Abstract

Dual-polarization quadrature amplitude modulation (DP-QAM) is one of the feasible paths towards 100-Gb/s, 400-Gb/s and 1-Tb/s optical fiber communications systems. For DP-QAM transmitter, the time mismatch between the in-phase and quadrature (IQ) or x-polarized and y-polarized (XY) tributary channels is known as the IQ or XY skew. Large uncompensated IQ or XY skew can significantly degrade the optical fiber communications system performance. Sometimes, time-interleaved return-to-zero (RZ) DP signal is preferred with lower nonlinear polarization scattering induced penalty. In this work, detection and alignment of DP-QAM transmitter IQ and XY skews using reconfigurable interference is experimentally demonstrated. For IQ skew detection, a total dynamic range of 26.4 dB is achieved with ~1-dB power change for 0.5-ps skew from well alignment. For XY skew detection, it shows 23.2-dB dynamic range, and ~1.5-dB power change is achieved for 1-ps XY skew. Fast detection algorithm for arbitrary skew is also proposed and experimentally verified. The scheme is compatible with different modulation formats, flexible data sequences, and variable waveforms.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Transmitter skew tolerance and spectral efficiency tradeoff in high baud-rate QAM optical communication systems

Yang Yue, Qiang Wang, and Jon Anderson
Opt. Express 26(12) 15045-15058 (2018)

Modulation-format-transparent IQ imbalance estimation of dual-polarization optical transmitter based on maximum likelihood independent component analysis

Qun Zhang, Yanfu Yang, Changjian Guo, Xian Zhou, Yong Yao, Alan Pak Tao Lau, and Chao Lu
Opt. Express 27(13) 18055-18068 (2019)

References

  • View by:
  • |
  • |
  • |

  1. X. Zhou, L. E. Nelson, P. Magill, B. Zhu, and D. W. Peckham, “8x450-Gb/s, 50-GHz-Spaced, PDM-32QAM transmission over 400km and one 50GHz-grid ROADM,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2011, (Optical Society of America, 2011), paper PDPB3.
    [Crossref]
  2. L. S. Yan, X. Liu, and W. Shieh, “Toward the Shannon limit of spectral efficiency,” IEEE Photonics J. 3(2), 325–330 (2011).
    [Crossref]
  3. Y. Yue, Y. Yan, N. Ahmed, J.-Y. Yang, L. Zhang, Y. Ren, H. Huang, K. M. Birnbaum, B. I. Erkmen, S. Dolinar, and A. E. Willner, “Mode properties and propagation effects of optical orbital angular momentum (OAM) modes in a ring fiber,” IEEE Photonics J. 4(2), 535–543 (2012).
    [Crossref]
  4. D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space division multiplexing in optical fibers,” Nat. Photonics 7(5), 354–362 (2013).
    [Crossref]
  5. N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
    [Crossref] [PubMed]
  6. R. G. H. van Uden, R. A. Correa, E. A. Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high density spatial division multiplexing with a few-mode multi-core fiber,” Nat. Photonics 8(11), 865–870 (2014).
    [Crossref]
  7. A. Gnauck, G. Charlet, P. Tran, P. Winzer, C. Doerr, J. Centanni, E. Burrows, T. Kawanishi, T. Sakamoto, and K. Higuma, “25.6-Tb/s C+L-band transmission of polarization-multiplexed RZ-DQPSK signals,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper PDP19.
  8. J. Cai, O. Sinkin, C. Davidson, D. Foursa, A. Lucero, M. Nissov, A. Pilipetskii, W. Patterson, and N. Bergano, “40 Gb/s transmission using polarization division multiplexing (PDM) RZ-DBPSK with automatic polarization tracking,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper PDP4.
  9. S. Beppu, K. Kasai, M. Yoshida, and M. Nakazawa, “2048 QAM (66 Gbit/s) single-carrier coherent optical transmission over 150 km with a potential SE of 15.3 bit/s/Hz,” Opt. Express 23(4), 4960–4969 (2015).
    [Crossref] [PubMed]
  10. J. X. Cai, H. G. Batshon, H. Zhang, M. Mazurczyk, O. Sinkin, D. G. Foursa, A. Pilipetskii, G. Mohs, and N. S. Bergano, “30.4 Tb/s transmission over transpacific distance using 200 Gb/s and dual wavelength 400 Gb/s 16QAM at 6.0 b/s/Hz spectral efficiency,” Opt. Express 22(8), 9116–9122 (2014).
    [Crossref] [PubMed]
  11. J. Cai, H. Batshon, M. Mazurczyk, H. Zhang, Y. Sun, O. Sinkin, D. Foursa, and A. Pilipetskii, “64QAM based coded modulation transmission over transoceanic distance with > 60 Tb/s capacity,” in Optical Fiber Communication Conference Post Deadline Papers, OSA Technical Digest (online) (Optical Society of America, 2015), paper Th5C.8.
  12. R. Rios-Müller, J. Renaudier, P. Brindel, H. Mardoyan, P. Jennevé, L. Schmalen, and G. Charlet, “1-Terabit/s net data-rate transceiver based on single-carrier Nyquist-shaped 124 GBaud PDM-32QAM,” in Optical Fiber Communication Conference Post Deadline Papers, OSA Technical Digest (online) (Optical Society of America, 2015), paper Th5B.1.
  13. M. Faruk and K. Kikuchi, “Compensation for in-phase/quadrature imbalance in coherent-receiver front end for optical quadrature amplitude modulation,” IEEE Photonics J. 5(2), 7800110 (2013).
    [Crossref]
  14. N. Stojanovic and X. Changsong, “An efficient method for skew estimation and compensation in coherent receivers,” IEEE Photonics Technol. Lett. 28(4), 489–492 (2016).
    [Crossref]
  15. C. Xie, “Impact of nonlinear and polarization effects in coherent systems,” Opt. Express 19(26), B915–B930 (2011).
    [Crossref] [PubMed]
  16. Y. Takushima, H. Choi, and Y. C. Chung, “Plug-and-play phasor monitor for DxPSK signals based on single delay-interferometer using a 3x3 optical coupler,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, (Optical Society of America, 2008), paper OThW4.
  17. M. Zaeh, T. Duthel, C. R. S. Fludger, J. C. Geyer, S. Wiese, and C. Schulien, “QPSK transmitter characterization and reconstruction of optical field by 1 symbol delayed self-homodyne detection”, in Proc. Eur. Conf. Opt. Commun. (IEEE, 2010), paper P3.09.
    [Crossref]
  18. Y. Yue, B. Zhang, R. Lofland, J. O’Neil, Q. Wang, and J. Anderson, “IQ skew monitoring and alignment of optical quadrature amplitude transmitter using reconfigurable interference,” in CLEO: 2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper SW3J.6.
  19. Y. Yue, B. Zhang, Q. Wang, R. Lofland, J. O’Neil, and J. Anderson, “Detection and alignment of XY skew for dual-polarization optical quadrature amplitude transmitter using reconfigurable interference,” Proc. SPIE 9774, 97740E (2016).
    [Crossref]
  20. M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).
  21. R. Hui and M. O’Sullivan, Fiber Optic Measurement Techniques (Academic Press, 2009), Ch. 2.
  22. Y. Yue, L. Zhang, M. Song, R. G. Beausoleil, and A. E. Willner, “Higher-order-mode assisted silicon-on-insulator 90 degree polarization rotator,” Opt. Express 17(23), 20694–20699 (2009).
    [Crossref] [PubMed]
  23. Y. Yue, L. Zhang, J. Y. Yang, R. G. Beausoleil, and A. E. Willner, “Silicon-on-insulator polarization splitter using two horizontally slotted waveguides,” Opt. Lett. 35(9), 1364–1366 (2010).
    [Crossref] [PubMed]
  24. W. D. Sacher, T. Barwicz, B. J. Taylor, and J. K. Poon, “Polarization rotator-splitters in standard active silicon photonics platforms,” Opt. Express 22(4), 3777–3786 (2014).
    [Crossref] [PubMed]
  25. B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm2 footprint,” Nat. Photonics 9(6), 378–382 (2015).
    [Crossref]
  26. P. J. Winzer and R. Essiambre, “Advanced optical modulation formats,” Proc. IEEE 94(5), 952–985 (2006).
    [Crossref]

2016 (2)

N. Stojanovic and X. Changsong, “An efficient method for skew estimation and compensation in coherent receivers,” IEEE Photonics Technol. Lett. 28(4), 489–492 (2016).
[Crossref]

Y. Yue, B. Zhang, Q. Wang, R. Lofland, J. O’Neil, and J. Anderson, “Detection and alignment of XY skew for dual-polarization optical quadrature amplitude transmitter using reconfigurable interference,” Proc. SPIE 9774, 97740E (2016).
[Crossref]

2015 (2)

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm2 footprint,” Nat. Photonics 9(6), 378–382 (2015).
[Crossref]

S. Beppu, K. Kasai, M. Yoshida, and M. Nakazawa, “2048 QAM (66 Gbit/s) single-carrier coherent optical transmission over 150 km with a potential SE of 15.3 bit/s/Hz,” Opt. Express 23(4), 4960–4969 (2015).
[Crossref] [PubMed]

2014 (3)

2013 (3)

M. Faruk and K. Kikuchi, “Compensation for in-phase/quadrature imbalance in coherent-receiver front end for optical quadrature amplitude modulation,” IEEE Photonics J. 5(2), 7800110 (2013).
[Crossref]

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space division multiplexing in optical fibers,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

2012 (1)

Y. Yue, Y. Yan, N. Ahmed, J.-Y. Yang, L. Zhang, Y. Ren, H. Huang, K. M. Birnbaum, B. I. Erkmen, S. Dolinar, and A. E. Willner, “Mode properties and propagation effects of optical orbital angular momentum (OAM) modes in a ring fiber,” IEEE Photonics J. 4(2), 535–543 (2012).
[Crossref]

2011 (2)

L. S. Yan, X. Liu, and W. Shieh, “Toward the Shannon limit of spectral efficiency,” IEEE Photonics J. 3(2), 325–330 (2011).
[Crossref]

C. Xie, “Impact of nonlinear and polarization effects in coherent systems,” Opt. Express 19(26), B915–B930 (2011).
[Crossref] [PubMed]

2010 (1)

2009 (1)

2006 (1)

P. J. Winzer and R. Essiambre, “Advanced optical modulation formats,” Proc. IEEE 94(5), 952–985 (2006).
[Crossref]

Ahmed, N.

Y. Yue, Y. Yan, N. Ahmed, J.-Y. Yang, L. Zhang, Y. Ren, H. Huang, K. M. Birnbaum, B. I. Erkmen, S. Dolinar, and A. E. Willner, “Mode properties and propagation effects of optical orbital angular momentum (OAM) modes in a ring fiber,” IEEE Photonics J. 4(2), 535–543 (2012).
[Crossref]

Anderson, J.

Y. Yue, B. Zhang, Q. Wang, R. Lofland, J. O’Neil, and J. Anderson, “Detection and alignment of XY skew for dual-polarization optical quadrature amplitude transmitter using reconfigurable interference,” Proc. SPIE 9774, 97740E (2016).
[Crossref]

Barwicz, T.

Batshon, H. G.

Beausoleil, R. G.

Beppu, S.

Bergano, N. S.

Birnbaum, K. M.

Y. Yue, Y. Yan, N. Ahmed, J.-Y. Yang, L. Zhang, Y. Ren, H. Huang, K. M. Birnbaum, B. I. Erkmen, S. Dolinar, and A. E. Willner, “Mode properties and propagation effects of optical orbital angular momentum (OAM) modes in a ring fiber,” IEEE Photonics J. 4(2), 535–543 (2012).
[Crossref]

Bozinovic, N.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Cai, J. X.

Changsong, X.

N. Stojanovic and X. Changsong, “An efficient method for skew estimation and compensation in coherent receivers,” IEEE Photonics Technol. Lett. 28(4), 489–492 (2016).
[Crossref]

Choi, H.

Y. Takushima, H. Choi, and Y. C. Chung, “Plug-and-play phasor monitor for DxPSK signals based on single delay-interferometer using a 3x3 optical coupler,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, (Optical Society of America, 2008), paper OThW4.

Chung, Y. C.

Y. Takushima, H. Choi, and Y. C. Chung, “Plug-and-play phasor monitor for DxPSK signals based on single delay-interferometer using a 3x3 optical coupler,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, (Optical Society of America, 2008), paper OThW4.

Correa, R. A.

R. G. H. van Uden, R. A. Correa, E. A. Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high density spatial division multiplexing with a few-mode multi-core fiber,” Nat. Photonics 8(11), 865–870 (2014).
[Crossref]

de Waardt, H.

R. G. H. van Uden, R. A. Correa, E. A. Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high density spatial division multiplexing with a few-mode multi-core fiber,” Nat. Photonics 8(11), 865–870 (2014).
[Crossref]

Dolinar, S.

Y. Yue, Y. Yan, N. Ahmed, J.-Y. Yang, L. Zhang, Y. Ren, H. Huang, K. M. Birnbaum, B. I. Erkmen, S. Dolinar, and A. E. Willner, “Mode properties and propagation effects of optical orbital angular momentum (OAM) modes in a ring fiber,” IEEE Photonics J. 4(2), 535–543 (2012).
[Crossref]

Duthel, T.

M. Zaeh, T. Duthel, C. R. S. Fludger, J. C. Geyer, S. Wiese, and C. Schulien, “QPSK transmitter characterization and reconstruction of optical field by 1 symbol delayed self-homodyne detection”, in Proc. Eur. Conf. Opt. Commun. (IEEE, 2010), paper P3.09.
[Crossref]

Erkmen, B. I.

Y. Yue, Y. Yan, N. Ahmed, J.-Y. Yang, L. Zhang, Y. Ren, H. Huang, K. M. Birnbaum, B. I. Erkmen, S. Dolinar, and A. E. Willner, “Mode properties and propagation effects of optical orbital angular momentum (OAM) modes in a ring fiber,” IEEE Photonics J. 4(2), 535–543 (2012).
[Crossref]

Essiambre, R.

P. J. Winzer and R. Essiambre, “Advanced optical modulation formats,” Proc. IEEE 94(5), 952–985 (2006).
[Crossref]

Faruk, M.

M. Faruk and K. Kikuchi, “Compensation for in-phase/quadrature imbalance in coherent-receiver front end for optical quadrature amplitude modulation,” IEEE Photonics J. 5(2), 7800110 (2013).
[Crossref]

Fini, J. M.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space division multiplexing in optical fibers,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Fludger, C. R. S.

M. Zaeh, T. Duthel, C. R. S. Fludger, J. C. Geyer, S. Wiese, and C. Schulien, “QPSK transmitter characterization and reconstruction of optical field by 1 symbol delayed self-homodyne detection”, in Proc. Eur. Conf. Opt. Commun. (IEEE, 2010), paper P3.09.
[Crossref]

Foursa, D. G.

Geyer, J. C.

M. Zaeh, T. Duthel, C. R. S. Fludger, J. C. Geyer, S. Wiese, and C. Schulien, “QPSK transmitter characterization and reconstruction of optical field by 1 symbol delayed self-homodyne detection”, in Proc. Eur. Conf. Opt. Commun. (IEEE, 2010), paper P3.09.
[Crossref]

Huang, H.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Y. Yue, Y. Yan, N. Ahmed, J.-Y. Yang, L. Zhang, Y. Ren, H. Huang, K. M. Birnbaum, B. I. Erkmen, S. Dolinar, and A. E. Willner, “Mode properties and propagation effects of optical orbital angular momentum (OAM) modes in a ring fiber,” IEEE Photonics J. 4(2), 535–543 (2012).
[Crossref]

Huijskens, F. M.

R. G. H. van Uden, R. A. Correa, E. A. Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high density spatial division multiplexing with a few-mode multi-core fiber,” Nat. Photonics 8(11), 865–870 (2014).
[Crossref]

Kasai, K.

Kikuchi, K.

M. Faruk and K. Kikuchi, “Compensation for in-phase/quadrature imbalance in coherent-receiver front end for optical quadrature amplitude modulation,” IEEE Photonics J. 5(2), 7800110 (2013).
[Crossref]

Koonen, A. M. J.

R. G. H. van Uden, R. A. Correa, E. A. Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high density spatial division multiplexing with a few-mode multi-core fiber,” Nat. Photonics 8(11), 865–870 (2014).
[Crossref]

Kristensen, P.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Li, G.

R. G. H. van Uden, R. A. Correa, E. A. Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high density spatial division multiplexing with a few-mode multi-core fiber,” Nat. Photonics 8(11), 865–870 (2014).
[Crossref]

Liu, X.

L. S. Yan, X. Liu, and W. Shieh, “Toward the Shannon limit of spectral efficiency,” IEEE Photonics J. 3(2), 325–330 (2011).
[Crossref]

Lofland, R.

Y. Yue, B. Zhang, Q. Wang, R. Lofland, J. O’Neil, and J. Anderson, “Detection and alignment of XY skew for dual-polarization optical quadrature amplitude transmitter using reconfigurable interference,” Proc. SPIE 9774, 97740E (2016).
[Crossref]

Lopez, E. A.

R. G. H. van Uden, R. A. Correa, E. A. Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high density spatial division multiplexing with a few-mode multi-core fiber,” Nat. Photonics 8(11), 865–870 (2014).
[Crossref]

Magill, P.

X. Zhou, L. E. Nelson, P. Magill, B. Zhu, and D. W. Peckham, “8x450-Gb/s, 50-GHz-Spaced, PDM-32QAM transmission over 400km and one 50GHz-grid ROADM,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2011, (Optical Society of America, 2011), paper PDPB3.
[Crossref]

Mazurczyk, M.

Menon, R.

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm2 footprint,” Nat. Photonics 9(6), 378–382 (2015).
[Crossref]

Mohs, G.

Nakazawa, M.

Nelson, L. E.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space division multiplexing in optical fibers,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

X. Zhou, L. E. Nelson, P. Magill, B. Zhu, and D. W. Peckham, “8x450-Gb/s, 50-GHz-Spaced, PDM-32QAM transmission over 400km and one 50GHz-grid ROADM,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2011, (Optical Society of America, 2011), paper PDPB3.
[Crossref]

O’Neil, J.

Y. Yue, B. Zhang, Q. Wang, R. Lofland, J. O’Neil, and J. Anderson, “Detection and alignment of XY skew for dual-polarization optical quadrature amplitude transmitter using reconfigurable interference,” Proc. SPIE 9774, 97740E (2016).
[Crossref]

Okonkwo, C. M.

R. G. H. van Uden, R. A. Correa, E. A. Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high density spatial division multiplexing with a few-mode multi-core fiber,” Nat. Photonics 8(11), 865–870 (2014).
[Crossref]

Peckham, D. W.

X. Zhou, L. E. Nelson, P. Magill, B. Zhu, and D. W. Peckham, “8x450-Gb/s, 50-GHz-Spaced, PDM-32QAM transmission over 400km and one 50GHz-grid ROADM,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2011, (Optical Society of America, 2011), paper PDPB3.
[Crossref]

Pilipetskii, A.

Polson, R.

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm2 footprint,” Nat. Photonics 9(6), 378–382 (2015).
[Crossref]

Poon, J. K.

Ramachandran, S.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Ren, Y.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Y. Yue, Y. Yan, N. Ahmed, J.-Y. Yang, L. Zhang, Y. Ren, H. Huang, K. M. Birnbaum, B. I. Erkmen, S. Dolinar, and A. E. Willner, “Mode properties and propagation effects of optical orbital angular momentum (OAM) modes in a ring fiber,” IEEE Photonics J. 4(2), 535–543 (2012).
[Crossref]

Richardson, D. J.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space division multiplexing in optical fibers,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Sacher, W. D.

Schulien, C.

M. Zaeh, T. Duthel, C. R. S. Fludger, J. C. Geyer, S. Wiese, and C. Schulien, “QPSK transmitter characterization and reconstruction of optical field by 1 symbol delayed self-homodyne detection”, in Proc. Eur. Conf. Opt. Commun. (IEEE, 2010), paper P3.09.
[Crossref]

Schülzgen, A.

R. G. H. van Uden, R. A. Correa, E. A. Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high density spatial division multiplexing with a few-mode multi-core fiber,” Nat. Photonics 8(11), 865–870 (2014).
[Crossref]

Shen, B.

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm2 footprint,” Nat. Photonics 9(6), 378–382 (2015).
[Crossref]

Shieh, W.

L. S. Yan, X. Liu, and W. Shieh, “Toward the Shannon limit of spectral efficiency,” IEEE Photonics J. 3(2), 325–330 (2011).
[Crossref]

Sinkin, O.

Song, M.

Stojanovic, N.

N. Stojanovic and X. Changsong, “An efficient method for skew estimation and compensation in coherent receivers,” IEEE Photonics Technol. Lett. 28(4), 489–492 (2016).
[Crossref]

Takushima, Y.

Y. Takushima, H. Choi, and Y. C. Chung, “Plug-and-play phasor monitor for DxPSK signals based on single delay-interferometer using a 3x3 optical coupler,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, (Optical Society of America, 2008), paper OThW4.

Taylor, B. J.

Tur, M.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

van Uden, R. G. H.

R. G. H. van Uden, R. A. Correa, E. A. Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high density spatial division multiplexing with a few-mode multi-core fiber,” Nat. Photonics 8(11), 865–870 (2014).
[Crossref]

Wang, P.

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm2 footprint,” Nat. Photonics 9(6), 378–382 (2015).
[Crossref]

Wang, Q.

Y. Yue, B. Zhang, Q. Wang, R. Lofland, J. O’Neil, and J. Anderson, “Detection and alignment of XY skew for dual-polarization optical quadrature amplitude transmitter using reconfigurable interference,” Proc. SPIE 9774, 97740E (2016).
[Crossref]

Wiese, S.

M. Zaeh, T. Duthel, C. R. S. Fludger, J. C. Geyer, S. Wiese, and C. Schulien, “QPSK transmitter characterization and reconstruction of optical field by 1 symbol delayed self-homodyne detection”, in Proc. Eur. Conf. Opt. Commun. (IEEE, 2010), paper P3.09.
[Crossref]

Willner, A. E.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Y. Yue, Y. Yan, N. Ahmed, J.-Y. Yang, L. Zhang, Y. Ren, H. Huang, K. M. Birnbaum, B. I. Erkmen, S. Dolinar, and A. E. Willner, “Mode properties and propagation effects of optical orbital angular momentum (OAM) modes in a ring fiber,” IEEE Photonics J. 4(2), 535–543 (2012).
[Crossref]

Y. Yue, L. Zhang, J. Y. Yang, R. G. Beausoleil, and A. E. Willner, “Silicon-on-insulator polarization splitter using two horizontally slotted waveguides,” Opt. Lett. 35(9), 1364–1366 (2010).
[Crossref] [PubMed]

Y. Yue, L. Zhang, M. Song, R. G. Beausoleil, and A. E. Willner, “Higher-order-mode assisted silicon-on-insulator 90 degree polarization rotator,” Opt. Express 17(23), 20694–20699 (2009).
[Crossref] [PubMed]

Winzer, P. J.

P. J. Winzer and R. Essiambre, “Advanced optical modulation formats,” Proc. IEEE 94(5), 952–985 (2006).
[Crossref]

Xia, C.

R. G. H. van Uden, R. A. Correa, E. A. Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high density spatial division multiplexing with a few-mode multi-core fiber,” Nat. Photonics 8(11), 865–870 (2014).
[Crossref]

Xie, C.

Yan, L. S.

L. S. Yan, X. Liu, and W. Shieh, “Toward the Shannon limit of spectral efficiency,” IEEE Photonics J. 3(2), 325–330 (2011).
[Crossref]

Yan, Y.

Y. Yue, Y. Yan, N. Ahmed, J.-Y. Yang, L. Zhang, Y. Ren, H. Huang, K. M. Birnbaum, B. I. Erkmen, S. Dolinar, and A. E. Willner, “Mode properties and propagation effects of optical orbital angular momentum (OAM) modes in a ring fiber,” IEEE Photonics J. 4(2), 535–543 (2012).
[Crossref]

Yang, J. Y.

Yang, J.-Y.

Y. Yue, Y. Yan, N. Ahmed, J.-Y. Yang, L. Zhang, Y. Ren, H. Huang, K. M. Birnbaum, B. I. Erkmen, S. Dolinar, and A. E. Willner, “Mode properties and propagation effects of optical orbital angular momentum (OAM) modes in a ring fiber,” IEEE Photonics J. 4(2), 535–543 (2012).
[Crossref]

Yoshida, M.

Yue, Y.

Y. Yue, B. Zhang, Q. Wang, R. Lofland, J. O’Neil, and J. Anderson, “Detection and alignment of XY skew for dual-polarization optical quadrature amplitude transmitter using reconfigurable interference,” Proc. SPIE 9774, 97740E (2016).
[Crossref]

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Y. Yue, Y. Yan, N. Ahmed, J.-Y. Yang, L. Zhang, Y. Ren, H. Huang, K. M. Birnbaum, B. I. Erkmen, S. Dolinar, and A. E. Willner, “Mode properties and propagation effects of optical orbital angular momentum (OAM) modes in a ring fiber,” IEEE Photonics J. 4(2), 535–543 (2012).
[Crossref]

Y. Yue, L. Zhang, J. Y. Yang, R. G. Beausoleil, and A. E. Willner, “Silicon-on-insulator polarization splitter using two horizontally slotted waveguides,” Opt. Lett. 35(9), 1364–1366 (2010).
[Crossref] [PubMed]

Y. Yue, L. Zhang, M. Song, R. G. Beausoleil, and A. E. Willner, “Higher-order-mode assisted silicon-on-insulator 90 degree polarization rotator,” Opt. Express 17(23), 20694–20699 (2009).
[Crossref] [PubMed]

Zaeh, M.

M. Zaeh, T. Duthel, C. R. S. Fludger, J. C. Geyer, S. Wiese, and C. Schulien, “QPSK transmitter characterization and reconstruction of optical field by 1 symbol delayed self-homodyne detection”, in Proc. Eur. Conf. Opt. Commun. (IEEE, 2010), paper P3.09.
[Crossref]

Zhang, B.

Y. Yue, B. Zhang, Q. Wang, R. Lofland, J. O’Neil, and J. Anderson, “Detection and alignment of XY skew for dual-polarization optical quadrature amplitude transmitter using reconfigurable interference,” Proc. SPIE 9774, 97740E (2016).
[Crossref]

Zhang, H.

Zhang, L.

Zhou, X.

X. Zhou, L. E. Nelson, P. Magill, B. Zhu, and D. W. Peckham, “8x450-Gb/s, 50-GHz-Spaced, PDM-32QAM transmission over 400km and one 50GHz-grid ROADM,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2011, (Optical Society of America, 2011), paper PDPB3.
[Crossref]

Zhu, B.

X. Zhou, L. E. Nelson, P. Magill, B. Zhu, and D. W. Peckham, “8x450-Gb/s, 50-GHz-Spaced, PDM-32QAM transmission over 400km and one 50GHz-grid ROADM,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2011, (Optical Society of America, 2011), paper PDPB3.
[Crossref]

IEEE Photonics J. (3)

L. S. Yan, X. Liu, and W. Shieh, “Toward the Shannon limit of spectral efficiency,” IEEE Photonics J. 3(2), 325–330 (2011).
[Crossref]

Y. Yue, Y. Yan, N. Ahmed, J.-Y. Yang, L. Zhang, Y. Ren, H. Huang, K. M. Birnbaum, B. I. Erkmen, S. Dolinar, and A. E. Willner, “Mode properties and propagation effects of optical orbital angular momentum (OAM) modes in a ring fiber,” IEEE Photonics J. 4(2), 535–543 (2012).
[Crossref]

M. Faruk and K. Kikuchi, “Compensation for in-phase/quadrature imbalance in coherent-receiver front end for optical quadrature amplitude modulation,” IEEE Photonics J. 5(2), 7800110 (2013).
[Crossref]

IEEE Photonics Technol. Lett. (1)

N. Stojanovic and X. Changsong, “An efficient method for skew estimation and compensation in coherent receivers,” IEEE Photonics Technol. Lett. 28(4), 489–492 (2016).
[Crossref]

Nat. Photonics (3)

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm2 footprint,” Nat. Photonics 9(6), 378–382 (2015).
[Crossref]

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space division multiplexing in optical fibers,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

R. G. H. van Uden, R. A. Correa, E. A. Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high density spatial division multiplexing with a few-mode multi-core fiber,” Nat. Photonics 8(11), 865–870 (2014).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Proc. IEEE (1)

P. J. Winzer and R. Essiambre, “Advanced optical modulation formats,” Proc. IEEE 94(5), 952–985 (2006).
[Crossref]

Proc. SPIE (1)

Y. Yue, B. Zhang, Q. Wang, R. Lofland, J. O’Neil, and J. Anderson, “Detection and alignment of XY skew for dual-polarization optical quadrature amplitude transmitter using reconfigurable interference,” Proc. SPIE 9774, 97740E (2016).
[Crossref]

Science (1)

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Other (10)

A. Gnauck, G. Charlet, P. Tran, P. Winzer, C. Doerr, J. Centanni, E. Burrows, T. Kawanishi, T. Sakamoto, and K. Higuma, “25.6-Tb/s C+L-band transmission of polarization-multiplexed RZ-DQPSK signals,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper PDP19.

J. Cai, O. Sinkin, C. Davidson, D. Foursa, A. Lucero, M. Nissov, A. Pilipetskii, W. Patterson, and N. Bergano, “40 Gb/s transmission using polarization division multiplexing (PDM) RZ-DBPSK with automatic polarization tracking,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper PDP4.

J. Cai, H. Batshon, M. Mazurczyk, H. Zhang, Y. Sun, O. Sinkin, D. Foursa, and A. Pilipetskii, “64QAM based coded modulation transmission over transoceanic distance with > 60 Tb/s capacity,” in Optical Fiber Communication Conference Post Deadline Papers, OSA Technical Digest (online) (Optical Society of America, 2015), paper Th5C.8.

R. Rios-Müller, J. Renaudier, P. Brindel, H. Mardoyan, P. Jennevé, L. Schmalen, and G. Charlet, “1-Terabit/s net data-rate transceiver based on single-carrier Nyquist-shaped 124 GBaud PDM-32QAM,” in Optical Fiber Communication Conference Post Deadline Papers, OSA Technical Digest (online) (Optical Society of America, 2015), paper Th5B.1.

M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).

R. Hui and M. O’Sullivan, Fiber Optic Measurement Techniques (Academic Press, 2009), Ch. 2.

Y. Takushima, H. Choi, and Y. C. Chung, “Plug-and-play phasor monitor for DxPSK signals based on single delay-interferometer using a 3x3 optical coupler,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, (Optical Society of America, 2008), paper OThW4.

M. Zaeh, T. Duthel, C. R. S. Fludger, J. C. Geyer, S. Wiese, and C. Schulien, “QPSK transmitter characterization and reconstruction of optical field by 1 symbol delayed self-homodyne detection”, in Proc. Eur. Conf. Opt. Commun. (IEEE, 2010), paper P3.09.
[Crossref]

Y. Yue, B. Zhang, R. Lofland, J. O’Neil, Q. Wang, and J. Anderson, “IQ skew monitoring and alignment of optical quadrature amplitude transmitter using reconfigurable interference,” in CLEO: 2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper SW3J.6.

X. Zhou, L. E. Nelson, P. Magill, B. Zhu, and D. W. Peckham, “8x450-Gb/s, 50-GHz-Spaced, PDM-32QAM transmission over 400km and one 50GHz-grid ROADM,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2011, (Optical Society of America, 2011), paper PDPB3.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Principle of operation (a) generation of identical waveforms for tributary channels, (b) interference of waveforms with same polarization using optical coupler, and (c) interference of waveforms with orthogonal polarizations using polarizer. Mod.: modulator; x ^ and y ^ : the polarizations of the tributary outputs from DP-QAM transmitter; w ^ : the polarizer’s transmission axis; a 1 , a 2 , b 1 , and b 2 : the optical fields at the input and output ports of the former 2 × 2 OC in the quadrature amplitude modulator; c 1 , c 2 , d 1 , and d 2 : the optical fields at the input and output ports of the latter 2 × 2 OC in the quadrature amplitude modulator; e: the final optical field output from the polarizer.
Fig. 2
Fig. 2 Conceptual diagram of (a) sub-UI IQ skew, (b) multi-UI IQ skew, (c) sub-UI XY skew, and (d) multi-UI XY skew detection and alignment using reconfigurable interference.
Fig. 3
Fig. 3 Experimental setup of (a) IQ skew and (b) XY skew detection and alignment for optical DP-QAM transmitter. CW: continuous-wave; BS: beam splitter; Mod.: modulator; PS: phase shifter; PR: polarization rotator; PBC: polarization beam combiner; PM: power meter; EDFA: erbium doped fiber amplifier; VOA: variable optical attenuator; DCA: digital communications analyzer; OC: optical coupler; PC: polarization controller; Pol: polarizer.
Fig. 4
Fig. 4 Measured inline power for (a) sub-UI IQ skew, (b) multi-UI IQ skew, (c) sub-UI XY skew, and (d) multi-UI XY skew using periodic patterns.
Fig. 5
Fig. 5 Observed waveforms of original periodic pattern (16 “0”s & 16 “1”s) from DP-QAM tributaries and the interference with different multi-UI (a) IQ and (b) XY skew.
Fig. 6
Fig. 6 Measured inline power as a function of multi-UI (a) IQ and (b) XY skew for different periodic patterns from DP-QAM tributaries.
Fig. 7
Fig. 7 Measured channel power as a function of the number of consecutive bits in periodic patterns for multi-UI (a) IQ and (b) XY skew detection.
Fig. 8
Fig. 8 Performance degradation effects of IQ skew detection scheme (a) perfect case, (b) power imbalance only case, (c) quadrature bias imperfection only case, and (d) real case with both power imbalance and quadrature bias imperfection.
Fig. 9
Fig. 9 Measured inline power as a function of sub-UI IQ skew for different phase difference between IQ channels using PRBS7 pattern.
Fig. 10
Fig. 10 Fast skew detection method to double the skew detection range with single-short power measurement.

Tables (1)

Tables Icon

Table 1 Fast Tracking Demo - 15.x UI IQ Skew

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

[ b 1 b 2 ]=[ 1ε i ε i ε 1ε ][ a 1 a 2 ]
Δφ IQ =ω Δt E +β ΔL IQ + Δϕ (PS,OC)
Δt IQ = Δφ IQ ω
[ c 1 c 2 ]=[ e i Δ φ IQ 2 0 0 e i Δ φ IQ 2 ]Mod(t)[ b 1 b 2 ]
[ E 01 (t) y ^ E 02 (t) y ^ ]=[ e i Δ φ IQ 2 0 0 e i Δ φ IQ 2 ]Mod(t)[ 0.5 i 0.5 i 0.5 0.5 ][ E 0 (t) y ^ 0 ]
[ E 1 (t) y ^ E 2 (t) y ^ ]=[ E 01 (t) y ^ E 02 (t) y ^ ]
[ d 1 d 2 ]=[ 0.5 i 0.5 i 0.5 0.5 ][ E 1 (t) y ^ E 2 (t) y ^ ]
[ d 1 d 2 ]=Mod(t)[ i E 0 sin( Δ φ IQ 2 ) y ^ i E 0 cos( Δ φ IQ 2 ) y ^ ]
Δφ XY =ω Δt E +β ΔL XY + Δϕ (BS,PR,PBC)
Δt XY = Δφ XY ω
[ d 1 d 2 ]=[ 0.5 i 0.5 i 0.5 0.5 ][ c 1 0 ]
c 1 = 0.5 Mod(t) E 0 y ^
[ E 3 (t) y ^ E 4 (t) x ^ ]=[ d 1 d 1 ' ]
[ E 3 (t) y ^ E 4 (t) x ^ ]=[ e i Δ φ XY 2 0 0 e i Δ φ XY 2 ]0.5Mod(t)[ E 0 y ^ E 0 x ^ ]
e=cos 45 E 3 (t) w ^ +sin 45 E 4 (t) w ^ = 2 2 Mod(t) E 0 cos( Δ φ XY 2 ) w ^

Metrics