Abstract

A compact gas sensor system based on quartz-enhanced photoacoustic spectroscopy (QEPAS) employing a continuous wave (CW) distributed feedback quantum cascade laser (DFB-QCL) operating at 4.59 µm was developed for detection of carbon disulfide (CS2) in air at trace concentration. The influence of water vapor on monitored QEPAS signal was investigated to enable compensation of this dependence by independent moisture sensing. A 1 σ limit of detection of 28 parts per billion by volume (ppbv) for a 1 s lock-in amplifier time constant was obtained for the CS2 line centered at 2178.69 cm−1 when the gas sample was moisturized with 2.3 vol% H2O. The work reports the suitability of the system for monitoring CS2 with high selectivity and sensitivity, as well as low sample gas volume requirements and fast sensor response for applications such as workplace air and process monitoring at industry.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Compact and sensitive mid-infrared all-fiber quartz-enhanced photoacoustic spectroscopy sensor for carbon monoxide detection

Yufei Ma, Yao Tong, Ying He, Xingang Jin, and Frank K. Tittel
Opt. Express 27(6) 9302-9312 (2019)

Ppb-level detection of nitric oxide using an external cavity quantum cascade laser based QEPAS sensor

Lei Dong, Vincenzo Spagnolo, Rafał Lewicki, and Frank K. Tittel
Opt. Express 19(24) 24037-24045 (2011)

Quartz-enhanced photoacoustic detection of ethylene using a 10.5 μm quantum cascade laser

Zhen Wang, Zhili Li, and Wei Ren
Opt. Express 24(4) 4143-4154 (2016)

References

  • View by:
  • |
  • |
  • |

  1. Ullmann's Encyclopedia of Industrial Chemistry (Wiley-VCH, 2011), Chap. Carbon Disulfide.
  2. Agency for Toxic Substances and Disease Registry, Toxicological Profile for Carbon Disulfide, (U.S. Department of Health and Human Services, Public Health Service, 1996).
  3. R. Newhook and M. E. Meek, Carbon Disulfide (WHO, 2002).
  4. NIOSH Pocket Guide to Chemical Hazards (NIOSH Publication, 2007).
  5. S. S. Sehnert, L. Jiang, J. F. Burdick, and T. H. Risby, “Breath biomarkers for detection of human liver diseases: Preliminary study,” Biomarkers 7(2), 174–187 (2002).
    [Crossref] [PubMed]
  6. M. A. Kamboures, D. R. Blake, D. M. Cooper, R. L. Newcomb, M. Barker, J. K. Larson, S. Meinardi, E. Nussbaum, and F. S. Rowland, “Breath sulfides and pulmonary function in cystic fibrosis,” Proc. Natl. Acad. Sci. U.S.A. 102(44), 15762–15767 (2005).
    [Crossref] [PubMed]
  7. M. Phillips, “Detection of carbon disulfide in breath and air: a possible new risk factor for coronary artery disease,” Int. Arch. Occup. Environ. Health 64(2), 119–123 (1992).
    [Crossref] [PubMed]
  8. R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1–3), 1–18 (2010).
    [Crossref]
  9. A. Miklós, P. Hess, and Z. Bozóki, “Application of acoustic resonators in photoacoustic trace gas analysis and metrology,” Rev. Sci. Instrum. 72(4), 1937–1955 (2001).
    [Crossref]
  10. A. A. Kosterev, Y. A. Bakhirkin, R. F. Curl, and F. K. Tittel, “Quartz-enhanced photoacoustic spectroscopy,” Opt. Lett. 27(21), 1902–1904 (2002).
    [Crossref] [PubMed]
  11. J. P. Waclawek, R. Lewicki, H. Moser, M. Brandstetter, F. K. Tittel, and B. Lendl, “Quartz-enhanced photoacoustic spectroscopy-based sensor system for sulfur dioxide detection using a CW DFB-QCL,” Appl. Phys. B 117(1), 113–120 (2014).
    [Crossref]
  12. Y. Ma, G. Yu, J. Zhang, X. Yu, R. Sun, and F. Tittel, “Quartz enhanced photoacoustic spectroscopy based trace gas sensors using different quartz tuning forks,” Sensors (Basel Switzerland) 15(4), 7596–7604 (2015).
    [Crossref]
  13. S. Viviani, M. Siciliani de Cumis, S. Borri, P. Patimisco, A. Sampaolo, G. Scamarcio, P. De Natale, F. D’Amato, and V. Spagnolo, “A quartz-enhanced photoacoustic sensor for H2S trace-gas detection at 2.6 µm,” Appl. Phys. B 119(1), 21–27 (2014).
  14. A. A. Kosterev, F. K. Tittel, D. Serebryakov, A. L. Malinovsky, and I. Morozov, “Applications of quartz tuning forks in spectroscopic gas sensing,” Rev. Sci. Instrum. 76(4), 043105 (2005).
    [Crossref]
  15. L. Dong, A. A. Kosterev, D. Thomazy, and F. K. Tittel, “QEPAS spectrophones: design, optimization, and performance,” Appl. Phys. B 100(3), 627–635 (2010).
    [Crossref]
  16. G. Wysocki, A. A. Kosterev, and F. K. Tittel, “Influence of molecular relaxation dynamics on quartz-enhanced photoacoustic detection of CO2 at λ =2 µm,” Appl. Phys. B 85(2–3), 301–306 (2006).
    [Crossref]
  17. T. L. Cottrell and J. C. McCoubrey, Molecular Energy Transfer in Gases (London Butterworths, 1961).
  18. Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
    [Crossref]
  19. Pacific Northwest National Laboratory, “Gas-phase databases for quantitative infrared spectroscopy,” (2004), http://nwir.pnl.gov/
  20. S. Schilt and L. Thévenaz, “Wavelength modulation photoacoustic spectroscopy: theoretical description and experimental results,” Infrared Phys. 48(2), 154–162 (2006).
    [Crossref]
  21. P. Patimisco, A. Sampaolo, L. Dong, M. Giglio, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Analysis of electro-elastic properties of custom quartz tuning forks for optoacoustic gas sensing,” Sens. Actuators B Chem. 227, 539–546 (2016).
    [Crossref]

2016 (1)

P. Patimisco, A. Sampaolo, L. Dong, M. Giglio, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Analysis of electro-elastic properties of custom quartz tuning forks for optoacoustic gas sensing,” Sens. Actuators B Chem. 227, 539–546 (2016).
[Crossref]

2015 (1)

Y. Ma, G. Yu, J. Zhang, X. Yu, R. Sun, and F. Tittel, “Quartz enhanced photoacoustic spectroscopy based trace gas sensors using different quartz tuning forks,” Sensors (Basel Switzerland) 15(4), 7596–7604 (2015).
[Crossref]

2014 (2)

S. Viviani, M. Siciliani de Cumis, S. Borri, P. Patimisco, A. Sampaolo, G. Scamarcio, P. De Natale, F. D’Amato, and V. Spagnolo, “A quartz-enhanced photoacoustic sensor for H2S trace-gas detection at 2.6 µm,” Appl. Phys. B 119(1), 21–27 (2014).

J. P. Waclawek, R. Lewicki, H. Moser, M. Brandstetter, F. K. Tittel, and B. Lendl, “Quartz-enhanced photoacoustic spectroscopy-based sensor system for sulfur dioxide detection using a CW DFB-QCL,” Appl. Phys. B 117(1), 113–120 (2014).
[Crossref]

2012 (1)

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
[Crossref]

2010 (2)

L. Dong, A. A. Kosterev, D. Thomazy, and F. K. Tittel, “QEPAS spectrophones: design, optimization, and performance,” Appl. Phys. B 100(3), 627–635 (2010).
[Crossref]

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1–3), 1–18 (2010).
[Crossref]

2006 (2)

G. Wysocki, A. A. Kosterev, and F. K. Tittel, “Influence of molecular relaxation dynamics on quartz-enhanced photoacoustic detection of CO2 at λ =2 µm,” Appl. Phys. B 85(2–3), 301–306 (2006).
[Crossref]

S. Schilt and L. Thévenaz, “Wavelength modulation photoacoustic spectroscopy: theoretical description and experimental results,” Infrared Phys. 48(2), 154–162 (2006).
[Crossref]

2005 (2)

M. A. Kamboures, D. R. Blake, D. M. Cooper, R. L. Newcomb, M. Barker, J. K. Larson, S. Meinardi, E. Nussbaum, and F. S. Rowland, “Breath sulfides and pulmonary function in cystic fibrosis,” Proc. Natl. Acad. Sci. U.S.A. 102(44), 15762–15767 (2005).
[Crossref] [PubMed]

A. A. Kosterev, F. K. Tittel, D. Serebryakov, A. L. Malinovsky, and I. Morozov, “Applications of quartz tuning forks in spectroscopic gas sensing,” Rev. Sci. Instrum. 76(4), 043105 (2005).
[Crossref]

2002 (2)

S. S. Sehnert, L. Jiang, J. F. Burdick, and T. H. Risby, “Breath biomarkers for detection of human liver diseases: Preliminary study,” Biomarkers 7(2), 174–187 (2002).
[Crossref] [PubMed]

A. A. Kosterev, Y. A. Bakhirkin, R. F. Curl, and F. K. Tittel, “Quartz-enhanced photoacoustic spectroscopy,” Opt. Lett. 27(21), 1902–1904 (2002).
[Crossref] [PubMed]

2001 (1)

A. Miklós, P. Hess, and Z. Bozóki, “Application of acoustic resonators in photoacoustic trace gas analysis and metrology,” Rev. Sci. Instrum. 72(4), 1937–1955 (2001).
[Crossref]

1992 (1)

M. Phillips, “Detection of carbon disulfide in breath and air: a possible new risk factor for coronary artery disease,” Int. Arch. Occup. Environ. Health 64(2), 119–123 (1992).
[Crossref] [PubMed]

Bakhirkin, Y. A.

Barker, M.

M. A. Kamboures, D. R. Blake, D. M. Cooper, R. L. Newcomb, M. Barker, J. K. Larson, S. Meinardi, E. Nussbaum, and F. S. Rowland, “Breath sulfides and pulmonary function in cystic fibrosis,” Proc. Natl. Acad. Sci. U.S.A. 102(44), 15762–15767 (2005).
[Crossref] [PubMed]

Blake, D. R.

M. A. Kamboures, D. R. Blake, D. M. Cooper, R. L. Newcomb, M. Barker, J. K. Larson, S. Meinardi, E. Nussbaum, and F. S. Rowland, “Breath sulfides and pulmonary function in cystic fibrosis,” Proc. Natl. Acad. Sci. U.S.A. 102(44), 15762–15767 (2005).
[Crossref] [PubMed]

Borri, S.

S. Viviani, M. Siciliani de Cumis, S. Borri, P. Patimisco, A. Sampaolo, G. Scamarcio, P. De Natale, F. D’Amato, and V. Spagnolo, “A quartz-enhanced photoacoustic sensor for H2S trace-gas detection at 2.6 µm,” Appl. Phys. B 119(1), 21–27 (2014).

Bozóki, Z.

A. Miklós, P. Hess, and Z. Bozóki, “Application of acoustic resonators in photoacoustic trace gas analysis and metrology,” Rev. Sci. Instrum. 72(4), 1937–1955 (2001).
[Crossref]

Brandstetter, M.

J. P. Waclawek, R. Lewicki, H. Moser, M. Brandstetter, F. K. Tittel, and B. Lendl, “Quartz-enhanced photoacoustic spectroscopy-based sensor system for sulfur dioxide detection using a CW DFB-QCL,” Appl. Phys. B 117(1), 113–120 (2014).
[Crossref]

Burdick, J. F.

S. S. Sehnert, L. Jiang, J. F. Burdick, and T. H. Risby, “Breath biomarkers for detection of human liver diseases: Preliminary study,” Biomarkers 7(2), 174–187 (2002).
[Crossref] [PubMed]

Capasso, F.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1–3), 1–18 (2010).
[Crossref]

Cooper, D. M.

M. A. Kamboures, D. R. Blake, D. M. Cooper, R. L. Newcomb, M. Barker, J. K. Larson, S. Meinardi, E. Nussbaum, and F. S. Rowland, “Breath sulfides and pulmonary function in cystic fibrosis,” Proc. Natl. Acad. Sci. U.S.A. 102(44), 15762–15767 (2005).
[Crossref] [PubMed]

Curl, R. F.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1–3), 1–18 (2010).
[Crossref]

A. A. Kosterev, Y. A. Bakhirkin, R. F. Curl, and F. K. Tittel, “Quartz-enhanced photoacoustic spectroscopy,” Opt. Lett. 27(21), 1902–1904 (2002).
[Crossref] [PubMed]

D’Amato, F.

S. Viviani, M. Siciliani de Cumis, S. Borri, P. Patimisco, A. Sampaolo, G. Scamarcio, P. De Natale, F. D’Amato, and V. Spagnolo, “A quartz-enhanced photoacoustic sensor for H2S trace-gas detection at 2.6 µm,” Appl. Phys. B 119(1), 21–27 (2014).

De Natale, P.

S. Viviani, M. Siciliani de Cumis, S. Borri, P. Patimisco, A. Sampaolo, G. Scamarcio, P. De Natale, F. D’Amato, and V. Spagnolo, “A quartz-enhanced photoacoustic sensor for H2S trace-gas detection at 2.6 µm,” Appl. Phys. B 119(1), 21–27 (2014).

Dong, L.

P. Patimisco, A. Sampaolo, L. Dong, M. Giglio, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Analysis of electro-elastic properties of custom quartz tuning forks for optoacoustic gas sensing,” Sens. Actuators B Chem. 227, 539–546 (2016).
[Crossref]

L. Dong, A. A. Kosterev, D. Thomazy, and F. K. Tittel, “QEPAS spectrophones: design, optimization, and performance,” Appl. Phys. B 100(3), 627–635 (2010).
[Crossref]

Giglio, M.

P. Patimisco, A. Sampaolo, L. Dong, M. Giglio, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Analysis of electro-elastic properties of custom quartz tuning forks for optoacoustic gas sensing,” Sens. Actuators B Chem. 227, 539–546 (2016).
[Crossref]

Gmachl, C.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1–3), 1–18 (2010).
[Crossref]

Gmachl, C. F.

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
[Crossref]

Hess, P.

A. Miklós, P. Hess, and Z. Bozóki, “Application of acoustic resonators in photoacoustic trace gas analysis and metrology,” Rev. Sci. Instrum. 72(4), 1937–1955 (2001).
[Crossref]

Hoffman, A. J.

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
[Crossref]

Jiang, L.

S. S. Sehnert, L. Jiang, J. F. Burdick, and T. H. Risby, “Breath biomarkers for detection of human liver diseases: Preliminary study,” Biomarkers 7(2), 174–187 (2002).
[Crossref] [PubMed]

Kamboures, M. A.

M. A. Kamboures, D. R. Blake, D. M. Cooper, R. L. Newcomb, M. Barker, J. K. Larson, S. Meinardi, E. Nussbaum, and F. S. Rowland, “Breath sulfides and pulmonary function in cystic fibrosis,” Proc. Natl. Acad. Sci. U.S.A. 102(44), 15762–15767 (2005).
[Crossref] [PubMed]

Kosterev, A. A.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1–3), 1–18 (2010).
[Crossref]

L. Dong, A. A. Kosterev, D. Thomazy, and F. K. Tittel, “QEPAS spectrophones: design, optimization, and performance,” Appl. Phys. B 100(3), 627–635 (2010).
[Crossref]

G. Wysocki, A. A. Kosterev, and F. K. Tittel, “Influence of molecular relaxation dynamics on quartz-enhanced photoacoustic detection of CO2 at λ =2 µm,” Appl. Phys. B 85(2–3), 301–306 (2006).
[Crossref]

A. A. Kosterev, F. K. Tittel, D. Serebryakov, A. L. Malinovsky, and I. Morozov, “Applications of quartz tuning forks in spectroscopic gas sensing,” Rev. Sci. Instrum. 76(4), 043105 (2005).
[Crossref]

A. A. Kosterev, Y. A. Bakhirkin, R. F. Curl, and F. K. Tittel, “Quartz-enhanced photoacoustic spectroscopy,” Opt. Lett. 27(21), 1902–1904 (2002).
[Crossref] [PubMed]

Larson, J. K.

M. A. Kamboures, D. R. Blake, D. M. Cooper, R. L. Newcomb, M. Barker, J. K. Larson, S. Meinardi, E. Nussbaum, and F. S. Rowland, “Breath sulfides and pulmonary function in cystic fibrosis,” Proc. Natl. Acad. Sci. U.S.A. 102(44), 15762–15767 (2005).
[Crossref] [PubMed]

Lendl, B.

J. P. Waclawek, R. Lewicki, H. Moser, M. Brandstetter, F. K. Tittel, and B. Lendl, “Quartz-enhanced photoacoustic spectroscopy-based sensor system for sulfur dioxide detection using a CW DFB-QCL,” Appl. Phys. B 117(1), 113–120 (2014).
[Crossref]

Lewicki, R.

J. P. Waclawek, R. Lewicki, H. Moser, M. Brandstetter, F. K. Tittel, and B. Lendl, “Quartz-enhanced photoacoustic spectroscopy-based sensor system for sulfur dioxide detection using a CW DFB-QCL,” Appl. Phys. B 117(1), 113–120 (2014).
[Crossref]

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1–3), 1–18 (2010).
[Crossref]

Ma, Y.

Y. Ma, G. Yu, J. Zhang, X. Yu, R. Sun, and F. Tittel, “Quartz enhanced photoacoustic spectroscopy based trace gas sensors using different quartz tuning forks,” Sensors (Basel Switzerland) 15(4), 7596–7604 (2015).
[Crossref]

Malinovsky, A. L.

A. A. Kosterev, F. K. Tittel, D. Serebryakov, A. L. Malinovsky, and I. Morozov, “Applications of quartz tuning forks in spectroscopic gas sensing,” Rev. Sci. Instrum. 76(4), 043105 (2005).
[Crossref]

McManus, B.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1–3), 1–18 (2010).
[Crossref]

Meinardi, S.

M. A. Kamboures, D. R. Blake, D. M. Cooper, R. L. Newcomb, M. Barker, J. K. Larson, S. Meinardi, E. Nussbaum, and F. S. Rowland, “Breath sulfides and pulmonary function in cystic fibrosis,” Proc. Natl. Acad. Sci. U.S.A. 102(44), 15762–15767 (2005).
[Crossref] [PubMed]

Miklós, A.

A. Miklós, P. Hess, and Z. Bozóki, “Application of acoustic resonators in photoacoustic trace gas analysis and metrology,” Rev. Sci. Instrum. 72(4), 1937–1955 (2001).
[Crossref]

Morozov, I.

A. A. Kosterev, F. K. Tittel, D. Serebryakov, A. L. Malinovsky, and I. Morozov, “Applications of quartz tuning forks in spectroscopic gas sensing,” Rev. Sci. Instrum. 76(4), 043105 (2005).
[Crossref]

Moser, H.

J. P. Waclawek, R. Lewicki, H. Moser, M. Brandstetter, F. K. Tittel, and B. Lendl, “Quartz-enhanced photoacoustic spectroscopy-based sensor system for sulfur dioxide detection using a CW DFB-QCL,” Appl. Phys. B 117(1), 113–120 (2014).
[Crossref]

Newcomb, R. L.

M. A. Kamboures, D. R. Blake, D. M. Cooper, R. L. Newcomb, M. Barker, J. K. Larson, S. Meinardi, E. Nussbaum, and F. S. Rowland, “Breath sulfides and pulmonary function in cystic fibrosis,” Proc. Natl. Acad. Sci. U.S.A. 102(44), 15762–15767 (2005).
[Crossref] [PubMed]

Nussbaum, E.

M. A. Kamboures, D. R. Blake, D. M. Cooper, R. L. Newcomb, M. Barker, J. K. Larson, S. Meinardi, E. Nussbaum, and F. S. Rowland, “Breath sulfides and pulmonary function in cystic fibrosis,” Proc. Natl. Acad. Sci. U.S.A. 102(44), 15762–15767 (2005).
[Crossref] [PubMed]

Patimisco, P.

P. Patimisco, A. Sampaolo, L. Dong, M. Giglio, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Analysis of electro-elastic properties of custom quartz tuning forks for optoacoustic gas sensing,” Sens. Actuators B Chem. 227, 539–546 (2016).
[Crossref]

S. Viviani, M. Siciliani de Cumis, S. Borri, P. Patimisco, A. Sampaolo, G. Scamarcio, P. De Natale, F. D’Amato, and V. Spagnolo, “A quartz-enhanced photoacoustic sensor for H2S trace-gas detection at 2.6 µm,” Appl. Phys. B 119(1), 21–27 (2014).

Phillips, M.

M. Phillips, “Detection of carbon disulfide in breath and air: a possible new risk factor for coronary artery disease,” Int. Arch. Occup. Environ. Health 64(2), 119–123 (1992).
[Crossref] [PubMed]

Pusharsky, M.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1–3), 1–18 (2010).
[Crossref]

Risby, T. H.

S. S. Sehnert, L. Jiang, J. F. Burdick, and T. H. Risby, “Breath biomarkers for detection of human liver diseases: Preliminary study,” Biomarkers 7(2), 174–187 (2002).
[Crossref] [PubMed]

Rowland, F. S.

M. A. Kamboures, D. R. Blake, D. M. Cooper, R. L. Newcomb, M. Barker, J. K. Larson, S. Meinardi, E. Nussbaum, and F. S. Rowland, “Breath sulfides and pulmonary function in cystic fibrosis,” Proc. Natl. Acad. Sci. U.S.A. 102(44), 15762–15767 (2005).
[Crossref] [PubMed]

Sampaolo, A.

P. Patimisco, A. Sampaolo, L. Dong, M. Giglio, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Analysis of electro-elastic properties of custom quartz tuning forks for optoacoustic gas sensing,” Sens. Actuators B Chem. 227, 539–546 (2016).
[Crossref]

S. Viviani, M. Siciliani de Cumis, S. Borri, P. Patimisco, A. Sampaolo, G. Scamarcio, P. De Natale, F. D’Amato, and V. Spagnolo, “A quartz-enhanced photoacoustic sensor for H2S trace-gas detection at 2.6 µm,” Appl. Phys. B 119(1), 21–27 (2014).

Scamarcio, G.

P. Patimisco, A. Sampaolo, L. Dong, M. Giglio, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Analysis of electro-elastic properties of custom quartz tuning forks for optoacoustic gas sensing,” Sens. Actuators B Chem. 227, 539–546 (2016).
[Crossref]

S. Viviani, M. Siciliani de Cumis, S. Borri, P. Patimisco, A. Sampaolo, G. Scamarcio, P. De Natale, F. D’Amato, and V. Spagnolo, “A quartz-enhanced photoacoustic sensor for H2S trace-gas detection at 2.6 µm,” Appl. Phys. B 119(1), 21–27 (2014).

Schilt, S.

S. Schilt and L. Thévenaz, “Wavelength modulation photoacoustic spectroscopy: theoretical description and experimental results,” Infrared Phys. 48(2), 154–162 (2006).
[Crossref]

Sehnert, S. S.

S. S. Sehnert, L. Jiang, J. F. Burdick, and T. H. Risby, “Breath biomarkers for detection of human liver diseases: Preliminary study,” Biomarkers 7(2), 174–187 (2002).
[Crossref] [PubMed]

Serebryakov, D.

A. A. Kosterev, F. K. Tittel, D. Serebryakov, A. L. Malinovsky, and I. Morozov, “Applications of quartz tuning forks in spectroscopic gas sensing,” Rev. Sci. Instrum. 76(4), 043105 (2005).
[Crossref]

Siciliani de Cumis, M.

S. Viviani, M. Siciliani de Cumis, S. Borri, P. Patimisco, A. Sampaolo, G. Scamarcio, P. De Natale, F. D’Amato, and V. Spagnolo, “A quartz-enhanced photoacoustic sensor for H2S trace-gas detection at 2.6 µm,” Appl. Phys. B 119(1), 21–27 (2014).

Spagnolo, V.

P. Patimisco, A. Sampaolo, L. Dong, M. Giglio, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Analysis of electro-elastic properties of custom quartz tuning forks for optoacoustic gas sensing,” Sens. Actuators B Chem. 227, 539–546 (2016).
[Crossref]

S. Viviani, M. Siciliani de Cumis, S. Borri, P. Patimisco, A. Sampaolo, G. Scamarcio, P. De Natale, F. D’Amato, and V. Spagnolo, “A quartz-enhanced photoacoustic sensor for H2S trace-gas detection at 2.6 µm,” Appl. Phys. B 119(1), 21–27 (2014).

Sun, R.

Y. Ma, G. Yu, J. Zhang, X. Yu, R. Sun, and F. Tittel, “Quartz enhanced photoacoustic spectroscopy based trace gas sensors using different quartz tuning forks,” Sensors (Basel Switzerland) 15(4), 7596–7604 (2015).
[Crossref]

Thévenaz, L.

S. Schilt and L. Thévenaz, “Wavelength modulation photoacoustic spectroscopy: theoretical description and experimental results,” Infrared Phys. 48(2), 154–162 (2006).
[Crossref]

Thomazy, D.

L. Dong, A. A. Kosterev, D. Thomazy, and F. K. Tittel, “QEPAS spectrophones: design, optimization, and performance,” Appl. Phys. B 100(3), 627–635 (2010).
[Crossref]

Tittel, F.

Y. Ma, G. Yu, J. Zhang, X. Yu, R. Sun, and F. Tittel, “Quartz enhanced photoacoustic spectroscopy based trace gas sensors using different quartz tuning forks,” Sensors (Basel Switzerland) 15(4), 7596–7604 (2015).
[Crossref]

Tittel, F. K.

P. Patimisco, A. Sampaolo, L. Dong, M. Giglio, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Analysis of electro-elastic properties of custom quartz tuning forks for optoacoustic gas sensing,” Sens. Actuators B Chem. 227, 539–546 (2016).
[Crossref]

J. P. Waclawek, R. Lewicki, H. Moser, M. Brandstetter, F. K. Tittel, and B. Lendl, “Quartz-enhanced photoacoustic spectroscopy-based sensor system for sulfur dioxide detection using a CW DFB-QCL,” Appl. Phys. B 117(1), 113–120 (2014).
[Crossref]

L. Dong, A. A. Kosterev, D. Thomazy, and F. K. Tittel, “QEPAS spectrophones: design, optimization, and performance,” Appl. Phys. B 100(3), 627–635 (2010).
[Crossref]

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1–3), 1–18 (2010).
[Crossref]

G. Wysocki, A. A. Kosterev, and F. K. Tittel, “Influence of molecular relaxation dynamics on quartz-enhanced photoacoustic detection of CO2 at λ =2 µm,” Appl. Phys. B 85(2–3), 301–306 (2006).
[Crossref]

A. A. Kosterev, F. K. Tittel, D. Serebryakov, A. L. Malinovsky, and I. Morozov, “Applications of quartz tuning forks in spectroscopic gas sensing,” Rev. Sci. Instrum. 76(4), 043105 (2005).
[Crossref]

A. A. Kosterev, Y. A. Bakhirkin, R. F. Curl, and F. K. Tittel, “Quartz-enhanced photoacoustic spectroscopy,” Opt. Lett. 27(21), 1902–1904 (2002).
[Crossref] [PubMed]

Viviani, S.

S. Viviani, M. Siciliani de Cumis, S. Borri, P. Patimisco, A. Sampaolo, G. Scamarcio, P. De Natale, F. D’Amato, and V. Spagnolo, “A quartz-enhanced photoacoustic sensor for H2S trace-gas detection at 2.6 µm,” Appl. Phys. B 119(1), 21–27 (2014).

Waclawek, J. P.

J. P. Waclawek, R. Lewicki, H. Moser, M. Brandstetter, F. K. Tittel, and B. Lendl, “Quartz-enhanced photoacoustic spectroscopy-based sensor system for sulfur dioxide detection using a CW DFB-QCL,” Appl. Phys. B 117(1), 113–120 (2014).
[Crossref]

Wysocki, G.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1–3), 1–18 (2010).
[Crossref]

G. Wysocki, A. A. Kosterev, and F. K. Tittel, “Influence of molecular relaxation dynamics on quartz-enhanced photoacoustic detection of CO2 at λ =2 µm,” Appl. Phys. B 85(2–3), 301–306 (2006).
[Crossref]

Yao, Y.

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
[Crossref]

Yu, G.

Y. Ma, G. Yu, J. Zhang, X. Yu, R. Sun, and F. Tittel, “Quartz enhanced photoacoustic spectroscopy based trace gas sensors using different quartz tuning forks,” Sensors (Basel Switzerland) 15(4), 7596–7604 (2015).
[Crossref]

Yu, X.

Y. Ma, G. Yu, J. Zhang, X. Yu, R. Sun, and F. Tittel, “Quartz enhanced photoacoustic spectroscopy based trace gas sensors using different quartz tuning forks,” Sensors (Basel Switzerland) 15(4), 7596–7604 (2015).
[Crossref]

Zhang, J.

Y. Ma, G. Yu, J. Zhang, X. Yu, R. Sun, and F. Tittel, “Quartz enhanced photoacoustic spectroscopy based trace gas sensors using different quartz tuning forks,” Sensors (Basel Switzerland) 15(4), 7596–7604 (2015).
[Crossref]

Appl. Phys. B (4)

J. P. Waclawek, R. Lewicki, H. Moser, M. Brandstetter, F. K. Tittel, and B. Lendl, “Quartz-enhanced photoacoustic spectroscopy-based sensor system for sulfur dioxide detection using a CW DFB-QCL,” Appl. Phys. B 117(1), 113–120 (2014).
[Crossref]

S. Viviani, M. Siciliani de Cumis, S. Borri, P. Patimisco, A. Sampaolo, G. Scamarcio, P. De Natale, F. D’Amato, and V. Spagnolo, “A quartz-enhanced photoacoustic sensor for H2S trace-gas detection at 2.6 µm,” Appl. Phys. B 119(1), 21–27 (2014).

L. Dong, A. A. Kosterev, D. Thomazy, and F. K. Tittel, “QEPAS spectrophones: design, optimization, and performance,” Appl. Phys. B 100(3), 627–635 (2010).
[Crossref]

G. Wysocki, A. A. Kosterev, and F. K. Tittel, “Influence of molecular relaxation dynamics on quartz-enhanced photoacoustic detection of CO2 at λ =2 µm,” Appl. Phys. B 85(2–3), 301–306 (2006).
[Crossref]

Biomarkers (1)

S. S. Sehnert, L. Jiang, J. F. Burdick, and T. H. Risby, “Breath biomarkers for detection of human liver diseases: Preliminary study,” Biomarkers 7(2), 174–187 (2002).
[Crossref] [PubMed]

Chem. Phys. Lett. (1)

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1–3), 1–18 (2010).
[Crossref]

Infrared Phys. (1)

S. Schilt and L. Thévenaz, “Wavelength modulation photoacoustic spectroscopy: theoretical description and experimental results,” Infrared Phys. 48(2), 154–162 (2006).
[Crossref]

Int. Arch. Occup. Environ. Health (1)

M. Phillips, “Detection of carbon disulfide in breath and air: a possible new risk factor for coronary artery disease,” Int. Arch. Occup. Environ. Health 64(2), 119–123 (1992).
[Crossref] [PubMed]

Nat. Photonics (1)

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
[Crossref]

Opt. Lett. (1)

Proc. Natl. Acad. Sci. U.S.A. (1)

M. A. Kamboures, D. R. Blake, D. M. Cooper, R. L. Newcomb, M. Barker, J. K. Larson, S. Meinardi, E. Nussbaum, and F. S. Rowland, “Breath sulfides and pulmonary function in cystic fibrosis,” Proc. Natl. Acad. Sci. U.S.A. 102(44), 15762–15767 (2005).
[Crossref] [PubMed]

Rev. Sci. Instrum. (2)

A. Miklós, P. Hess, and Z. Bozóki, “Application of acoustic resonators in photoacoustic trace gas analysis and metrology,” Rev. Sci. Instrum. 72(4), 1937–1955 (2001).
[Crossref]

A. A. Kosterev, F. K. Tittel, D. Serebryakov, A. L. Malinovsky, and I. Morozov, “Applications of quartz tuning forks in spectroscopic gas sensing,” Rev. Sci. Instrum. 76(4), 043105 (2005).
[Crossref]

Sens. Actuators B Chem. (1)

P. Patimisco, A. Sampaolo, L. Dong, M. Giglio, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Analysis of electro-elastic properties of custom quartz tuning forks for optoacoustic gas sensing,” Sens. Actuators B Chem. 227, 539–546 (2016).
[Crossref]

Sensors (Basel Switzerland) (1)

Y. Ma, G. Yu, J. Zhang, X. Yu, R. Sun, and F. Tittel, “Quartz enhanced photoacoustic spectroscopy based trace gas sensors using different quartz tuning forks,” Sensors (Basel Switzerland) 15(4), 7596–7604 (2015).
[Crossref]

Other (6)

T. L. Cottrell and J. C. McCoubrey, Molecular Energy Transfer in Gases (London Butterworths, 1961).

Ullmann's Encyclopedia of Industrial Chemistry (Wiley-VCH, 2011), Chap. Carbon Disulfide.

Agency for Toxic Substances and Disease Registry, Toxicological Profile for Carbon Disulfide, (U.S. Department of Health and Human Services, Public Health Service, 1996).

R. Newhook and M. E. Meek, Carbon Disulfide (WHO, 2002).

NIOSH Pocket Guide to Chemical Hazards (NIOSH Publication, 2007).

Pacific Northwest National Laboratory, “Gas-phase databases for quantitative infrared spectroscopy,” (2004), http://nwir.pnl.gov/

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Single mode QCL output radiation for six injection currents at a fixed temperature of 292.6 K; Inset: CW-DFB-QCL output power, injection current and voltage characteristics at fixed QCL temperature together with highest achievable power at different QCL temperature; (b) 2D beam profile at a distance of 50 cm (I = 250 mA, T = 292.6 K).
Fig. 2
Fig. 2 Dependence of the HHL package temperature on the emitted QCL frequency at fixed QCL temperature and injection current; Inset: Illustration of the HHL packaged QCL and the enclosure for temperature stabilization by a TEC mounted on a heat sink.
Fig. 3
Fig. 3 (a) Measured spectrum of 1 ppm-cm CS2 (p = 1013.25 mbar) [19]; (b) Measured spectra of CS2 together with HITRAN2008 simulated spectra of CO and H2O within the wavelength tuning range of the QCL at an absolute pressure of 75 mbar.
Fig. 4
Fig. 4 Schematic diagram of the QEPAS based sensor employing a CW-DFB-QCL.
Fig. 5
Fig. 5 (a) Compact QEPAS sensor system; (b) Optical platform of the setup.
Fig. 6
Fig. 6 (a) Sensor optimization curve for 10 ppmv CS2 in dry and moisturized (cH2O = 2.3%) N2 in each case at the pressure where the highest QEPAS signal amplitude was found. For comparison the signal amplitudes of a dry sample are shown additionally at optimum pressure for a humidified sample to emphasize the dependence on water vapor. (b) Dependence of the CS2 QEPAS signal amplitude on the sample gas pressure at a fixed modulation depth m. The signal amplitude at different modulation depths at a pressure of 600 mbar is shown as well. At this pressure level and above no influence of H2O on the signal amplitudes were observed; Inset: Dependence of the Q-factor on the sample gas pressure.
Fig. 7
Fig. 7 Top: 2f WM QEPAS signals for 10 ppmv CS2 in dry and moisturized N2, as well as moisturized N2 without CS2 (cH2O = 2.3%), when the QCL was tuned across the absorption line located at 2178.69 cm−1 (p = 75 mbar, m = 0.026 cm−1); Below: 3f WM spectrum of the reference cell, detected by a photodetector.
Fig. 8
Fig. 8 2f WM QEPAS signal amplitudes of 10 ppmv CS2 as a function of H2O concentration (p = 75 mbar, m = 0.026 cm−1).
Fig. 9
Fig. 9 (a) Stepwise concentration measurement of CS2 in humidified N2 with 2.3vol%; (b) Linear response of the QEPAS sensor; (c) Allan deviation plot for time series measurements of pure N2.

Metrics