[Crossref]

Belke, S.

F. Becker, B. Neumann, L. Winkelmann, S. Belke, S. Ruppik, U. Hefter, B. Köhler, P. Wolf, and J. Biesenbach, “Multi-kW cw fiber oscillator pumped by wavelength stabilized fiber coupled diode lasers,” Proc. SPIE 8601, 860131 (2013).
[Crossref]

Biesenbach, J.

F. Becker, B. Neumann, L. Winkelmann, S. Belke, S. Ruppik, U. Hefter, B. Köhler, P. Wolf, and J. Biesenbach, “Multi-kW cw fiber oscillator pumped by wavelength stabilized fiber coupled diode lasers,” Proc. SPIE 8601, 860131 (2013).
[Crossref]

Burgess, J.

R. K. Huang, B. Chann, J. Burgess, M. Kaiman, R. Overman, J. D. Glenn, and P. Tayebati, “Direct diode lasers with comparable beam quality to fiber, CO2, and solid state lasers,” Proc. SPIE 8241, 824102 (2012).
[Crossref]

Calia, D. B.

Chann, B.

R. K. Huang, B. Chann, J. Burgess, M. Kaiman, R. Overman, J. D. Glenn, and P. Tayebati, “Direct diode lasers with comparable beam quality to fiber, CO2, and solid state lasers,” Proc. SPIE 8241, 824102 (2012).
[Crossref]

Chavez-Pirson, A.

Chen, X.

Cui, S.

Du, X.

Eberhardt, R.

M. Rekas, O. Schmidt, H. Zimer, T. Schreiber, R. Eberhardt, and A. Tünnermann, “Over 200 W average power tunable Raman amplifier based on fused silica step index fiber,” Appl. Phys. B 107(3), 711–716 (2012).
[Crossref]

Eidam, T.

Feng, Y.

Glenn, J. D.

R. K. Huang, B. Chann, J. Burgess, M. Kaiman, R. Overman, J. D. Glenn, and P. Tayebati, “Direct diode lasers with comparable beam quality to fiber, CO2, and solid state lasers,” Proc. SPIE 8241, 824102 (2012).
[Crossref]

Gong, M.

Gu, X.

He, B.

Headley, C. E.

Hefter, U.

F. Becker, B. Neumann, L. Winkelmann, S. Belke, S. Ruppik, U. Hefter, B. Köhler, P. Wolf, and J. Biesenbach, “Multi-kW cw fiber oscillator pumped by wavelength stabilized fiber coupled diode lasers,” Proc. SPIE 8601, 860131 (2013).
[Crossref]

Huang, R. K.

R. K. Huang, B. Chann, J. Burgess, M. Kaiman, R. Overman, J. D. Glenn, and P. Tayebati, “Direct diode lasers with comparable beam quality to fiber, CO2, and solid state lasers,” Proc. SPIE 8241, 824102 (2012).
[Crossref]

Huang, S.

Jakobsen, D.

Jansen, F.

Jauregui, C.

Jiang, H.

Kaiman, M.

R. K. Huang, B. Chann, J. Burgess, M. Kaiman, R. Overman, J. D. Glenn, and P. Tayebati, “Direct diode lasers with comparable beam quality to fiber, CO2, and solid state lasers,” Proc. SPIE 8241, 824102 (2012).
[Crossref]

Köhler, B.

F. Becker, B. Neumann, L. Winkelmann, S. Belke, S. Ruppik, U. Hefter, B. Köhler, P. Wolf, and J. Biesenbach, “Multi-kW cw fiber oscillator pumped by wavelength stabilized fiber coupled diode lasers,” Proc. SPIE 8601, 860131 (2013).
[Crossref]

Limpert, J.

Liu, C.

Neumann, B.

F. Becker, B. Neumann, L. Winkelmann, S. Belke, S. Ruppik, U. Hefter, B. Köhler, P. Wolf, and J. Biesenbach, “Multi-kW cw fiber oscillator pumped by wavelength stabilized fiber coupled diode lasers,” Proc. SPIE 8601, 860131 (2013).
[Crossref]

Nicholson, J. W.

Nichsolson, J. W.

Norwood, R. A.

Obland, M. D.

Otto, H.-J.

Overman, R.

R. K. Huang, B. Chann, J. Burgess, M. Kaiman, R. Overman, J. D. Glenn, and P. Tayebati, “Direct diode lasers with comparable beam quality to fiber, CO2, and solid state lasers,” Proc. SPIE 8241, 824102 (2012).
[Crossref]

Palsdottir, B.

Peyghambarian, N.

Prasad, N. S.

Qi, Y.

Qin, G.

Rekas, M.

M. Rekas, O. Schmidt, H. Zimer, T. Schreiber, R. Eberhardt, and A. Tünnermann, “Over 200 W average power tunable Raman amplifier based on fused silica step index fiber,” Appl. Phys. B 107(3), 711–716 (2012).
[Crossref]

Ren, H.

Ruppik, S.

F. Becker, B. Neumann, L. Winkelmann, S. Belke, S. Ruppik, U. Hefter, B. Köhler, P. Wolf, and J. Biesenbach, “Multi-kW cw fiber oscillator pumped by wavelength stabilized fiber coupled diode lasers,” Proc. SPIE 8601, 860131 (2013).
[Crossref]

Schmidt, O.

M. Rekas, O. Schmidt, H. Zimer, T. Schreiber, R. Eberhardt, and A. Tünnermann, “Over 200 W average power tunable Raman amplifier based on fused silica step index fiber,” Appl. Phys. B 107(3), 711–716 (2012).
[Crossref]

Schreiber, T.

M. Rekas, O. Schmidt, H. Zimer, T. Schreiber, R. Eberhardt, and A. Tünnermann, “Over 200 W average power tunable Raman amplifier based on fused silica step index fiber,” Appl. Phys. B 107(3), 711–716 (2012).
[Crossref]

Shirakawa, A.

Stutzki, F.

Supradeepa, V. R.

Tao, R.

H. Zhang, R. Tao, P. Zhou, X. Wang, and X. Xu, “1.5-kW Yb-Raman Combined Nonlinear Fiber Amplifier at 1120 nm,” IEEE Photonics Technol. Lett. 27(6), 628–630 (2015).
[Crossref]

Tayebati, P.

R. K. Huang, B. Chann, J. Burgess, M. Kaiman, R. Overman, J. D. Glenn, and P. Tayebati, “Direct diode lasers with comparable beam quality to fiber, CO2, and solid state lasers,” Proc. SPIE 8241, 824102 (2012).
[Crossref]

Taylor, L. R.

Tünnermann, A.

M. Rekas, O. Schmidt, H. Zimer, T. Schreiber, R. Eberhardt, and A. Tünnermann, “Over 200 W average power tunable Raman amplifier based on fused silica step index fiber,” Appl. Phys. B 107(3), 711–716 (2012).
[Crossref]

C. Jauregui, T. Eidam, H.-J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Physical origin of mode instabilities in high-power fiber laser systems,” Opt. Express 20(12), 12912–12925 (2012).
[Crossref] [PubMed]

Ueda, K.

Wang, X.

Wiersma, K.

Winkelmann, L.

F. Becker, B. Neumann, L. Winkelmann, S. Belke, S. Ruppik, U. Hefter, B. Köhler, P. Wolf, and J. Biesenbach, “Multi-kW cw fiber oscillator pumped by wavelength stabilized fiber coupled diode lasers,” Proc. SPIE 8601, 860131 (2013).
[Crossref]

Wolf, P.

F. Becker, B. Neumann, L. Winkelmann, S. Belke, S. Ruppik, U. Hefter, B. Köhler, P. Wolf, and J. Biesenbach, “Multi-kW cw fiber oscillator pumped by wavelength stabilized fiber coupled diode lasers,” Proc. SPIE 8601, 860131 (2013).
[Crossref]

Xiao, H.

Xiao, Q.

Xu, X.

Yan, M. F.

Yan, P.

Zhang, H.

Zhang, L.

Zhou, J.

Zhou, P.

Zhu, X.

Zimer, H.

M. Rekas, O. Schmidt, H. Zimer, T. Schreiber, R. Eberhardt, and A. Tünnermann, “Over 200 W average power tunable Raman amplifier based on fused silica step index fiber,” Appl. Phys. B 107(3), 711–716 (2012).
[Crossref]

Zong, J.

Appl. Phys. B (1)

M. Rekas, O. Schmidt, H. Zimer, T. Schreiber, R. Eberhardt, and A. Tünnermann, “Over 200 W average power tunable Raman amplifier based on fused silica step index fiber,” Appl. Phys. B 107(3), 711–716 (2012).
[Crossref]

IEEE Photonics Technol. Lett. (1)

H. Zhang, R. Tao, P. Zhou, X. Wang, and X. Xu, “1.5-kW Yb-Raman Combined Nonlinear Fiber Amplifier at 1120 nm,” IEEE Photonics Technol. Lett. 27(6), 628–630 (2015).
[Crossref]

J. Lightwave Technol. (1)

Opt. Express (6)

Opt. Lett. (4)

Proc. SPIE (2)

R. K. Huang, B. Chann, J. Burgess, M. Kaiman, R. Overman, J. D. Glenn, and P. Tayebati, “Direct diode lasers with comparable beam quality to fiber, CO2, and solid state lasers,” Proc. SPIE 8241, 824102 (2012).
[Crossref]

F. Becker, B. Neumann, L. Winkelmann, S. Belke, S. Ruppik, U. Hefter, B. Köhler, P. Wolf, and J. Biesenbach, “Multi-kW cw fiber oscillator pumped by wavelength stabilized fiber coupled diode lasers,” Proc. SPIE 8601, 860131 (2013).
[Crossref]

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2013), Chap. 8.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Diagram of the RFL system.
Fig. 2
Fig. 2 Wavelength shift in non-wavelength-stabilized LD.
Fig. 3
Fig. 3 Variation of unabsorbed pump power depending on the diode current.
Fig. 4
Fig. 4 The calculated power distribution of the 1070 nm, 1123 nm and 1181.2nm lasers along the fiber (2.4 kW of pump power in both directions).
Fig. 5
Fig. 5 The calculated power distributions of 1070 nm, 1123 nm and 1181.2 nm laser along the fiber. (The absorption and emission cross section are set to 0@1123nm).
Fig. 6
Fig. 6 The calculated power distributions of the 1070 nm, 1123 nm and 1181.2 nm lasers along the fiber (the Raman gain is set to 0, (a)1123 nm and 1181.2 nm laser in the seed laser is set to noise power level, (b)1123 nm laser powers in the seed laser are 290 W, 1181.2 nm laser in the seed laser is set to noise power level).
Fig. 7
Fig. 7 The forward and backward output power of the RFL system as a function of pump power.
Fig. 8
Fig. 8 Output spectrum of the RFL (linear coordinate).
Fig. 9
Fig. 9 The output spectrums of the system in different pumping power configurations.
Fig. 10
Fig. 10 The beam quality factor of the output laser at different output power.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

N 2 (z) N = [ P p + (z)+ P p (z) ] σ ap Γ p h ν p A c + Γ s σ as [ P s + (z)+ P s (z) ] h ν s A c + Γ R1 σ aR [ P R1 + (z)+ P R1 (z) ] h ν R1 A c + Γ R2 σ aR [ P R2 + (z)+ P R2 (z) ] h ν R2 A c [ P p + (z)+ P p (z) ]( σ ap + σ ep ) Γ p h ν p A c + 1 τ + Γ s ( σ as + σ es )[ P s + (z)+ P s (z) ] h ν s A c + Γ R1 ( σ aR1 + σ eR1 )[ P R1 + (z)+ P R1 (z) ] h ν R1 A c + Γ R2 ( σ aR2 + σ eR2 )[ P R2 + (z)+ P R2 (z) ] h ν R2 A c
± d P p ± (z) dz = Γ p [ σ ap N( σ ap + σ ep ) N 2 (z) ] P p ± (z) α p P p ± (z)+2 Γ p σ ep N 2 (z) h c 2 λ p 3 Δλ
± d P s ± (z, ν s ) dz = Γ s [ σ as N( σ as + σ es ) N 2 (z) ] P s ± (z, ν s ) α s P s ± (z, ν s ) λ R1 λ s g R1 A eff [ P R1 + ( z, ν R1 )+ P R1 ( z, ν R1 ) ] P s ± ( z, ν s )+2 Γ s σ es N 2 (z) h c 2 λ s 3 Δλ
± d P R1 ± (z, ν R1 ) dz = Γ R1 [ σ aR1 N( σ aR1 + σ eR1 ) N 2 (z) ] P R1 ± (z, ν R1 ) α R1 P R1 ± (z, ν R1 ) + g R1 A eff [ P s + ( z, ν s )+ P s ( z, ν s ) ] P R1 ± ( z, ν R1 ) λ R2 λ R1 g R2 A eff [ P R2 + ( z, ν R2 )+ P R2 ( z, ν R2 ) ] P R1 ± ( z, ν R1 )+2 Γ R1 σ eR1 N 2 (z) h c 2 λ R1 3 Δλ
± d P R2 ± (z, ν R2 ) dz = Γ R2 [ σ aR2 N( σ aR2 + σ eR2 ) N 2 (z) ] P R2 ± (z, ν R2 ) α R2 P R2 ± (z, ν R2 ) + g R2 A eff [ P R1 + ( z, ν R1 )+ P R1 ( z, ν R1 ) ] P R2 ± ( z, ν R2 )+2 Γ R2 σ eR2 N 2 (z) h c 2 λ R2 3 Δλ

Metrics