Abstract

Since the transmission of anisotropic nano-structures is sensitive to the polarisation of an incident beam, a novel polarising beam splitter (PBS) based on silicon nanobrick arrays is proposed. With careful design of such structures, an incident beam with polarisation direction aligned with the long axis of the nanobrick is almost totally reflected (~98.5%), whilst that along the short axis is nearly totally transmitted (~94.3%). More importantly, by simply changing the width of the nanobrick we can shift the peak response wavelength from 1460 nm to 1625 nm, covering S, C and L bands of the fiber telecommunications windows. The silicon nanobrick-based PBS can find applications in many fields which require ultracompactness, high efficiency, and compatibility with semiconductor industry technologies.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultracompact high-efficiency polarizing beam splitter with a hybrid photonic crystal and conventional waveguide structure

Seunghyun Kim, Gregory P. Nordin, Jingbo Cai, and Jianhua Jiang
Opt. Lett. 28(23) 2384-2386 (2003)

High-efficiency polarization beam splitter based on a self-collimating photonic crystal

Jong-Moon Park, Sun-Goo Lee, Hae-Ryeong Park, and Myung-Hyun Lee
J. Opt. Soc. Am. B 27(11) 2247-2254 (2010)

Ultracompact photonic crystal polarization beam splitter based on multimode interference

Ming-Feng Lu, Shan-Mei Liao, and Yang-Tung Huang
Appl. Opt. 49(4) 724-731 (2010)

References

  • View by:
  • |
  • |
  • |

  1. L. Zhou and W. Liu, “Broadband polarizing beam splitter with an embedded metal-wire nanograting,” Opt. Lett. 30(12), 1434–1436 (2005).
    [Crossref] [PubMed]
  2. H. Lajunen, J. Turunen, and J. Tervo, “Design of polarization gratings for broadband illumination,” Opt. Express 13(8), 3055–3067 (2005).
    [Crossref] [PubMed]
  3. R. Schnabel, A. Bunkowski, O. Burmeister, and K. Danzmann, “Three-port beam splitters-combiners for interferometer applications,” Opt. Lett. 31(5), 658–660 (2006).
    [Crossref] [PubMed]
  4. Z. Wu, P. E. Powers, A. M. Sarangan, and Q. Zhan, “Optical characterization of wiregrid micropolarizers designed for infrared imaging polarimetry,” Opt. Lett. 33(15), 1653–1655 (2008).
    [Crossref] [PubMed]
  5. M. Xu, H. Urbach, D. de Boer, and H. Cornelissen, “Wire-grid diffraction gratings used as polarizing beam splitter for visible light and applied in liquid crystal on silicon,” Opt. Express 13(7), 2303–2320 (2005).
    [Crossref] [PubMed]
  6. C. R. A. Lima, L. L. Soares, L. Cescato, and A. L. Gobbi, “Reflecting polarizing beam splitter,” Opt. Lett. 22(4), 203–205 (1997).
    [Crossref] [PubMed]
  7. P. Lalanne, J. Hazart, P. Chavel, E. Cambril, and H. Launois, “A transmission polarizing beam splitter grating,” Pure Appl. Opt. 1(2), 215–219 (1999).
    [Crossref]
  8. Y. Ekinci, H. H. Solak, C. David, and H. Sigg, “Bilayer Al wire-grids as broadband and high-performance polarizers,” Opt. Express 14(6), 2323–2334 (2006).
    [Crossref] [PubMed]
  9. J. Wu, C. Zhou, H. Cao, and A. Hu, “Broadband polarizing beam splitter with metal-wire nanograting in near infrared region,” Opt. Laser Technol. 47, 166–170 (2013).
    [Crossref]
  10. D. Yi, Y. Yan, H. Liu, S. Lu, and G. Jin, “Broadband polarizing beam splitter based on the form birefringence of a subwavelength grating in the quasi-static domain,” Opt. Lett. 29(7), 754–756 (2004).
    [Crossref] [PubMed]
  11. J. Zheng, C. Zhou, J. Feng, and B. Wang, “Polarizing beam splitter of deep-etched triangular-groove fused-silica gratings,” Opt. Lett. 33(14), 1554–1556 (2008).
    [Crossref] [PubMed]
  12. J. Feng, C. Zhou, H. Cao, and P. Lv, “Deep-etched sinusoidal polarizing beam splitter grating,” Appl. Opt. 49(10), 1739–1743 (2010).
    [Crossref] [PubMed]
  13. H. Wu, W. Mo, J. Hou, D. Gao, R. Hao, R. Guo, W. Wu, and Z. Zhou, “Polarizing beam splitter based on a subwavelength asymmetric profile grating,” J. Opt. 12(1), 015703 (2010).
    [Crossref]
  14. B. Wang, L. Lei, L. Chen, and J. Zhou, “Connecting-layer-based polarizing beam splitter grating with high efficiency for both TE and TM polarizations,” Opt. Laser Technol. 44(7), 2145–2148 (2012).
    [Crossref]
  15. B. Wang, L. Chen, L. Lei, and J. Zhou, “Two-layer dielectric grating for polarization-selective beam splitter with improved efficiency and bandwidth,” Opt. Commun. 294, 329–332 (2013).
    [Crossref]
  16. Z. Lu, Y. Tang, Y. Shen, X. Liu, and J. Zi, “Polarization beam splitting in two-dimensional photonic crystals based on negative refraction,” Phys. Lett. A 346(1-3), 243–247 (2005).
    [Crossref]
  17. X. Ao and S. He, “Polarization beam splitters based on a two-dimensional photonic crystal of negative refraction,” Opt. Lett. 30(16), 2152–2154 (2005).
    [Crossref] [PubMed]
  18. Y. Zhang, Y. Jiang, W. Xue, and S. He, “A broad-angle polarization beam splitter based on a simple dielectric periodic structure,” Opt. Express 15(22), 14363–14368 (2007).
    [Crossref] [PubMed]
  19. E. Schonbrun, Q. Wu, W. Park, T. Yamashita, and C. J. Summers, “Polarization beam splitter based on a photonic crystal heterostructure,” Opt. Lett. 31(21), 3104–3106 (2006).
    [Crossref] [PubMed]
  20. S. Y. Lee, K. Kim, G. Y. Lee, and B. Lee, “Polarization-multiplexed plasmonic phase generation with distributed nanoslits,” Opt. Express 23(12), 15598–15607 (2015).
    [Crossref] [PubMed]
  21. S. Zhang, C. Gu, and H. Xu, “Single nanoparticle couplers for plasmonic waveguides,” Small 10(21), 4264–4269 (2014).
    [PubMed]
  22. Z. L. Deng, S. Zhang, and G. P. Wang, “A facile grating approach towards broadband, wide-angle and high-efficiency holographic metasurfaces,” Nanoscale 8(3), 1588–1594 (2016).
    [Crossref] [PubMed]
  23. L. Du, S. S. Kou, E. Balaur, J. J. Cadusch, A. Roberts, B. Abbey, X. C. Yuan, D. Tang, and J. Lin, “Broadband chirality-coded meta-aperture for photon-spin resolving,” Nat. Commun. 6, 10051 (2015).
    [Crossref] [PubMed]
  24. Y. Wang, M. Pu, Z. Zhang, X. Li, X. Ma, Z. Zhao, and X. Luo, “Quasi-continuous metasurface for ultra-broadband and polarization-controlled electromagnetic beam deflection,” Sci. Rep. 5, 17733 (2015).
    [Crossref] [PubMed]
  25. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
    [Crossref] [PubMed]
  26. X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
    [Crossref] [PubMed]
  27. L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K. Cheah, C. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commum. 4, 2808 (2013).
  28. D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. Wong, K. W. Cheah, E. Y. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6, 8241 (2015).
    [Crossref] [PubMed]
  29. G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
    [Crossref] [PubMed]
  30. Z. Li, G. Zheng, P. He, S. Li, Q. Deng, J. Zhao, and Y. Ai, “All-silicon nanorod-based Dammann gratings,” Opt. Lett. 40(18), 4285–4288 (2015).
    [Crossref] [PubMed]
  31. E. Schonbrun, K. Seo, and K. B. Crozier, “Reconfigurable imaging systems using elliptical nanowires,” Nano Lett. 11(10), 4299–4303 (2011).
    [Crossref] [PubMed]
  32. V. Gruev, R. Perkins, and T. York, “CCD polarization imaging sensor with aluminum nanowire optical filters,” Opt. Express 18(18), 19087–19094 (2010).
    [Crossref] [PubMed]
  33. N. J. Brock, B. T. Kimbrough, and J. E. Millerd, “A pixelated micropolarizer-based camera for instantaneous interferometric measurements,” Proc. SPIE 8160, 81600W (2011).
    [Crossref]

2016 (1)

Z. L. Deng, S. Zhang, and G. P. Wang, “A facile grating approach towards broadband, wide-angle and high-efficiency holographic metasurfaces,” Nanoscale 8(3), 1588–1594 (2016).
[Crossref] [PubMed]

2015 (6)

L. Du, S. S. Kou, E. Balaur, J. J. Cadusch, A. Roberts, B. Abbey, X. C. Yuan, D. Tang, and J. Lin, “Broadband chirality-coded meta-aperture for photon-spin resolving,” Nat. Commun. 6, 10051 (2015).
[Crossref] [PubMed]

Y. Wang, M. Pu, Z. Zhang, X. Li, X. Ma, Z. Zhao, and X. Luo, “Quasi-continuous metasurface for ultra-broadband and polarization-controlled electromagnetic beam deflection,” Sci. Rep. 5, 17733 (2015).
[Crossref] [PubMed]

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. Wong, K. W. Cheah, E. Y. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6, 8241 (2015).
[Crossref] [PubMed]

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref] [PubMed]

S. Y. Lee, K. Kim, G. Y. Lee, and B. Lee, “Polarization-multiplexed plasmonic phase generation with distributed nanoslits,” Opt. Express 23(12), 15598–15607 (2015).
[Crossref] [PubMed]

Z. Li, G. Zheng, P. He, S. Li, Q. Deng, J. Zhao, and Y. Ai, “All-silicon nanorod-based Dammann gratings,” Opt. Lett. 40(18), 4285–4288 (2015).
[Crossref] [PubMed]

2014 (1)

S. Zhang, C. Gu, and H. Xu, “Single nanoparticle couplers for plasmonic waveguides,” Small 10(21), 4264–4269 (2014).
[PubMed]

2013 (3)

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K. Cheah, C. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commum. 4, 2808 (2013).

J. Wu, C. Zhou, H. Cao, and A. Hu, “Broadband polarizing beam splitter with metal-wire nanograting in near infrared region,” Opt. Laser Technol. 47, 166–170 (2013).
[Crossref]

B. Wang, L. Chen, L. Lei, and J. Zhou, “Two-layer dielectric grating for polarization-selective beam splitter with improved efficiency and bandwidth,” Opt. Commun. 294, 329–332 (2013).
[Crossref]

2012 (2)

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref] [PubMed]

B. Wang, L. Lei, L. Chen, and J. Zhou, “Connecting-layer-based polarizing beam splitter grating with high efficiency for both TE and TM polarizations,” Opt. Laser Technol. 44(7), 2145–2148 (2012).
[Crossref]

2011 (3)

E. Schonbrun, K. Seo, and K. B. Crozier, “Reconfigurable imaging systems using elliptical nanowires,” Nano Lett. 11(10), 4299–4303 (2011).
[Crossref] [PubMed]

N. J. Brock, B. T. Kimbrough, and J. E. Millerd, “A pixelated micropolarizer-based camera for instantaneous interferometric measurements,” Proc. SPIE 8160, 81600W (2011).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

2010 (3)

2008 (2)

2007 (1)

2006 (3)

2005 (5)

2004 (1)

1999 (1)

P. Lalanne, J. Hazart, P. Chavel, E. Cambril, and H. Launois, “A transmission polarizing beam splitter grating,” Pure Appl. Opt. 1(2), 215–219 (1999).
[Crossref]

1997 (1)

Abbey, B.

L. Du, S. S. Kou, E. Balaur, J. J. Cadusch, A. Roberts, B. Abbey, X. C. Yuan, D. Tang, and J. Lin, “Broadband chirality-coded meta-aperture for photon-spin resolving,” Nat. Commun. 6, 10051 (2015).
[Crossref] [PubMed]

Ai, Y.

Aieta, F.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Ao, X.

Bai, B.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K. Cheah, C. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commum. 4, 2808 (2013).

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref] [PubMed]

Balaur, E.

L. Du, S. S. Kou, E. Balaur, J. J. Cadusch, A. Roberts, B. Abbey, X. C. Yuan, D. Tang, and J. Lin, “Broadband chirality-coded meta-aperture for photon-spin resolving,” Nat. Commun. 6, 10051 (2015).
[Crossref] [PubMed]

Brock, N. J.

N. J. Brock, B. T. Kimbrough, and J. E. Millerd, “A pixelated micropolarizer-based camera for instantaneous interferometric measurements,” Proc. SPIE 8160, 81600W (2011).
[Crossref]

Bunkowski, A.

Burmeister, O.

Cadusch, J. J.

L. Du, S. S. Kou, E. Balaur, J. J. Cadusch, A. Roberts, B. Abbey, X. C. Yuan, D. Tang, and J. Lin, “Broadband chirality-coded meta-aperture for photon-spin resolving,” Nat. Commun. 6, 10051 (2015).
[Crossref] [PubMed]

Cambril, E.

P. Lalanne, J. Hazart, P. Chavel, E. Cambril, and H. Launois, “A transmission polarizing beam splitter grating,” Pure Appl. Opt. 1(2), 215–219 (1999).
[Crossref]

Cao, H.

J. Wu, C. Zhou, H. Cao, and A. Hu, “Broadband polarizing beam splitter with metal-wire nanograting in near infrared region,” Opt. Laser Technol. 47, 166–170 (2013).
[Crossref]

J. Feng, C. Zhou, H. Cao, and P. Lv, “Deep-etched sinusoidal polarizing beam splitter grating,” Appl. Opt. 49(10), 1739–1743 (2010).
[Crossref] [PubMed]

Capasso, F.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Cescato, L.

Chan, K.

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. Wong, K. W. Cheah, E. Y. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6, 8241 (2015).
[Crossref] [PubMed]

Chavel, P.

P. Lalanne, J. Hazart, P. Chavel, E. Cambril, and H. Launois, “A transmission polarizing beam splitter grating,” Pure Appl. Opt. 1(2), 215–219 (1999).
[Crossref]

Cheah, K.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K. Cheah, C. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commum. 4, 2808 (2013).

Cheah, K. W.

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. Wong, K. W. Cheah, E. Y. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6, 8241 (2015).
[Crossref] [PubMed]

Chen, L.

B. Wang, L. Chen, L. Lei, and J. Zhou, “Two-layer dielectric grating for polarization-selective beam splitter with improved efficiency and bandwidth,” Opt. Commun. 294, 329–332 (2013).
[Crossref]

B. Wang, L. Lei, L. Chen, and J. Zhou, “Connecting-layer-based polarizing beam splitter grating with high efficiency for both TE and TM polarizations,” Opt. Laser Technol. 44(7), 2145–2148 (2012).
[Crossref]

Chen, M.

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. Wong, K. W. Cheah, E. Y. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6, 8241 (2015).
[Crossref] [PubMed]

Chen, S.

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. Wong, K. W. Cheah, E. Y. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6, 8241 (2015).
[Crossref] [PubMed]

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K. Cheah, C. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commum. 4, 2808 (2013).

Chen, X.

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. Wong, K. W. Cheah, E. Y. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6, 8241 (2015).
[Crossref] [PubMed]

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K. Cheah, C. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commum. 4, 2808 (2013).

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref] [PubMed]

Cornelissen, H.

Crozier, K. B.

E. Schonbrun, K. Seo, and K. B. Crozier, “Reconfigurable imaging systems using elliptical nanowires,” Nano Lett. 11(10), 4299–4303 (2011).
[Crossref] [PubMed]

Danzmann, K.

David, C.

de Boer, D.

Deng, Q.

Deng, Z. L.

Z. L. Deng, S. Zhang, and G. P. Wang, “A facile grating approach towards broadband, wide-angle and high-efficiency holographic metasurfaces,” Nanoscale 8(3), 1588–1594 (2016).
[Crossref] [PubMed]

Du, L.

L. Du, S. S. Kou, E. Balaur, J. J. Cadusch, A. Roberts, B. Abbey, X. C. Yuan, D. Tang, and J. Lin, “Broadband chirality-coded meta-aperture for photon-spin resolving,” Nat. Commun. 6, 10051 (2015).
[Crossref] [PubMed]

Ekinci, Y.

Feng, J.

Gaburro, Z.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Gao, D.

H. Wu, W. Mo, J. Hou, D. Gao, R. Hao, R. Guo, W. Wu, and Z. Zhou, “Polarizing beam splitter based on a subwavelength asymmetric profile grating,” J. Opt. 12(1), 015703 (2010).
[Crossref]

Genevet, P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Gobbi, A. L.

Gruev, V.

Gu, C.

S. Zhang, C. Gu, and H. Xu, “Single nanoparticle couplers for plasmonic waveguides,” Small 10(21), 4264–4269 (2014).
[PubMed]

Guo, R.

H. Wu, W. Mo, J. Hou, D. Gao, R. Hao, R. Guo, W. Wu, and Z. Zhou, “Polarizing beam splitter based on a subwavelength asymmetric profile grating,” J. Opt. 12(1), 015703 (2010).
[Crossref]

Hao, R.

H. Wu, W. Mo, J. Hou, D. Gao, R. Hao, R. Guo, W. Wu, and Z. Zhou, “Polarizing beam splitter based on a subwavelength asymmetric profile grating,” J. Opt. 12(1), 015703 (2010).
[Crossref]

Hazart, J.

P. Lalanne, J. Hazart, P. Chavel, E. Cambril, and H. Launois, “A transmission polarizing beam splitter grating,” Pure Appl. Opt. 1(2), 215–219 (1999).
[Crossref]

He, P.

He, S.

Hou, J.

H. Wu, W. Mo, J. Hou, D. Gao, R. Hao, R. Guo, W. Wu, and Z. Zhou, “Polarizing beam splitter based on a subwavelength asymmetric profile grating,” J. Opt. 12(1), 015703 (2010).
[Crossref]

Hu, A.

J. Wu, C. Zhou, H. Cao, and A. Hu, “Broadband polarizing beam splitter with metal-wire nanograting in near infrared region,” Opt. Laser Technol. 47, 166–170 (2013).
[Crossref]

Huang, L.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K. Cheah, C. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commum. 4, 2808 (2013).

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref] [PubMed]

Jiang, Y.

Jin, G.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K. Cheah, C. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commum. 4, 2808 (2013).

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref] [PubMed]

D. Yi, Y. Yan, H. Liu, S. Lu, and G. Jin, “Broadband polarizing beam splitter based on the form birefringence of a subwavelength grating in the quasi-static domain,” Opt. Lett. 29(7), 754–756 (2004).
[Crossref] [PubMed]

Kats, M. A.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Kenney, M.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref] [PubMed]

Kim, K.

Kimbrough, B. T.

N. J. Brock, B. T. Kimbrough, and J. E. Millerd, “A pixelated micropolarizer-based camera for instantaneous interferometric measurements,” Proc. SPIE 8160, 81600W (2011).
[Crossref]

Kou, S. S.

L. Du, S. S. Kou, E. Balaur, J. J. Cadusch, A. Roberts, B. Abbey, X. C. Yuan, D. Tang, and J. Lin, “Broadband chirality-coded meta-aperture for photon-spin resolving,” Nat. Commun. 6, 10051 (2015).
[Crossref] [PubMed]

Lajunen, H.

Lalanne, P.

P. Lalanne, J. Hazart, P. Chavel, E. Cambril, and H. Launois, “A transmission polarizing beam splitter grating,” Pure Appl. Opt. 1(2), 215–219 (1999).
[Crossref]

Launois, H.

P. Lalanne, J. Hazart, P. Chavel, E. Cambril, and H. Launois, “A transmission polarizing beam splitter grating,” Pure Appl. Opt. 1(2), 215–219 (1999).
[Crossref]

Lee, B.

Lee, G. Y.

Lee, S. Y.

Lei, L.

B. Wang, L. Chen, L. Lei, and J. Zhou, “Two-layer dielectric grating for polarization-selective beam splitter with improved efficiency and bandwidth,” Opt. Commun. 294, 329–332 (2013).
[Crossref]

B. Wang, L. Lei, L. Chen, and J. Zhou, “Connecting-layer-based polarizing beam splitter grating with high efficiency for both TE and TM polarizations,” Opt. Laser Technol. 44(7), 2145–2148 (2012).
[Crossref]

Li, G.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref] [PubMed]

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. Wong, K. W. Cheah, E. Y. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6, 8241 (2015).
[Crossref] [PubMed]

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref] [PubMed]

Li, J.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K. Cheah, C. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commum. 4, 2808 (2013).

Li, K. F.

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. Wong, K. W. Cheah, E. Y. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6, 8241 (2015).
[Crossref] [PubMed]

Li, S.

Li, X.

Y. Wang, M. Pu, Z. Zhang, X. Li, X. Ma, Z. Zhao, and X. Luo, “Quasi-continuous metasurface for ultra-broadband and polarization-controlled electromagnetic beam deflection,” Sci. Rep. 5, 17733 (2015).
[Crossref] [PubMed]

Li, Z.

Lima, C. R. A.

Lin, J.

L. Du, S. S. Kou, E. Balaur, J. J. Cadusch, A. Roberts, B. Abbey, X. C. Yuan, D. Tang, and J. Lin, “Broadband chirality-coded meta-aperture for photon-spin resolving,” Nat. Commun. 6, 10051 (2015).
[Crossref] [PubMed]

Liu, H.

Liu, W.

Liu, X.

Z. Lu, Y. Tang, Y. Shen, X. Liu, and J. Zi, “Polarization beam splitting in two-dimensional photonic crystals based on negative refraction,” Phys. Lett. A 346(1-3), 243–247 (2005).
[Crossref]

Lu, S.

Lu, Z.

Z. Lu, Y. Tang, Y. Shen, X. Liu, and J. Zi, “Polarization beam splitting in two-dimensional photonic crystals based on negative refraction,” Phys. Lett. A 346(1-3), 243–247 (2005).
[Crossref]

Luo, X.

Y. Wang, M. Pu, Z. Zhang, X. Li, X. Ma, Z. Zhao, and X. Luo, “Quasi-continuous metasurface for ultra-broadband and polarization-controlled electromagnetic beam deflection,” Sci. Rep. 5, 17733 (2015).
[Crossref] [PubMed]

Lv, P.

Ma, X.

Y. Wang, M. Pu, Z. Zhang, X. Li, X. Ma, Z. Zhao, and X. Luo, “Quasi-continuous metasurface for ultra-broadband and polarization-controlled electromagnetic beam deflection,” Sci. Rep. 5, 17733 (2015).
[Crossref] [PubMed]

Millerd, J. E.

N. J. Brock, B. T. Kimbrough, and J. E. Millerd, “A pixelated micropolarizer-based camera for instantaneous interferometric measurements,” Proc. SPIE 8160, 81600W (2011).
[Crossref]

Mo, W.

H. Wu, W. Mo, J. Hou, D. Gao, R. Hao, R. Guo, W. Wu, and Z. Zhou, “Polarizing beam splitter based on a subwavelength asymmetric profile grating,” J. Opt. 12(1), 015703 (2010).
[Crossref]

Mühlenbernd, H.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref] [PubMed]

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K. Cheah, C. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commum. 4, 2808 (2013).

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref] [PubMed]

Park, W.

Perkins, R.

Powers, P. E.

Pu, M.

Y. Wang, M. Pu, Z. Zhang, X. Li, X. Ma, Z. Zhao, and X. Luo, “Quasi-continuous metasurface for ultra-broadband and polarization-controlled electromagnetic beam deflection,” Sci. Rep. 5, 17733 (2015).
[Crossref] [PubMed]

Pun, E. Y.

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. Wong, K. W. Cheah, E. Y. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6, 8241 (2015).
[Crossref] [PubMed]

Qiu, C.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K. Cheah, C. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commum. 4, 2808 (2013).

Qiu, C. W.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref] [PubMed]

Roberts, A.

L. Du, S. S. Kou, E. Balaur, J. J. Cadusch, A. Roberts, B. Abbey, X. C. Yuan, D. Tang, and J. Lin, “Broadband chirality-coded meta-aperture for photon-spin resolving,” Nat. Commun. 6, 10051 (2015).
[Crossref] [PubMed]

Sarangan, A. M.

Schnabel, R.

Schonbrun, E.

E. Schonbrun, K. Seo, and K. B. Crozier, “Reconfigurable imaging systems using elliptical nanowires,” Nano Lett. 11(10), 4299–4303 (2011).
[Crossref] [PubMed]

E. Schonbrun, Q. Wu, W. Park, T. Yamashita, and C. J. Summers, “Polarization beam splitter based on a photonic crystal heterostructure,” Opt. Lett. 31(21), 3104–3106 (2006).
[Crossref] [PubMed]

Seo, K.

E. Schonbrun, K. Seo, and K. B. Crozier, “Reconfigurable imaging systems using elliptical nanowires,” Nano Lett. 11(10), 4299–4303 (2011).
[Crossref] [PubMed]

Shen, Y.

Z. Lu, Y. Tang, Y. Shen, X. Liu, and J. Zi, “Polarization beam splitting in two-dimensional photonic crystals based on negative refraction,” Phys. Lett. A 346(1-3), 243–247 (2005).
[Crossref]

Sigg, H.

Soares, L. L.

Solak, H. H.

Summers, C. J.

Tan, Q.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K. Cheah, C. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commum. 4, 2808 (2013).

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref] [PubMed]

Tang, D.

L. Du, S. S. Kou, E. Balaur, J. J. Cadusch, A. Roberts, B. Abbey, X. C. Yuan, D. Tang, and J. Lin, “Broadband chirality-coded meta-aperture for photon-spin resolving,” Nat. Commun. 6, 10051 (2015).
[Crossref] [PubMed]

Tang, Y.

Z. Lu, Y. Tang, Y. Shen, X. Liu, and J. Zi, “Polarization beam splitting in two-dimensional photonic crystals based on negative refraction,” Phys. Lett. A 346(1-3), 243–247 (2005).
[Crossref]

Tervo, J.

Tetienne, J. P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Turunen, J.

Urbach, H.

Wang, B.

B. Wang, L. Chen, L. Lei, and J. Zhou, “Two-layer dielectric grating for polarization-selective beam splitter with improved efficiency and bandwidth,” Opt. Commun. 294, 329–332 (2013).
[Crossref]

B. Wang, L. Lei, L. Chen, and J. Zhou, “Connecting-layer-based polarizing beam splitter grating with high efficiency for both TE and TM polarizations,” Opt. Laser Technol. 44(7), 2145–2148 (2012).
[Crossref]

J. Zheng, C. Zhou, J. Feng, and B. Wang, “Polarizing beam splitter of deep-etched triangular-groove fused-silica gratings,” Opt. Lett. 33(14), 1554–1556 (2008).
[Crossref] [PubMed]

Wang, G. P.

Z. L. Deng, S. Zhang, and G. P. Wang, “A facile grating approach towards broadband, wide-angle and high-efficiency holographic metasurfaces,” Nanoscale 8(3), 1588–1594 (2016).
[Crossref] [PubMed]

Wang, Y.

Y. Wang, M. Pu, Z. Zhang, X. Li, X. Ma, Z. Zhao, and X. Luo, “Quasi-continuous metasurface for ultra-broadband and polarization-controlled electromagnetic beam deflection,” Sci. Rep. 5, 17733 (2015).
[Crossref] [PubMed]

Wen, D.

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. Wong, K. W. Cheah, E. Y. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6, 8241 (2015).
[Crossref] [PubMed]

Wong, P. W.

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. Wong, K. W. Cheah, E. Y. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6, 8241 (2015).
[Crossref] [PubMed]

Wu, H.

H. Wu, W. Mo, J. Hou, D. Gao, R. Hao, R. Guo, W. Wu, and Z. Zhou, “Polarizing beam splitter based on a subwavelength asymmetric profile grating,” J. Opt. 12(1), 015703 (2010).
[Crossref]

Wu, J.

J. Wu, C. Zhou, H. Cao, and A. Hu, “Broadband polarizing beam splitter with metal-wire nanograting in near infrared region,” Opt. Laser Technol. 47, 166–170 (2013).
[Crossref]

Wu, Q.

Wu, W.

H. Wu, W. Mo, J. Hou, D. Gao, R. Hao, R. Guo, W. Wu, and Z. Zhou, “Polarizing beam splitter based on a subwavelength asymmetric profile grating,” J. Opt. 12(1), 015703 (2010).
[Crossref]

Wu, Z.

Xu, H.

S. Zhang, C. Gu, and H. Xu, “Single nanoparticle couplers for plasmonic waveguides,” Small 10(21), 4264–4269 (2014).
[PubMed]

Xu, M.

Xue, W.

Yamashita, T.

Yan, Y.

Yi, D.

York, T.

Yu, N.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Yuan, X. C.

L. Du, S. S. Kou, E. Balaur, J. J. Cadusch, A. Roberts, B. Abbey, X. C. Yuan, D. Tang, and J. Lin, “Broadband chirality-coded meta-aperture for photon-spin resolving,” Nat. Commun. 6, 10051 (2015).
[Crossref] [PubMed]

Yue, F.

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. Wong, K. W. Cheah, E. Y. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6, 8241 (2015).
[Crossref] [PubMed]

Zentgraf, T.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref] [PubMed]

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K. Cheah, C. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commum. 4, 2808 (2013).

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref] [PubMed]

Zhan, Q.

Zhang, H.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K. Cheah, C. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commum. 4, 2808 (2013).

Zhang, S.

Z. L. Deng, S. Zhang, and G. P. Wang, “A facile grating approach towards broadband, wide-angle and high-efficiency holographic metasurfaces,” Nanoscale 8(3), 1588–1594 (2016).
[Crossref] [PubMed]

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref] [PubMed]

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. Wong, K. W. Cheah, E. Y. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6, 8241 (2015).
[Crossref] [PubMed]

S. Zhang, C. Gu, and H. Xu, “Single nanoparticle couplers for plasmonic waveguides,” Small 10(21), 4264–4269 (2014).
[PubMed]

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K. Cheah, C. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commum. 4, 2808 (2013).

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref] [PubMed]

Zhang, Y.

Zhang, Z.

Y. Wang, M. Pu, Z. Zhang, X. Li, X. Ma, Z. Zhao, and X. Luo, “Quasi-continuous metasurface for ultra-broadband and polarization-controlled electromagnetic beam deflection,” Sci. Rep. 5, 17733 (2015).
[Crossref] [PubMed]

Zhao, J.

Zhao, Z.

Y. Wang, M. Pu, Z. Zhang, X. Li, X. Ma, Z. Zhao, and X. Luo, “Quasi-continuous metasurface for ultra-broadband and polarization-controlled electromagnetic beam deflection,” Sci. Rep. 5, 17733 (2015).
[Crossref] [PubMed]

Zheng, G.

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. Wong, K. W. Cheah, E. Y. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6, 8241 (2015).
[Crossref] [PubMed]

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref] [PubMed]

Z. Li, G. Zheng, P. He, S. Li, Q. Deng, J. Zhao, and Y. Ai, “All-silicon nanorod-based Dammann gratings,” Opt. Lett. 40(18), 4285–4288 (2015).
[Crossref] [PubMed]

Zheng, J.

Zhou, C.

Zhou, J.

B. Wang, L. Chen, L. Lei, and J. Zhou, “Two-layer dielectric grating for polarization-selective beam splitter with improved efficiency and bandwidth,” Opt. Commun. 294, 329–332 (2013).
[Crossref]

B. Wang, L. Lei, L. Chen, and J. Zhou, “Connecting-layer-based polarizing beam splitter grating with high efficiency for both TE and TM polarizations,” Opt. Laser Technol. 44(7), 2145–2148 (2012).
[Crossref]

Zhou, L.

Zhou, Z.

H. Wu, W. Mo, J. Hou, D. Gao, R. Hao, R. Guo, W. Wu, and Z. Zhou, “Polarizing beam splitter based on a subwavelength asymmetric profile grating,” J. Opt. 12(1), 015703 (2010).
[Crossref]

Zi, J.

Z. Lu, Y. Tang, Y. Shen, X. Liu, and J. Zi, “Polarization beam splitting in two-dimensional photonic crystals based on negative refraction,” Phys. Lett. A 346(1-3), 243–247 (2005).
[Crossref]

Appl. Opt. (1)

J. Opt. (1)

H. Wu, W. Mo, J. Hou, D. Gao, R. Hao, R. Guo, W. Wu, and Z. Zhou, “Polarizing beam splitter based on a subwavelength asymmetric profile grating,” J. Opt. 12(1), 015703 (2010).
[Crossref]

Nano Lett. (1)

E. Schonbrun, K. Seo, and K. B. Crozier, “Reconfigurable imaging systems using elliptical nanowires,” Nano Lett. 11(10), 4299–4303 (2011).
[Crossref] [PubMed]

Nanoscale (1)

Z. L. Deng, S. Zhang, and G. P. Wang, “A facile grating approach towards broadband, wide-angle and high-efficiency holographic metasurfaces,” Nanoscale 8(3), 1588–1594 (2016).
[Crossref] [PubMed]

Nat. Commum. (1)

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K. Cheah, C. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commum. 4, 2808 (2013).

Nat. Commun. (3)

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. Wong, K. W. Cheah, E. Y. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6, 8241 (2015).
[Crossref] [PubMed]

L. Du, S. S. Kou, E. Balaur, J. J. Cadusch, A. Roberts, B. Abbey, X. C. Yuan, D. Tang, and J. Lin, “Broadband chirality-coded meta-aperture for photon-spin resolving,” Nat. Commun. 6, 10051 (2015).
[Crossref] [PubMed]

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref] [PubMed]

Opt. Commun. (1)

B. Wang, L. Chen, L. Lei, and J. Zhou, “Two-layer dielectric grating for polarization-selective beam splitter with improved efficiency and bandwidth,” Opt. Commun. 294, 329–332 (2013).
[Crossref]

Opt. Express (6)

Opt. Laser Technol. (2)

J. Wu, C. Zhou, H. Cao, and A. Hu, “Broadband polarizing beam splitter with metal-wire nanograting in near infrared region,” Opt. Laser Technol. 47, 166–170 (2013).
[Crossref]

B. Wang, L. Lei, L. Chen, and J. Zhou, “Connecting-layer-based polarizing beam splitter grating with high efficiency for both TE and TM polarizations,” Opt. Laser Technol. 44(7), 2145–2148 (2012).
[Crossref]

Opt. Lett. (9)

E. Schonbrun, Q. Wu, W. Park, T. Yamashita, and C. J. Summers, “Polarization beam splitter based on a photonic crystal heterostructure,” Opt. Lett. 31(21), 3104–3106 (2006).
[Crossref] [PubMed]

L. Zhou and W. Liu, “Broadband polarizing beam splitter with an embedded metal-wire nanograting,” Opt. Lett. 30(12), 1434–1436 (2005).
[Crossref] [PubMed]

X. Ao and S. He, “Polarization beam splitters based on a two-dimensional photonic crystal of negative refraction,” Opt. Lett. 30(16), 2152–2154 (2005).
[Crossref] [PubMed]

D. Yi, Y. Yan, H. Liu, S. Lu, and G. Jin, “Broadband polarizing beam splitter based on the form birefringence of a subwavelength grating in the quasi-static domain,” Opt. Lett. 29(7), 754–756 (2004).
[Crossref] [PubMed]

J. Zheng, C. Zhou, J. Feng, and B. Wang, “Polarizing beam splitter of deep-etched triangular-groove fused-silica gratings,” Opt. Lett. 33(14), 1554–1556 (2008).
[Crossref] [PubMed]

C. R. A. Lima, L. L. Soares, L. Cescato, and A. L. Gobbi, “Reflecting polarizing beam splitter,” Opt. Lett. 22(4), 203–205 (1997).
[Crossref] [PubMed]

R. Schnabel, A. Bunkowski, O. Burmeister, and K. Danzmann, “Three-port beam splitters-combiners for interferometer applications,” Opt. Lett. 31(5), 658–660 (2006).
[Crossref] [PubMed]

Z. Wu, P. E. Powers, A. M. Sarangan, and Q. Zhan, “Optical characterization of wiregrid micropolarizers designed for infrared imaging polarimetry,” Opt. Lett. 33(15), 1653–1655 (2008).
[Crossref] [PubMed]

Z. Li, G. Zheng, P. He, S. Li, Q. Deng, J. Zhao, and Y. Ai, “All-silicon nanorod-based Dammann gratings,” Opt. Lett. 40(18), 4285–4288 (2015).
[Crossref] [PubMed]

Phys. Lett. A (1)

Z. Lu, Y. Tang, Y. Shen, X. Liu, and J. Zi, “Polarization beam splitting in two-dimensional photonic crystals based on negative refraction,” Phys. Lett. A 346(1-3), 243–247 (2005).
[Crossref]

Proc. SPIE (1)

N. J. Brock, B. T. Kimbrough, and J. E. Millerd, “A pixelated micropolarizer-based camera for instantaneous interferometric measurements,” Proc. SPIE 8160, 81600W (2011).
[Crossref]

Pure Appl. Opt. (1)

P. Lalanne, J. Hazart, P. Chavel, E. Cambril, and H. Launois, “A transmission polarizing beam splitter grating,” Pure Appl. Opt. 1(2), 215–219 (1999).
[Crossref]

Sci. Rep. (1)

Y. Wang, M. Pu, Z. Zhang, X. Li, X. Ma, Z. Zhao, and X. Luo, “Quasi-continuous metasurface for ultra-broadband and polarization-controlled electromagnetic beam deflection,” Sci. Rep. 5, 17733 (2015).
[Crossref] [PubMed]

Science (1)

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Small (1)

S. Zhang, C. Gu, and H. Xu, “Single nanoparticle couplers for plasmonic waveguides,” Small 10(21), 4264–4269 (2014).
[PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Illustration of PBS based on silicon nanobrick arrays sitting on a glass substrate. All the nanobricks have the same dimensions and orientations. Incident beams with polarisation direction along the long axis of the nanobrick are reflected and those with polarisation direction along the short axis are transmitted. This dielectric device works in the fiber telecommunications windows (~1550 nm).
Fig. 2
Fig. 2 (a) Simulated reflectivity and transmissivity Rx, Ry, Tx and Ty with the height of the nanobricks varying from 100 nm to 2000 nm. Here R and T refer to the reflected wave and transmitted wave, respectively, and x and y denote the long and short axes directions of the nanobrick, respectively. The operation wavelength is fixed at 1547.5 nm. (b) Electric fields of x-polarised and y-polarised light in the simulation domain. (c-d) The vortex-like electric field distribution (c) and magnetic field enhancement at the center of silicon nanobricks (d) indicate magnetic resonance. In the numerical simulations, the dimensions of a nanobrick are fixed with cell size of 720 nm, length of 400 nm, width of 210 nm and height of 490 nm.
Fig. 3
Fig. 3 (a) Simulated reflectivity Rx and Ry, transmissivity Tx and Ty, and extinction ratio EXT, EXR vs wavelengths for normal light incidence. The dimensions of the nanobrick are fixed with cell size of 720 nm, length of 400 nm, width of 210 nm and height of 490 nm. (b) Simulated Rx and Ty vs wavelengths for different nanobrick widths (180 nm, 210 nm and 250 nm). The dimensions of a nanobrick are fixed with cell size of 720 nm, length of 400 nm and height of 490 nm.
Fig. 4
Fig. 4 (a) Simulated reflectivity Rx, Ry and transmissivity Tx, Ty vs nanobrick length. The nanobrick is fixed with cell size of 720 nm, width of 210 nm, height of 490 nm, and the wavelength is 1547.5 nm. (b) Simulated reflectivity Rx, Ry and transmissivity Tx, Ty vs nanobrick width. The nanobrick is fixed with cell size of 720 nm, length of 400 nm, height of 490 nm, and the wavelength is 1547.5 nm. (c) Simulated reflectivity Rx, Ry and transmissivity Tx, Ty with different orientation angles of nanobrick.
Fig. 5
Fig. 5 (a) Schematic of eight nanobricks with the same size but different orientation angles to form a phase grating. (b) Schematic of a nanobrick-based beam splitter with left-handed circularly polarised (LCP) incident light. If we assume the transmissivity and reflectivity are 100%, a quarter of the incident energy would be projected into the + 1 diffraction order with a right-handed circularly polarised (RCP) state and the other transmitted beams retain their propagation direction and polarisation state. The situations are similar for reflected beams. (c) Comparing with that of (b), if one changes the polarisation state of the incident beam from LCP to RCP, a quarter of the incident energy would be projected into the −1 diffraction order. (d) schematic of incident beams with random polarisation state. In this situation, it is interesting that the incident beams would be divided into 6 sub-beams with different propagation directions (assuming the transmissivity and reflectivity are 100%).
Fig. 6
Fig. 6 The electric field distribution of LCP (a) and RCP (b) both for reflected and transmitted light when an 8 phase-level beam splitter is illuminated by an LCP incident plane wave. The left side of the nanobricks layer is filled with glass substrate and the right side is vacuum. In the numerical simulations, the wavelength is 1547.5 nm, the dimensions of a nanobrick are fixed with cell size of 720 nm, length of 400 nm, width of 210 nm and height of 490 nm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

EXR=10×lg( R x / R y ) and EXT=10×lg( T y / T x ) , respectively.
1 2 [ 1+cos2φ sin2φ sin2φ 1cos2φ ].[ 1 ±i ]= 1 2 e ±i2φ [ 1 i ]+ 1 2 [ 1 ±i ].

Metrics