Abstract

A colour holographic display is considered the ultimate apparatus to provide the most natural 3D viewing experience. It encodes a 3D scene as holographic patterns that then are used to reproduce the optical wavefront. The main challenge at present is for the existing technologies to cope with the full information bandwidth required for the computation and display of holographic video. We have developed a dynamic coarse integral holography approach using opto-mechanical scanning, coarse integral optics and a low space-bandwidth-product high-bandwidth spatial light modulator to display dynamic holograms with a large space-bandwidth-product at video rates, combined with an efficient rendering algorithm to reduce the information content. This makes it possible to realise a full-parallax, colour holographic video display with a bandwidth of 10 billion pixels per second, and an adequate image size and viewing angle, as well as all relevant 3D cues. Our approach is scalable and the prototype can achieve even better performance with continuing advances in hardware components.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Scalable coarse integral holographic video display with integrated spatial image tiling

Jin Li, Quinn Smithwick, and Daping Chu
Opt. Express 28(7) 9899-9912 (2020)

Realization of real-time interactive 3D image holographic display [Invited]

Jhen-Si Chen and Daping Chu
Appl. Opt. 55(3) A127-A134 (2016)

References

  • View by:
  • |
  • |
  • |

  1. B. L. Anderson and K. Nakayama, “Toward a general theory of stereopsis: Binocular matching, occluding contours, and fusion,” Psychol. Rev. 101(3), 414–445 (1994).
    [Crossref] [PubMed]
  2. V. Bruce, P. R. Green, and M. A. Georgeson, Visual Perception: Physiology, Psychology, & Ecology (Psychology Press, 2003).
  3. E. Hecht, Optics, 4th ed. (Addison Wesley, 2001), Chap. 10.
  4. A. Macovski, “Hologram information capacity,” J. Opt. Soc. Am. 60(1), 21–27 (1970).
    [Crossref]
  5. V. Soloviev, ‘Geometry of Radiation, www.et.byu.edu/~vps/ME340/TABLES/12.0.pdf
  6. M. Stanley, M. A. Smith, A. P. Smith, P. J. Watson, S. D. Coomber, C. D. Cameron, C. W. Slinger, and A. Wood, “3D electronic holography display system using a 100-megapixel spatial light modulator,” Proc. SPIE 5249, 297–308 (2004).
    [Crossref]
  7. C. W. Slinger, C. D. Cameron, S. D. Coomber, R. J. Miller, D. A. Payne, A. P. Smith, M. G. Smith, M. Stanley, and P. J. Watson, “Recent developments in computer-generated holography: toward a practical electroholography system for interactive 3D visualization,” Proc. SPIE 5290, 27–41 (2004).
    [Crossref]
  8. Z. M. A. Lum, X. Liang, Y. Pan, R. Zheng, and X. Xu, “Increasing pixel count of holograms for three-dimensional holographic display by optical scan-tiling,” Opt. Eng. 52(1), 015802 (2013).
    [Crossref]
  9. X. Xu, X. Liang, Y. Pan, R. Zheng, and Z. A. Lum, “Spatiotemporal multiplexing and streaming of hologram data for full-color holographic video display,” Opt. Rev. 21(3), 220–225 (2014).
    [Crossref]
  10. Y. Pan, X. Xu, X. Liang, Z. A. Lum, R. Zheng, and P. P. Mar Yi Lwin, “Large-pixel-count hologram data processing for holographic 3D display,” Proc. SPIE 8644, 86440F (2013).
    [Crossref]
  11. T. Senoh, Y. Ichihashi, R. Oi, H. Sasaki, and K. Yamamoto, “Study of a holographic TV system based on multi-view images and depth maps,” Proc. SPIE 8644, 86440A (2013).
    [Crossref]
  12. H. Sasaki, K. Yamamoto, Y. Ichihashi, and T. Senoh, “Image size scalable full-parallax coloured three-dimensional video by electronic holography,” Sci. Rep. 4, 4000 (2014).
    [PubMed]
  13. Y. Takaki and N. Okada, “Hologram generation by horizontal scanning of a high-speed spatial light modulator,” Appl. Opt. 48(17), 3255–3260 (2009).
    [Crossref] [PubMed]
  14. D. E. Smalley, Q. Y. J. Smithwick, and V. M. Bove., “Holographic video display based on guided-wave acousto-optic devices,” Proc. SPIE 6488, 64880L (2007).
    [Crossref]
  15. D. E. Smalley, Q. Y. J. Smithwick, V. M. Bove, J. Barabas, and S. Jolly, “Anisotropic leaky-mode modulator for holographic video displays,” Nature 498(7454), 313–317 (2013).
    [Crossref] [PubMed]
  16. Q. Smithwick, J. S. Chen, and D. P. Chu, “A coarse integral holographic display,” SID Symposium Digest of Technical Papers, 44(1), 310–313 (2013).
  17. J. S. Chen, D. P. Chu, and Q. Smithwick, “Rapid hologram generation utilizing layer-based approach and graphic rendering for realistic three-dimensional image reconstruction by angular tiling,” J. Electron. Imag. 23(2), 023016 (2014).
    [Crossref]
  18. Overview | DLP &MEMS (Texas Instrument)- http://www.ti.com/lsds/ti/analog/dlp/overview.page
  19. T. Kreis, P. Aswendt, and R. Hofling, “Hologram reconstruction using a digital micromirror device,” Opt. Eng. 40(6), 926–933 (2001).
    [Crossref]
  20. E. Buckley, “Real-time error diffusion for signal-to-noise ratio improvement in a holographic projection system,” J. Disp. Technol. 7(2), 70–76 (2011).
    [Crossref]
  21. H. Kakeya, “Formulation of coarse integral imaging and its applications,” Proc. SPIE 6803, 680317 (2008).
    [Crossref]
  22. Using Lasers with DLP®DMD technology, http://www.dlinnovations.com/dli/wp-content/uploads/white-paper-using-lasers-with-dlp-dmd-technology.pdf
  23. K. Akeley, “Achieveing near-perfect focus cues using multiple image planes”, PhD thesis, Stanford University (2004).
  24. K. Akeley, S. J. Watt, A. R. Girshick, and M. S. Banks, “A stereo display prototype with multiple focal distances,” ACM Trans. Graph. 23(3), 804–813 (2004).
    [Crossref]
  25. H. Nishi, K. Matsushima, and S. Nakahara, “Advanced rendering techniques for producing specular smooth surfaces in polygon-based high-definition computer holography,” Proc. SPIE 8281(1), 828110 (2012).
    [Crossref]
  26. K. Matsushima and A. Kondoh, “A wave-optical algorithm for hidden-surface removal in digitally synthetic full-parallax holograms for three-dimensional objects,” Proc. SPIE 5290, 90–97 (2004).
    [Crossref]
  27. H. Zhang, N. Collings, J. Chen, B. Crossland, D. Chu, and J. Xie, “Full parallax three-dimensional display with occlusion effect using computer generated hologram,” Opt. Eng. 50(7), 074003 (2011).
    [Crossref]
  28. J. Song, J. Park, H. Park, and J.-I. Park, “Real-time generation of high-definition resolution digital holograms by using multiple graphic processing units,” Opt. Eng. 52(1), 015803 (2013).
    [Crossref]
  29. N. Takada, T. Shimobaba, H. Nakayama, A. Shiraki, N. Okada, M. Oikawa, N. Masuda, and T. Ito, “Fast high-resolution computer-generated hologram computation using multiple graphics processing unit cluster system,” Appl. Opt. 51(30), 7303–7307 (2012).
    [Crossref] [PubMed]
  30. D. Abookasis and J. Rosen, “Three types of computer-generated hologram synthesized from multiple angular viewpoints of a three-dimensional scene,” Appl. Opt. 45(25), 6533–6538 (2006).
    [Crossref] [PubMed]
  31. J. S. Chen and D. P. Chu, “Fast calculation of wave front amplitude propagation: a tool to analyse the 3D image on a hologram (invited paper),” Chin. Opt. Lett. 12(6), 060021 (2014).
    [Crossref]
  32. NTU 3D Model Database ver.1, http://3d.csie.ntu.edu.tw/~dynamic/database/
  33. D. Y. Chen, X. P. Tian, Y. T. Shen, and M. Ouhyoung, “On visual similarity based 3D model retrieval,” Comput. Graph. Forum 22(3), 223–232 (2003).
    [Crossref]

2014 (4)

X. Xu, X. Liang, Y. Pan, R. Zheng, and Z. A. Lum, “Spatiotemporal multiplexing and streaming of hologram data for full-color holographic video display,” Opt. Rev. 21(3), 220–225 (2014).
[Crossref]

H. Sasaki, K. Yamamoto, Y. Ichihashi, and T. Senoh, “Image size scalable full-parallax coloured three-dimensional video by electronic holography,” Sci. Rep. 4, 4000 (2014).
[PubMed]

J. S. Chen, D. P. Chu, and Q. Smithwick, “Rapid hologram generation utilizing layer-based approach and graphic rendering for realistic three-dimensional image reconstruction by angular tiling,” J. Electron. Imag. 23(2), 023016 (2014).
[Crossref]

J. S. Chen and D. P. Chu, “Fast calculation of wave front amplitude propagation: a tool to analyse the 3D image on a hologram (invited paper),” Chin. Opt. Lett. 12(6), 060021 (2014).
[Crossref]

2013 (5)

J. Song, J. Park, H. Park, and J.-I. Park, “Real-time generation of high-definition resolution digital holograms by using multiple graphic processing units,” Opt. Eng. 52(1), 015803 (2013).
[Crossref]

Z. M. A. Lum, X. Liang, Y. Pan, R. Zheng, and X. Xu, “Increasing pixel count of holograms for three-dimensional holographic display by optical scan-tiling,” Opt. Eng. 52(1), 015802 (2013).
[Crossref]

D. E. Smalley, Q. Y. J. Smithwick, V. M. Bove, J. Barabas, and S. Jolly, “Anisotropic leaky-mode modulator for holographic video displays,” Nature 498(7454), 313–317 (2013).
[Crossref] [PubMed]

Y. Pan, X. Xu, X. Liang, Z. A. Lum, R. Zheng, and P. P. Mar Yi Lwin, “Large-pixel-count hologram data processing for holographic 3D display,” Proc. SPIE 8644, 86440F (2013).
[Crossref]

T. Senoh, Y. Ichihashi, R. Oi, H. Sasaki, and K. Yamamoto, “Study of a holographic TV system based on multi-view images and depth maps,” Proc. SPIE 8644, 86440A (2013).
[Crossref]

2012 (2)

H. Nishi, K. Matsushima, and S. Nakahara, “Advanced rendering techniques for producing specular smooth surfaces in polygon-based high-definition computer holography,” Proc. SPIE 8281(1), 828110 (2012).
[Crossref]

N. Takada, T. Shimobaba, H. Nakayama, A. Shiraki, N. Okada, M. Oikawa, N. Masuda, and T. Ito, “Fast high-resolution computer-generated hologram computation using multiple graphics processing unit cluster system,” Appl. Opt. 51(30), 7303–7307 (2012).
[Crossref] [PubMed]

2011 (2)

H. Zhang, N. Collings, J. Chen, B. Crossland, D. Chu, and J. Xie, “Full parallax three-dimensional display with occlusion effect using computer generated hologram,” Opt. Eng. 50(7), 074003 (2011).
[Crossref]

E. Buckley, “Real-time error diffusion for signal-to-noise ratio improvement in a holographic projection system,” J. Disp. Technol. 7(2), 70–76 (2011).
[Crossref]

2009 (1)

2008 (1)

H. Kakeya, “Formulation of coarse integral imaging and its applications,” Proc. SPIE 6803, 680317 (2008).
[Crossref]

2007 (1)

D. E. Smalley, Q. Y. J. Smithwick, and V. M. Bove., “Holographic video display based on guided-wave acousto-optic devices,” Proc. SPIE 6488, 64880L (2007).
[Crossref]

2006 (1)

2004 (4)

M. Stanley, M. A. Smith, A. P. Smith, P. J. Watson, S. D. Coomber, C. D. Cameron, C. W. Slinger, and A. Wood, “3D electronic holography display system using a 100-megapixel spatial light modulator,” Proc. SPIE 5249, 297–308 (2004).
[Crossref]

C. W. Slinger, C. D. Cameron, S. D. Coomber, R. J. Miller, D. A. Payne, A. P. Smith, M. G. Smith, M. Stanley, and P. J. Watson, “Recent developments in computer-generated holography: toward a practical electroholography system for interactive 3D visualization,” Proc. SPIE 5290, 27–41 (2004).
[Crossref]

K. Akeley, S. J. Watt, A. R. Girshick, and M. S. Banks, “A stereo display prototype with multiple focal distances,” ACM Trans. Graph. 23(3), 804–813 (2004).
[Crossref]

K. Matsushima and A. Kondoh, “A wave-optical algorithm for hidden-surface removal in digitally synthetic full-parallax holograms for three-dimensional objects,” Proc. SPIE 5290, 90–97 (2004).
[Crossref]

2003 (1)

D. Y. Chen, X. P. Tian, Y. T. Shen, and M. Ouhyoung, “On visual similarity based 3D model retrieval,” Comput. Graph. Forum 22(3), 223–232 (2003).
[Crossref]

2001 (1)

T. Kreis, P. Aswendt, and R. Hofling, “Hologram reconstruction using a digital micromirror device,” Opt. Eng. 40(6), 926–933 (2001).
[Crossref]

1994 (1)

B. L. Anderson and K. Nakayama, “Toward a general theory of stereopsis: Binocular matching, occluding contours, and fusion,” Psychol. Rev. 101(3), 414–445 (1994).
[Crossref] [PubMed]

1970 (1)

Abookasis, D.

Akeley, K.

K. Akeley, S. J. Watt, A. R. Girshick, and M. S. Banks, “A stereo display prototype with multiple focal distances,” ACM Trans. Graph. 23(3), 804–813 (2004).
[Crossref]

Anderson, B. L.

B. L. Anderson and K. Nakayama, “Toward a general theory of stereopsis: Binocular matching, occluding contours, and fusion,” Psychol. Rev. 101(3), 414–445 (1994).
[Crossref] [PubMed]

Aswendt, P.

T. Kreis, P. Aswendt, and R. Hofling, “Hologram reconstruction using a digital micromirror device,” Opt. Eng. 40(6), 926–933 (2001).
[Crossref]

Banks, M. S.

K. Akeley, S. J. Watt, A. R. Girshick, and M. S. Banks, “A stereo display prototype with multiple focal distances,” ACM Trans. Graph. 23(3), 804–813 (2004).
[Crossref]

Barabas, J.

D. E. Smalley, Q. Y. J. Smithwick, V. M. Bove, J. Barabas, and S. Jolly, “Anisotropic leaky-mode modulator for holographic video displays,” Nature 498(7454), 313–317 (2013).
[Crossref] [PubMed]

Bove, V. M.

D. E. Smalley, Q. Y. J. Smithwick, V. M. Bove, J. Barabas, and S. Jolly, “Anisotropic leaky-mode modulator for holographic video displays,” Nature 498(7454), 313–317 (2013).
[Crossref] [PubMed]

D. E. Smalley, Q. Y. J. Smithwick, and V. M. Bove., “Holographic video display based on guided-wave acousto-optic devices,” Proc. SPIE 6488, 64880L (2007).
[Crossref]

Buckley, E.

E. Buckley, “Real-time error diffusion for signal-to-noise ratio improvement in a holographic projection system,” J. Disp. Technol. 7(2), 70–76 (2011).
[Crossref]

Cameron, C. D.

M. Stanley, M. A. Smith, A. P. Smith, P. J. Watson, S. D. Coomber, C. D. Cameron, C. W. Slinger, and A. Wood, “3D electronic holography display system using a 100-megapixel spatial light modulator,” Proc. SPIE 5249, 297–308 (2004).
[Crossref]

C. W. Slinger, C. D. Cameron, S. D. Coomber, R. J. Miller, D. A. Payne, A. P. Smith, M. G. Smith, M. Stanley, and P. J. Watson, “Recent developments in computer-generated holography: toward a practical electroholography system for interactive 3D visualization,” Proc. SPIE 5290, 27–41 (2004).
[Crossref]

Chen, D. Y.

D. Y. Chen, X. P. Tian, Y. T. Shen, and M. Ouhyoung, “On visual similarity based 3D model retrieval,” Comput. Graph. Forum 22(3), 223–232 (2003).
[Crossref]

Chen, J.

H. Zhang, N. Collings, J. Chen, B. Crossland, D. Chu, and J. Xie, “Full parallax three-dimensional display with occlusion effect using computer generated hologram,” Opt. Eng. 50(7), 074003 (2011).
[Crossref]

Chen, J. S.

J. S. Chen, D. P. Chu, and Q. Smithwick, “Rapid hologram generation utilizing layer-based approach and graphic rendering for realistic three-dimensional image reconstruction by angular tiling,” J. Electron. Imag. 23(2), 023016 (2014).
[Crossref]

J. S. Chen and D. P. Chu, “Fast calculation of wave front amplitude propagation: a tool to analyse the 3D image on a hologram (invited paper),” Chin. Opt. Lett. 12(6), 060021 (2014).
[Crossref]

Q. Smithwick, J. S. Chen, and D. P. Chu, “A coarse integral holographic display,” SID Symposium Digest of Technical Papers, 44(1), 310–313 (2013).

Chu, D.

H. Zhang, N. Collings, J. Chen, B. Crossland, D. Chu, and J. Xie, “Full parallax three-dimensional display with occlusion effect using computer generated hologram,” Opt. Eng. 50(7), 074003 (2011).
[Crossref]

Chu, D. P.

J. S. Chen, D. P. Chu, and Q. Smithwick, “Rapid hologram generation utilizing layer-based approach and graphic rendering for realistic three-dimensional image reconstruction by angular tiling,” J. Electron. Imag. 23(2), 023016 (2014).
[Crossref]

J. S. Chen and D. P. Chu, “Fast calculation of wave front amplitude propagation: a tool to analyse the 3D image on a hologram (invited paper),” Chin. Opt. Lett. 12(6), 060021 (2014).
[Crossref]

Q. Smithwick, J. S. Chen, and D. P. Chu, “A coarse integral holographic display,” SID Symposium Digest of Technical Papers, 44(1), 310–313 (2013).

Collings, N.

H. Zhang, N. Collings, J. Chen, B. Crossland, D. Chu, and J. Xie, “Full parallax three-dimensional display with occlusion effect using computer generated hologram,” Opt. Eng. 50(7), 074003 (2011).
[Crossref]

Coomber, S. D.

C. W. Slinger, C. D. Cameron, S. D. Coomber, R. J. Miller, D. A. Payne, A. P. Smith, M. G. Smith, M. Stanley, and P. J. Watson, “Recent developments in computer-generated holography: toward a practical electroholography system for interactive 3D visualization,” Proc. SPIE 5290, 27–41 (2004).
[Crossref]

M. Stanley, M. A. Smith, A. P. Smith, P. J. Watson, S. D. Coomber, C. D. Cameron, C. W. Slinger, and A. Wood, “3D electronic holography display system using a 100-megapixel spatial light modulator,” Proc. SPIE 5249, 297–308 (2004).
[Crossref]

Crossland, B.

H. Zhang, N. Collings, J. Chen, B. Crossland, D. Chu, and J. Xie, “Full parallax three-dimensional display with occlusion effect using computer generated hologram,” Opt. Eng. 50(7), 074003 (2011).
[Crossref]

Girshick, A. R.

K. Akeley, S. J. Watt, A. R. Girshick, and M. S. Banks, “A stereo display prototype with multiple focal distances,” ACM Trans. Graph. 23(3), 804–813 (2004).
[Crossref]

Hofling, R.

T. Kreis, P. Aswendt, and R. Hofling, “Hologram reconstruction using a digital micromirror device,” Opt. Eng. 40(6), 926–933 (2001).
[Crossref]

Ichihashi, Y.

H. Sasaki, K. Yamamoto, Y. Ichihashi, and T. Senoh, “Image size scalable full-parallax coloured three-dimensional video by electronic holography,” Sci. Rep. 4, 4000 (2014).
[PubMed]

T. Senoh, Y. Ichihashi, R. Oi, H. Sasaki, and K. Yamamoto, “Study of a holographic TV system based on multi-view images and depth maps,” Proc. SPIE 8644, 86440A (2013).
[Crossref]

Ito, T.

Jolly, S.

D. E. Smalley, Q. Y. J. Smithwick, V. M. Bove, J. Barabas, and S. Jolly, “Anisotropic leaky-mode modulator for holographic video displays,” Nature 498(7454), 313–317 (2013).
[Crossref] [PubMed]

Kakeya, H.

H. Kakeya, “Formulation of coarse integral imaging and its applications,” Proc. SPIE 6803, 680317 (2008).
[Crossref]

Kondoh, A.

K. Matsushima and A. Kondoh, “A wave-optical algorithm for hidden-surface removal in digitally synthetic full-parallax holograms for three-dimensional objects,” Proc. SPIE 5290, 90–97 (2004).
[Crossref]

Kreis, T.

T. Kreis, P. Aswendt, and R. Hofling, “Hologram reconstruction using a digital micromirror device,” Opt. Eng. 40(6), 926–933 (2001).
[Crossref]

Liang, X.

X. Xu, X. Liang, Y. Pan, R. Zheng, and Z. A. Lum, “Spatiotemporal multiplexing and streaming of hologram data for full-color holographic video display,” Opt. Rev. 21(3), 220–225 (2014).
[Crossref]

Y. Pan, X. Xu, X. Liang, Z. A. Lum, R. Zheng, and P. P. Mar Yi Lwin, “Large-pixel-count hologram data processing for holographic 3D display,” Proc. SPIE 8644, 86440F (2013).
[Crossref]

Z. M. A. Lum, X. Liang, Y. Pan, R. Zheng, and X. Xu, “Increasing pixel count of holograms for three-dimensional holographic display by optical scan-tiling,” Opt. Eng. 52(1), 015802 (2013).
[Crossref]

Lum, Z. A.

X. Xu, X. Liang, Y. Pan, R. Zheng, and Z. A. Lum, “Spatiotemporal multiplexing and streaming of hologram data for full-color holographic video display,” Opt. Rev. 21(3), 220–225 (2014).
[Crossref]

Y. Pan, X. Xu, X. Liang, Z. A. Lum, R. Zheng, and P. P. Mar Yi Lwin, “Large-pixel-count hologram data processing for holographic 3D display,” Proc. SPIE 8644, 86440F (2013).
[Crossref]

Lum, Z. M. A.

Z. M. A. Lum, X. Liang, Y. Pan, R. Zheng, and X. Xu, “Increasing pixel count of holograms for three-dimensional holographic display by optical scan-tiling,” Opt. Eng. 52(1), 015802 (2013).
[Crossref]

Macovski, A.

Mar Yi Lwin, P. P.

Y. Pan, X. Xu, X. Liang, Z. A. Lum, R. Zheng, and P. P. Mar Yi Lwin, “Large-pixel-count hologram data processing for holographic 3D display,” Proc. SPIE 8644, 86440F (2013).
[Crossref]

Masuda, N.

Matsushima, K.

H. Nishi, K. Matsushima, and S. Nakahara, “Advanced rendering techniques for producing specular smooth surfaces in polygon-based high-definition computer holography,” Proc. SPIE 8281(1), 828110 (2012).
[Crossref]

K. Matsushima and A. Kondoh, “A wave-optical algorithm for hidden-surface removal in digitally synthetic full-parallax holograms for three-dimensional objects,” Proc. SPIE 5290, 90–97 (2004).
[Crossref]

Miller, R. J.

C. W. Slinger, C. D. Cameron, S. D. Coomber, R. J. Miller, D. A. Payne, A. P. Smith, M. G. Smith, M. Stanley, and P. J. Watson, “Recent developments in computer-generated holography: toward a practical electroholography system for interactive 3D visualization,” Proc. SPIE 5290, 27–41 (2004).
[Crossref]

Nakahara, S.

H. Nishi, K. Matsushima, and S. Nakahara, “Advanced rendering techniques for producing specular smooth surfaces in polygon-based high-definition computer holography,” Proc. SPIE 8281(1), 828110 (2012).
[Crossref]

Nakayama, H.

Nakayama, K.

B. L. Anderson and K. Nakayama, “Toward a general theory of stereopsis: Binocular matching, occluding contours, and fusion,” Psychol. Rev. 101(3), 414–445 (1994).
[Crossref] [PubMed]

Nishi, H.

H. Nishi, K. Matsushima, and S. Nakahara, “Advanced rendering techniques for producing specular smooth surfaces in polygon-based high-definition computer holography,” Proc. SPIE 8281(1), 828110 (2012).
[Crossref]

Oi, R.

T. Senoh, Y. Ichihashi, R. Oi, H. Sasaki, and K. Yamamoto, “Study of a holographic TV system based on multi-view images and depth maps,” Proc. SPIE 8644, 86440A (2013).
[Crossref]

Oikawa, M.

Okada, N.

Ouhyoung, M.

D. Y. Chen, X. P. Tian, Y. T. Shen, and M. Ouhyoung, “On visual similarity based 3D model retrieval,” Comput. Graph. Forum 22(3), 223–232 (2003).
[Crossref]

Pan, Y.

X. Xu, X. Liang, Y. Pan, R. Zheng, and Z. A. Lum, “Spatiotemporal multiplexing and streaming of hologram data for full-color holographic video display,” Opt. Rev. 21(3), 220–225 (2014).
[Crossref]

Y. Pan, X. Xu, X. Liang, Z. A. Lum, R. Zheng, and P. P. Mar Yi Lwin, “Large-pixel-count hologram data processing for holographic 3D display,” Proc. SPIE 8644, 86440F (2013).
[Crossref]

Z. M. A. Lum, X. Liang, Y. Pan, R. Zheng, and X. Xu, “Increasing pixel count of holograms for three-dimensional holographic display by optical scan-tiling,” Opt. Eng. 52(1), 015802 (2013).
[Crossref]

Park, H.

J. Song, J. Park, H. Park, and J.-I. Park, “Real-time generation of high-definition resolution digital holograms by using multiple graphic processing units,” Opt. Eng. 52(1), 015803 (2013).
[Crossref]

Park, J.

J. Song, J. Park, H. Park, and J.-I. Park, “Real-time generation of high-definition resolution digital holograms by using multiple graphic processing units,” Opt. Eng. 52(1), 015803 (2013).
[Crossref]

Park, J.-I.

J. Song, J. Park, H. Park, and J.-I. Park, “Real-time generation of high-definition resolution digital holograms by using multiple graphic processing units,” Opt. Eng. 52(1), 015803 (2013).
[Crossref]

Payne, D. A.

C. W. Slinger, C. D. Cameron, S. D. Coomber, R. J. Miller, D. A. Payne, A. P. Smith, M. G. Smith, M. Stanley, and P. J. Watson, “Recent developments in computer-generated holography: toward a practical electroholography system for interactive 3D visualization,” Proc. SPIE 5290, 27–41 (2004).
[Crossref]

Rosen, J.

Sasaki, H.

H. Sasaki, K. Yamamoto, Y. Ichihashi, and T. Senoh, “Image size scalable full-parallax coloured three-dimensional video by electronic holography,” Sci. Rep. 4, 4000 (2014).
[PubMed]

T. Senoh, Y. Ichihashi, R. Oi, H. Sasaki, and K. Yamamoto, “Study of a holographic TV system based on multi-view images and depth maps,” Proc. SPIE 8644, 86440A (2013).
[Crossref]

Senoh, T.

H. Sasaki, K. Yamamoto, Y. Ichihashi, and T. Senoh, “Image size scalable full-parallax coloured three-dimensional video by electronic holography,” Sci. Rep. 4, 4000 (2014).
[PubMed]

T. Senoh, Y. Ichihashi, R. Oi, H. Sasaki, and K. Yamamoto, “Study of a holographic TV system based on multi-view images and depth maps,” Proc. SPIE 8644, 86440A (2013).
[Crossref]

Shen, Y. T.

D. Y. Chen, X. P. Tian, Y. T. Shen, and M. Ouhyoung, “On visual similarity based 3D model retrieval,” Comput. Graph. Forum 22(3), 223–232 (2003).
[Crossref]

Shimobaba, T.

Shiraki, A.

Slinger, C. W.

M. Stanley, M. A. Smith, A. P. Smith, P. J. Watson, S. D. Coomber, C. D. Cameron, C. W. Slinger, and A. Wood, “3D electronic holography display system using a 100-megapixel spatial light modulator,” Proc. SPIE 5249, 297–308 (2004).
[Crossref]

C. W. Slinger, C. D. Cameron, S. D. Coomber, R. J. Miller, D. A. Payne, A. P. Smith, M. G. Smith, M. Stanley, and P. J. Watson, “Recent developments in computer-generated holography: toward a practical electroholography system for interactive 3D visualization,” Proc. SPIE 5290, 27–41 (2004).
[Crossref]

Smalley, D. E.

D. E. Smalley, Q. Y. J. Smithwick, V. M. Bove, J. Barabas, and S. Jolly, “Anisotropic leaky-mode modulator for holographic video displays,” Nature 498(7454), 313–317 (2013).
[Crossref] [PubMed]

D. E. Smalley, Q. Y. J. Smithwick, and V. M. Bove., “Holographic video display based on guided-wave acousto-optic devices,” Proc. SPIE 6488, 64880L (2007).
[Crossref]

Smith, A. P.

M. Stanley, M. A. Smith, A. P. Smith, P. J. Watson, S. D. Coomber, C. D. Cameron, C. W. Slinger, and A. Wood, “3D electronic holography display system using a 100-megapixel spatial light modulator,” Proc. SPIE 5249, 297–308 (2004).
[Crossref]

C. W. Slinger, C. D. Cameron, S. D. Coomber, R. J. Miller, D. A. Payne, A. P. Smith, M. G. Smith, M. Stanley, and P. J. Watson, “Recent developments in computer-generated holography: toward a practical electroholography system for interactive 3D visualization,” Proc. SPIE 5290, 27–41 (2004).
[Crossref]

Smith, M. A.

M. Stanley, M. A. Smith, A. P. Smith, P. J. Watson, S. D. Coomber, C. D. Cameron, C. W. Slinger, and A. Wood, “3D electronic holography display system using a 100-megapixel spatial light modulator,” Proc. SPIE 5249, 297–308 (2004).
[Crossref]

Smith, M. G.

C. W. Slinger, C. D. Cameron, S. D. Coomber, R. J. Miller, D. A. Payne, A. P. Smith, M. G. Smith, M. Stanley, and P. J. Watson, “Recent developments in computer-generated holography: toward a practical electroholography system for interactive 3D visualization,” Proc. SPIE 5290, 27–41 (2004).
[Crossref]

Smithwick, Q.

J. S. Chen, D. P. Chu, and Q. Smithwick, “Rapid hologram generation utilizing layer-based approach and graphic rendering for realistic three-dimensional image reconstruction by angular tiling,” J. Electron. Imag. 23(2), 023016 (2014).
[Crossref]

Q. Smithwick, J. S. Chen, and D. P. Chu, “A coarse integral holographic display,” SID Symposium Digest of Technical Papers, 44(1), 310–313 (2013).

Smithwick, Q. Y. J.

D. E. Smalley, Q. Y. J. Smithwick, V. M. Bove, J. Barabas, and S. Jolly, “Anisotropic leaky-mode modulator for holographic video displays,” Nature 498(7454), 313–317 (2013).
[Crossref] [PubMed]

D. E. Smalley, Q. Y. J. Smithwick, and V. M. Bove., “Holographic video display based on guided-wave acousto-optic devices,” Proc. SPIE 6488, 64880L (2007).
[Crossref]

Song, J.

J. Song, J. Park, H. Park, and J.-I. Park, “Real-time generation of high-definition resolution digital holograms by using multiple graphic processing units,” Opt. Eng. 52(1), 015803 (2013).
[Crossref]

Stanley, M.

M. Stanley, M. A. Smith, A. P. Smith, P. J. Watson, S. D. Coomber, C. D. Cameron, C. W. Slinger, and A. Wood, “3D electronic holography display system using a 100-megapixel spatial light modulator,” Proc. SPIE 5249, 297–308 (2004).
[Crossref]

C. W. Slinger, C. D. Cameron, S. D. Coomber, R. J. Miller, D. A. Payne, A. P. Smith, M. G. Smith, M. Stanley, and P. J. Watson, “Recent developments in computer-generated holography: toward a practical electroholography system for interactive 3D visualization,” Proc. SPIE 5290, 27–41 (2004).
[Crossref]

Takada, N.

Takaki, Y.

Tian, X. P.

D. Y. Chen, X. P. Tian, Y. T. Shen, and M. Ouhyoung, “On visual similarity based 3D model retrieval,” Comput. Graph. Forum 22(3), 223–232 (2003).
[Crossref]

Watson, P. J.

M. Stanley, M. A. Smith, A. P. Smith, P. J. Watson, S. D. Coomber, C. D. Cameron, C. W. Slinger, and A. Wood, “3D electronic holography display system using a 100-megapixel spatial light modulator,” Proc. SPIE 5249, 297–308 (2004).
[Crossref]

C. W. Slinger, C. D. Cameron, S. D. Coomber, R. J. Miller, D. A. Payne, A. P. Smith, M. G. Smith, M. Stanley, and P. J. Watson, “Recent developments in computer-generated holography: toward a practical electroholography system for interactive 3D visualization,” Proc. SPIE 5290, 27–41 (2004).
[Crossref]

Watt, S. J.

K. Akeley, S. J. Watt, A. R. Girshick, and M. S. Banks, “A stereo display prototype with multiple focal distances,” ACM Trans. Graph. 23(3), 804–813 (2004).
[Crossref]

Wood, A.

M. Stanley, M. A. Smith, A. P. Smith, P. J. Watson, S. D. Coomber, C. D. Cameron, C. W. Slinger, and A. Wood, “3D electronic holography display system using a 100-megapixel spatial light modulator,” Proc. SPIE 5249, 297–308 (2004).
[Crossref]

Xie, J.

H. Zhang, N. Collings, J. Chen, B. Crossland, D. Chu, and J. Xie, “Full parallax three-dimensional display with occlusion effect using computer generated hologram,” Opt. Eng. 50(7), 074003 (2011).
[Crossref]

Xu, X.

X. Xu, X. Liang, Y. Pan, R. Zheng, and Z. A. Lum, “Spatiotemporal multiplexing and streaming of hologram data for full-color holographic video display,” Opt. Rev. 21(3), 220–225 (2014).
[Crossref]

Y. Pan, X. Xu, X. Liang, Z. A. Lum, R. Zheng, and P. P. Mar Yi Lwin, “Large-pixel-count hologram data processing for holographic 3D display,” Proc. SPIE 8644, 86440F (2013).
[Crossref]

Z. M. A. Lum, X. Liang, Y. Pan, R. Zheng, and X. Xu, “Increasing pixel count of holograms for three-dimensional holographic display by optical scan-tiling,” Opt. Eng. 52(1), 015802 (2013).
[Crossref]

Yamamoto, K.

H. Sasaki, K. Yamamoto, Y. Ichihashi, and T. Senoh, “Image size scalable full-parallax coloured three-dimensional video by electronic holography,” Sci. Rep. 4, 4000 (2014).
[PubMed]

T. Senoh, Y. Ichihashi, R. Oi, H. Sasaki, and K. Yamamoto, “Study of a holographic TV system based on multi-view images and depth maps,” Proc. SPIE 8644, 86440A (2013).
[Crossref]

Zhang, H.

H. Zhang, N. Collings, J. Chen, B. Crossland, D. Chu, and J. Xie, “Full parallax three-dimensional display with occlusion effect using computer generated hologram,” Opt. Eng. 50(7), 074003 (2011).
[Crossref]

Zheng, R.

X. Xu, X. Liang, Y. Pan, R. Zheng, and Z. A. Lum, “Spatiotemporal multiplexing and streaming of hologram data for full-color holographic video display,” Opt. Rev. 21(3), 220–225 (2014).
[Crossref]

Y. Pan, X. Xu, X. Liang, Z. A. Lum, R. Zheng, and P. P. Mar Yi Lwin, “Large-pixel-count hologram data processing for holographic 3D display,” Proc. SPIE 8644, 86440F (2013).
[Crossref]

Z. M. A. Lum, X. Liang, Y. Pan, R. Zheng, and X. Xu, “Increasing pixel count of holograms for three-dimensional holographic display by optical scan-tiling,” Opt. Eng. 52(1), 015802 (2013).
[Crossref]

ACM Trans. Graph. (1)

K. Akeley, S. J. Watt, A. R. Girshick, and M. S. Banks, “A stereo display prototype with multiple focal distances,” ACM Trans. Graph. 23(3), 804–813 (2004).
[Crossref]

Appl. Opt. (3)

Chin. Opt. Lett. (1)

Comput. Graph. Forum (1)

D. Y. Chen, X. P. Tian, Y. T. Shen, and M. Ouhyoung, “On visual similarity based 3D model retrieval,” Comput. Graph. Forum 22(3), 223–232 (2003).
[Crossref]

J. Disp. Technol. (1)

E. Buckley, “Real-time error diffusion for signal-to-noise ratio improvement in a holographic projection system,” J. Disp. Technol. 7(2), 70–76 (2011).
[Crossref]

J. Electron. Imag. (1)

J. S. Chen, D. P. Chu, and Q. Smithwick, “Rapid hologram generation utilizing layer-based approach and graphic rendering for realistic three-dimensional image reconstruction by angular tiling,” J. Electron. Imag. 23(2), 023016 (2014).
[Crossref]

J. Opt. Soc. Am. (1)

Nature (1)

D. E. Smalley, Q. Y. J. Smithwick, V. M. Bove, J. Barabas, and S. Jolly, “Anisotropic leaky-mode modulator for holographic video displays,” Nature 498(7454), 313–317 (2013).
[Crossref] [PubMed]

Opt. Eng. (4)

T. Kreis, P. Aswendt, and R. Hofling, “Hologram reconstruction using a digital micromirror device,” Opt. Eng. 40(6), 926–933 (2001).
[Crossref]

H. Zhang, N. Collings, J. Chen, B. Crossland, D. Chu, and J. Xie, “Full parallax three-dimensional display with occlusion effect using computer generated hologram,” Opt. Eng. 50(7), 074003 (2011).
[Crossref]

J. Song, J. Park, H. Park, and J.-I. Park, “Real-time generation of high-definition resolution digital holograms by using multiple graphic processing units,” Opt. Eng. 52(1), 015803 (2013).
[Crossref]

Z. M. A. Lum, X. Liang, Y. Pan, R. Zheng, and X. Xu, “Increasing pixel count of holograms for three-dimensional holographic display by optical scan-tiling,” Opt. Eng. 52(1), 015802 (2013).
[Crossref]

Opt. Rev. (1)

X. Xu, X. Liang, Y. Pan, R. Zheng, and Z. A. Lum, “Spatiotemporal multiplexing and streaming of hologram data for full-color holographic video display,” Opt. Rev. 21(3), 220–225 (2014).
[Crossref]

Proc. SPIE (8)

Y. Pan, X. Xu, X. Liang, Z. A. Lum, R. Zheng, and P. P. Mar Yi Lwin, “Large-pixel-count hologram data processing for holographic 3D display,” Proc. SPIE 8644, 86440F (2013).
[Crossref]

T. Senoh, Y. Ichihashi, R. Oi, H. Sasaki, and K. Yamamoto, “Study of a holographic TV system based on multi-view images and depth maps,” Proc. SPIE 8644, 86440A (2013).
[Crossref]

M. Stanley, M. A. Smith, A. P. Smith, P. J. Watson, S. D. Coomber, C. D. Cameron, C. W. Slinger, and A. Wood, “3D electronic holography display system using a 100-megapixel spatial light modulator,” Proc. SPIE 5249, 297–308 (2004).
[Crossref]

C. W. Slinger, C. D. Cameron, S. D. Coomber, R. J. Miller, D. A. Payne, A. P. Smith, M. G. Smith, M. Stanley, and P. J. Watson, “Recent developments in computer-generated holography: toward a practical electroholography system for interactive 3D visualization,” Proc. SPIE 5290, 27–41 (2004).
[Crossref]

D. E. Smalley, Q. Y. J. Smithwick, and V. M. Bove., “Holographic video display based on guided-wave acousto-optic devices,” Proc. SPIE 6488, 64880L (2007).
[Crossref]

H. Nishi, K. Matsushima, and S. Nakahara, “Advanced rendering techniques for producing specular smooth surfaces in polygon-based high-definition computer holography,” Proc. SPIE 8281(1), 828110 (2012).
[Crossref]

K. Matsushima and A. Kondoh, “A wave-optical algorithm for hidden-surface removal in digitally synthetic full-parallax holograms for three-dimensional objects,” Proc. SPIE 5290, 90–97 (2004).
[Crossref]

H. Kakeya, “Formulation of coarse integral imaging and its applications,” Proc. SPIE 6803, 680317 (2008).
[Crossref]

Psychol. Rev. (1)

B. L. Anderson and K. Nakayama, “Toward a general theory of stereopsis: Binocular matching, occluding contours, and fusion,” Psychol. Rev. 101(3), 414–445 (1994).
[Crossref] [PubMed]

Sci. Rep. (1)

H. Sasaki, K. Yamamoto, Y. Ichihashi, and T. Senoh, “Image size scalable full-parallax coloured three-dimensional video by electronic holography,” Sci. Rep. 4, 4000 (2014).
[PubMed]

Other (8)

V. Bruce, P. R. Green, and M. A. Georgeson, Visual Perception: Physiology, Psychology, & Ecology (Psychology Press, 2003).

E. Hecht, Optics, 4th ed. (Addison Wesley, 2001), Chap. 10.

NTU 3D Model Database ver.1, http://3d.csie.ntu.edu.tw/~dynamic/database/

Using Lasers with DLP®DMD technology, http://www.dlinnovations.com/dli/wp-content/uploads/white-paper-using-lasers-with-dlp-dmd-technology.pdf

K. Akeley, “Achieveing near-perfect focus cues using multiple image planes”, PhD thesis, Stanford University (2004).

Q. Smithwick, J. S. Chen, and D. P. Chu, “A coarse integral holographic display,” SID Symposium Digest of Technical Papers, 44(1), 310–313 (2013).

Overview | DLP &MEMS (Texas Instrument)- http://www.ti.com/lsds/ti/analog/dlp/overview.page

V. Soloviev, ‘Geometry of Radiation, www.et.byu.edu/~vps/ME340/TABLES/12.0.pdf

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 An illustration of hologram tiling schemes; (a) Spatial tiling, which enlarges the effective display size by tiling many sub-holograms spatially; (b) Angular tiling, which enlarges the effective viewing angle by tiling many sub-holograms angularly; (c) Illustration of static coarse integral holography.
Fig. 2
Fig. 2 (a) Illustration showing the bi-directional boustrophedon scanning with overlapping colour sub-hologram fields. The fields of view of each (RGB) channel are different. The FOV of the blue field is set to be the overall effective size–the blue constraint. In the figure, the squares’ shapes and sizes are used to represent the FOVs; (b) The RGB laser pulses are applied sequentially and synchronized with SLM patterns.
Fig. 3
Fig. 3 Illustrations for the scanning structure and the dynamic CIH system. (a) The dynamic CIH system layout ;(b) A displayed holographic image, ruler unit in cm; (c) The physical CIH system hardware.
Fig. 4
Fig. 4 An illustration of the fundamental concept of angularly tiled layer-based holographic rendering algorithm. (a) The reconstructed holographic image is angularly tiled; (b) Each angular view is sliced along its viewing direction reducing the computation load; (c) Each layer’s hologram is calculated from its image slice’s Fourier transformation;(d) Corresponding pre-calculated holographic lenses are attached to layers to place each layer at the appropriate depth; (e) The summation of layers becomes the final hologram for this view.
Fig. 5
Fig. 5 Captured holographic images (3D tricycle model [32,33]) of the dynamic Coarse Integral Holographic Display system. (a)-(f) Holographic images taken from different viewing angles. (g) Original source computer generated (CG) model rendering. Video results are also provided online [link].
Fig. 6
Fig. 6 Focus/accommodation cue tests of the dynamic CIH system. (a)-(b) Images were taken with the camera focused at different depths to show the accommodation cue; (c) The original 3D image source.

Tables (2)

Tables Icon

Table 1 Comparison of existing holographic video displays.

Tables Icon

Table 2 Specification of proposed holographic video system.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

SBP= 4×w×h d w × d h .
AΩ=w×h×cosΦ ×( ϕ 2 ϕ 1 )×( cos θ 2 cos θ 1 ).
AΩ=w×h×cosΦ×Δϕ×Δθ.
θ= sin 1 ( mλ d +sin θ i ).

Metrics