Abstract

We demonstrate a compact silicon polarization beam splitter (PBS) based on grating-assisted contradirectional couplers (GACCs). Over 30-dB extinction ratios and less than 1-dB insertion losses are achieved for both polarizations. The proposed PBS exhibits tolerance in width variation, and the polarization extinction ratios remain higher than 20 dB for both polarizations when the width variation is adjusted from + 10 to –10 nm. Benefiting from the enhanced coupling by the GACCs, the polarization extinction ratio can be kept higher than 15 dB and the insertion loss is lower than 2 dB for both polarizations when the coupling length varies from 30.96 to 13.76 μm.

© 2016 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Manolatou and H. A. Haus, “High density integrated optics” in Passive Components for Dense Optical Integration (Springer, 2002), pp. 97–125.
  2. B. Troia, F. De Leonardis, M. Lanzafame, T. Muciaccia, G. Grasso, G. Giannoccaro, C. E. Campanella, and V. Passaro, “Design and optimization of polarization splitting and rotating devices in silicon-on-insulator technology,” Adv. Optoelectron. 2014, 1–16 (2014).
    [Crossref]
  3. L. Yang, R. Ji, L. Zhang, J. Ding, and Q. Xu, “On-chip CMOS-compatible optical signal processor,” Opt. Express 20(12), 13560–13565 (2012).
    [Crossref] [PubMed]
  4. D. Dai, L. Liu, S. Gao, D. X. Xu, and S. He, “Polarization management for silicon photonic integrated circuits,” Laser Photonics Rev. 7(3), 303–328 (2013).
    [Crossref]
  5. H. Guan, A. Novack, M. Streshinsky, R. Shi, Q. Fang, A. E.-J. Lim, G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “CMOS-compatible highly efficient polarization splitter and rotator based on a double-etched directional coupler,” Opt. Express 22(3), 2489–2496 (2014).
    [Crossref] [PubMed]
  6. D. Dai, “Silicon polarization beam splitter based on an asymmetrical evanescent coupling system with three optical waveguides,” J. Lightwave Technol. 30(20), 3281–3287 (2012).
    [Crossref]
  7. Y. Ding, L. Liu, C. Peucheret, and H. Ou, “Fabrication tolerant polarization splitter and rotator based on a tapered directional coupler,” Opt. Express 20(18), 20021–20027 (2012).
    [Crossref] [PubMed]
  8. Z. Su, E. Timurdogan, E. S. Hosseini, J. Sun, G. Leake, D. D. Coolbaugh, and M. R. Watts, “Four-port integrated polarizing beam splitter,” Opt. Lett. 39(4), 965–968 (2014).
    [Crossref] [PubMed]
  9. L. Liu, Y. Ding, K. Yvind, and J. M. Hvam, “Efficient and compact TE-TM polarization converter built on silicon-on-insulator platform with a simple fabrication process,” Opt. Lett. 36(7), 1059–1061 (2011).
    [Crossref] [PubMed]
  10. A. Xie, L. Zhou, J. Chen, and X. Li, “Efficient silicon polarization rotator based on mode-hybridization in a double-stair waveguide,” Opt. Express 23(4), 3960–3970 (2015).
    [Crossref] [PubMed]
  11. L. Chen, C. R. Doerr, and Y.-K. Chen, “Compact polarization rotator on silicon for polarization-diversified circuits,” Opt. Lett. 36(4), 469–471 (2011).
    [Crossref] [PubMed]
  12. G. F. R. Chen, T. Wang, K. J. A. Ooi, A. K. L. Chee, L. K. Ang, and D. T. H. Tan, “Wavelength selective mode division multiplexing on a silicon chip,” Opt. Express 23(6), 8095–8103 (2015).
    [Crossref] [PubMed]
  13. D. Po, L. Xiang, S. Chandrasekhar, L. L. Buhl, R. Aroca, and C. Young-Kai, “Monolithic silicon photonic integrated circuits for compact 100 + Gb/s coherent optical receivers and transmitters,” IEEE J. Sel. Top. Quantum Electron. 20(4), 150–157 (2014).
    [Crossref]
  14. B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm2 footprint,” Nat. Photonics 9(6), 378–382 (2015).
    [Crossref]
  15. B. Rahman, N. Somasiri, C. Themistos, and K. Grattan, “Design of optical polarization splitters in a single-section deeply etched MMI waveguide,” Appl. Phys. B 73(5), 613–618 (2001).
    [Crossref]
  16. Y. Ding, H. Ou, and C. Peucheret, “Wideband polarization splitter and rotator with large fabrication tolerance and simple fabrication process,” Opt. Lett. 38(8), 1227–1229 (2013).
    [Crossref] [PubMed]
  17. X. Ao, L. Liu, L. Wosinski, and S. He, “Polarization beam splitter based on a two-dimensional photonic crystal of pillar type,” Appl. Phys. Lett. 89(17), 171115 (2006).
    [Crossref]
  18. J. Feng and Z. Zhou, “Polarization beam splitter using a binary blazed grating coupler,” Opt. Lett. 32(12), 1662–1664 (2007).
    [Crossref] [PubMed]
  19. H.-S. Chu, E.-P. Li, P. Bai, and R. Hegde, “Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components,” Appl. Phys. Lett. 96(22), 221103 (2010).
    [Crossref]
  20. X. Guan, H. Wu, Y. Shi, and D. Dai, “Extremely small polarization beam splitter based on a multimode interference coupler with a silicon hybrid plasmonic waveguide,” Opt. Lett. 39(2), 259–262 (2014).
    [Crossref] [PubMed]
  21. D. Dai and J. E. Bowers, “Novel ultra-short and ultra-broadband polarization beam splitter based on a bent directional coupler,” Opt. Express 19(19), 18614–18620 (2011).
    [Crossref] [PubMed]
  22. D. Dai, Z. Wang, and J. E. Bowers, “Ultrashort broadband polarization beam splitter based on an asymmetrical directional coupler,” Opt. Lett. 36(13), 2590–2592 (2011).
    [Crossref] [PubMed]
  23. D. W. Kim, M. H. Lee, Y. Kim, and K. H. Kim, “Planar-type polarization beam splitter based on a bridged silicon waveguide coupler,” Opt. Express 23(2), 998–1004 (2015).
    [Crossref] [PubMed]
  24. H. Qiu, Y. Su, P. Yu, T. Hu, J. Yang, and X. Jiang, “Compact polarization splitter based on silicon grating-assisted couplers,” Opt. Lett. 40(9), 1885–1887 (2015).
    [Crossref] [PubMed]
  25. Y. Zhang, Y. He, J. Wu, R. Liu, C. Qiu, and Y. Su, ” High-extinction-ratio and fabrication-tolerant polarization beam splitter based on grating-assisted contradirectional couplers,” in Optical Fiber Communication Conference (Optical Society of America, 2016), paper Tu3E.2.
  26. D. Taillaert, P. Bienstman, and R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides,” Opt. Lett. 29(23), 2749–2751 (2004).
    [Crossref] [PubMed]
  27. H. Qiu, H. Yu, T. Hu, G. Jiang, H. Shao, P. Yu, J. Yang, and X. Jiang, “Silicon mode multi/demultiplexer based on multimode grating-assisted couplers,” Opt. Express 21(15), 17904–17911 (2013).
    [Crossref] [PubMed]
  28. H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, “Ultrasmall polarization splitter based on silicon wire waveguides,” Opt. Express 14(25), 12401–12408 (2006).
    [Crossref] [PubMed]

2015 (5)

2014 (5)

X. Guan, H. Wu, Y. Shi, and D. Dai, “Extremely small polarization beam splitter based on a multimode interference coupler with a silicon hybrid plasmonic waveguide,” Opt. Lett. 39(2), 259–262 (2014).
[Crossref] [PubMed]

D. Po, L. Xiang, S. Chandrasekhar, L. L. Buhl, R. Aroca, and C. Young-Kai, “Monolithic silicon photonic integrated circuits for compact 100 + Gb/s coherent optical receivers and transmitters,” IEEE J. Sel. Top. Quantum Electron. 20(4), 150–157 (2014).
[Crossref]

Z. Su, E. Timurdogan, E. S. Hosseini, J. Sun, G. Leake, D. D. Coolbaugh, and M. R. Watts, “Four-port integrated polarizing beam splitter,” Opt. Lett. 39(4), 965–968 (2014).
[Crossref] [PubMed]

B. Troia, F. De Leonardis, M. Lanzafame, T. Muciaccia, G. Grasso, G. Giannoccaro, C. E. Campanella, and V. Passaro, “Design and optimization of polarization splitting and rotating devices in silicon-on-insulator technology,” Adv. Optoelectron. 2014, 1–16 (2014).
[Crossref]

H. Guan, A. Novack, M. Streshinsky, R. Shi, Q. Fang, A. E.-J. Lim, G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “CMOS-compatible highly efficient polarization splitter and rotator based on a double-etched directional coupler,” Opt. Express 22(3), 2489–2496 (2014).
[Crossref] [PubMed]

2013 (3)

2012 (3)

2011 (4)

2010 (1)

H.-S. Chu, E.-P. Li, P. Bai, and R. Hegde, “Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components,” Appl. Phys. Lett. 96(22), 221103 (2010).
[Crossref]

2007 (1)

2006 (2)

X. Ao, L. Liu, L. Wosinski, and S. He, “Polarization beam splitter based on a two-dimensional photonic crystal of pillar type,” Appl. Phys. Lett. 89(17), 171115 (2006).
[Crossref]

H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, “Ultrasmall polarization splitter based on silicon wire waveguides,” Opt. Express 14(25), 12401–12408 (2006).
[Crossref] [PubMed]

2004 (1)

2001 (1)

B. Rahman, N. Somasiri, C. Themistos, and K. Grattan, “Design of optical polarization splitters in a single-section deeply etched MMI waveguide,” Appl. Phys. B 73(5), 613–618 (2001).
[Crossref]

Ang, L. K.

Ao, X.

X. Ao, L. Liu, L. Wosinski, and S. He, “Polarization beam splitter based on a two-dimensional photonic crystal of pillar type,” Appl. Phys. Lett. 89(17), 171115 (2006).
[Crossref]

Aroca, R.

D. Po, L. Xiang, S. Chandrasekhar, L. L. Buhl, R. Aroca, and C. Young-Kai, “Monolithic silicon photonic integrated circuits for compact 100 + Gb/s coherent optical receivers and transmitters,” IEEE J. Sel. Top. Quantum Electron. 20(4), 150–157 (2014).
[Crossref]

Baehr-Jones, T.

Baets, R.

Bai, P.

H.-S. Chu, E.-P. Li, P. Bai, and R. Hegde, “Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components,” Appl. Phys. Lett. 96(22), 221103 (2010).
[Crossref]

Bienstman, P.

Bowers, J. E.

Buhl, L. L.

D. Po, L. Xiang, S. Chandrasekhar, L. L. Buhl, R. Aroca, and C. Young-Kai, “Monolithic silicon photonic integrated circuits for compact 100 + Gb/s coherent optical receivers and transmitters,” IEEE J. Sel. Top. Quantum Electron. 20(4), 150–157 (2014).
[Crossref]

Campanella, C. E.

B. Troia, F. De Leonardis, M. Lanzafame, T. Muciaccia, G. Grasso, G. Giannoccaro, C. E. Campanella, and V. Passaro, “Design and optimization of polarization splitting and rotating devices in silicon-on-insulator technology,” Adv. Optoelectron. 2014, 1–16 (2014).
[Crossref]

Chandrasekhar, S.

D. Po, L. Xiang, S. Chandrasekhar, L. L. Buhl, R. Aroca, and C. Young-Kai, “Monolithic silicon photonic integrated circuits for compact 100 + Gb/s coherent optical receivers and transmitters,” IEEE J. Sel. Top. Quantum Electron. 20(4), 150–157 (2014).
[Crossref]

Chee, A. K. L.

Chen, G. F. R.

Chen, J.

Chen, L.

Chen, Y.-K.

Chu, H.-S.

H.-S. Chu, E.-P. Li, P. Bai, and R. Hegde, “Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components,” Appl. Phys. Lett. 96(22), 221103 (2010).
[Crossref]

Coolbaugh, D. D.

Dai, D.

De Leonardis, F.

B. Troia, F. De Leonardis, M. Lanzafame, T. Muciaccia, G. Grasso, G. Giannoccaro, C. E. Campanella, and V. Passaro, “Design and optimization of polarization splitting and rotating devices in silicon-on-insulator technology,” Adv. Optoelectron. 2014, 1–16 (2014).
[Crossref]

Ding, J.

Ding, Y.

Doerr, C. R.

Fang, Q.

Feng, J.

Fukuda, H.

Gao, S.

D. Dai, L. Liu, S. Gao, D. X. Xu, and S. He, “Polarization management for silicon photonic integrated circuits,” Laser Photonics Rev. 7(3), 303–328 (2013).
[Crossref]

Giannoccaro, G.

B. Troia, F. De Leonardis, M. Lanzafame, T. Muciaccia, G. Grasso, G. Giannoccaro, C. E. Campanella, and V. Passaro, “Design and optimization of polarization splitting and rotating devices in silicon-on-insulator technology,” Adv. Optoelectron. 2014, 1–16 (2014).
[Crossref]

Grasso, G.

B. Troia, F. De Leonardis, M. Lanzafame, T. Muciaccia, G. Grasso, G. Giannoccaro, C. E. Campanella, and V. Passaro, “Design and optimization of polarization splitting and rotating devices in silicon-on-insulator technology,” Adv. Optoelectron. 2014, 1–16 (2014).
[Crossref]

Grattan, K.

B. Rahman, N. Somasiri, C. Themistos, and K. Grattan, “Design of optical polarization splitters in a single-section deeply etched MMI waveguide,” Appl. Phys. B 73(5), 613–618 (2001).
[Crossref]

Guan, H.

Guan, X.

He, S.

D. Dai, L. Liu, S. Gao, D. X. Xu, and S. He, “Polarization management for silicon photonic integrated circuits,” Laser Photonics Rev. 7(3), 303–328 (2013).
[Crossref]

X. Ao, L. Liu, L. Wosinski, and S. He, “Polarization beam splitter based on a two-dimensional photonic crystal of pillar type,” Appl. Phys. Lett. 89(17), 171115 (2006).
[Crossref]

Hegde, R.

H.-S. Chu, E.-P. Li, P. Bai, and R. Hegde, “Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components,” Appl. Phys. Lett. 96(22), 221103 (2010).
[Crossref]

Hochberg, M.

Hosseini, E. S.

Hu, T.

Hvam, J. M.

Itabashi, S.

Ji, R.

Jiang, G.

Jiang, X.

Kim, D. W.

Kim, K. H.

Kim, Y.

Lanzafame, M.

B. Troia, F. De Leonardis, M. Lanzafame, T. Muciaccia, G. Grasso, G. Giannoccaro, C. E. Campanella, and V. Passaro, “Design and optimization of polarization splitting and rotating devices in silicon-on-insulator technology,” Adv. Optoelectron. 2014, 1–16 (2014).
[Crossref]

Leake, G.

Lee, M. H.

Li, E.-P.

H.-S. Chu, E.-P. Li, P. Bai, and R. Hegde, “Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components,” Appl. Phys. Lett. 96(22), 221103 (2010).
[Crossref]

Li, X.

Lim, A. E.-J.

Liu, L.

D. Dai, L. Liu, S. Gao, D. X. Xu, and S. He, “Polarization management for silicon photonic integrated circuits,” Laser Photonics Rev. 7(3), 303–328 (2013).
[Crossref]

Y. Ding, L. Liu, C. Peucheret, and H. Ou, “Fabrication tolerant polarization splitter and rotator based on a tapered directional coupler,” Opt. Express 20(18), 20021–20027 (2012).
[Crossref] [PubMed]

L. Liu, Y. Ding, K. Yvind, and J. M. Hvam, “Efficient and compact TE-TM polarization converter built on silicon-on-insulator platform with a simple fabrication process,” Opt. Lett. 36(7), 1059–1061 (2011).
[Crossref] [PubMed]

X. Ao, L. Liu, L. Wosinski, and S. He, “Polarization beam splitter based on a two-dimensional photonic crystal of pillar type,” Appl. Phys. Lett. 89(17), 171115 (2006).
[Crossref]

Lo, G.-Q.

Menon, R.

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm2 footprint,” Nat. Photonics 9(6), 378–382 (2015).
[Crossref]

Muciaccia, T.

B. Troia, F. De Leonardis, M. Lanzafame, T. Muciaccia, G. Grasso, G. Giannoccaro, C. E. Campanella, and V. Passaro, “Design and optimization of polarization splitting and rotating devices in silicon-on-insulator technology,” Adv. Optoelectron. 2014, 1–16 (2014).
[Crossref]

Novack, A.

Ooi, K. J. A.

Ou, H.

Passaro, V.

B. Troia, F. De Leonardis, M. Lanzafame, T. Muciaccia, G. Grasso, G. Giannoccaro, C. E. Campanella, and V. Passaro, “Design and optimization of polarization splitting and rotating devices in silicon-on-insulator technology,” Adv. Optoelectron. 2014, 1–16 (2014).
[Crossref]

Peucheret, C.

Po, D.

D. Po, L. Xiang, S. Chandrasekhar, L. L. Buhl, R. Aroca, and C. Young-Kai, “Monolithic silicon photonic integrated circuits for compact 100 + Gb/s coherent optical receivers and transmitters,” IEEE J. Sel. Top. Quantum Electron. 20(4), 150–157 (2014).
[Crossref]

Polson, R.

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm2 footprint,” Nat. Photonics 9(6), 378–382 (2015).
[Crossref]

Qiu, H.

Rahman, B.

B. Rahman, N. Somasiri, C. Themistos, and K. Grattan, “Design of optical polarization splitters in a single-section deeply etched MMI waveguide,” Appl. Phys. B 73(5), 613–618 (2001).
[Crossref]

Shao, H.

Shen, B.

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm2 footprint,” Nat. Photonics 9(6), 378–382 (2015).
[Crossref]

Shi, R.

Shi, Y.

Shinojima, H.

Somasiri, N.

B. Rahman, N. Somasiri, C. Themistos, and K. Grattan, “Design of optical polarization splitters in a single-section deeply etched MMI waveguide,” Appl. Phys. B 73(5), 613–618 (2001).
[Crossref]

Streshinsky, M.

Su, Y.

Su, Z.

Sun, J.

Taillaert, D.

Tan, D. T. H.

Themistos, C.

B. Rahman, N. Somasiri, C. Themistos, and K. Grattan, “Design of optical polarization splitters in a single-section deeply etched MMI waveguide,” Appl. Phys. B 73(5), 613–618 (2001).
[Crossref]

Timurdogan, E.

Troia, B.

B. Troia, F. De Leonardis, M. Lanzafame, T. Muciaccia, G. Grasso, G. Giannoccaro, C. E. Campanella, and V. Passaro, “Design and optimization of polarization splitting and rotating devices in silicon-on-insulator technology,” Adv. Optoelectron. 2014, 1–16 (2014).
[Crossref]

Tsuchizawa, T.

Wang, P.

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm2 footprint,” Nat. Photonics 9(6), 378–382 (2015).
[Crossref]

Wang, T.

Wang, Z.

Watanabe, T.

Watts, M. R.

Wosinski, L.

X. Ao, L. Liu, L. Wosinski, and S. He, “Polarization beam splitter based on a two-dimensional photonic crystal of pillar type,” Appl. Phys. Lett. 89(17), 171115 (2006).
[Crossref]

Wu, H.

Xiang, L.

D. Po, L. Xiang, S. Chandrasekhar, L. L. Buhl, R. Aroca, and C. Young-Kai, “Monolithic silicon photonic integrated circuits for compact 100 + Gb/s coherent optical receivers and transmitters,” IEEE J. Sel. Top. Quantum Electron. 20(4), 150–157 (2014).
[Crossref]

Xie, A.

Xu, D. X.

D. Dai, L. Liu, S. Gao, D. X. Xu, and S. He, “Polarization management for silicon photonic integrated circuits,” Laser Photonics Rev. 7(3), 303–328 (2013).
[Crossref]

Xu, Q.

Yamada, K.

Yang, J.

Yang, L.

Young-Kai, C.

D. Po, L. Xiang, S. Chandrasekhar, L. L. Buhl, R. Aroca, and C. Young-Kai, “Monolithic silicon photonic integrated circuits for compact 100 + Gb/s coherent optical receivers and transmitters,” IEEE J. Sel. Top. Quantum Electron. 20(4), 150–157 (2014).
[Crossref]

Yu, H.

Yu, P.

Yvind, K.

Zhang, L.

Zhou, L.

Zhou, Z.

Adv. Optoelectron. (1)

B. Troia, F. De Leonardis, M. Lanzafame, T. Muciaccia, G. Grasso, G. Giannoccaro, C. E. Campanella, and V. Passaro, “Design and optimization of polarization splitting and rotating devices in silicon-on-insulator technology,” Adv. Optoelectron. 2014, 1–16 (2014).
[Crossref]

Appl. Phys. B (1)

B. Rahman, N. Somasiri, C. Themistos, and K. Grattan, “Design of optical polarization splitters in a single-section deeply etched MMI waveguide,” Appl. Phys. B 73(5), 613–618 (2001).
[Crossref]

Appl. Phys. Lett. (2)

X. Ao, L. Liu, L. Wosinski, and S. He, “Polarization beam splitter based on a two-dimensional photonic crystal of pillar type,” Appl. Phys. Lett. 89(17), 171115 (2006).
[Crossref]

H.-S. Chu, E.-P. Li, P. Bai, and R. Hegde, “Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components,” Appl. Phys. Lett. 96(22), 221103 (2010).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

D. Po, L. Xiang, S. Chandrasekhar, L. L. Buhl, R. Aroca, and C. Young-Kai, “Monolithic silicon photonic integrated circuits for compact 100 + Gb/s coherent optical receivers and transmitters,” IEEE J. Sel. Top. Quantum Electron. 20(4), 150–157 (2014).
[Crossref]

J. Lightwave Technol. (1)

Laser Photonics Rev. (1)

D. Dai, L. Liu, S. Gao, D. X. Xu, and S. He, “Polarization management for silicon photonic integrated circuits,” Laser Photonics Rev. 7(3), 303–328 (2013).
[Crossref]

Nat. Photonics (1)

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm2 footprint,” Nat. Photonics 9(6), 378–382 (2015).
[Crossref]

Opt. Express (9)

A. Xie, L. Zhou, J. Chen, and X. Li, “Efficient silicon polarization rotator based on mode-hybridization in a double-stair waveguide,” Opt. Express 23(4), 3960–3970 (2015).
[Crossref] [PubMed]

G. F. R. Chen, T. Wang, K. J. A. Ooi, A. K. L. Chee, L. K. Ang, and D. T. H. Tan, “Wavelength selective mode division multiplexing on a silicon chip,” Opt. Express 23(6), 8095–8103 (2015).
[Crossref] [PubMed]

H. Guan, A. Novack, M. Streshinsky, R. Shi, Q. Fang, A. E.-J. Lim, G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “CMOS-compatible highly efficient polarization splitter and rotator based on a double-etched directional coupler,” Opt. Express 22(3), 2489–2496 (2014).
[Crossref] [PubMed]

L. Yang, R. Ji, L. Zhang, J. Ding, and Q. Xu, “On-chip CMOS-compatible optical signal processor,” Opt. Express 20(12), 13560–13565 (2012).
[Crossref] [PubMed]

Y. Ding, L. Liu, C. Peucheret, and H. Ou, “Fabrication tolerant polarization splitter and rotator based on a tapered directional coupler,” Opt. Express 20(18), 20021–20027 (2012).
[Crossref] [PubMed]

D. Dai and J. E. Bowers, “Novel ultra-short and ultra-broadband polarization beam splitter based on a bent directional coupler,” Opt. Express 19(19), 18614–18620 (2011).
[Crossref] [PubMed]

D. W. Kim, M. H. Lee, Y. Kim, and K. H. Kim, “Planar-type polarization beam splitter based on a bridged silicon waveguide coupler,” Opt. Express 23(2), 998–1004 (2015).
[Crossref] [PubMed]

H. Qiu, H. Yu, T. Hu, G. Jiang, H. Shao, P. Yu, J. Yang, and X. Jiang, “Silicon mode multi/demultiplexer based on multimode grating-assisted couplers,” Opt. Express 21(15), 17904–17911 (2013).
[Crossref] [PubMed]

H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, “Ultrasmall polarization splitter based on silicon wire waveguides,” Opt. Express 14(25), 12401–12408 (2006).
[Crossref] [PubMed]

Opt. Lett. (9)

D. Taillaert, P. Bienstman, and R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides,” Opt. Lett. 29(23), 2749–2751 (2004).
[Crossref] [PubMed]

H. Qiu, Y. Su, P. Yu, T. Hu, J. Yang, and X. Jiang, “Compact polarization splitter based on silicon grating-assisted couplers,” Opt. Lett. 40(9), 1885–1887 (2015).
[Crossref] [PubMed]

D. Dai, Z. Wang, and J. E. Bowers, “Ultrashort broadband polarization beam splitter based on an asymmetrical directional coupler,” Opt. Lett. 36(13), 2590–2592 (2011).
[Crossref] [PubMed]

X. Guan, H. Wu, Y. Shi, and D. Dai, “Extremely small polarization beam splitter based on a multimode interference coupler with a silicon hybrid plasmonic waveguide,” Opt. Lett. 39(2), 259–262 (2014).
[Crossref] [PubMed]

J. Feng and Z. Zhou, “Polarization beam splitter using a binary blazed grating coupler,” Opt. Lett. 32(12), 1662–1664 (2007).
[Crossref] [PubMed]

Z. Su, E. Timurdogan, E. S. Hosseini, J. Sun, G. Leake, D. D. Coolbaugh, and M. R. Watts, “Four-port integrated polarizing beam splitter,” Opt. Lett. 39(4), 965–968 (2014).
[Crossref] [PubMed]

L. Liu, Y. Ding, K. Yvind, and J. M. Hvam, “Efficient and compact TE-TM polarization converter built on silicon-on-insulator platform with a simple fabrication process,” Opt. Lett. 36(7), 1059–1061 (2011).
[Crossref] [PubMed]

L. Chen, C. R. Doerr, and Y.-K. Chen, “Compact polarization rotator on silicon for polarization-diversified circuits,” Opt. Lett. 36(4), 469–471 (2011).
[Crossref] [PubMed]

Y. Ding, H. Ou, and C. Peucheret, “Wideband polarization splitter and rotator with large fabrication tolerance and simple fabrication process,” Opt. Lett. 38(8), 1227–1229 (2013).
[Crossref] [PubMed]

Other (2)

C. Manolatou and H. A. Haus, “High density integrated optics” in Passive Components for Dense Optical Integration (Springer, 2002), pp. 97–125.

Y. Zhang, Y. He, J. Wu, R. Liu, C. Qiu, and Y. Su, ” High-extinction-ratio and fabrication-tolerant polarization beam splitter based on grating-assisted contradirectional couplers,” in Optical Fiber Communication Conference (Optical Society of America, 2016), paper Tu3E.2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

The schematic configuration of the proposed PBS based on a GACC structure, (a) the 3D view, (b) the top view.

Fig. 2
Fig. 2

The simulated power distributions for (a) TE- polarized light inputs, (b) TM- polarized light inputs.

Fig. 3
Fig. 3

(a) SEM image of the fabricated GACC-based PBS with corrugations period number N = 80. (b) Magnified micrograph of the GACC.

Fig. 4
Fig. 4

Measured transmission responses at the Cross and Thru ports for (a) TE-polarization and (b) TM-polarization. The corrugation period numbers N and coupling length of the fabricated PBS are 80 and 27.52 μm, respectively.

Fig. 5
Fig. 5

Measured transmission responses at the Cross and Thru ports for TE- and TM- polarizations of the fabricated PBSs with width variations of (a) Δw = + 10 nm and (b) Δw = –10 nm.

Fig. 6
Fig. 6

Measured transmission responses at the Cross and Thru ports for TE- and TM- polarizations of the fabricated PBSs with (a) corrugation period number N = 90, coupling length LC of 30.96 μm, (b) N = 70, LC = 24.08 μm, (c) N = 60, LC = 20.64 μm, (d) N = 50, LC = 17.02 μm, (e) N = 40, LC = 13.76 μm.

Fig. 7
Fig. 7

Simulated PERs of the devices with (a) different silicon thicknesses and (b) different corrugation widths.

Tables (1)

Tables Icon

Table 1 Comparisons of Various Silicon Polarization Beam Splitters

Metrics