Abstract

The use of DMSO-doped poly (3,4-ethylenedioxythiophene):poly (4-styrenesulfonate) (PEDOT:PSS) thin films produced by spin coating as transparent electrodes is reported. The transmittance of these electrodes at THz frequencies, as well as their surface morphology and electrical conductivity, are subsequently investigated in relation to the thickness of their DMSO-doped PEDOT:PSS film. A maximum conductivity of 5078 S/cm is obtained for a single-layer film (52 nm) doped with 15 vol% DMSO in PEDOT:PSS solution, providing a transmittance of up to 83.5% at 1.22 THz. The newly proposed blue-phase liquid crystal THz modulator provides continuous tunability and full electrical controllability at THz frequencies.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Investigate the effects of EG doping PEDOT/PSS on transmission and anti-reflection properties using terahertz pulsed spectroscopy

Yiwen Sun, Shengxin Yang, Pengju Du, Fei Yan, Junle Qu, Zexuan Zhu, Jian Zuo, and Cunlin Zhang
Opt. Express 25(3) 1723-1731 (2017)

Active bidirectional electrically-controlled terahertz device based on dimethyl sulfoxide-doped PEDOT:PSS

Wei Wang, Hongyu Ji, Dandan Liu, Luyao Xiong, Yanbing Hou, Bo Zhang, and Jingling Shen
Opt. Express 26(20) 25849-25857 (2018)

Metal electrode–free perovskite solar cells with transfer-laminated conducting polymer electrode

Fangyuan Jiang, Tongfa Liu, Sheng Zeng, Qing Zhao, Xue Min, Zaifang Li, Jinhui Tong, Wei Meng, Sixing Xiong, and Yinhua Zhou
Opt. Express 23(3) A83-A91 (2015)

References

  • View by:
  • |
  • |
  • |

  1. S. Fan, Y. He, B. S. Ung, and E. Pickwell-MacPherson, “The growth of biomedical terahertz research,” J. Phys. D. 47(37), 374009 (2014).
    [Crossref]
  2. H. Park, E. P. Parrott, F. Fan, M. Lim, H. Han, V. G. Chigrinov, and E. Pickwell-MacPherson, “Evaluating liquid crystal properties for use in terahertz devices,” Opt. Express 20(11), 11899–11905 (2012).
    [Crossref] [PubMed]
  3. R. H. Fan, Y. Zhou, X. P. Ren, R. W. Peng, S. C. Jiang, D. H. Xu, X. Xiong, X. R. Huang, and M. Wang, “Freely tunable broadband polarization rotator for terahertz waves,” Adv. Mater. 27(7), 1201–1206 (2015).
    [Crossref] [PubMed]
  4. C. Y. Chen, C. F. Hsieh, Y. F. Lin, R. P. Pan, and C. L. Pan, “Magnetically tunable room-temperature 2 π liquid crystal terahertz phase shifter,” Opt. Express 12(12), 2625–2630 (2004).
    [Crossref] [PubMed]
  5. C. F. Hsieh, R. P. Pan, T. T. Tang, H. L. Chen, and C. L. Pan, “Voltage-controlled liquid-crystal terahertz phase shifter and quarter-wave plate,” Opt. Lett. 31(8), 1112–1114 (2006).
    [Crossref] [PubMed]
  6. H. Y. Wu, C. F. Hsieh, T. T. Tang, R. P. Pan, and C. L. Pan, “Electrically tunable room-temperature 2π liquid crystal terahertz phase shifter,” IEEE Photonics Technol. Lett. 18(13–16), 1488–1490 (2006).
  7. X. W. Lin, J. B. Wu, W. Hu, Z. G. Zheng, Z. J. Wu, G. Zhu, F. Xu, B. Jin, and Y. Lu, “Self-polarizing terahertz liquid crystal phase shifter,” AIP Adv. 1(3), 032133 (2011).
    [Crossref]
  8. I. Chatzakis, P. Tassin, L. Luo, N. H. Shen, L. Zhang, J. Wang, T. Koschny, and C. M. Soukoulis, “One- and two-dimensional photo-imprinted diffraction gratings for manipulating terahertz waves,” Appl. Phys. Lett. 103(4), 043101 (2013).
    [Crossref]
  9. H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “Highly selective terahertz bandpass filters based on trapped mode excitation,” Nat. Photonics 3(3), 148–151 (2009).
    [Crossref]
  10. O. Paul, R. Beigang, and M. Rahm, “Highly selective terahertz bandpass filters based on trapped mode excitation,” Opt. Express 17(21), 18590–18595 (2009).
    [Crossref] [PubMed]
  11. E. S. Lee and T. I. Jeon, “Tunable THz notch filter with a single groove inside parallel-plate waveguides,” Opt. Express 20(28), 29605–29612 (2012).
    [Crossref] [PubMed]
  12. Y. J. Chiang, C. S. Yang, Y. H. Yang, C. L. Pan, and T. J. Yen, “An ultrabroad terahertz bandpass filter based on multiple-resonance excitation of a composite metamaterial,” Appl. Phys. Lett. 99(19), 191909 (2011).
    [Crossref]
  13. N. Vieweg, N. Born, I. Al Naib, and M. Koch, “Electrically tunable terahertz notch filters,” J. Infrared. Milli. Terahz. Waves. 33(3), 327–332 (2012).
    [Crossref]
  14. P. A. Levermore, L. C. Chen, X. H. Wang, R. Das, and D. D. C. Bradley, “Highly conductive poly(3,4-ethylenedioxythiophene) films by vapor phase polymerization for application in efficient organic light-emitting diodes,” Adv. Mater. 19(17), 2379–2385 (2007).
    [Crossref]
  15. C. W. Chen, Y. C. Lin, C. H. Chang, P. C. Yu, J. M. Shieh, and C. L. Pan, “Frequency-dependent complex conductivities and dielectric responses of indium tin oxide thin films from the visible to the far-infrared,” IEEE J. Quantum Electron. 46(12), 1746–1754 (2010).
    [Crossref]
  16. D. H. Kim, M. R. Park, H. J. Lee, and G. H. Lee, “Thickness dependence of electrical properties of ITO film deposited on a plastic substrate by RF magnetron sputtering,” Appl. Surf. Sci. 253(2), 409–411 (2006).
    [Crossref]
  17. D. R. Cairns, R. P. Witte, D. K. Sparacin, S. M. Sachsman, D. C. Paine, G. P. Crawford, and R. R. Newton, “Strain-dependent electrical resistance of tin-doped indium oxide on polymer substrates,” Appl. Phys. Lett. 76(11), 1425–1427 (2000).
    [Crossref]
  18. S. Han, S. Hong, J. Ham, J. Yeo, J. Lee, B. Kang, P. Lee, J. Kwon, S. S. Lee, and M. Y. Yang, “The growth of biomedical terahertz research,” Adv. Mater. 26(33), 5808–5814 (2014).
    [Crossref] [PubMed]
  19. E. Dadrasnia, F. Garet, D. Lee, J. L. Goutaz, S. Baik, and H. Lamela, “Electrical characterization of silver nanowire-graphene hybrid films from terahertz transmission and reflection measurements,” Appl. Phys. Lett. 105(1), 011101 (2014).
    [Crossref]
  20. Y. Wu, X. Ruan, C. H. Chen, Y. J. Shin, Y. Lee, J. Niu, J. Liu, Y. Chen, K. L. Yang, X. Zhang, J. H. Ahn, and H. Yang, “Graphene/liquid crystal based terahertz phase shifters,” Opt. Express 21(18), 21395–21402 (2013).
    [Crossref] [PubMed]
  21. D. Micheli, R. Pastore, G. Gradoni, and M. Marchetti, “Tunable nanostructured composite with built-in metallic wire-grid electrode,” AIP Adv. 3(11), 112132 (2013).
    [Crossref]
  22. J. Y. Ouyang, C. W. Chu, F. C. Chen, Q. F. Xu, and Y. Yang, “High-conductivity poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) film and its application in polymer optoelectronic devices,” Adv. Funct. Mater. 15(2), 203–208 (2005).
    [Crossref]
  23. M. Vosgueritchian, D. J. Lipomi, and Z. N. Bao, “Highly conductive and transparent PEDOT:PSS films with a fluorosurfactant for stretchable and flexible transparent electrodes,” Adv. Funct. Mater. 22(2), 421–428 (2012).
    [Crossref]
  24. G. Heywang and F. Jonas, “Poly(alkylenedioxythiophene)s—new, very stable conducing polymers,” Adv. Mater. 4(2), 116–118 (1992).
    [Crossref]
  25. D. J. Yun and S. W. Rhee, “Composite films of oxidized multiwall carbon nanotube and poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS) as a contact electrode for transistor and inverter devices,” ACS Appl. Mater. Interfaces 4(2), 982–989 (2012).
    [Crossref] [PubMed]
  26. Y. H. Kim, C. Sachse, M. L. Machala, C. May, L. Müller-Meskamp, and K. Leo, “Highly conductive PEDOT:PSS electrode with optimized solvent and thermal post-treatment for ITO-free orgnic solar cells,” Adv. Funct. Mater. 21(6), 1076–1081 (2011).
    [Crossref]
  27. M. Yamashita, C. Otani, M. Shimizu, and H. Okuzaki, “Effect of solvent on carrier transport in poly (3, 4-ethylenedioxythiophene)/poly (4-styrenesulfonate) studied by terahertz and infrared-ultraviolet spectroscopy,” Appl. Phys. Lett. 99(14), 143307 (2011).
    [Crossref]
  28. J. P. Thomas, L. Y. Zhao, D. McGillivray, and K. T. Leung, “High-efficiency hybrid solar cells by nanostructural modification in PEDOT: PSS with co-solvent addition,” J. Mater. Chem. A Mater. Energy Sustain. 2(7), 2383–2389 (2014).
    [Crossref]
  29. M. Yamashita, C. Otani, M. Shimizu, and H. Okuzaki, “Effect of solvent on carrier transport in Poly (3,4-ethylenedioxythiophene)/Poly (4-styrenesulfonate) studied by terahertz and infrared-ultraviolet spectroscopy,” Appl. Phys. Lett. 99(14), 143307 (2011).
    [Crossref]
  30. X. Crispin, F. L. E. Jakobsson, A. Crispin, P. C. M. Grim, P. Andersson, A. Volodin, C. van Haesendonck, M. Van der Auweraer, W. R. Salaneck, and M. Berggren, “The origin of the high conductivity of poly (3, 4-ethylenedioxythiophene)-poly (styrenesulfonate)(PEDOT-PSS) plastic electrodes,” Chem. Mater. 18(18), 4354–4360 (2006).
    [Crossref]
  31. J. Y. Kim, J. H. Jung, D. E. Lee, and J. Joo, “Enhancement of electrical conductivity of poly (3, 4-ethylenedioxythiophene)/poly (4-styrenesulfonate) by a change of solvent,” Synth. Met. 126(2-3), 311–316 (2002).
    [Crossref]
  32. F. Yan, E. P. Parrott, X. D. Liu, and E. Pickwell-MacPherson, “Low-cost and broadband terahertz antireflection coatings based on DMSO-doped PEDOT/PSS,” Opt. Lett. 40(12), 2886–2889 (2015).
    [Crossref] [PubMed]
  33. P. Kuang, J. M. Park, W. Leung, R. C. Mahadevapuram, K. S. Nalwa, T. G. Kim, S. Chaudhary, K. M. Ho, and K. Constant, “A new architecture for transparent electrodes: relieving the trade-off between electrical conductivity and optical transmittance,” Adv. Mater. 23(21), 2469–2473 (2011).
    [Crossref] [PubMed]
  34. Y. Hisakado, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro-optic Kerr effect in polymer-stabilized liquid-crystalline blue phases,” Adv. Mater. 17(1), 96–98 (2005).
    [Crossref]
  35. L. Rao, J. Yan, S. T. Wu, S. Yamamoto, and Y. Haseba, “A large Kerr constant polymer-stabilized blue phase liquid crystal,” Appl. Phys. Lett. 98(8), 081109 (2011).
    [Crossref]
  36. Y. Chen and S. T. Wu, “Recent advances on polymer-stabilized blue phase liquid crystal materials and devices,” J. Appl. Polym. Sci. 131(13), 40556 (2014).
    [Crossref]
  37. L. H. Hsu, C. C. Lin, H. Y. Lee, J. K. Huang, H. V. Han, Y. L. Tsai, P. Yu, H. C. Kuo, and C. T. Lee, “Enhanced light harvesting of nitride-based nanopillars covered with ZnO using indium–tin oxide nanowhiskers,” Jap. J. Appl. Phys. 53(4S), 04ER10 (2014).
    [Crossref]
  38. B. Xia, X. He, X. Zheng, P. Qiu, W. Cheng, and X. Zeng, “Electrically induced light scattering performances of lanthanum-modified lead zirconate titanate transparent ceramics,” J. Electroceram. 29(3), 192–197 (2012).
    [Crossref]

2015 (2)

R. H. Fan, Y. Zhou, X. P. Ren, R. W. Peng, S. C. Jiang, D. H. Xu, X. Xiong, X. R. Huang, and M. Wang, “Freely tunable broadband polarization rotator for terahertz waves,” Adv. Mater. 27(7), 1201–1206 (2015).
[Crossref] [PubMed]

F. Yan, E. P. Parrott, X. D. Liu, and E. Pickwell-MacPherson, “Low-cost and broadband terahertz antireflection coatings based on DMSO-doped PEDOT/PSS,” Opt. Lett. 40(12), 2886–2889 (2015).
[Crossref] [PubMed]

2014 (5)

Y. Chen and S. T. Wu, “Recent advances on polymer-stabilized blue phase liquid crystal materials and devices,” J. Appl. Polym. Sci. 131(13), 40556 (2014).
[Crossref]

J. P. Thomas, L. Y. Zhao, D. McGillivray, and K. T. Leung, “High-efficiency hybrid solar cells by nanostructural modification in PEDOT: PSS with co-solvent addition,” J. Mater. Chem. A Mater. Energy Sustain. 2(7), 2383–2389 (2014).
[Crossref]

S. Fan, Y. He, B. S. Ung, and E. Pickwell-MacPherson, “The growth of biomedical terahertz research,” J. Phys. D. 47(37), 374009 (2014).
[Crossref]

S. Han, S. Hong, J. Ham, J. Yeo, J. Lee, B. Kang, P. Lee, J. Kwon, S. S. Lee, and M. Y. Yang, “The growth of biomedical terahertz research,” Adv. Mater. 26(33), 5808–5814 (2014).
[Crossref] [PubMed]

E. Dadrasnia, F. Garet, D. Lee, J. L. Goutaz, S. Baik, and H. Lamela, “Electrical characterization of silver nanowire-graphene hybrid films from terahertz transmission and reflection measurements,” Appl. Phys. Lett. 105(1), 011101 (2014).
[Crossref]

2013 (3)

Y. Wu, X. Ruan, C. H. Chen, Y. J. Shin, Y. Lee, J. Niu, J. Liu, Y. Chen, K. L. Yang, X. Zhang, J. H. Ahn, and H. Yang, “Graphene/liquid crystal based terahertz phase shifters,” Opt. Express 21(18), 21395–21402 (2013).
[Crossref] [PubMed]

D. Micheli, R. Pastore, G. Gradoni, and M. Marchetti, “Tunable nanostructured composite with built-in metallic wire-grid electrode,” AIP Adv. 3(11), 112132 (2013).
[Crossref]

I. Chatzakis, P. Tassin, L. Luo, N. H. Shen, L. Zhang, J. Wang, T. Koschny, and C. M. Soukoulis, “One- and two-dimensional photo-imprinted diffraction gratings for manipulating terahertz waves,” Appl. Phys. Lett. 103(4), 043101 (2013).
[Crossref]

2012 (6)

H. Park, E. P. Parrott, F. Fan, M. Lim, H. Han, V. G. Chigrinov, and E. Pickwell-MacPherson, “Evaluating liquid crystal properties for use in terahertz devices,” Opt. Express 20(11), 11899–11905 (2012).
[Crossref] [PubMed]

E. S. Lee and T. I. Jeon, “Tunable THz notch filter with a single groove inside parallel-plate waveguides,” Opt. Express 20(28), 29605–29612 (2012).
[Crossref] [PubMed]

N. Vieweg, N. Born, I. Al Naib, and M. Koch, “Electrically tunable terahertz notch filters,” J. Infrared. Milli. Terahz. Waves. 33(3), 327–332 (2012).
[Crossref]

M. Vosgueritchian, D. J. Lipomi, and Z. N. Bao, “Highly conductive and transparent PEDOT:PSS films with a fluorosurfactant for stretchable and flexible transparent electrodes,” Adv. Funct. Mater. 22(2), 421–428 (2012).
[Crossref]

B. Xia, X. He, X. Zheng, P. Qiu, W. Cheng, and X. Zeng, “Electrically induced light scattering performances of lanthanum-modified lead zirconate titanate transparent ceramics,” J. Electroceram. 29(3), 192–197 (2012).
[Crossref]

D. J. Yun and S. W. Rhee, “Composite films of oxidized multiwall carbon nanotube and poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS) as a contact electrode for transistor and inverter devices,” ACS Appl. Mater. Interfaces 4(2), 982–989 (2012).
[Crossref] [PubMed]

2011 (7)

Y. H. Kim, C. Sachse, M. L. Machala, C. May, L. Müller-Meskamp, and K. Leo, “Highly conductive PEDOT:PSS electrode with optimized solvent and thermal post-treatment for ITO-free orgnic solar cells,” Adv. Funct. Mater. 21(6), 1076–1081 (2011).
[Crossref]

M. Yamashita, C. Otani, M. Shimizu, and H. Okuzaki, “Effect of solvent on carrier transport in poly (3, 4-ethylenedioxythiophene)/poly (4-styrenesulfonate) studied by terahertz and infrared-ultraviolet spectroscopy,” Appl. Phys. Lett. 99(14), 143307 (2011).
[Crossref]

P. Kuang, J. M. Park, W. Leung, R. C. Mahadevapuram, K. S. Nalwa, T. G. Kim, S. Chaudhary, K. M. Ho, and K. Constant, “A new architecture for transparent electrodes: relieving the trade-off between electrical conductivity and optical transmittance,” Adv. Mater. 23(21), 2469–2473 (2011).
[Crossref] [PubMed]

X. W. Lin, J. B. Wu, W. Hu, Z. G. Zheng, Z. J. Wu, G. Zhu, F. Xu, B. Jin, and Y. Lu, “Self-polarizing terahertz liquid crystal phase shifter,” AIP Adv. 1(3), 032133 (2011).
[Crossref]

L. Rao, J. Yan, S. T. Wu, S. Yamamoto, and Y. Haseba, “A large Kerr constant polymer-stabilized blue phase liquid crystal,” Appl. Phys. Lett. 98(8), 081109 (2011).
[Crossref]

M. Yamashita, C. Otani, M. Shimizu, and H. Okuzaki, “Effect of solvent on carrier transport in Poly (3,4-ethylenedioxythiophene)/Poly (4-styrenesulfonate) studied by terahertz and infrared-ultraviolet spectroscopy,” Appl. Phys. Lett. 99(14), 143307 (2011).
[Crossref]

Y. J. Chiang, C. S. Yang, Y. H. Yang, C. L. Pan, and T. J. Yen, “An ultrabroad terahertz bandpass filter based on multiple-resonance excitation of a composite metamaterial,” Appl. Phys. Lett. 99(19), 191909 (2011).
[Crossref]

2010 (1)

C. W. Chen, Y. C. Lin, C. H. Chang, P. C. Yu, J. M. Shieh, and C. L. Pan, “Frequency-dependent complex conductivities and dielectric responses of indium tin oxide thin films from the visible to the far-infrared,” IEEE J. Quantum Electron. 46(12), 1746–1754 (2010).
[Crossref]

2009 (2)

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “Highly selective terahertz bandpass filters based on trapped mode excitation,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

O. Paul, R. Beigang, and M. Rahm, “Highly selective terahertz bandpass filters based on trapped mode excitation,” Opt. Express 17(21), 18590–18595 (2009).
[Crossref] [PubMed]

2007 (1)

P. A. Levermore, L. C. Chen, X. H. Wang, R. Das, and D. D. C. Bradley, “Highly conductive poly(3,4-ethylenedioxythiophene) films by vapor phase polymerization for application in efficient organic light-emitting diodes,” Adv. Mater. 19(17), 2379–2385 (2007).
[Crossref]

2006 (4)

C. F. Hsieh, R. P. Pan, T. T. Tang, H. L. Chen, and C. L. Pan, “Voltage-controlled liquid-crystal terahertz phase shifter and quarter-wave plate,” Opt. Lett. 31(8), 1112–1114 (2006).
[Crossref] [PubMed]

H. Y. Wu, C. F. Hsieh, T. T. Tang, R. P. Pan, and C. L. Pan, “Electrically tunable room-temperature 2π liquid crystal terahertz phase shifter,” IEEE Photonics Technol. Lett. 18(13–16), 1488–1490 (2006).

D. H. Kim, M. R. Park, H. J. Lee, and G. H. Lee, “Thickness dependence of electrical properties of ITO film deposited on a plastic substrate by RF magnetron sputtering,” Appl. Surf. Sci. 253(2), 409–411 (2006).
[Crossref]

X. Crispin, F. L. E. Jakobsson, A. Crispin, P. C. M. Grim, P. Andersson, A. Volodin, C. van Haesendonck, M. Van der Auweraer, W. R. Salaneck, and M. Berggren, “The origin of the high conductivity of poly (3, 4-ethylenedioxythiophene)-poly (styrenesulfonate)(PEDOT-PSS) plastic electrodes,” Chem. Mater. 18(18), 4354–4360 (2006).
[Crossref]

2005 (2)

Y. Hisakado, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro-optic Kerr effect in polymer-stabilized liquid-crystalline blue phases,” Adv. Mater. 17(1), 96–98 (2005).
[Crossref]

J. Y. Ouyang, C. W. Chu, F. C. Chen, Q. F. Xu, and Y. Yang, “High-conductivity poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) film and its application in polymer optoelectronic devices,” Adv. Funct. Mater. 15(2), 203–208 (2005).
[Crossref]

2004 (1)

2002 (1)

J. Y. Kim, J. H. Jung, D. E. Lee, and J. Joo, “Enhancement of electrical conductivity of poly (3, 4-ethylenedioxythiophene)/poly (4-styrenesulfonate) by a change of solvent,” Synth. Met. 126(2-3), 311–316 (2002).
[Crossref]

2000 (1)

D. R. Cairns, R. P. Witte, D. K. Sparacin, S. M. Sachsman, D. C. Paine, G. P. Crawford, and R. R. Newton, “Strain-dependent electrical resistance of tin-doped indium oxide on polymer substrates,” Appl. Phys. Lett. 76(11), 1425–1427 (2000).
[Crossref]

1992 (1)

G. Heywang and F. Jonas, “Poly(alkylenedioxythiophene)s—new, very stable conducing polymers,” Adv. Mater. 4(2), 116–118 (1992).
[Crossref]

Ahn, J. H.

Al Naib, I.

N. Vieweg, N. Born, I. Al Naib, and M. Koch, “Electrically tunable terahertz notch filters,” J. Infrared. Milli. Terahz. Waves. 33(3), 327–332 (2012).
[Crossref]

Andersson, P.

X. Crispin, F. L. E. Jakobsson, A. Crispin, P. C. M. Grim, P. Andersson, A. Volodin, C. van Haesendonck, M. Van der Auweraer, W. R. Salaneck, and M. Berggren, “The origin of the high conductivity of poly (3, 4-ethylenedioxythiophene)-poly (styrenesulfonate)(PEDOT-PSS) plastic electrodes,” Chem. Mater. 18(18), 4354–4360 (2006).
[Crossref]

Averitt, R. D.

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “Highly selective terahertz bandpass filters based on trapped mode excitation,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

Azad, A. K.

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “Highly selective terahertz bandpass filters based on trapped mode excitation,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

Baik, S.

E. Dadrasnia, F. Garet, D. Lee, J. L. Goutaz, S. Baik, and H. Lamela, “Electrical characterization of silver nanowire-graphene hybrid films from terahertz transmission and reflection measurements,” Appl. Phys. Lett. 105(1), 011101 (2014).
[Crossref]

Bao, Z. N.

M. Vosgueritchian, D. J. Lipomi, and Z. N. Bao, “Highly conductive and transparent PEDOT:PSS films with a fluorosurfactant for stretchable and flexible transparent electrodes,” Adv. Funct. Mater. 22(2), 421–428 (2012).
[Crossref]

Beigang, R.

Berggren, M.

X. Crispin, F. L. E. Jakobsson, A. Crispin, P. C. M. Grim, P. Andersson, A. Volodin, C. van Haesendonck, M. Van der Auweraer, W. R. Salaneck, and M. Berggren, “The origin of the high conductivity of poly (3, 4-ethylenedioxythiophene)-poly (styrenesulfonate)(PEDOT-PSS) plastic electrodes,” Chem. Mater. 18(18), 4354–4360 (2006).
[Crossref]

Born, N.

N. Vieweg, N. Born, I. Al Naib, and M. Koch, “Electrically tunable terahertz notch filters,” J. Infrared. Milli. Terahz. Waves. 33(3), 327–332 (2012).
[Crossref]

Bradley, D. D. C.

P. A. Levermore, L. C. Chen, X. H. Wang, R. Das, and D. D. C. Bradley, “Highly conductive poly(3,4-ethylenedioxythiophene) films by vapor phase polymerization for application in efficient organic light-emitting diodes,” Adv. Mater. 19(17), 2379–2385 (2007).
[Crossref]

Cairns, D. R.

D. R. Cairns, R. P. Witte, D. K. Sparacin, S. M. Sachsman, D. C. Paine, G. P. Crawford, and R. R. Newton, “Strain-dependent electrical resistance of tin-doped indium oxide on polymer substrates,” Appl. Phys. Lett. 76(11), 1425–1427 (2000).
[Crossref]

Chang, C. H.

C. W. Chen, Y. C. Lin, C. H. Chang, P. C. Yu, J. M. Shieh, and C. L. Pan, “Frequency-dependent complex conductivities and dielectric responses of indium tin oxide thin films from the visible to the far-infrared,” IEEE J. Quantum Electron. 46(12), 1746–1754 (2010).
[Crossref]

Chatzakis, I.

I. Chatzakis, P. Tassin, L. Luo, N. H. Shen, L. Zhang, J. Wang, T. Koschny, and C. M. Soukoulis, “One- and two-dimensional photo-imprinted diffraction gratings for manipulating terahertz waves,” Appl. Phys. Lett. 103(4), 043101 (2013).
[Crossref]

Chaudhary, S.

P. Kuang, J. M. Park, W. Leung, R. C. Mahadevapuram, K. S. Nalwa, T. G. Kim, S. Chaudhary, K. M. Ho, and K. Constant, “A new architecture for transparent electrodes: relieving the trade-off between electrical conductivity and optical transmittance,” Adv. Mater. 23(21), 2469–2473 (2011).
[Crossref] [PubMed]

Chen, C. H.

Chen, C. W.

C. W. Chen, Y. C. Lin, C. H. Chang, P. C. Yu, J. M. Shieh, and C. L. Pan, “Frequency-dependent complex conductivities and dielectric responses of indium tin oxide thin films from the visible to the far-infrared,” IEEE J. Quantum Electron. 46(12), 1746–1754 (2010).
[Crossref]

Chen, C. Y.

Chen, F. C.

J. Y. Ouyang, C. W. Chu, F. C. Chen, Q. F. Xu, and Y. Yang, “High-conductivity poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) film and its application in polymer optoelectronic devices,” Adv. Funct. Mater. 15(2), 203–208 (2005).
[Crossref]

Chen, H. L.

Chen, H. T.

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “Highly selective terahertz bandpass filters based on trapped mode excitation,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

Chen, L. C.

P. A. Levermore, L. C. Chen, X. H. Wang, R. Das, and D. D. C. Bradley, “Highly conductive poly(3,4-ethylenedioxythiophene) films by vapor phase polymerization for application in efficient organic light-emitting diodes,” Adv. Mater. 19(17), 2379–2385 (2007).
[Crossref]

Chen, Y.

Cheng, W.

B. Xia, X. He, X. Zheng, P. Qiu, W. Cheng, and X. Zeng, “Electrically induced light scattering performances of lanthanum-modified lead zirconate titanate transparent ceramics,” J. Electroceram. 29(3), 192–197 (2012).
[Crossref]

Chiang, Y. J.

Y. J. Chiang, C. S. Yang, Y. H. Yang, C. L. Pan, and T. J. Yen, “An ultrabroad terahertz bandpass filter based on multiple-resonance excitation of a composite metamaterial,” Appl. Phys. Lett. 99(19), 191909 (2011).
[Crossref]

Chigrinov, V. G.

Chu, C. W.

J. Y. Ouyang, C. W. Chu, F. C. Chen, Q. F. Xu, and Y. Yang, “High-conductivity poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) film and its application in polymer optoelectronic devices,” Adv. Funct. Mater. 15(2), 203–208 (2005).
[Crossref]

Cich, M. J.

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “Highly selective terahertz bandpass filters based on trapped mode excitation,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

Constant, K.

P. Kuang, J. M. Park, W. Leung, R. C. Mahadevapuram, K. S. Nalwa, T. G. Kim, S. Chaudhary, K. M. Ho, and K. Constant, “A new architecture for transparent electrodes: relieving the trade-off between electrical conductivity and optical transmittance,” Adv. Mater. 23(21), 2469–2473 (2011).
[Crossref] [PubMed]

Crawford, G. P.

D. R. Cairns, R. P. Witte, D. K. Sparacin, S. M. Sachsman, D. C. Paine, G. P. Crawford, and R. R. Newton, “Strain-dependent electrical resistance of tin-doped indium oxide on polymer substrates,” Appl. Phys. Lett. 76(11), 1425–1427 (2000).
[Crossref]

Crispin, A.

X. Crispin, F. L. E. Jakobsson, A. Crispin, P. C. M. Grim, P. Andersson, A. Volodin, C. van Haesendonck, M. Van der Auweraer, W. R. Salaneck, and M. Berggren, “The origin of the high conductivity of poly (3, 4-ethylenedioxythiophene)-poly (styrenesulfonate)(PEDOT-PSS) plastic electrodes,” Chem. Mater. 18(18), 4354–4360 (2006).
[Crossref]

Crispin, X.

X. Crispin, F. L. E. Jakobsson, A. Crispin, P. C. M. Grim, P. Andersson, A. Volodin, C. van Haesendonck, M. Van der Auweraer, W. R. Salaneck, and M. Berggren, “The origin of the high conductivity of poly (3, 4-ethylenedioxythiophene)-poly (styrenesulfonate)(PEDOT-PSS) plastic electrodes,” Chem. Mater. 18(18), 4354–4360 (2006).
[Crossref]

Dadrasnia, E.

E. Dadrasnia, F. Garet, D. Lee, J. L. Goutaz, S. Baik, and H. Lamela, “Electrical characterization of silver nanowire-graphene hybrid films from terahertz transmission and reflection measurements,” Appl. Phys. Lett. 105(1), 011101 (2014).
[Crossref]

Das, R.

P. A. Levermore, L. C. Chen, X. H. Wang, R. Das, and D. D. C. Bradley, “Highly conductive poly(3,4-ethylenedioxythiophene) films by vapor phase polymerization for application in efficient organic light-emitting diodes,” Adv. Mater. 19(17), 2379–2385 (2007).
[Crossref]

Fan, F.

Fan, R. H.

R. H. Fan, Y. Zhou, X. P. Ren, R. W. Peng, S. C. Jiang, D. H. Xu, X. Xiong, X. R. Huang, and M. Wang, “Freely tunable broadband polarization rotator for terahertz waves,” Adv. Mater. 27(7), 1201–1206 (2015).
[Crossref] [PubMed]

Fan, S.

S. Fan, Y. He, B. S. Ung, and E. Pickwell-MacPherson, “The growth of biomedical terahertz research,” J. Phys. D. 47(37), 374009 (2014).
[Crossref]

Garet, F.

E. Dadrasnia, F. Garet, D. Lee, J. L. Goutaz, S. Baik, and H. Lamela, “Electrical characterization of silver nanowire-graphene hybrid films from terahertz transmission and reflection measurements,” Appl. Phys. Lett. 105(1), 011101 (2014).
[Crossref]

Goutaz, J. L.

E. Dadrasnia, F. Garet, D. Lee, J. L. Goutaz, S. Baik, and H. Lamela, “Electrical characterization of silver nanowire-graphene hybrid films from terahertz transmission and reflection measurements,” Appl. Phys. Lett. 105(1), 011101 (2014).
[Crossref]

Gradoni, G.

D. Micheli, R. Pastore, G. Gradoni, and M. Marchetti, “Tunable nanostructured composite with built-in metallic wire-grid electrode,” AIP Adv. 3(11), 112132 (2013).
[Crossref]

Grim, P. C. M.

X. Crispin, F. L. E. Jakobsson, A. Crispin, P. C. M. Grim, P. Andersson, A. Volodin, C. van Haesendonck, M. Van der Auweraer, W. R. Salaneck, and M. Berggren, “The origin of the high conductivity of poly (3, 4-ethylenedioxythiophene)-poly (styrenesulfonate)(PEDOT-PSS) plastic electrodes,” Chem. Mater. 18(18), 4354–4360 (2006).
[Crossref]

Ham, J.

S. Han, S. Hong, J. Ham, J. Yeo, J. Lee, B. Kang, P. Lee, J. Kwon, S. S. Lee, and M. Y. Yang, “The growth of biomedical terahertz research,” Adv. Mater. 26(33), 5808–5814 (2014).
[Crossref] [PubMed]

Han, H.

Han, S.

S. Han, S. Hong, J. Ham, J. Yeo, J. Lee, B. Kang, P. Lee, J. Kwon, S. S. Lee, and M. Y. Yang, “The growth of biomedical terahertz research,” Adv. Mater. 26(33), 5808–5814 (2014).
[Crossref] [PubMed]

Haseba, Y.

L. Rao, J. Yan, S. T. Wu, S. Yamamoto, and Y. Haseba, “A large Kerr constant polymer-stabilized blue phase liquid crystal,” Appl. Phys. Lett. 98(8), 081109 (2011).
[Crossref]

He, X.

B. Xia, X. He, X. Zheng, P. Qiu, W. Cheng, and X. Zeng, “Electrically induced light scattering performances of lanthanum-modified lead zirconate titanate transparent ceramics,” J. Electroceram. 29(3), 192–197 (2012).
[Crossref]

He, Y.

S. Fan, Y. He, B. S. Ung, and E. Pickwell-MacPherson, “The growth of biomedical terahertz research,” J. Phys. D. 47(37), 374009 (2014).
[Crossref]

Heywang, G.

G. Heywang and F. Jonas, “Poly(alkylenedioxythiophene)s—new, very stable conducing polymers,” Adv. Mater. 4(2), 116–118 (1992).
[Crossref]

Hisakado, Y.

Y. Hisakado, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro-optic Kerr effect in polymer-stabilized liquid-crystalline blue phases,” Adv. Mater. 17(1), 96–98 (2005).
[Crossref]

Ho, K. M.

P. Kuang, J. M. Park, W. Leung, R. C. Mahadevapuram, K. S. Nalwa, T. G. Kim, S. Chaudhary, K. M. Ho, and K. Constant, “A new architecture for transparent electrodes: relieving the trade-off between electrical conductivity and optical transmittance,” Adv. Mater. 23(21), 2469–2473 (2011).
[Crossref] [PubMed]

Hong, S.

S. Han, S. Hong, J. Ham, J. Yeo, J. Lee, B. Kang, P. Lee, J. Kwon, S. S. Lee, and M. Y. Yang, “The growth of biomedical terahertz research,” Adv. Mater. 26(33), 5808–5814 (2014).
[Crossref] [PubMed]

Hsieh, C. F.

Hu, W.

X. W. Lin, J. B. Wu, W. Hu, Z. G. Zheng, Z. J. Wu, G. Zhu, F. Xu, B. Jin, and Y. Lu, “Self-polarizing terahertz liquid crystal phase shifter,” AIP Adv. 1(3), 032133 (2011).
[Crossref]

Huang, X. R.

R. H. Fan, Y. Zhou, X. P. Ren, R. W. Peng, S. C. Jiang, D. H. Xu, X. Xiong, X. R. Huang, and M. Wang, “Freely tunable broadband polarization rotator for terahertz waves,” Adv. Mater. 27(7), 1201–1206 (2015).
[Crossref] [PubMed]

Jakobsson, F. L. E.

X. Crispin, F. L. E. Jakobsson, A. Crispin, P. C. M. Grim, P. Andersson, A. Volodin, C. van Haesendonck, M. Van der Auweraer, W. R. Salaneck, and M. Berggren, “The origin of the high conductivity of poly (3, 4-ethylenedioxythiophene)-poly (styrenesulfonate)(PEDOT-PSS) plastic electrodes,” Chem. Mater. 18(18), 4354–4360 (2006).
[Crossref]

Jeon, T. I.

Jiang, S. C.

R. H. Fan, Y. Zhou, X. P. Ren, R. W. Peng, S. C. Jiang, D. H. Xu, X. Xiong, X. R. Huang, and M. Wang, “Freely tunable broadband polarization rotator for terahertz waves,” Adv. Mater. 27(7), 1201–1206 (2015).
[Crossref] [PubMed]

Jin, B.

X. W. Lin, J. B. Wu, W. Hu, Z. G. Zheng, Z. J. Wu, G. Zhu, F. Xu, B. Jin, and Y. Lu, “Self-polarizing terahertz liquid crystal phase shifter,” AIP Adv. 1(3), 032133 (2011).
[Crossref]

Jonas, F.

G. Heywang and F. Jonas, “Poly(alkylenedioxythiophene)s—new, very stable conducing polymers,” Adv. Mater. 4(2), 116–118 (1992).
[Crossref]

Joo, J.

J. Y. Kim, J. H. Jung, D. E. Lee, and J. Joo, “Enhancement of electrical conductivity of poly (3, 4-ethylenedioxythiophene)/poly (4-styrenesulfonate) by a change of solvent,” Synth. Met. 126(2-3), 311–316 (2002).
[Crossref]

Jung, J. H.

J. Y. Kim, J. H. Jung, D. E. Lee, and J. Joo, “Enhancement of electrical conductivity of poly (3, 4-ethylenedioxythiophene)/poly (4-styrenesulfonate) by a change of solvent,” Synth. Met. 126(2-3), 311–316 (2002).
[Crossref]

Kajiyama, T.

Y. Hisakado, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro-optic Kerr effect in polymer-stabilized liquid-crystalline blue phases,” Adv. Mater. 17(1), 96–98 (2005).
[Crossref]

Kang, B.

S. Han, S. Hong, J. Ham, J. Yeo, J. Lee, B. Kang, P. Lee, J. Kwon, S. S. Lee, and M. Y. Yang, “The growth of biomedical terahertz research,” Adv. Mater. 26(33), 5808–5814 (2014).
[Crossref] [PubMed]

Kikuchi, H.

Y. Hisakado, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro-optic Kerr effect in polymer-stabilized liquid-crystalline blue phases,” Adv. Mater. 17(1), 96–98 (2005).
[Crossref]

Kim, D. H.

D. H. Kim, M. R. Park, H. J. Lee, and G. H. Lee, “Thickness dependence of electrical properties of ITO film deposited on a plastic substrate by RF magnetron sputtering,” Appl. Surf. Sci. 253(2), 409–411 (2006).
[Crossref]

Kim, J. Y.

J. Y. Kim, J. H. Jung, D. E. Lee, and J. Joo, “Enhancement of electrical conductivity of poly (3, 4-ethylenedioxythiophene)/poly (4-styrenesulfonate) by a change of solvent,” Synth. Met. 126(2-3), 311–316 (2002).
[Crossref]

Kim, T. G.

P. Kuang, J. M. Park, W. Leung, R. C. Mahadevapuram, K. S. Nalwa, T. G. Kim, S. Chaudhary, K. M. Ho, and K. Constant, “A new architecture for transparent electrodes: relieving the trade-off between electrical conductivity and optical transmittance,” Adv. Mater. 23(21), 2469–2473 (2011).
[Crossref] [PubMed]

Kim, Y. H.

Y. H. Kim, C. Sachse, M. L. Machala, C. May, L. Müller-Meskamp, and K. Leo, “Highly conductive PEDOT:PSS electrode with optimized solvent and thermal post-treatment for ITO-free orgnic solar cells,” Adv. Funct. Mater. 21(6), 1076–1081 (2011).
[Crossref]

Koch, M.

N. Vieweg, N. Born, I. Al Naib, and M. Koch, “Electrically tunable terahertz notch filters,” J. Infrared. Milli. Terahz. Waves. 33(3), 327–332 (2012).
[Crossref]

Koschny, T.

I. Chatzakis, P. Tassin, L. Luo, N. H. Shen, L. Zhang, J. Wang, T. Koschny, and C. M. Soukoulis, “One- and two-dimensional photo-imprinted diffraction gratings for manipulating terahertz waves,” Appl. Phys. Lett. 103(4), 043101 (2013).
[Crossref]

Kuang, P.

P. Kuang, J. M. Park, W. Leung, R. C. Mahadevapuram, K. S. Nalwa, T. G. Kim, S. Chaudhary, K. M. Ho, and K. Constant, “A new architecture for transparent electrodes: relieving the trade-off between electrical conductivity and optical transmittance,” Adv. Mater. 23(21), 2469–2473 (2011).
[Crossref] [PubMed]

Kwon, J.

S. Han, S. Hong, J. Ham, J. Yeo, J. Lee, B. Kang, P. Lee, J. Kwon, S. S. Lee, and M. Y. Yang, “The growth of biomedical terahertz research,” Adv. Mater. 26(33), 5808–5814 (2014).
[Crossref] [PubMed]

Lamela, H.

E. Dadrasnia, F. Garet, D. Lee, J. L. Goutaz, S. Baik, and H. Lamela, “Electrical characterization of silver nanowire-graphene hybrid films from terahertz transmission and reflection measurements,” Appl. Phys. Lett. 105(1), 011101 (2014).
[Crossref]

Lee, D.

E. Dadrasnia, F. Garet, D. Lee, J. L. Goutaz, S. Baik, and H. Lamela, “Electrical characterization of silver nanowire-graphene hybrid films from terahertz transmission and reflection measurements,” Appl. Phys. Lett. 105(1), 011101 (2014).
[Crossref]

Lee, D. E.

J. Y. Kim, J. H. Jung, D. E. Lee, and J. Joo, “Enhancement of electrical conductivity of poly (3, 4-ethylenedioxythiophene)/poly (4-styrenesulfonate) by a change of solvent,” Synth. Met. 126(2-3), 311–316 (2002).
[Crossref]

Lee, E. S.

Lee, G. H.

D. H. Kim, M. R. Park, H. J. Lee, and G. H. Lee, “Thickness dependence of electrical properties of ITO film deposited on a plastic substrate by RF magnetron sputtering,” Appl. Surf. Sci. 253(2), 409–411 (2006).
[Crossref]

Lee, H. J.

D. H. Kim, M. R. Park, H. J. Lee, and G. H. Lee, “Thickness dependence of electrical properties of ITO film deposited on a plastic substrate by RF magnetron sputtering,” Appl. Surf. Sci. 253(2), 409–411 (2006).
[Crossref]

Lee, J.

S. Han, S. Hong, J. Ham, J. Yeo, J. Lee, B. Kang, P. Lee, J. Kwon, S. S. Lee, and M. Y. Yang, “The growth of biomedical terahertz research,” Adv. Mater. 26(33), 5808–5814 (2014).
[Crossref] [PubMed]

Lee, P.

S. Han, S. Hong, J. Ham, J. Yeo, J. Lee, B. Kang, P. Lee, J. Kwon, S. S. Lee, and M. Y. Yang, “The growth of biomedical terahertz research,” Adv. Mater. 26(33), 5808–5814 (2014).
[Crossref] [PubMed]

Lee, S. S.

S. Han, S. Hong, J. Ham, J. Yeo, J. Lee, B. Kang, P. Lee, J. Kwon, S. S. Lee, and M. Y. Yang, “The growth of biomedical terahertz research,” Adv. Mater. 26(33), 5808–5814 (2014).
[Crossref] [PubMed]

Lee, Y.

Leo, K.

Y. H. Kim, C. Sachse, M. L. Machala, C. May, L. Müller-Meskamp, and K. Leo, “Highly conductive PEDOT:PSS electrode with optimized solvent and thermal post-treatment for ITO-free orgnic solar cells,” Adv. Funct. Mater. 21(6), 1076–1081 (2011).
[Crossref]

Leung, K. T.

J. P. Thomas, L. Y. Zhao, D. McGillivray, and K. T. Leung, “High-efficiency hybrid solar cells by nanostructural modification in PEDOT: PSS with co-solvent addition,” J. Mater. Chem. A Mater. Energy Sustain. 2(7), 2383–2389 (2014).
[Crossref]

Leung, W.

P. Kuang, J. M. Park, W. Leung, R. C. Mahadevapuram, K. S. Nalwa, T. G. Kim, S. Chaudhary, K. M. Ho, and K. Constant, “A new architecture for transparent electrodes: relieving the trade-off between electrical conductivity and optical transmittance,” Adv. Mater. 23(21), 2469–2473 (2011).
[Crossref] [PubMed]

Levermore, P. A.

P. A. Levermore, L. C. Chen, X. H. Wang, R. Das, and D. D. C. Bradley, “Highly conductive poly(3,4-ethylenedioxythiophene) films by vapor phase polymerization for application in efficient organic light-emitting diodes,” Adv. Mater. 19(17), 2379–2385 (2007).
[Crossref]

Lim, M.

Lin, X. W.

X. W. Lin, J. B. Wu, W. Hu, Z. G. Zheng, Z. J. Wu, G. Zhu, F. Xu, B. Jin, and Y. Lu, “Self-polarizing terahertz liquid crystal phase shifter,” AIP Adv. 1(3), 032133 (2011).
[Crossref]

Lin, Y. C.

C. W. Chen, Y. C. Lin, C. H. Chang, P. C. Yu, J. M. Shieh, and C. L. Pan, “Frequency-dependent complex conductivities and dielectric responses of indium tin oxide thin films from the visible to the far-infrared,” IEEE J. Quantum Electron. 46(12), 1746–1754 (2010).
[Crossref]

Lin, Y. F.

Lipomi, D. J.

M. Vosgueritchian, D. J. Lipomi, and Z. N. Bao, “Highly conductive and transparent PEDOT:PSS films with a fluorosurfactant for stretchable and flexible transparent electrodes,” Adv. Funct. Mater. 22(2), 421–428 (2012).
[Crossref]

Liu, J.

Liu, X. D.

Lu, Y.

X. W. Lin, J. B. Wu, W. Hu, Z. G. Zheng, Z. J. Wu, G. Zhu, F. Xu, B. Jin, and Y. Lu, “Self-polarizing terahertz liquid crystal phase shifter,” AIP Adv. 1(3), 032133 (2011).
[Crossref]

Luo, L.

I. Chatzakis, P. Tassin, L. Luo, N. H. Shen, L. Zhang, J. Wang, T. Koschny, and C. M. Soukoulis, “One- and two-dimensional photo-imprinted diffraction gratings for manipulating terahertz waves,” Appl. Phys. Lett. 103(4), 043101 (2013).
[Crossref]

Machala, M. L.

Y. H. Kim, C. Sachse, M. L. Machala, C. May, L. Müller-Meskamp, and K. Leo, “Highly conductive PEDOT:PSS electrode with optimized solvent and thermal post-treatment for ITO-free orgnic solar cells,” Adv. Funct. Mater. 21(6), 1076–1081 (2011).
[Crossref]

Mahadevapuram, R. C.

P. Kuang, J. M. Park, W. Leung, R. C. Mahadevapuram, K. S. Nalwa, T. G. Kim, S. Chaudhary, K. M. Ho, and K. Constant, “A new architecture for transparent electrodes: relieving the trade-off between electrical conductivity and optical transmittance,” Adv. Mater. 23(21), 2469–2473 (2011).
[Crossref] [PubMed]

Marchetti, M.

D. Micheli, R. Pastore, G. Gradoni, and M. Marchetti, “Tunable nanostructured composite with built-in metallic wire-grid electrode,” AIP Adv. 3(11), 112132 (2013).
[Crossref]

May, C.

Y. H. Kim, C. Sachse, M. L. Machala, C. May, L. Müller-Meskamp, and K. Leo, “Highly conductive PEDOT:PSS electrode with optimized solvent and thermal post-treatment for ITO-free orgnic solar cells,” Adv. Funct. Mater. 21(6), 1076–1081 (2011).
[Crossref]

McGillivray, D.

J. P. Thomas, L. Y. Zhao, D. McGillivray, and K. T. Leung, “High-efficiency hybrid solar cells by nanostructural modification in PEDOT: PSS with co-solvent addition,” J. Mater. Chem. A Mater. Energy Sustain. 2(7), 2383–2389 (2014).
[Crossref]

Micheli, D.

D. Micheli, R. Pastore, G. Gradoni, and M. Marchetti, “Tunable nanostructured composite with built-in metallic wire-grid electrode,” AIP Adv. 3(11), 112132 (2013).
[Crossref]

Müller-Meskamp, L.

Y. H. Kim, C. Sachse, M. L. Machala, C. May, L. Müller-Meskamp, and K. Leo, “Highly conductive PEDOT:PSS electrode with optimized solvent and thermal post-treatment for ITO-free orgnic solar cells,” Adv. Funct. Mater. 21(6), 1076–1081 (2011).
[Crossref]

Nagamura, T.

Y. Hisakado, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro-optic Kerr effect in polymer-stabilized liquid-crystalline blue phases,” Adv. Mater. 17(1), 96–98 (2005).
[Crossref]

Nalwa, K. S.

P. Kuang, J. M. Park, W. Leung, R. C. Mahadevapuram, K. S. Nalwa, T. G. Kim, S. Chaudhary, K. M. Ho, and K. Constant, “A new architecture for transparent electrodes: relieving the trade-off between electrical conductivity and optical transmittance,” Adv. Mater. 23(21), 2469–2473 (2011).
[Crossref] [PubMed]

Newton, R. R.

D. R. Cairns, R. P. Witte, D. K. Sparacin, S. M. Sachsman, D. C. Paine, G. P. Crawford, and R. R. Newton, “Strain-dependent electrical resistance of tin-doped indium oxide on polymer substrates,” Appl. Phys. Lett. 76(11), 1425–1427 (2000).
[Crossref]

Niu, J.

Okuzaki, H.

M. Yamashita, C. Otani, M. Shimizu, and H. Okuzaki, “Effect of solvent on carrier transport in Poly (3,4-ethylenedioxythiophene)/Poly (4-styrenesulfonate) studied by terahertz and infrared-ultraviolet spectroscopy,” Appl. Phys. Lett. 99(14), 143307 (2011).
[Crossref]

M. Yamashita, C. Otani, M. Shimizu, and H. Okuzaki, “Effect of solvent on carrier transport in poly (3, 4-ethylenedioxythiophene)/poly (4-styrenesulfonate) studied by terahertz and infrared-ultraviolet spectroscopy,” Appl. Phys. Lett. 99(14), 143307 (2011).
[Crossref]

Otani, C.

M. Yamashita, C. Otani, M. Shimizu, and H. Okuzaki, “Effect of solvent on carrier transport in poly (3, 4-ethylenedioxythiophene)/poly (4-styrenesulfonate) studied by terahertz and infrared-ultraviolet spectroscopy,” Appl. Phys. Lett. 99(14), 143307 (2011).
[Crossref]

M. Yamashita, C. Otani, M. Shimizu, and H. Okuzaki, “Effect of solvent on carrier transport in Poly (3,4-ethylenedioxythiophene)/Poly (4-styrenesulfonate) studied by terahertz and infrared-ultraviolet spectroscopy,” Appl. Phys. Lett. 99(14), 143307 (2011).
[Crossref]

Ouyang, J. Y.

J. Y. Ouyang, C. W. Chu, F. C. Chen, Q. F. Xu, and Y. Yang, “High-conductivity poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) film and its application in polymer optoelectronic devices,” Adv. Funct. Mater. 15(2), 203–208 (2005).
[Crossref]

Padilla, W. J.

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “Highly selective terahertz bandpass filters based on trapped mode excitation,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

Paine, D. C.

D. R. Cairns, R. P. Witte, D. K. Sparacin, S. M. Sachsman, D. C. Paine, G. P. Crawford, and R. R. Newton, “Strain-dependent electrical resistance of tin-doped indium oxide on polymer substrates,” Appl. Phys. Lett. 76(11), 1425–1427 (2000).
[Crossref]

Pan, C. L.

Y. J. Chiang, C. S. Yang, Y. H. Yang, C. L. Pan, and T. J. Yen, “An ultrabroad terahertz bandpass filter based on multiple-resonance excitation of a composite metamaterial,” Appl. Phys. Lett. 99(19), 191909 (2011).
[Crossref]

C. W. Chen, Y. C. Lin, C. H. Chang, P. C. Yu, J. M. Shieh, and C. L. Pan, “Frequency-dependent complex conductivities and dielectric responses of indium tin oxide thin films from the visible to the far-infrared,” IEEE J. Quantum Electron. 46(12), 1746–1754 (2010).
[Crossref]

H. Y. Wu, C. F. Hsieh, T. T. Tang, R. P. Pan, and C. L. Pan, “Electrically tunable room-temperature 2π liquid crystal terahertz phase shifter,” IEEE Photonics Technol. Lett. 18(13–16), 1488–1490 (2006).

C. F. Hsieh, R. P. Pan, T. T. Tang, H. L. Chen, and C. L. Pan, “Voltage-controlled liquid-crystal terahertz phase shifter and quarter-wave plate,” Opt. Lett. 31(8), 1112–1114 (2006).
[Crossref] [PubMed]

C. Y. Chen, C. F. Hsieh, Y. F. Lin, R. P. Pan, and C. L. Pan, “Magnetically tunable room-temperature 2 π liquid crystal terahertz phase shifter,” Opt. Express 12(12), 2625–2630 (2004).
[Crossref] [PubMed]

Pan, R. P.

Park, H.

Park, J. M.

P. Kuang, J. M. Park, W. Leung, R. C. Mahadevapuram, K. S. Nalwa, T. G. Kim, S. Chaudhary, K. M. Ho, and K. Constant, “A new architecture for transparent electrodes: relieving the trade-off between electrical conductivity and optical transmittance,” Adv. Mater. 23(21), 2469–2473 (2011).
[Crossref] [PubMed]

Park, M. R.

D. H. Kim, M. R. Park, H. J. Lee, and G. H. Lee, “Thickness dependence of electrical properties of ITO film deposited on a plastic substrate by RF magnetron sputtering,” Appl. Surf. Sci. 253(2), 409–411 (2006).
[Crossref]

Parrott, E. P.

Pastore, R.

D. Micheli, R. Pastore, G. Gradoni, and M. Marchetti, “Tunable nanostructured composite with built-in metallic wire-grid electrode,” AIP Adv. 3(11), 112132 (2013).
[Crossref]

Paul, O.

Peng, R. W.

R. H. Fan, Y. Zhou, X. P. Ren, R. W. Peng, S. C. Jiang, D. H. Xu, X. Xiong, X. R. Huang, and M. Wang, “Freely tunable broadband polarization rotator for terahertz waves,” Adv. Mater. 27(7), 1201–1206 (2015).
[Crossref] [PubMed]

Pickwell-MacPherson, E.

Qiu, P.

B. Xia, X. He, X. Zheng, P. Qiu, W. Cheng, and X. Zeng, “Electrically induced light scattering performances of lanthanum-modified lead zirconate titanate transparent ceramics,” J. Electroceram. 29(3), 192–197 (2012).
[Crossref]

Rahm, M.

Rao, L.

L. Rao, J. Yan, S. T. Wu, S. Yamamoto, and Y. Haseba, “A large Kerr constant polymer-stabilized blue phase liquid crystal,” Appl. Phys. Lett. 98(8), 081109 (2011).
[Crossref]

Ren, X. P.

R. H. Fan, Y. Zhou, X. P. Ren, R. W. Peng, S. C. Jiang, D. H. Xu, X. Xiong, X. R. Huang, and M. Wang, “Freely tunable broadband polarization rotator for terahertz waves,” Adv. Mater. 27(7), 1201–1206 (2015).
[Crossref] [PubMed]

Rhee, S. W.

D. J. Yun and S. W. Rhee, “Composite films of oxidized multiwall carbon nanotube and poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS) as a contact electrode for transistor and inverter devices,” ACS Appl. Mater. Interfaces 4(2), 982–989 (2012).
[Crossref] [PubMed]

Ruan, X.

Sachse, C.

Y. H. Kim, C. Sachse, M. L. Machala, C. May, L. Müller-Meskamp, and K. Leo, “Highly conductive PEDOT:PSS electrode with optimized solvent and thermal post-treatment for ITO-free orgnic solar cells,” Adv. Funct. Mater. 21(6), 1076–1081 (2011).
[Crossref]

Sachsman, S. M.

D. R. Cairns, R. P. Witte, D. K. Sparacin, S. M. Sachsman, D. C. Paine, G. P. Crawford, and R. R. Newton, “Strain-dependent electrical resistance of tin-doped indium oxide on polymer substrates,” Appl. Phys. Lett. 76(11), 1425–1427 (2000).
[Crossref]

Salaneck, W. R.

X. Crispin, F. L. E. Jakobsson, A. Crispin, P. C. M. Grim, P. Andersson, A. Volodin, C. van Haesendonck, M. Van der Auweraer, W. R. Salaneck, and M. Berggren, “The origin of the high conductivity of poly (3, 4-ethylenedioxythiophene)-poly (styrenesulfonate)(PEDOT-PSS) plastic electrodes,” Chem. Mater. 18(18), 4354–4360 (2006).
[Crossref]

Shen, N. H.

I. Chatzakis, P. Tassin, L. Luo, N. H. Shen, L. Zhang, J. Wang, T. Koschny, and C. M. Soukoulis, “One- and two-dimensional photo-imprinted diffraction gratings for manipulating terahertz waves,” Appl. Phys. Lett. 103(4), 043101 (2013).
[Crossref]

Shieh, J. M.

C. W. Chen, Y. C. Lin, C. H. Chang, P. C. Yu, J. M. Shieh, and C. L. Pan, “Frequency-dependent complex conductivities and dielectric responses of indium tin oxide thin films from the visible to the far-infrared,” IEEE J. Quantum Electron. 46(12), 1746–1754 (2010).
[Crossref]

Shimizu, M.

M. Yamashita, C. Otani, M. Shimizu, and H. Okuzaki, “Effect of solvent on carrier transport in Poly (3,4-ethylenedioxythiophene)/Poly (4-styrenesulfonate) studied by terahertz and infrared-ultraviolet spectroscopy,” Appl. Phys. Lett. 99(14), 143307 (2011).
[Crossref]

M. Yamashita, C. Otani, M. Shimizu, and H. Okuzaki, “Effect of solvent on carrier transport in poly (3, 4-ethylenedioxythiophene)/poly (4-styrenesulfonate) studied by terahertz and infrared-ultraviolet spectroscopy,” Appl. Phys. Lett. 99(14), 143307 (2011).
[Crossref]

Shin, Y. J.

Soukoulis, C. M.

I. Chatzakis, P. Tassin, L. Luo, N. H. Shen, L. Zhang, J. Wang, T. Koschny, and C. M. Soukoulis, “One- and two-dimensional photo-imprinted diffraction gratings for manipulating terahertz waves,” Appl. Phys. Lett. 103(4), 043101 (2013).
[Crossref]

Sparacin, D. K.

D. R. Cairns, R. P. Witte, D. K. Sparacin, S. M. Sachsman, D. C. Paine, G. P. Crawford, and R. R. Newton, “Strain-dependent electrical resistance of tin-doped indium oxide on polymer substrates,” Appl. Phys. Lett. 76(11), 1425–1427 (2000).
[Crossref]

Tang, T. T.

H. Y. Wu, C. F. Hsieh, T. T. Tang, R. P. Pan, and C. L. Pan, “Electrically tunable room-temperature 2π liquid crystal terahertz phase shifter,” IEEE Photonics Technol. Lett. 18(13–16), 1488–1490 (2006).

C. F. Hsieh, R. P. Pan, T. T. Tang, H. L. Chen, and C. L. Pan, “Voltage-controlled liquid-crystal terahertz phase shifter and quarter-wave plate,” Opt. Lett. 31(8), 1112–1114 (2006).
[Crossref] [PubMed]

Tassin, P.

I. Chatzakis, P. Tassin, L. Luo, N. H. Shen, L. Zhang, J. Wang, T. Koschny, and C. M. Soukoulis, “One- and two-dimensional photo-imprinted diffraction gratings for manipulating terahertz waves,” Appl. Phys. Lett. 103(4), 043101 (2013).
[Crossref]

Taylor, A. J.

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “Highly selective terahertz bandpass filters based on trapped mode excitation,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

Thomas, J. P.

J. P. Thomas, L. Y. Zhao, D. McGillivray, and K. T. Leung, “High-efficiency hybrid solar cells by nanostructural modification in PEDOT: PSS with co-solvent addition,” J. Mater. Chem. A Mater. Energy Sustain. 2(7), 2383–2389 (2014).
[Crossref]

Ung, B. S.

S. Fan, Y. He, B. S. Ung, and E. Pickwell-MacPherson, “The growth of biomedical terahertz research,” J. Phys. D. 47(37), 374009 (2014).
[Crossref]

Van der Auweraer, M.

X. Crispin, F. L. E. Jakobsson, A. Crispin, P. C. M. Grim, P. Andersson, A. Volodin, C. van Haesendonck, M. Van der Auweraer, W. R. Salaneck, and M. Berggren, “The origin of the high conductivity of poly (3, 4-ethylenedioxythiophene)-poly (styrenesulfonate)(PEDOT-PSS) plastic electrodes,” Chem. Mater. 18(18), 4354–4360 (2006).
[Crossref]

van Haesendonck, C.

X. Crispin, F. L. E. Jakobsson, A. Crispin, P. C. M. Grim, P. Andersson, A. Volodin, C. van Haesendonck, M. Van der Auweraer, W. R. Salaneck, and M. Berggren, “The origin of the high conductivity of poly (3, 4-ethylenedioxythiophene)-poly (styrenesulfonate)(PEDOT-PSS) plastic electrodes,” Chem. Mater. 18(18), 4354–4360 (2006).
[Crossref]

Vieweg, N.

N. Vieweg, N. Born, I. Al Naib, and M. Koch, “Electrically tunable terahertz notch filters,” J. Infrared. Milli. Terahz. Waves. 33(3), 327–332 (2012).
[Crossref]

Volodin, A.

X. Crispin, F. L. E. Jakobsson, A. Crispin, P. C. M. Grim, P. Andersson, A. Volodin, C. van Haesendonck, M. Van der Auweraer, W. R. Salaneck, and M. Berggren, “The origin of the high conductivity of poly (3, 4-ethylenedioxythiophene)-poly (styrenesulfonate)(PEDOT-PSS) plastic electrodes,” Chem. Mater. 18(18), 4354–4360 (2006).
[Crossref]

Vosgueritchian, M.

M. Vosgueritchian, D. J. Lipomi, and Z. N. Bao, “Highly conductive and transparent PEDOT:PSS films with a fluorosurfactant for stretchable and flexible transparent electrodes,” Adv. Funct. Mater. 22(2), 421–428 (2012).
[Crossref]

Wang, J.

I. Chatzakis, P. Tassin, L. Luo, N. H. Shen, L. Zhang, J. Wang, T. Koschny, and C. M. Soukoulis, “One- and two-dimensional photo-imprinted diffraction gratings for manipulating terahertz waves,” Appl. Phys. Lett. 103(4), 043101 (2013).
[Crossref]

Wang, M.

R. H. Fan, Y. Zhou, X. P. Ren, R. W. Peng, S. C. Jiang, D. H. Xu, X. Xiong, X. R. Huang, and M. Wang, “Freely tunable broadband polarization rotator for terahertz waves,” Adv. Mater. 27(7), 1201–1206 (2015).
[Crossref] [PubMed]

Wang, X. H.

P. A. Levermore, L. C. Chen, X. H. Wang, R. Das, and D. D. C. Bradley, “Highly conductive poly(3,4-ethylenedioxythiophene) films by vapor phase polymerization for application in efficient organic light-emitting diodes,” Adv. Mater. 19(17), 2379–2385 (2007).
[Crossref]

Witte, R. P.

D. R. Cairns, R. P. Witte, D. K. Sparacin, S. M. Sachsman, D. C. Paine, G. P. Crawford, and R. R. Newton, “Strain-dependent electrical resistance of tin-doped indium oxide on polymer substrates,” Appl. Phys. Lett. 76(11), 1425–1427 (2000).
[Crossref]

Wu, H. Y.

H. Y. Wu, C. F. Hsieh, T. T. Tang, R. P. Pan, and C. L. Pan, “Electrically tunable room-temperature 2π liquid crystal terahertz phase shifter,” IEEE Photonics Technol. Lett. 18(13–16), 1488–1490 (2006).

Wu, J. B.

X. W. Lin, J. B. Wu, W. Hu, Z. G. Zheng, Z. J. Wu, G. Zhu, F. Xu, B. Jin, and Y. Lu, “Self-polarizing terahertz liquid crystal phase shifter,” AIP Adv. 1(3), 032133 (2011).
[Crossref]

Wu, S. T.

Y. Chen and S. T. Wu, “Recent advances on polymer-stabilized blue phase liquid crystal materials and devices,” J. Appl. Polym. Sci. 131(13), 40556 (2014).
[Crossref]

L. Rao, J. Yan, S. T. Wu, S. Yamamoto, and Y. Haseba, “A large Kerr constant polymer-stabilized blue phase liquid crystal,” Appl. Phys. Lett. 98(8), 081109 (2011).
[Crossref]

Wu, Y.

Wu, Z. J.

X. W. Lin, J. B. Wu, W. Hu, Z. G. Zheng, Z. J. Wu, G. Zhu, F. Xu, B. Jin, and Y. Lu, “Self-polarizing terahertz liquid crystal phase shifter,” AIP Adv. 1(3), 032133 (2011).
[Crossref]

Xia, B.

B. Xia, X. He, X. Zheng, P. Qiu, W. Cheng, and X. Zeng, “Electrically induced light scattering performances of lanthanum-modified lead zirconate titanate transparent ceramics,” J. Electroceram. 29(3), 192–197 (2012).
[Crossref]

Xiong, X.

R. H. Fan, Y. Zhou, X. P. Ren, R. W. Peng, S. C. Jiang, D. H. Xu, X. Xiong, X. R. Huang, and M. Wang, “Freely tunable broadband polarization rotator for terahertz waves,” Adv. Mater. 27(7), 1201–1206 (2015).
[Crossref] [PubMed]

Xu, D. H.

R. H. Fan, Y. Zhou, X. P. Ren, R. W. Peng, S. C. Jiang, D. H. Xu, X. Xiong, X. R. Huang, and M. Wang, “Freely tunable broadband polarization rotator for terahertz waves,” Adv. Mater. 27(7), 1201–1206 (2015).
[Crossref] [PubMed]

Xu, F.

X. W. Lin, J. B. Wu, W. Hu, Z. G. Zheng, Z. J. Wu, G. Zhu, F. Xu, B. Jin, and Y. Lu, “Self-polarizing terahertz liquid crystal phase shifter,” AIP Adv. 1(3), 032133 (2011).
[Crossref]

Xu, Q. F.

J. Y. Ouyang, C. W. Chu, F. C. Chen, Q. F. Xu, and Y. Yang, “High-conductivity poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) film and its application in polymer optoelectronic devices,” Adv. Funct. Mater. 15(2), 203–208 (2005).
[Crossref]

Yamamoto, S.

L. Rao, J. Yan, S. T. Wu, S. Yamamoto, and Y. Haseba, “A large Kerr constant polymer-stabilized blue phase liquid crystal,” Appl. Phys. Lett. 98(8), 081109 (2011).
[Crossref]

Yamashita, M.

M. Yamashita, C. Otani, M. Shimizu, and H. Okuzaki, “Effect of solvent on carrier transport in poly (3, 4-ethylenedioxythiophene)/poly (4-styrenesulfonate) studied by terahertz and infrared-ultraviolet spectroscopy,” Appl. Phys. Lett. 99(14), 143307 (2011).
[Crossref]

M. Yamashita, C. Otani, M. Shimizu, and H. Okuzaki, “Effect of solvent on carrier transport in Poly (3,4-ethylenedioxythiophene)/Poly (4-styrenesulfonate) studied by terahertz and infrared-ultraviolet spectroscopy,” Appl. Phys. Lett. 99(14), 143307 (2011).
[Crossref]

Yan, F.

Yan, J.

L. Rao, J. Yan, S. T. Wu, S. Yamamoto, and Y. Haseba, “A large Kerr constant polymer-stabilized blue phase liquid crystal,” Appl. Phys. Lett. 98(8), 081109 (2011).
[Crossref]

Yang, C. S.

Y. J. Chiang, C. S. Yang, Y. H. Yang, C. L. Pan, and T. J. Yen, “An ultrabroad terahertz bandpass filter based on multiple-resonance excitation of a composite metamaterial,” Appl. Phys. Lett. 99(19), 191909 (2011).
[Crossref]

Yang, H.

Yang, K. L.

Yang, M. Y.

S. Han, S. Hong, J. Ham, J. Yeo, J. Lee, B. Kang, P. Lee, J. Kwon, S. S. Lee, and M. Y. Yang, “The growth of biomedical terahertz research,” Adv. Mater. 26(33), 5808–5814 (2014).
[Crossref] [PubMed]

Yang, Y.

J. Y. Ouyang, C. W. Chu, F. C. Chen, Q. F. Xu, and Y. Yang, “High-conductivity poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) film and its application in polymer optoelectronic devices,” Adv. Funct. Mater. 15(2), 203–208 (2005).
[Crossref]

Yang, Y. H.

Y. J. Chiang, C. S. Yang, Y. H. Yang, C. L. Pan, and T. J. Yen, “An ultrabroad terahertz bandpass filter based on multiple-resonance excitation of a composite metamaterial,” Appl. Phys. Lett. 99(19), 191909 (2011).
[Crossref]

Yen, T. J.

Y. J. Chiang, C. S. Yang, Y. H. Yang, C. L. Pan, and T. J. Yen, “An ultrabroad terahertz bandpass filter based on multiple-resonance excitation of a composite metamaterial,” Appl. Phys. Lett. 99(19), 191909 (2011).
[Crossref]

Yeo, J.

S. Han, S. Hong, J. Ham, J. Yeo, J. Lee, B. Kang, P. Lee, J. Kwon, S. S. Lee, and M. Y. Yang, “The growth of biomedical terahertz research,” Adv. Mater. 26(33), 5808–5814 (2014).
[Crossref] [PubMed]

Yu, P. C.

C. W. Chen, Y. C. Lin, C. H. Chang, P. C. Yu, J. M. Shieh, and C. L. Pan, “Frequency-dependent complex conductivities and dielectric responses of indium tin oxide thin films from the visible to the far-infrared,” IEEE J. Quantum Electron. 46(12), 1746–1754 (2010).
[Crossref]

Yun, D. J.

D. J. Yun and S. W. Rhee, “Composite films of oxidized multiwall carbon nanotube and poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS) as a contact electrode for transistor and inverter devices,” ACS Appl. Mater. Interfaces 4(2), 982–989 (2012).
[Crossref] [PubMed]

Zeng, X.

B. Xia, X. He, X. Zheng, P. Qiu, W. Cheng, and X. Zeng, “Electrically induced light scattering performances of lanthanum-modified lead zirconate titanate transparent ceramics,” J. Electroceram. 29(3), 192–197 (2012).
[Crossref]

Zhang, L.

I. Chatzakis, P. Tassin, L. Luo, N. H. Shen, L. Zhang, J. Wang, T. Koschny, and C. M. Soukoulis, “One- and two-dimensional photo-imprinted diffraction gratings for manipulating terahertz waves,” Appl. Phys. Lett. 103(4), 043101 (2013).
[Crossref]

Zhang, X.

Zhao, L. Y.

J. P. Thomas, L. Y. Zhao, D. McGillivray, and K. T. Leung, “High-efficiency hybrid solar cells by nanostructural modification in PEDOT: PSS with co-solvent addition,” J. Mater. Chem. A Mater. Energy Sustain. 2(7), 2383–2389 (2014).
[Crossref]

Zheng, X.

B. Xia, X. He, X. Zheng, P. Qiu, W. Cheng, and X. Zeng, “Electrically induced light scattering performances of lanthanum-modified lead zirconate titanate transparent ceramics,” J. Electroceram. 29(3), 192–197 (2012).
[Crossref]

Zheng, Z. G.

X. W. Lin, J. B. Wu, W. Hu, Z. G. Zheng, Z. J. Wu, G. Zhu, F. Xu, B. Jin, and Y. Lu, “Self-polarizing terahertz liquid crystal phase shifter,” AIP Adv. 1(3), 032133 (2011).
[Crossref]

Zhou, Y.

R. H. Fan, Y. Zhou, X. P. Ren, R. W. Peng, S. C. Jiang, D. H. Xu, X. Xiong, X. R. Huang, and M. Wang, “Freely tunable broadband polarization rotator for terahertz waves,” Adv. Mater. 27(7), 1201–1206 (2015).
[Crossref] [PubMed]

Zhu, G.

X. W. Lin, J. B. Wu, W. Hu, Z. G. Zheng, Z. J. Wu, G. Zhu, F. Xu, B. Jin, and Y. Lu, “Self-polarizing terahertz liquid crystal phase shifter,” AIP Adv. 1(3), 032133 (2011).
[Crossref]

ACS Appl. Mater. Interfaces (1)

D. J. Yun and S. W. Rhee, “Composite films of oxidized multiwall carbon nanotube and poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS) as a contact electrode for transistor and inverter devices,” ACS Appl. Mater. Interfaces 4(2), 982–989 (2012).
[Crossref] [PubMed]

Adv. Funct. Mater. (3)

Y. H. Kim, C. Sachse, M. L. Machala, C. May, L. Müller-Meskamp, and K. Leo, “Highly conductive PEDOT:PSS electrode with optimized solvent and thermal post-treatment for ITO-free orgnic solar cells,” Adv. Funct. Mater. 21(6), 1076–1081 (2011).
[Crossref]

J. Y. Ouyang, C. W. Chu, F. C. Chen, Q. F. Xu, and Y. Yang, “High-conductivity poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) film and its application in polymer optoelectronic devices,” Adv. Funct. Mater. 15(2), 203–208 (2005).
[Crossref]

M. Vosgueritchian, D. J. Lipomi, and Z. N. Bao, “Highly conductive and transparent PEDOT:PSS films with a fluorosurfactant for stretchable and flexible transparent electrodes,” Adv. Funct. Mater. 22(2), 421–428 (2012).
[Crossref]

Adv. Mater. (6)

G. Heywang and F. Jonas, “Poly(alkylenedioxythiophene)s—new, very stable conducing polymers,” Adv. Mater. 4(2), 116–118 (1992).
[Crossref]

P. Kuang, J. M. Park, W. Leung, R. C. Mahadevapuram, K. S. Nalwa, T. G. Kim, S. Chaudhary, K. M. Ho, and K. Constant, “A new architecture for transparent electrodes: relieving the trade-off between electrical conductivity and optical transmittance,” Adv. Mater. 23(21), 2469–2473 (2011).
[Crossref] [PubMed]

Y. Hisakado, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro-optic Kerr effect in polymer-stabilized liquid-crystalline blue phases,” Adv. Mater. 17(1), 96–98 (2005).
[Crossref]

R. H. Fan, Y. Zhou, X. P. Ren, R. W. Peng, S. C. Jiang, D. H. Xu, X. Xiong, X. R. Huang, and M. Wang, “Freely tunable broadband polarization rotator for terahertz waves,” Adv. Mater. 27(7), 1201–1206 (2015).
[Crossref] [PubMed]

P. A. Levermore, L. C. Chen, X. H. Wang, R. Das, and D. D. C. Bradley, “Highly conductive poly(3,4-ethylenedioxythiophene) films by vapor phase polymerization for application in efficient organic light-emitting diodes,” Adv. Mater. 19(17), 2379–2385 (2007).
[Crossref]

S. Han, S. Hong, J. Ham, J. Yeo, J. Lee, B. Kang, P. Lee, J. Kwon, S. S. Lee, and M. Y. Yang, “The growth of biomedical terahertz research,” Adv. Mater. 26(33), 5808–5814 (2014).
[Crossref] [PubMed]

AIP Adv. (2)

X. W. Lin, J. B. Wu, W. Hu, Z. G. Zheng, Z. J. Wu, G. Zhu, F. Xu, B. Jin, and Y. Lu, “Self-polarizing terahertz liquid crystal phase shifter,” AIP Adv. 1(3), 032133 (2011).
[Crossref]

D. Micheli, R. Pastore, G. Gradoni, and M. Marchetti, “Tunable nanostructured composite with built-in metallic wire-grid electrode,” AIP Adv. 3(11), 112132 (2013).
[Crossref]

Appl. Phys. Lett. (7)

D. R. Cairns, R. P. Witte, D. K. Sparacin, S. M. Sachsman, D. C. Paine, G. P. Crawford, and R. R. Newton, “Strain-dependent electrical resistance of tin-doped indium oxide on polymer substrates,” Appl. Phys. Lett. 76(11), 1425–1427 (2000).
[Crossref]

M. Yamashita, C. Otani, M. Shimizu, and H. Okuzaki, “Effect of solvent on carrier transport in poly (3, 4-ethylenedioxythiophene)/poly (4-styrenesulfonate) studied by terahertz and infrared-ultraviolet spectroscopy,” Appl. Phys. Lett. 99(14), 143307 (2011).
[Crossref]

L. Rao, J. Yan, S. T. Wu, S. Yamamoto, and Y. Haseba, “A large Kerr constant polymer-stabilized blue phase liquid crystal,” Appl. Phys. Lett. 98(8), 081109 (2011).
[Crossref]

M. Yamashita, C. Otani, M. Shimizu, and H. Okuzaki, “Effect of solvent on carrier transport in Poly (3,4-ethylenedioxythiophene)/Poly (4-styrenesulfonate) studied by terahertz and infrared-ultraviolet spectroscopy,” Appl. Phys. Lett. 99(14), 143307 (2011).
[Crossref]

I. Chatzakis, P. Tassin, L. Luo, N. H. Shen, L. Zhang, J. Wang, T. Koschny, and C. M. Soukoulis, “One- and two-dimensional photo-imprinted diffraction gratings for manipulating terahertz waves,” Appl. Phys. Lett. 103(4), 043101 (2013).
[Crossref]

E. Dadrasnia, F. Garet, D. Lee, J. L. Goutaz, S. Baik, and H. Lamela, “Electrical characterization of silver nanowire-graphene hybrid films from terahertz transmission and reflection measurements,” Appl. Phys. Lett. 105(1), 011101 (2014).
[Crossref]

Y. J. Chiang, C. S. Yang, Y. H. Yang, C. L. Pan, and T. J. Yen, “An ultrabroad terahertz bandpass filter based on multiple-resonance excitation of a composite metamaterial,” Appl. Phys. Lett. 99(19), 191909 (2011).
[Crossref]

Appl. Surf. Sci. (1)

D. H. Kim, M. R. Park, H. J. Lee, and G. H. Lee, “Thickness dependence of electrical properties of ITO film deposited on a plastic substrate by RF magnetron sputtering,” Appl. Surf. Sci. 253(2), 409–411 (2006).
[Crossref]

Chem. Mater. (1)

X. Crispin, F. L. E. Jakobsson, A. Crispin, P. C. M. Grim, P. Andersson, A. Volodin, C. van Haesendonck, M. Van der Auweraer, W. R. Salaneck, and M. Berggren, “The origin of the high conductivity of poly (3, 4-ethylenedioxythiophene)-poly (styrenesulfonate)(PEDOT-PSS) plastic electrodes,” Chem. Mater. 18(18), 4354–4360 (2006).
[Crossref]

IEEE J. Quantum Electron. (1)

C. W. Chen, Y. C. Lin, C. H. Chang, P. C. Yu, J. M. Shieh, and C. L. Pan, “Frequency-dependent complex conductivities and dielectric responses of indium tin oxide thin films from the visible to the far-infrared,” IEEE J. Quantum Electron. 46(12), 1746–1754 (2010).
[Crossref]

IEEE Photonics Technol. Lett. (1)

H. Y. Wu, C. F. Hsieh, T. T. Tang, R. P. Pan, and C. L. Pan, “Electrically tunable room-temperature 2π liquid crystal terahertz phase shifter,” IEEE Photonics Technol. Lett. 18(13–16), 1488–1490 (2006).

J. Appl. Polym. Sci. (1)

Y. Chen and S. T. Wu, “Recent advances on polymer-stabilized blue phase liquid crystal materials and devices,” J. Appl. Polym. Sci. 131(13), 40556 (2014).
[Crossref]

J. Electroceram. (1)

B. Xia, X. He, X. Zheng, P. Qiu, W. Cheng, and X. Zeng, “Electrically induced light scattering performances of lanthanum-modified lead zirconate titanate transparent ceramics,” J. Electroceram. 29(3), 192–197 (2012).
[Crossref]

J. Infrared. Milli. Terahz. Waves. (1)

N. Vieweg, N. Born, I. Al Naib, and M. Koch, “Electrically tunable terahertz notch filters,” J. Infrared. Milli. Terahz. Waves. 33(3), 327–332 (2012).
[Crossref]

J. Mater. Chem. A Mater. Energy Sustain. (1)

J. P. Thomas, L. Y. Zhao, D. McGillivray, and K. T. Leung, “High-efficiency hybrid solar cells by nanostructural modification in PEDOT: PSS with co-solvent addition,” J. Mater. Chem. A Mater. Energy Sustain. 2(7), 2383–2389 (2014).
[Crossref]

J. Phys. D. (1)

S. Fan, Y. He, B. S. Ung, and E. Pickwell-MacPherson, “The growth of biomedical terahertz research,” J. Phys. D. 47(37), 374009 (2014).
[Crossref]

Nat. Photonics (1)

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “Highly selective terahertz bandpass filters based on trapped mode excitation,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

Opt. Express (5)

Opt. Lett. (2)

Synth. Met. (1)

J. Y. Kim, J. H. Jung, D. E. Lee, and J. Joo, “Enhancement of electrical conductivity of poly (3, 4-ethylenedioxythiophene)/poly (4-styrenesulfonate) by a change of solvent,” Synth. Met. 126(2-3), 311–316 (2002).
[Crossref]

Other (1)

L. H. Hsu, C. C. Lin, H. Y. Lee, J. K. Huang, H. V. Han, Y. L. Tsai, P. Yu, H. C. Kuo, and C. T. Lee, “Enhanced light harvesting of nitride-based nanopillars covered with ZnO using indium–tin oxide nanowhiskers,” Jap. J. Appl. Phys. 53(4S), 04ER10 (2014).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 2D and 3D AFM height images of PEDOT:PSS doped with (a,b) 5, (c,d) 10, or (e,f) 15 vol% DMSO.
Fig. 2
Fig. 2 Transmittance of single layer, bi-layer and tri-layer PEDOT:PSS films doped with (a) 5, (b) 10 or (c) 15 vol% DMSO. (d) Transmission of single-layer PEDOT:PSS films doped with among 5, 10 or 15 vol% DMSO (σ = 3137, 3678,5078 S/cm, respectively).
Fig. 3
Fig. 3 (a) Electrically induced light scattering performances measurement system for the BPLC modulator. (b) Waveform of the input signal (black curve) and output signal with different polarized directions of the analyzer (colored curve). (c) Output signal produced under different applied voltages when the polarizer and analyzer directions are parallel.

Tables (1)

Tables Icon

Table 1 PEDOT:PSS and ITO sample thickness and conductivity

Metrics