Abstract

The powerful ultrafast laser inscription technique is used to fabricate optical waveguides in gallium lanthanum sulphide substrates. For the first time the refractive index profile and the dispersion of such ultrafast laser inscribed waveguides are experimentally measured. In addition the Zero Dispersion Wavelength of both the waveguides and bulk substrate is experimentally determined. The Zero Dispersion Wavelength was determined to be between 3.66 and 3.71 μm for the waveguides and about 3.61 μm for the bulk. This work paves the way for realizing ultrafast laser inscribed waveguide devices in gallium lanthanum sulphide glasses for near and mid-IR applications.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Nonlinear refractive index of ultrafast laser inscribed waveguides in gallium lanthanum sulphide

Giorgos Demetriou, Daniel W. Hewak, Andrea Ravagli, Chris Craig, and Ajoy Kar
Appl. Opt. 56(19) 5407-5411 (2017)

Mid-infrared spectral broadening in an ultrafast laser inscribed gallium lanthanum sulphide waveguide

John E. McCarthy, Henry T. Bookey, Nicholas D. Psaila, Robert R. Thomson, and Ajoy K. Kar
Opt. Express 20(2) 1545-1551 (2012)

Mid-Infrared Volume Phase Gratings Manufactured using Ultrafast Laser Inscription

David G. MacLachlan, Robert R. Thomson, Colin R. Cunningham, and David Lee
Opt. Mater. Express 3(10) 1616-1624 (2013)

References

  • View by:
  • |
  • |
  • |

  1. R. E. Simpson, A. Mairaj, R. J. Curry, C.-C. Huang, K. Knight, N. Sessions, M. Hassan, and D. W. Hewak, “Electrical phase change of Ga:La:S:Cu films,” Electron. Lett. 43(15), 830–832 (2007).
    [Crossref]
  2. Y. E. Romanyuk, H. Hagendorfer, P. Stücheli, P. Fuchs, A. R. Uhl, C. M. Sutter-Fella, M. Werner, S. Haass, J. Stückelberger, C. Broussillou, P.-P. Grand, V. Bermudez, and A. N. Tiwari, “All Solution-Processed Chalcogenide Solar Cells – from Single Functional Layers Towards a 13.8% Efficient CIGS Device,” Adv. Funct. Mater. 25(1), 12–27 (2015).
    [Crossref]
  3. J. Hu, V. Tarasov, A. Agarwal, L. Kimerling, N. Carlie, L. Petit, and K. Richardson, “Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor,” Opt. Express 15(5), 2307–2314 (2007).
    [Crossref] [PubMed]
  4. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).
  5. J. R. Macdonald, R. R. Thomson, S. J. Beecher, N. D. Psaila, H. T. Bookey, and A. K. Kar, “Ultrafast laser inscription of near-infrared waveguides in polycrystalline ZnSe,” Opt. Lett. 35(23), 4036–4038 (2010).
    [Crossref] [PubMed]
  6. J. Hodgkinson and R. P. Tatam, “Optical gas sensing: a review,” Meas. Sci. Technol. 24(1), 012004 (2013).
    [Crossref]
  7. P. Lucas, M. A. Solis, D. L. Coq, C. Juncker, M. R. Riley, J. Collier, D. E. Boesewetter, C. Boussard-Plédel, and B. Bureau, “Infrared biosensors using hydrophobic chalcogenide fibers sensitized with live cells,” Sens. Actuators B Chem. 119(2), 355–362 (2006).
    [Crossref]
  8. A. Ródenas, G. Martin, B. Arezki, N. Psaila, G. Jose, A. Jha, L. Labadie, P. Kern, A. Kar, and R. Thomson, “Three-dimensional mid-infrared photonic circuits in chalcogenide glass,” Opt. Lett. 37(3), 392–394 (2012).
    [Crossref] [PubMed]
  9. J. McCarthy, H. Bookey, S. Beecher, R. Lamb, I. Elder, and A. K. Kar, “Spectrally tailored mid-infrared super-continuum generation in a buried waveguide spanning 1750 nm to 5000 nm for atmospheric transmission,” Appl. Phys. Lett. 103(15), 151103 (2013).
    [Crossref]
  10. C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
    [Crossref]
  11. N. D. Psaila, R. R. Thomson, H. T. Bookey, S. Shen, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and A. K. Kar, “Supercontinuum generation in an ultrafast laser inscribed chalcogenide glass waveguide,” Opt. Express 15(24), 15776–15781 (2007).
    [Crossref] [PubMed]
  12. J. E. McCarthy, H. T. Bookey, N. D. Psaila, R. R. Thomson, and A. K. Kar, “Mid-infrared spectral broadening in an ultrafast laser inscribed gallium lanthanum sulphide waveguide,” Opt. Express 20(2), 1545–1551 (2012).
    [Crossref] [PubMed]
  13. T. Schweizer, D. Brady, and D. W. Hewak, “Fabrication and spectroscopy of erbium doped gallium lanthanum sulphide glass fibres for mid-infrared laser applications,” Opt. Express 1(4), 102–107 (1997).
    [Crossref] [PubMed]
  14. G. Demetriou, F. Thorburn, A. Lancaster, C. Craig, E. Weatherby, D. W. Hewak, and A. Kar, “Fluorescence in Erbium Doped Gallium Lanthanum Sulphide: Potential for mid-IR Waveguide Laser,” in CLEO:2015, OSA 2015), STh1G.2.
  15. J. R. Macdonald, S. J. Beecher, P. A. Berry, K. L. Schepler, and A. K. Kar, “Compact mid-infrared Cr:ZnSe channel waveguide laser,” Appl. Phys. Lett. 102(16), 161110 (2013).
    [Crossref]
  16. A. Lancaster, G. Cook, S. A. McDaniel, J. Evans, P. A. Berry, J. D. Shephard, and A. K. Kar, “Mid-infrared laser emission from Fe:ZnSe cladding waveguides,” Appl. Phys. Lett. 107(3), 031108 (2015).
    [Crossref]
  17. A. K. Mairaj, A. M. Chardon, D. P. Shepherd, and D. W. Hewak, “Laser performance and spectroscopic analysis of optically written channel waveguides in neodymium-doped gallium lanthanum sulphide glass,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1381–1388 (2002).
    [Crossref]
  18. J. A. Frantz, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Waveguide amplifiers in sputtered films of Er3+-doped gallium lanthanum sulfide glass,” Opt. Express 14(5), 1797–1803 (2006).
    [Crossref] [PubMed]
  19. K. S. Bindra, H. T. Bookey, A. K. Kar, B. S. Wherrett, X. Liu, and A. Jha, “Nonlinear optical properties of chalcogenide glasses: Observation of multiphoton absorption,” Appl. Phys. Lett. 79(13), 1939–1941 (2001).
    [Crossref]
  20. M. Asobe, T. Kanamori, and K. Kubodera, “Ultrafast all-optical switching using highly nonlinear chalcogenide glass fiber,” IEEE Photonics Technol. Lett. 4(4), 362–365 (1992).
    [Crossref]
  21. M. Asobe, T. Ohara, I. Yokohama, and T. Kaino, “Low power all-optical switching in a nonlinear optical loop mirror using chalcogenide glass fibre,” Electron. Lett. 32(15), 1396–1397 (1996).
    [Crossref]
  22. T. D. Vo, H. Hu, M. Galili, E. Palushani, J. Xu, L. K. Oxenløwe, S. J. Madden, D. Y. Choi, D. A. P. Bulla, M. D. Pelusi, J. Schröder, B. Luther-Davies, and B. J. Eggleton, “Photonic chip based transmitter optimization and receiver demultiplexing of a 1.28 Tbit/s OTDM signal,” Opt. Express 18(16), 17252–17261 (2010).
    [Crossref] [PubMed]
  23. M. D. Pelusi, V. G. Ta’eed, F. Libin, E. Magi, M. R. E. Lamont, S. Madden, C. Duk-Yong, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Applications of Highly-Nonlinear Chalcogenide Glass Devices Tailored for High-Speed All-Optical Signal Processing,” IEEE J. Sel. Top. Quantum. Electron.  14(3), 529–539 (2008).
    [Crossref]
  24. D. W. Hewak, R. C. Moore, T. Schweizer, J. Wang, B. Samson, W. S. Brocklesby, D. N. Payne, and E. J. Tarbox, “Gallium lanthanum sulphide optical fibre for active and passive applications,” Electron. Lett. 32(4), 384 (1996).
    [Crossref]
  25. P. Bastock, C. Craig, K. Khan, E. Weatherby, J. Yao, and D. W. Hewak, “Properties of Gallium Lanthanum Sulphide Glass,” in CLEO:2015, OSA 2015), STh1G.1.
  26. C. C. Huang, D. Hewak, and J. Badding, “Deposition and characterization of germanium sulphide glass planar waveguides,” Opt. Express 12(11), 2501–2506 (2004).
    [Crossref] [PubMed]
  27. Z. G. Lian, W. Pan, D. Furniss, T. M. Benson, A. B. Seddon, T. Kohoutek, J. Orava, and T. Wagner, “Embossing of chalcogenide glasses: monomode rib optical waveguides in evaporated thin films,” Opt. Lett. 34(8), 1234–1236 (2009).
    [Crossref] [PubMed]
  28. K. E. Youden, T. Grevatt, R. W. Eason, H. N. Rutt, R. S. Deol, and G. Wylangowski, “Pulsed laser deposition of Ga‐La‐S chalcogenide glass thin film optical waveguides,” Appl. Phys. Lett. 63(12), 1601–1603 (1993).
    [Crossref]
  29. D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photonics Rev. 8(6), 827–846 (2014).
    [Crossref]
  30. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
    [Crossref] [PubMed]
  31. R. R. Thomson, H. T. Bookey, N. D. Psaila, A. Fender, S. Campbell, W. N. Macpherson, J. S. Barton, D. T. Reid, and A. K. Kar, “Ultrafast-laser inscription of a three dimensional fan-out device for multicore fiber coupling applications,” Opt. Express 15(18), 11691–11697 (2007).
    [Crossref] [PubMed]
  32. H. T. Bookey, R. R. Thomson, N. D. Psaila, A. K. Kar, N. Chiodo, R. Osellame, and G. Cerullo, “Femtosecond Laser Inscription of Low Insertion Loss Waveguides in Z-Cut Lithium Niobate,” IEEE Photonics Technol. Lett. 19(12), 892–894 (2007).
    [Crossref]
  33. R. R. Thomson, T. A. Birks, S. G. Leon-Saval, A. K. Kar, and J. Bland-Hawthorn, “Ultrafast laser inscription of an integrated photonic lantern,” Opt. Express 19(6), 5698–5705 (2011).
    [Crossref] [PubMed]
  34. Y. Nasu, M. Kohtoku, and Y. Hibino, “Low-loss waveguides written with a femtosecond laser for flexible interconnection in a planar light-wave circuit,” Opt. Lett. 30(7), 723–725 (2005).
    [Crossref] [PubMed]
  35. R. Mary, D. Choudhury, and A. K. Kar, “Applications of Fiber Lasers for the Development of Compact Photonic Devices,” IEEE J. Sel. Top. Quantum. Electron 20(5), 72–84 (2014).
    [Crossref]
  36. A. Roberts, E. Ampem-Lassen, A. Barty, K. A. Nugent, G. W. Baxter, N. M. Dragomir, and S. T. Huntington, “Refractive-index profiling of optical fibers with axial symmetry by use of quantitative phase microscopy,” Opt. Lett. 27(23), 2061–2063 (2002).
    [Crossref] [PubMed]
  37. M. Kalal and K. A. Nugent, “Abel inversion using fast Fourier transforms,” Appl. Opt. 27(10), 1956–1959 (1988).
    [Crossref] [PubMed]
  38. C. W. Ponader, J. F. Schroeder, and A. M. Streltsov, “Origin of the refractive-index increase in laser-written waveguides in glasses,” J. Appl. Phys. 103(6), 063516 (2008).
    [Crossref]
  39. V. R. Bhardwaj, P. B. Corkum, D. M. Rayner, C. Hnatovsky, E. Simova, and R. S. Taylor, “Stress in femtosecond-laser-written waveguides in fused silica,” Opt. Lett. 29(12), 1312–1314 (2004).
    [Crossref] [PubMed]
  40. P. Hlubina, D. Ciprian, and M. Kadulová, “Measurement of chromatic dispersion of polarization modes in optical fibres using white-light spectral interferometry,” Meas. Sci. Technol. 21(4), 045302 (2010).
    [Crossref]

2015 (2)

Y. E. Romanyuk, H. Hagendorfer, P. Stücheli, P. Fuchs, A. R. Uhl, C. M. Sutter-Fella, M. Werner, S. Haass, J. Stückelberger, C. Broussillou, P.-P. Grand, V. Bermudez, and A. N. Tiwari, “All Solution-Processed Chalcogenide Solar Cells – from Single Functional Layers Towards a 13.8% Efficient CIGS Device,” Adv. Funct. Mater. 25(1), 12–27 (2015).
[Crossref]

A. Lancaster, G. Cook, S. A. McDaniel, J. Evans, P. A. Berry, J. D. Shephard, and A. K. Kar, “Mid-infrared laser emission from Fe:ZnSe cladding waveguides,” Appl. Phys. Lett. 107(3), 031108 (2015).
[Crossref]

2014 (3)

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photonics Rev. 8(6), 827–846 (2014).
[Crossref]

R. Mary, D. Choudhury, and A. K. Kar, “Applications of Fiber Lasers for the Development of Compact Photonic Devices,” IEEE J. Sel. Top. Quantum. Electron 20(5), 72–84 (2014).
[Crossref]

2013 (3)

J. Hodgkinson and R. P. Tatam, “Optical gas sensing: a review,” Meas. Sci. Technol. 24(1), 012004 (2013).
[Crossref]

J. R. Macdonald, S. J. Beecher, P. A. Berry, K. L. Schepler, and A. K. Kar, “Compact mid-infrared Cr:ZnSe channel waveguide laser,” Appl. Phys. Lett. 102(16), 161110 (2013).
[Crossref]

J. McCarthy, H. Bookey, S. Beecher, R. Lamb, I. Elder, and A. K. Kar, “Spectrally tailored mid-infrared super-continuum generation in a buried waveguide spanning 1750 nm to 5000 nm for atmospheric transmission,” Appl. Phys. Lett. 103(15), 151103 (2013).
[Crossref]

2012 (2)

2011 (2)

2010 (3)

2009 (1)

2008 (2)

C. W. Ponader, J. F. Schroeder, and A. M. Streltsov, “Origin of the refractive-index increase in laser-written waveguides in glasses,” J. Appl. Phys. 103(6), 063516 (2008).
[Crossref]

M. D. Pelusi, V. G. Ta’eed, F. Libin, E. Magi, M. R. E. Lamont, S. Madden, C. Duk-Yong, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Applications of Highly-Nonlinear Chalcogenide Glass Devices Tailored for High-Speed All-Optical Signal Processing,” IEEE J. Sel. Top. Quantum. Electron.  14(3), 529–539 (2008).
[Crossref]

2007 (5)

2006 (2)

J. A. Frantz, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Waveguide amplifiers in sputtered films of Er3+-doped gallium lanthanum sulfide glass,” Opt. Express 14(5), 1797–1803 (2006).
[Crossref] [PubMed]

P. Lucas, M. A. Solis, D. L. Coq, C. Juncker, M. R. Riley, J. Collier, D. E. Boesewetter, C. Boussard-Plédel, and B. Bureau, “Infrared biosensors using hydrophobic chalcogenide fibers sensitized with live cells,” Sens. Actuators B Chem. 119(2), 355–362 (2006).
[Crossref]

2005 (1)

2004 (2)

2002 (2)

A. Roberts, E. Ampem-Lassen, A. Barty, K. A. Nugent, G. W. Baxter, N. M. Dragomir, and S. T. Huntington, “Refractive-index profiling of optical fibers with axial symmetry by use of quantitative phase microscopy,” Opt. Lett. 27(23), 2061–2063 (2002).
[Crossref] [PubMed]

A. K. Mairaj, A. M. Chardon, D. P. Shepherd, and D. W. Hewak, “Laser performance and spectroscopic analysis of optically written channel waveguides in neodymium-doped gallium lanthanum sulphide glass,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1381–1388 (2002).
[Crossref]

2001 (1)

K. S. Bindra, H. T. Bookey, A. K. Kar, B. S. Wherrett, X. Liu, and A. Jha, “Nonlinear optical properties of chalcogenide glasses: Observation of multiphoton absorption,” Appl. Phys. Lett. 79(13), 1939–1941 (2001).
[Crossref]

1997 (1)

1996 (3)

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
[Crossref] [PubMed]

M. Asobe, T. Ohara, I. Yokohama, and T. Kaino, “Low power all-optical switching in a nonlinear optical loop mirror using chalcogenide glass fibre,” Electron. Lett. 32(15), 1396–1397 (1996).
[Crossref]

D. W. Hewak, R. C. Moore, T. Schweizer, J. Wang, B. Samson, W. S. Brocklesby, D. N. Payne, and E. J. Tarbox, “Gallium lanthanum sulphide optical fibre for active and passive applications,” Electron. Lett. 32(4), 384 (1996).
[Crossref]

1993 (1)

K. E. Youden, T. Grevatt, R. W. Eason, H. N. Rutt, R. S. Deol, and G. Wylangowski, “Pulsed laser deposition of Ga‐La‐S chalcogenide glass thin film optical waveguides,” Appl. Phys. Lett. 63(12), 1601–1603 (1993).
[Crossref]

1992 (1)

M. Asobe, T. Kanamori, and K. Kubodera, “Ultrafast all-optical switching using highly nonlinear chalcogenide glass fiber,” IEEE Photonics Technol. Lett. 4(4), 362–365 (1992).
[Crossref]

1988 (1)

Abdel-Moneim, N.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Agarwal, A.

Aggarwal, I. D.

Ampem-Lassen, E.

Arezki, B.

Asobe, M.

M. Asobe, T. Ohara, I. Yokohama, and T. Kaino, “Low power all-optical switching in a nonlinear optical loop mirror using chalcogenide glass fibre,” Electron. Lett. 32(15), 1396–1397 (1996).
[Crossref]

M. Asobe, T. Kanamori, and K. Kubodera, “Ultrafast all-optical switching using highly nonlinear chalcogenide glass fiber,” IEEE Photonics Technol. Lett. 4(4), 362–365 (1992).
[Crossref]

Badding, J.

Bang, O.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Barton, J. S.

Barty, A.

Baxter, G. W.

Beecher, S.

J. McCarthy, H. Bookey, S. Beecher, R. Lamb, I. Elder, and A. K. Kar, “Spectrally tailored mid-infrared super-continuum generation in a buried waveguide spanning 1750 nm to 5000 nm for atmospheric transmission,” Appl. Phys. Lett. 103(15), 151103 (2013).
[Crossref]

Beecher, S. J.

J. R. Macdonald, S. J. Beecher, P. A. Berry, K. L. Schepler, and A. K. Kar, “Compact mid-infrared Cr:ZnSe channel waveguide laser,” Appl. Phys. Lett. 102(16), 161110 (2013).
[Crossref]

J. R. Macdonald, R. R. Thomson, S. J. Beecher, N. D. Psaila, H. T. Bookey, and A. K. Kar, “Ultrafast laser inscription of near-infrared waveguides in polycrystalline ZnSe,” Opt. Lett. 35(23), 4036–4038 (2010).
[Crossref] [PubMed]

Benson, T.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Benson, T. M.

Bermudez, V.

Y. E. Romanyuk, H. Hagendorfer, P. Stücheli, P. Fuchs, A. R. Uhl, C. M. Sutter-Fella, M. Werner, S. Haass, J. Stückelberger, C. Broussillou, P.-P. Grand, V. Bermudez, and A. N. Tiwari, “All Solution-Processed Chalcogenide Solar Cells – from Single Functional Layers Towards a 13.8% Efficient CIGS Device,” Adv. Funct. Mater. 25(1), 12–27 (2015).
[Crossref]

Berry, P. A.

A. Lancaster, G. Cook, S. A. McDaniel, J. Evans, P. A. Berry, J. D. Shephard, and A. K. Kar, “Mid-infrared laser emission from Fe:ZnSe cladding waveguides,” Appl. Phys. Lett. 107(3), 031108 (2015).
[Crossref]

J. R. Macdonald, S. J. Beecher, P. A. Berry, K. L. Schepler, and A. K. Kar, “Compact mid-infrared Cr:ZnSe channel waveguide laser,” Appl. Phys. Lett. 102(16), 161110 (2013).
[Crossref]

Bhardwaj, V. R.

Bindra, K. S.

K. S. Bindra, H. T. Bookey, A. K. Kar, B. S. Wherrett, X. Liu, and A. Jha, “Nonlinear optical properties of chalcogenide glasses: Observation of multiphoton absorption,” Appl. Phys. Lett. 79(13), 1939–1941 (2001).
[Crossref]

Birks, T. A.

Bland-Hawthorn, J.

Boesewetter, D. E.

P. Lucas, M. A. Solis, D. L. Coq, C. Juncker, M. R. Riley, J. Collier, D. E. Boesewetter, C. Boussard-Plédel, and B. Bureau, “Infrared biosensors using hydrophobic chalcogenide fibers sensitized with live cells,” Sens. Actuators B Chem. 119(2), 355–362 (2006).
[Crossref]

Bookey, H.

J. McCarthy, H. Bookey, S. Beecher, R. Lamb, I. Elder, and A. K. Kar, “Spectrally tailored mid-infrared super-continuum generation in a buried waveguide spanning 1750 nm to 5000 nm for atmospheric transmission,” Appl. Phys. Lett. 103(15), 151103 (2013).
[Crossref]

Bookey, H. T.

J. E. McCarthy, H. T. Bookey, N. D. Psaila, R. R. Thomson, and A. K. Kar, “Mid-infrared spectral broadening in an ultrafast laser inscribed gallium lanthanum sulphide waveguide,” Opt. Express 20(2), 1545–1551 (2012).
[Crossref] [PubMed]

J. R. Macdonald, R. R. Thomson, S. J. Beecher, N. D. Psaila, H. T. Bookey, and A. K. Kar, “Ultrafast laser inscription of near-infrared waveguides in polycrystalline ZnSe,” Opt. Lett. 35(23), 4036–4038 (2010).
[Crossref] [PubMed]

N. D. Psaila, R. R. Thomson, H. T. Bookey, S. Shen, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and A. K. Kar, “Supercontinuum generation in an ultrafast laser inscribed chalcogenide glass waveguide,” Opt. Express 15(24), 15776–15781 (2007).
[Crossref] [PubMed]

R. R. Thomson, H. T. Bookey, N. D. Psaila, A. Fender, S. Campbell, W. N. Macpherson, J. S. Barton, D. T. Reid, and A. K. Kar, “Ultrafast-laser inscription of a three dimensional fan-out device for multicore fiber coupling applications,” Opt. Express 15(18), 11691–11697 (2007).
[Crossref] [PubMed]

H. T. Bookey, R. R. Thomson, N. D. Psaila, A. K. Kar, N. Chiodo, R. Osellame, and G. Cerullo, “Femtosecond Laser Inscription of Low Insertion Loss Waveguides in Z-Cut Lithium Niobate,” IEEE Photonics Technol. Lett. 19(12), 892–894 (2007).
[Crossref]

K. S. Bindra, H. T. Bookey, A. K. Kar, B. S. Wherrett, X. Liu, and A. Jha, “Nonlinear optical properties of chalcogenide glasses: Observation of multiphoton absorption,” Appl. Phys. Lett. 79(13), 1939–1941 (2001).
[Crossref]

Boussard-Plédel, C.

P. Lucas, M. A. Solis, D. L. Coq, C. Juncker, M. R. Riley, J. Collier, D. E. Boesewetter, C. Boussard-Plédel, and B. Bureau, “Infrared biosensors using hydrophobic chalcogenide fibers sensitized with live cells,” Sens. Actuators B Chem. 119(2), 355–362 (2006).
[Crossref]

Brady, D.

Brocklesby, W. S.

D. W. Hewak, R. C. Moore, T. Schweizer, J. Wang, B. Samson, W. S. Brocklesby, D. N. Payne, and E. J. Tarbox, “Gallium lanthanum sulphide optical fibre for active and passive applications,” Electron. Lett. 32(4), 384 (1996).
[Crossref]

Broussillou, C.

Y. E. Romanyuk, H. Hagendorfer, P. Stücheli, P. Fuchs, A. R. Uhl, C. M. Sutter-Fella, M. Werner, S. Haass, J. Stückelberger, C. Broussillou, P.-P. Grand, V. Bermudez, and A. N. Tiwari, “All Solution-Processed Chalcogenide Solar Cells – from Single Functional Layers Towards a 13.8% Efficient CIGS Device,” Adv. Funct. Mater. 25(1), 12–27 (2015).
[Crossref]

Bulla, D. A. P.

T. D. Vo, H. Hu, M. Galili, E. Palushani, J. Xu, L. K. Oxenløwe, S. J. Madden, D. Y. Choi, D. A. P. Bulla, M. D. Pelusi, J. Schröder, B. Luther-Davies, and B. J. Eggleton, “Photonic chip based transmitter optimization and receiver demultiplexing of a 1.28 Tbit/s OTDM signal,” Opt. Express 18(16), 17252–17261 (2010).
[Crossref] [PubMed]

M. D. Pelusi, V. G. Ta’eed, F. Libin, E. Magi, M. R. E. Lamont, S. Madden, C. Duk-Yong, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Applications of Highly-Nonlinear Chalcogenide Glass Devices Tailored for High-Speed All-Optical Signal Processing,” IEEE J. Sel. Top. Quantum. Electron.  14(3), 529–539 (2008).
[Crossref]

Bureau, B.

P. Lucas, M. A. Solis, D. L. Coq, C. Juncker, M. R. Riley, J. Collier, D. E. Boesewetter, C. Boussard-Plédel, and B. Bureau, “Infrared biosensors using hydrophobic chalcogenide fibers sensitized with live cells,” Sens. Actuators B Chem. 119(2), 355–362 (2006).
[Crossref]

Campbell, S.

Carlie, N.

Cerullo, G.

N. D. Psaila, R. R. Thomson, H. T. Bookey, S. Shen, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and A. K. Kar, “Supercontinuum generation in an ultrafast laser inscribed chalcogenide glass waveguide,” Opt. Express 15(24), 15776–15781 (2007).
[Crossref] [PubMed]

H. T. Bookey, R. R. Thomson, N. D. Psaila, A. K. Kar, N. Chiodo, R. Osellame, and G. Cerullo, “Femtosecond Laser Inscription of Low Insertion Loss Waveguides in Z-Cut Lithium Niobate,” IEEE Photonics Technol. Lett. 19(12), 892–894 (2007).
[Crossref]

Chardon, A. M.

A. K. Mairaj, A. M. Chardon, D. P. Shepherd, and D. W. Hewak, “Laser performance and spectroscopic analysis of optically written channel waveguides in neodymium-doped gallium lanthanum sulphide glass,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1381–1388 (2002).
[Crossref]

Chiodo, N.

H. T. Bookey, R. R. Thomson, N. D. Psaila, A. K. Kar, N. Chiodo, R. Osellame, and G. Cerullo, “Femtosecond Laser Inscription of Low Insertion Loss Waveguides in Z-Cut Lithium Niobate,” IEEE Photonics Technol. Lett. 19(12), 892–894 (2007).
[Crossref]

N. D. Psaila, R. R. Thomson, H. T. Bookey, S. Shen, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and A. K. Kar, “Supercontinuum generation in an ultrafast laser inscribed chalcogenide glass waveguide,” Opt. Express 15(24), 15776–15781 (2007).
[Crossref] [PubMed]

Choi, D. Y.

Choudhury, D.

R. Mary, D. Choudhury, and A. K. Kar, “Applications of Fiber Lasers for the Development of Compact Photonic Devices,” IEEE J. Sel. Top. Quantum. Electron 20(5), 72–84 (2014).
[Crossref]

D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photonics Rev. 8(6), 827–846 (2014).
[Crossref]

Ciprian, D.

P. Hlubina, D. Ciprian, and M. Kadulová, “Measurement of chromatic dispersion of polarization modes in optical fibres using white-light spectral interferometry,” Meas. Sci. Technol. 21(4), 045302 (2010).
[Crossref]

Collier, J.

P. Lucas, M. A. Solis, D. L. Coq, C. Juncker, M. R. Riley, J. Collier, D. E. Boesewetter, C. Boussard-Plédel, and B. Bureau, “Infrared biosensors using hydrophobic chalcogenide fibers sensitized with live cells,” Sens. Actuators B Chem. 119(2), 355–362 (2006).
[Crossref]

Cook, G.

A. Lancaster, G. Cook, S. A. McDaniel, J. Evans, P. A. Berry, J. D. Shephard, and A. K. Kar, “Mid-infrared laser emission from Fe:ZnSe cladding waveguides,” Appl. Phys. Lett. 107(3), 031108 (2015).
[Crossref]

Coq, D. L.

P. Lucas, M. A. Solis, D. L. Coq, C. Juncker, M. R. Riley, J. Collier, D. E. Boesewetter, C. Boussard-Plédel, and B. Bureau, “Infrared biosensors using hydrophobic chalcogenide fibers sensitized with live cells,” Sens. Actuators B Chem. 119(2), 355–362 (2006).
[Crossref]

Corkum, P. B.

Curry, R. J.

R. E. Simpson, A. Mairaj, R. J. Curry, C.-C. Huang, K. Knight, N. Sessions, M. Hassan, and D. W. Hewak, “Electrical phase change of Ga:La:S:Cu films,” Electron. Lett. 43(15), 830–832 (2007).
[Crossref]

Davis, K. M.

Deol, R. S.

K. E. Youden, T. Grevatt, R. W. Eason, H. N. Rutt, R. S. Deol, and G. Wylangowski, “Pulsed laser deposition of Ga‐La‐S chalcogenide glass thin film optical waveguides,” Appl. Phys. Lett. 63(12), 1601–1603 (1993).
[Crossref]

Dragomir, N. M.

Duk-Yong, C.

M. D. Pelusi, V. G. Ta’eed, F. Libin, E. Magi, M. R. E. Lamont, S. Madden, C. Duk-Yong, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Applications of Highly-Nonlinear Chalcogenide Glass Devices Tailored for High-Speed All-Optical Signal Processing,” IEEE J. Sel. Top. Quantum. Electron.  14(3), 529–539 (2008).
[Crossref]

Dupont, S.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Eason, R. W.

K. E. Youden, T. Grevatt, R. W. Eason, H. N. Rutt, R. S. Deol, and G. Wylangowski, “Pulsed laser deposition of Ga‐La‐S chalcogenide glass thin film optical waveguides,” Appl. Phys. Lett. 63(12), 1601–1603 (1993).
[Crossref]

Eggleton, B. J.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).

T. D. Vo, H. Hu, M. Galili, E. Palushani, J. Xu, L. K. Oxenløwe, S. J. Madden, D. Y. Choi, D. A. P. Bulla, M. D. Pelusi, J. Schröder, B. Luther-Davies, and B. J. Eggleton, “Photonic chip based transmitter optimization and receiver demultiplexing of a 1.28 Tbit/s OTDM signal,” Opt. Express 18(16), 17252–17261 (2010).
[Crossref] [PubMed]

M. D. Pelusi, V. G. Ta’eed, F. Libin, E. Magi, M. R. E. Lamont, S. Madden, C. Duk-Yong, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Applications of Highly-Nonlinear Chalcogenide Glass Devices Tailored for High-Speed All-Optical Signal Processing,” IEEE J. Sel. Top. Quantum. Electron.  14(3), 529–539 (2008).
[Crossref]

Elder, I.

J. McCarthy, H. Bookey, S. Beecher, R. Lamb, I. Elder, and A. K. Kar, “Spectrally tailored mid-infrared super-continuum generation in a buried waveguide spanning 1750 nm to 5000 nm for atmospheric transmission,” Appl. Phys. Lett. 103(15), 151103 (2013).
[Crossref]

Evans, J.

A. Lancaster, G. Cook, S. A. McDaniel, J. Evans, P. A. Berry, J. D. Shephard, and A. K. Kar, “Mid-infrared laser emission from Fe:ZnSe cladding waveguides,” Appl. Phys. Lett. 107(3), 031108 (2015).
[Crossref]

Fender, A.

Frantz, J. A.

Fuchs, P.

Y. E. Romanyuk, H. Hagendorfer, P. Stücheli, P. Fuchs, A. R. Uhl, C. M. Sutter-Fella, M. Werner, S. Haass, J. Stückelberger, C. Broussillou, P.-P. Grand, V. Bermudez, and A. N. Tiwari, “All Solution-Processed Chalcogenide Solar Cells – from Single Functional Layers Towards a 13.8% Efficient CIGS Device,” Adv. Funct. Mater. 25(1), 12–27 (2015).
[Crossref]

Furniss, D.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Z. G. Lian, W. Pan, D. Furniss, T. M. Benson, A. B. Seddon, T. Kohoutek, J. Orava, and T. Wagner, “Embossing of chalcogenide glasses: monomode rib optical waveguides in evaporated thin films,” Opt. Lett. 34(8), 1234–1236 (2009).
[Crossref] [PubMed]

Galili, M.

Grand, P.-P.

Y. E. Romanyuk, H. Hagendorfer, P. Stücheli, P. Fuchs, A. R. Uhl, C. M. Sutter-Fella, M. Werner, S. Haass, J. Stückelberger, C. Broussillou, P.-P. Grand, V. Bermudez, and A. N. Tiwari, “All Solution-Processed Chalcogenide Solar Cells – from Single Functional Layers Towards a 13.8% Efficient CIGS Device,” Adv. Funct. Mater. 25(1), 12–27 (2015).
[Crossref]

Grevatt, T.

K. E. Youden, T. Grevatt, R. W. Eason, H. N. Rutt, R. S. Deol, and G. Wylangowski, “Pulsed laser deposition of Ga‐La‐S chalcogenide glass thin film optical waveguides,” Appl. Phys. Lett. 63(12), 1601–1603 (1993).
[Crossref]

Haass, S.

Y. E. Romanyuk, H. Hagendorfer, P. Stücheli, P. Fuchs, A. R. Uhl, C. M. Sutter-Fella, M. Werner, S. Haass, J. Stückelberger, C. Broussillou, P.-P. Grand, V. Bermudez, and A. N. Tiwari, “All Solution-Processed Chalcogenide Solar Cells – from Single Functional Layers Towards a 13.8% Efficient CIGS Device,” Adv. Funct. Mater. 25(1), 12–27 (2015).
[Crossref]

Hagendorfer, H.

Y. E. Romanyuk, H. Hagendorfer, P. Stücheli, P. Fuchs, A. R. Uhl, C. M. Sutter-Fella, M. Werner, S. Haass, J. Stückelberger, C. Broussillou, P.-P. Grand, V. Bermudez, and A. N. Tiwari, “All Solution-Processed Chalcogenide Solar Cells – from Single Functional Layers Towards a 13.8% Efficient CIGS Device,” Adv. Funct. Mater. 25(1), 12–27 (2015).
[Crossref]

Hassan, M.

R. E. Simpson, A. Mairaj, R. J. Curry, C.-C. Huang, K. Knight, N. Sessions, M. Hassan, and D. W. Hewak, “Electrical phase change of Ga:La:S:Cu films,” Electron. Lett. 43(15), 830–832 (2007).
[Crossref]

Hewak, D.

Hewak, D. W.

R. E. Simpson, A. Mairaj, R. J. Curry, C.-C. Huang, K. Knight, N. Sessions, M. Hassan, and D. W. Hewak, “Electrical phase change of Ga:La:S:Cu films,” Electron. Lett. 43(15), 830–832 (2007).
[Crossref]

A. K. Mairaj, A. M. Chardon, D. P. Shepherd, and D. W. Hewak, “Laser performance and spectroscopic analysis of optically written channel waveguides in neodymium-doped gallium lanthanum sulphide glass,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1381–1388 (2002).
[Crossref]

T. Schweizer, D. Brady, and D. W. Hewak, “Fabrication and spectroscopy of erbium doped gallium lanthanum sulphide glass fibres for mid-infrared laser applications,” Opt. Express 1(4), 102–107 (1997).
[Crossref] [PubMed]

D. W. Hewak, R. C. Moore, T. Schweizer, J. Wang, B. Samson, W. S. Brocklesby, D. N. Payne, and E. J. Tarbox, “Gallium lanthanum sulphide optical fibre for active and passive applications,” Electron. Lett. 32(4), 384 (1996).
[Crossref]

Hibino, Y.

Hirao, K.

Hlubina, P.

P. Hlubina, D. Ciprian, and M. Kadulová, “Measurement of chromatic dispersion of polarization modes in optical fibres using white-light spectral interferometry,” Meas. Sci. Technol. 21(4), 045302 (2010).
[Crossref]

Hnatovsky, C.

Hodgkinson, J.

J. Hodgkinson and R. P. Tatam, “Optical gas sensing: a review,” Meas. Sci. Technol. 24(1), 012004 (2013).
[Crossref]

Hu, H.

Hu, J.

Huang, C. C.

Huang, C.-C.

R. E. Simpson, A. Mairaj, R. J. Curry, C.-C. Huang, K. Knight, N. Sessions, M. Hassan, and D. W. Hewak, “Electrical phase change of Ga:La:S:Cu films,” Electron. Lett. 43(15), 830–832 (2007).
[Crossref]

Huntington, S. T.

Jha, A.

Jose, G.

Juncker, C.

P. Lucas, M. A. Solis, D. L. Coq, C. Juncker, M. R. Riley, J. Collier, D. E. Boesewetter, C. Boussard-Plédel, and B. Bureau, “Infrared biosensors using hydrophobic chalcogenide fibers sensitized with live cells,” Sens. Actuators B Chem. 119(2), 355–362 (2006).
[Crossref]

Kadulová, M.

P. Hlubina, D. Ciprian, and M. Kadulová, “Measurement of chromatic dispersion of polarization modes in optical fibres using white-light spectral interferometry,” Meas. Sci. Technol. 21(4), 045302 (2010).
[Crossref]

Kaino, T.

M. Asobe, T. Ohara, I. Yokohama, and T. Kaino, “Low power all-optical switching in a nonlinear optical loop mirror using chalcogenide glass fibre,” Electron. Lett. 32(15), 1396–1397 (1996).
[Crossref]

Kalal, M.

Kanamori, T.

M. Asobe, T. Kanamori, and K. Kubodera, “Ultrafast all-optical switching using highly nonlinear chalcogenide glass fiber,” IEEE Photonics Technol. Lett. 4(4), 362–365 (1992).
[Crossref]

Kar, A.

Kar, A. K.

A. Lancaster, G. Cook, S. A. McDaniel, J. Evans, P. A. Berry, J. D. Shephard, and A. K. Kar, “Mid-infrared laser emission from Fe:ZnSe cladding waveguides,” Appl. Phys. Lett. 107(3), 031108 (2015).
[Crossref]

D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photonics Rev. 8(6), 827–846 (2014).
[Crossref]

R. Mary, D. Choudhury, and A. K. Kar, “Applications of Fiber Lasers for the Development of Compact Photonic Devices,” IEEE J. Sel. Top. Quantum. Electron 20(5), 72–84 (2014).
[Crossref]

J. R. Macdonald, S. J. Beecher, P. A. Berry, K. L. Schepler, and A. K. Kar, “Compact mid-infrared Cr:ZnSe channel waveguide laser,” Appl. Phys. Lett. 102(16), 161110 (2013).
[Crossref]

J. McCarthy, H. Bookey, S. Beecher, R. Lamb, I. Elder, and A. K. Kar, “Spectrally tailored mid-infrared super-continuum generation in a buried waveguide spanning 1750 nm to 5000 nm for atmospheric transmission,” Appl. Phys. Lett. 103(15), 151103 (2013).
[Crossref]

J. E. McCarthy, H. T. Bookey, N. D. Psaila, R. R. Thomson, and A. K. Kar, “Mid-infrared spectral broadening in an ultrafast laser inscribed gallium lanthanum sulphide waveguide,” Opt. Express 20(2), 1545–1551 (2012).
[Crossref] [PubMed]

R. R. Thomson, T. A. Birks, S. G. Leon-Saval, A. K. Kar, and J. Bland-Hawthorn, “Ultrafast laser inscription of an integrated photonic lantern,” Opt. Express 19(6), 5698–5705 (2011).
[Crossref] [PubMed]

J. R. Macdonald, R. R. Thomson, S. J. Beecher, N. D. Psaila, H. T. Bookey, and A. K. Kar, “Ultrafast laser inscription of near-infrared waveguides in polycrystalline ZnSe,” Opt. Lett. 35(23), 4036–4038 (2010).
[Crossref] [PubMed]

N. D. Psaila, R. R. Thomson, H. T. Bookey, S. Shen, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and A. K. Kar, “Supercontinuum generation in an ultrafast laser inscribed chalcogenide glass waveguide,” Opt. Express 15(24), 15776–15781 (2007).
[Crossref] [PubMed]

R. R. Thomson, H. T. Bookey, N. D. Psaila, A. Fender, S. Campbell, W. N. Macpherson, J. S. Barton, D. T. Reid, and A. K. Kar, “Ultrafast-laser inscription of a three dimensional fan-out device for multicore fiber coupling applications,” Opt. Express 15(18), 11691–11697 (2007).
[Crossref] [PubMed]

H. T. Bookey, R. R. Thomson, N. D. Psaila, A. K. Kar, N. Chiodo, R. Osellame, and G. Cerullo, “Femtosecond Laser Inscription of Low Insertion Loss Waveguides in Z-Cut Lithium Niobate,” IEEE Photonics Technol. Lett. 19(12), 892–894 (2007).
[Crossref]

K. S. Bindra, H. T. Bookey, A. K. Kar, B. S. Wherrett, X. Liu, and A. Jha, “Nonlinear optical properties of chalcogenide glasses: Observation of multiphoton absorption,” Appl. Phys. Lett. 79(13), 1939–1941 (2001).
[Crossref]

Kern, P.

Kimerling, L.

Knight, K.

R. E. Simpson, A. Mairaj, R. J. Curry, C.-C. Huang, K. Knight, N. Sessions, M. Hassan, and D. W. Hewak, “Electrical phase change of Ga:La:S:Cu films,” Electron. Lett. 43(15), 830–832 (2007).
[Crossref]

Kohoutek, T.

Kohtoku, M.

Kubat, I.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Kubodera, K.

M. Asobe, T. Kanamori, and K. Kubodera, “Ultrafast all-optical switching using highly nonlinear chalcogenide glass fiber,” IEEE Photonics Technol. Lett. 4(4), 362–365 (1992).
[Crossref]

Labadie, L.

Lamb, R.

J. McCarthy, H. Bookey, S. Beecher, R. Lamb, I. Elder, and A. K. Kar, “Spectrally tailored mid-infrared super-continuum generation in a buried waveguide spanning 1750 nm to 5000 nm for atmospheric transmission,” Appl. Phys. Lett. 103(15), 151103 (2013).
[Crossref]

Lamont, M. R. E.

M. D. Pelusi, V. G. Ta’eed, F. Libin, E. Magi, M. R. E. Lamont, S. Madden, C. Duk-Yong, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Applications of Highly-Nonlinear Chalcogenide Glass Devices Tailored for High-Speed All-Optical Signal Processing,” IEEE J. Sel. Top. Quantum. Electron.  14(3), 529–539 (2008).
[Crossref]

Lancaster, A.

A. Lancaster, G. Cook, S. A. McDaniel, J. Evans, P. A. Berry, J. D. Shephard, and A. K. Kar, “Mid-infrared laser emission from Fe:ZnSe cladding waveguides,” Appl. Phys. Lett. 107(3), 031108 (2015).
[Crossref]

Leon-Saval, S. G.

Lian, Z. G.

Libin, F.

M. D. Pelusi, V. G. Ta’eed, F. Libin, E. Magi, M. R. E. Lamont, S. Madden, C. Duk-Yong, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Applications of Highly-Nonlinear Chalcogenide Glass Devices Tailored for High-Speed All-Optical Signal Processing,” IEEE J. Sel. Top. Quantum. Electron.  14(3), 529–539 (2008).
[Crossref]

Liu, X.

K. S. Bindra, H. T. Bookey, A. K. Kar, B. S. Wherrett, X. Liu, and A. Jha, “Nonlinear optical properties of chalcogenide glasses: Observation of multiphoton absorption,” Appl. Phys. Lett. 79(13), 1939–1941 (2001).
[Crossref]

Lucas, P.

P. Lucas, M. A. Solis, D. L. Coq, C. Juncker, M. R. Riley, J. Collier, D. E. Boesewetter, C. Boussard-Plédel, and B. Bureau, “Infrared biosensors using hydrophobic chalcogenide fibers sensitized with live cells,” Sens. Actuators B Chem. 119(2), 355–362 (2006).
[Crossref]

Luther-Davies, B.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).

T. D. Vo, H. Hu, M. Galili, E. Palushani, J. Xu, L. K. Oxenløwe, S. J. Madden, D. Y. Choi, D. A. P. Bulla, M. D. Pelusi, J. Schröder, B. Luther-Davies, and B. J. Eggleton, “Photonic chip based transmitter optimization and receiver demultiplexing of a 1.28 Tbit/s OTDM signal,” Opt. Express 18(16), 17252–17261 (2010).
[Crossref] [PubMed]

M. D. Pelusi, V. G. Ta’eed, F. Libin, E. Magi, M. R. E. Lamont, S. Madden, C. Duk-Yong, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Applications of Highly-Nonlinear Chalcogenide Glass Devices Tailored for High-Speed All-Optical Signal Processing,” IEEE J. Sel. Top. Quantum. Electron.  14(3), 529–539 (2008).
[Crossref]

Macdonald, J. R.

D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photonics Rev. 8(6), 827–846 (2014).
[Crossref]

J. R. Macdonald, S. J. Beecher, P. A. Berry, K. L. Schepler, and A. K. Kar, “Compact mid-infrared Cr:ZnSe channel waveguide laser,” Appl. Phys. Lett. 102(16), 161110 (2013).
[Crossref]

J. R. Macdonald, R. R. Thomson, S. J. Beecher, N. D. Psaila, H. T. Bookey, and A. K. Kar, “Ultrafast laser inscription of near-infrared waveguides in polycrystalline ZnSe,” Opt. Lett. 35(23), 4036–4038 (2010).
[Crossref] [PubMed]

Macpherson, W. N.

Madden, S.

M. D. Pelusi, V. G. Ta’eed, F. Libin, E. Magi, M. R. E. Lamont, S. Madden, C. Duk-Yong, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Applications of Highly-Nonlinear Chalcogenide Glass Devices Tailored for High-Speed All-Optical Signal Processing,” IEEE J. Sel. Top. Quantum. Electron.  14(3), 529–539 (2008).
[Crossref]

Madden, S. J.

Magi, E.

M. D. Pelusi, V. G. Ta’eed, F. Libin, E. Magi, M. R. E. Lamont, S. Madden, C. Duk-Yong, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Applications of Highly-Nonlinear Chalcogenide Glass Devices Tailored for High-Speed All-Optical Signal Processing,” IEEE J. Sel. Top. Quantum. Electron.  14(3), 529–539 (2008).
[Crossref]

Mairaj, A.

R. E. Simpson, A. Mairaj, R. J. Curry, C.-C. Huang, K. Knight, N. Sessions, M. Hassan, and D. W. Hewak, “Electrical phase change of Ga:La:S:Cu films,” Electron. Lett. 43(15), 830–832 (2007).
[Crossref]

Mairaj, A. K.

A. K. Mairaj, A. M. Chardon, D. P. Shepherd, and D. W. Hewak, “Laser performance and spectroscopic analysis of optically written channel waveguides in neodymium-doped gallium lanthanum sulphide glass,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1381–1388 (2002).
[Crossref]

Martin, G.

Mary, R.

R. Mary, D. Choudhury, and A. K. Kar, “Applications of Fiber Lasers for the Development of Compact Photonic Devices,” IEEE J. Sel. Top. Quantum. Electron 20(5), 72–84 (2014).
[Crossref]

McCarthy, J.

J. McCarthy, H. Bookey, S. Beecher, R. Lamb, I. Elder, and A. K. Kar, “Spectrally tailored mid-infrared super-continuum generation in a buried waveguide spanning 1750 nm to 5000 nm for atmospheric transmission,” Appl. Phys. Lett. 103(15), 151103 (2013).
[Crossref]

McCarthy, J. E.

McDaniel, S. A.

A. Lancaster, G. Cook, S. A. McDaniel, J. Evans, P. A. Berry, J. D. Shephard, and A. K. Kar, “Mid-infrared laser emission from Fe:ZnSe cladding waveguides,” Appl. Phys. Lett. 107(3), 031108 (2015).
[Crossref]

Miura, K.

Møller, U.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Moore, R. C.

D. W. Hewak, R. C. Moore, T. Schweizer, J. Wang, B. Samson, W. S. Brocklesby, D. N. Payne, and E. J. Tarbox, “Gallium lanthanum sulphide optical fibre for active and passive applications,” Electron. Lett. 32(4), 384 (1996).
[Crossref]

Nasu, Y.

Nugent, K. A.

Ohara, T.

M. Asobe, T. Ohara, I. Yokohama, and T. Kaino, “Low power all-optical switching in a nonlinear optical loop mirror using chalcogenide glass fibre,” Electron. Lett. 32(15), 1396–1397 (1996).
[Crossref]

Orava, J.

Osellame, R.

N. D. Psaila, R. R. Thomson, H. T. Bookey, S. Shen, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and A. K. Kar, “Supercontinuum generation in an ultrafast laser inscribed chalcogenide glass waveguide,” Opt. Express 15(24), 15776–15781 (2007).
[Crossref] [PubMed]

H. T. Bookey, R. R. Thomson, N. D. Psaila, A. K. Kar, N. Chiodo, R. Osellame, and G. Cerullo, “Femtosecond Laser Inscription of Low Insertion Loss Waveguides in Z-Cut Lithium Niobate,” IEEE Photonics Technol. Lett. 19(12), 892–894 (2007).
[Crossref]

Oxenløwe, L. K.

Palushani, E.

Pan, W.

Payne, D. N.

D. W. Hewak, R. C. Moore, T. Schweizer, J. Wang, B. Samson, W. S. Brocklesby, D. N. Payne, and E. J. Tarbox, “Gallium lanthanum sulphide optical fibre for active and passive applications,” Electron. Lett. 32(4), 384 (1996).
[Crossref]

Pelusi, M. D.

T. D. Vo, H. Hu, M. Galili, E. Palushani, J. Xu, L. K. Oxenløwe, S. J. Madden, D. Y. Choi, D. A. P. Bulla, M. D. Pelusi, J. Schröder, B. Luther-Davies, and B. J. Eggleton, “Photonic chip based transmitter optimization and receiver demultiplexing of a 1.28 Tbit/s OTDM signal,” Opt. Express 18(16), 17252–17261 (2010).
[Crossref] [PubMed]

M. D. Pelusi, V. G. Ta’eed, F. Libin, E. Magi, M. R. E. Lamont, S. Madden, C. Duk-Yong, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Applications of Highly-Nonlinear Chalcogenide Glass Devices Tailored for High-Speed All-Optical Signal Processing,” IEEE J. Sel. Top. Quantum. Electron.  14(3), 529–539 (2008).
[Crossref]

Petersen, C. R.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Petit, L.

Ponader, C. W.

C. W. Ponader, J. F. Schroeder, and A. M. Streltsov, “Origin of the refractive-index increase in laser-written waveguides in glasses,” J. Appl. Phys. 103(6), 063516 (2008).
[Crossref]

Psaila, N.

Psaila, N. D.

Ramsay, J.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Rayner, D. M.

Reid, D. T.

Richardson, K.

Riley, M. R.

P. Lucas, M. A. Solis, D. L. Coq, C. Juncker, M. R. Riley, J. Collier, D. E. Boesewetter, C. Boussard-Plédel, and B. Bureau, “Infrared biosensors using hydrophobic chalcogenide fibers sensitized with live cells,” Sens. Actuators B Chem. 119(2), 355–362 (2006).
[Crossref]

Roberts, A.

Ródenas, A.

Romanyuk, Y. E.

Y. E. Romanyuk, H. Hagendorfer, P. Stücheli, P. Fuchs, A. R. Uhl, C. M. Sutter-Fella, M. Werner, S. Haass, J. Stückelberger, C. Broussillou, P.-P. Grand, V. Bermudez, and A. N. Tiwari, “All Solution-Processed Chalcogenide Solar Cells – from Single Functional Layers Towards a 13.8% Efficient CIGS Device,” Adv. Funct. Mater. 25(1), 12–27 (2015).
[Crossref]

Rutt, H. N.

K. E. Youden, T. Grevatt, R. W. Eason, H. N. Rutt, R. S. Deol, and G. Wylangowski, “Pulsed laser deposition of Ga‐La‐S chalcogenide glass thin film optical waveguides,” Appl. Phys. Lett. 63(12), 1601–1603 (1993).
[Crossref]

Samson, B.

D. W. Hewak, R. C. Moore, T. Schweizer, J. Wang, B. Samson, W. S. Brocklesby, D. N. Payne, and E. J. Tarbox, “Gallium lanthanum sulphide optical fibre for active and passive applications,” Electron. Lett. 32(4), 384 (1996).
[Crossref]

Sanghera, J. S.

Schepler, K. L.

J. R. Macdonald, S. J. Beecher, P. A. Berry, K. L. Schepler, and A. K. Kar, “Compact mid-infrared Cr:ZnSe channel waveguide laser,” Appl. Phys. Lett. 102(16), 161110 (2013).
[Crossref]

Schröder, J.

Schroeder, J. F.

C. W. Ponader, J. F. Schroeder, and A. M. Streltsov, “Origin of the refractive-index increase in laser-written waveguides in glasses,” J. Appl. Phys. 103(6), 063516 (2008).
[Crossref]

Schweizer, T.

T. Schweizer, D. Brady, and D. W. Hewak, “Fabrication and spectroscopy of erbium doped gallium lanthanum sulphide glass fibres for mid-infrared laser applications,” Opt. Express 1(4), 102–107 (1997).
[Crossref] [PubMed]

D. W. Hewak, R. C. Moore, T. Schweizer, J. Wang, B. Samson, W. S. Brocklesby, D. N. Payne, and E. J. Tarbox, “Gallium lanthanum sulphide optical fibre for active and passive applications,” Electron. Lett. 32(4), 384 (1996).
[Crossref]

Seddon, A.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Seddon, A. B.

Sessions, N.

R. E. Simpson, A. Mairaj, R. J. Curry, C.-C. Huang, K. Knight, N. Sessions, M. Hassan, and D. W. Hewak, “Electrical phase change of Ga:La:S:Cu films,” Electron. Lett. 43(15), 830–832 (2007).
[Crossref]

Shaw, L. B.

Shen, S.

Shephard, J. D.

A. Lancaster, G. Cook, S. A. McDaniel, J. Evans, P. A. Berry, J. D. Shephard, and A. K. Kar, “Mid-infrared laser emission from Fe:ZnSe cladding waveguides,” Appl. Phys. Lett. 107(3), 031108 (2015).
[Crossref]

Shepherd, D. P.

A. K. Mairaj, A. M. Chardon, D. P. Shepherd, and D. W. Hewak, “Laser performance and spectroscopic analysis of optically written channel waveguides in neodymium-doped gallium lanthanum sulphide glass,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1381–1388 (2002).
[Crossref]

Simova, E.

Simpson, R. E.

R. E. Simpson, A. Mairaj, R. J. Curry, C.-C. Huang, K. Knight, N. Sessions, M. Hassan, and D. W. Hewak, “Electrical phase change of Ga:La:S:Cu films,” Electron. Lett. 43(15), 830–832 (2007).
[Crossref]

Solis, M. A.

P. Lucas, M. A. Solis, D. L. Coq, C. Juncker, M. R. Riley, J. Collier, D. E. Boesewetter, C. Boussard-Plédel, and B. Bureau, “Infrared biosensors using hydrophobic chalcogenide fibers sensitized with live cells,” Sens. Actuators B Chem. 119(2), 355–362 (2006).
[Crossref]

Streltsov, A. M.

C. W. Ponader, J. F. Schroeder, and A. M. Streltsov, “Origin of the refractive-index increase in laser-written waveguides in glasses,” J. Appl. Phys. 103(6), 063516 (2008).
[Crossref]

Stücheli, P.

Y. E. Romanyuk, H. Hagendorfer, P. Stücheli, P. Fuchs, A. R. Uhl, C. M. Sutter-Fella, M. Werner, S. Haass, J. Stückelberger, C. Broussillou, P.-P. Grand, V. Bermudez, and A. N. Tiwari, “All Solution-Processed Chalcogenide Solar Cells – from Single Functional Layers Towards a 13.8% Efficient CIGS Device,” Adv. Funct. Mater. 25(1), 12–27 (2015).
[Crossref]

Stückelberger, J.

Y. E. Romanyuk, H. Hagendorfer, P. Stücheli, P. Fuchs, A. R. Uhl, C. M. Sutter-Fella, M. Werner, S. Haass, J. Stückelberger, C. Broussillou, P.-P. Grand, V. Bermudez, and A. N. Tiwari, “All Solution-Processed Chalcogenide Solar Cells – from Single Functional Layers Towards a 13.8% Efficient CIGS Device,” Adv. Funct. Mater. 25(1), 12–27 (2015).
[Crossref]

Sugimoto, N.

Sujecki, S.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Sutter-Fella, C. M.

Y. E. Romanyuk, H. Hagendorfer, P. Stücheli, P. Fuchs, A. R. Uhl, C. M. Sutter-Fella, M. Werner, S. Haass, J. Stückelberger, C. Broussillou, P.-P. Grand, V. Bermudez, and A. N. Tiwari, “All Solution-Processed Chalcogenide Solar Cells – from Single Functional Layers Towards a 13.8% Efficient CIGS Device,” Adv. Funct. Mater. 25(1), 12–27 (2015).
[Crossref]

Ta’eed, V. G.

M. D. Pelusi, V. G. Ta’eed, F. Libin, E. Magi, M. R. E. Lamont, S. Madden, C. Duk-Yong, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Applications of Highly-Nonlinear Chalcogenide Glass Devices Tailored for High-Speed All-Optical Signal Processing,” IEEE J. Sel. Top. Quantum. Electron.  14(3), 529–539 (2008).
[Crossref]

Tang, Z.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Tarasov, V.

Tarbox, E. J.

D. W. Hewak, R. C. Moore, T. Schweizer, J. Wang, B. Samson, W. S. Brocklesby, D. N. Payne, and E. J. Tarbox, “Gallium lanthanum sulphide optical fibre for active and passive applications,” Electron. Lett. 32(4), 384 (1996).
[Crossref]

Tatam, R. P.

J. Hodgkinson and R. P. Tatam, “Optical gas sensing: a review,” Meas. Sci. Technol. 24(1), 012004 (2013).
[Crossref]

Taylor, R. S.

Thomson, R.

Thomson, R. R.

J. E. McCarthy, H. T. Bookey, N. D. Psaila, R. R. Thomson, and A. K. Kar, “Mid-infrared spectral broadening in an ultrafast laser inscribed gallium lanthanum sulphide waveguide,” Opt. Express 20(2), 1545–1551 (2012).
[Crossref] [PubMed]

R. R. Thomson, T. A. Birks, S. G. Leon-Saval, A. K. Kar, and J. Bland-Hawthorn, “Ultrafast laser inscription of an integrated photonic lantern,” Opt. Express 19(6), 5698–5705 (2011).
[Crossref] [PubMed]

J. R. Macdonald, R. R. Thomson, S. J. Beecher, N. D. Psaila, H. T. Bookey, and A. K. Kar, “Ultrafast laser inscription of near-infrared waveguides in polycrystalline ZnSe,” Opt. Lett. 35(23), 4036–4038 (2010).
[Crossref] [PubMed]

N. D. Psaila, R. R. Thomson, H. T. Bookey, S. Shen, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and A. K. Kar, “Supercontinuum generation in an ultrafast laser inscribed chalcogenide glass waveguide,” Opt. Express 15(24), 15776–15781 (2007).
[Crossref] [PubMed]

R. R. Thomson, H. T. Bookey, N. D. Psaila, A. Fender, S. Campbell, W. N. Macpherson, J. S. Barton, D. T. Reid, and A. K. Kar, “Ultrafast-laser inscription of a three dimensional fan-out device for multicore fiber coupling applications,” Opt. Express 15(18), 11691–11697 (2007).
[Crossref] [PubMed]

H. T. Bookey, R. R. Thomson, N. D. Psaila, A. K. Kar, N. Chiodo, R. Osellame, and G. Cerullo, “Femtosecond Laser Inscription of Low Insertion Loss Waveguides in Z-Cut Lithium Niobate,” IEEE Photonics Technol. Lett. 19(12), 892–894 (2007).
[Crossref]

Tiwari, A. N.

Y. E. Romanyuk, H. Hagendorfer, P. Stücheli, P. Fuchs, A. R. Uhl, C. M. Sutter-Fella, M. Werner, S. Haass, J. Stückelberger, C. Broussillou, P.-P. Grand, V. Bermudez, and A. N. Tiwari, “All Solution-Processed Chalcogenide Solar Cells – from Single Functional Layers Towards a 13.8% Efficient CIGS Device,” Adv. Funct. Mater. 25(1), 12–27 (2015).
[Crossref]

Uhl, A. R.

Y. E. Romanyuk, H. Hagendorfer, P. Stücheli, P. Fuchs, A. R. Uhl, C. M. Sutter-Fella, M. Werner, S. Haass, J. Stückelberger, C. Broussillou, P.-P. Grand, V. Bermudez, and A. N. Tiwari, “All Solution-Processed Chalcogenide Solar Cells – from Single Functional Layers Towards a 13.8% Efficient CIGS Device,” Adv. Funct. Mater. 25(1), 12–27 (2015).
[Crossref]

Vo, T. D.

Wagner, T.

Wang, J.

D. W. Hewak, R. C. Moore, T. Schweizer, J. Wang, B. Samson, W. S. Brocklesby, D. N. Payne, and E. J. Tarbox, “Gallium lanthanum sulphide optical fibre for active and passive applications,” Electron. Lett. 32(4), 384 (1996).
[Crossref]

Werner, M.

Y. E. Romanyuk, H. Hagendorfer, P. Stücheli, P. Fuchs, A. R. Uhl, C. M. Sutter-Fella, M. Werner, S. Haass, J. Stückelberger, C. Broussillou, P.-P. Grand, V. Bermudez, and A. N. Tiwari, “All Solution-Processed Chalcogenide Solar Cells – from Single Functional Layers Towards a 13.8% Efficient CIGS Device,” Adv. Funct. Mater. 25(1), 12–27 (2015).
[Crossref]

Wherrett, B. S.

K. S. Bindra, H. T. Bookey, A. K. Kar, B. S. Wherrett, X. Liu, and A. Jha, “Nonlinear optical properties of chalcogenide glasses: Observation of multiphoton absorption,” Appl. Phys. Lett. 79(13), 1939–1941 (2001).
[Crossref]

Wylangowski, G.

K. E. Youden, T. Grevatt, R. W. Eason, H. N. Rutt, R. S. Deol, and G. Wylangowski, “Pulsed laser deposition of Ga‐La‐S chalcogenide glass thin film optical waveguides,” Appl. Phys. Lett. 63(12), 1601–1603 (1993).
[Crossref]

Xu, J.

Yokohama, I.

M. Asobe, T. Ohara, I. Yokohama, and T. Kaino, “Low power all-optical switching in a nonlinear optical loop mirror using chalcogenide glass fibre,” Electron. Lett. 32(15), 1396–1397 (1996).
[Crossref]

Youden, K. E.

K. E. Youden, T. Grevatt, R. W. Eason, H. N. Rutt, R. S. Deol, and G. Wylangowski, “Pulsed laser deposition of Ga‐La‐S chalcogenide glass thin film optical waveguides,” Appl. Phys. Lett. 63(12), 1601–1603 (1993).
[Crossref]

Zhou, B.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Adv. Funct. Mater. (1)

Y. E. Romanyuk, H. Hagendorfer, P. Stücheli, P. Fuchs, A. R. Uhl, C. M. Sutter-Fella, M. Werner, S. Haass, J. Stückelberger, C. Broussillou, P.-P. Grand, V. Bermudez, and A. N. Tiwari, “All Solution-Processed Chalcogenide Solar Cells – from Single Functional Layers Towards a 13.8% Efficient CIGS Device,” Adv. Funct. Mater. 25(1), 12–27 (2015).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (5)

J. McCarthy, H. Bookey, S. Beecher, R. Lamb, I. Elder, and A. K. Kar, “Spectrally tailored mid-infrared super-continuum generation in a buried waveguide spanning 1750 nm to 5000 nm for atmospheric transmission,” Appl. Phys. Lett. 103(15), 151103 (2013).
[Crossref]

J. R. Macdonald, S. J. Beecher, P. A. Berry, K. L. Schepler, and A. K. Kar, “Compact mid-infrared Cr:ZnSe channel waveguide laser,” Appl. Phys. Lett. 102(16), 161110 (2013).
[Crossref]

A. Lancaster, G. Cook, S. A. McDaniel, J. Evans, P. A. Berry, J. D. Shephard, and A. K. Kar, “Mid-infrared laser emission from Fe:ZnSe cladding waveguides,” Appl. Phys. Lett. 107(3), 031108 (2015).
[Crossref]

K. S. Bindra, H. T. Bookey, A. K. Kar, B. S. Wherrett, X. Liu, and A. Jha, “Nonlinear optical properties of chalcogenide glasses: Observation of multiphoton absorption,” Appl. Phys. Lett. 79(13), 1939–1941 (2001).
[Crossref]

K. E. Youden, T. Grevatt, R. W. Eason, H. N. Rutt, R. S. Deol, and G. Wylangowski, “Pulsed laser deposition of Ga‐La‐S chalcogenide glass thin film optical waveguides,” Appl. Phys. Lett. 63(12), 1601–1603 (1993).
[Crossref]

Electron. Lett. (3)

M. Asobe, T. Ohara, I. Yokohama, and T. Kaino, “Low power all-optical switching in a nonlinear optical loop mirror using chalcogenide glass fibre,” Electron. Lett. 32(15), 1396–1397 (1996).
[Crossref]

D. W. Hewak, R. C. Moore, T. Schweizer, J. Wang, B. Samson, W. S. Brocklesby, D. N. Payne, and E. J. Tarbox, “Gallium lanthanum sulphide optical fibre for active and passive applications,” Electron. Lett. 32(4), 384 (1996).
[Crossref]

R. E. Simpson, A. Mairaj, R. J. Curry, C.-C. Huang, K. Knight, N. Sessions, M. Hassan, and D. W. Hewak, “Electrical phase change of Ga:La:S:Cu films,” Electron. Lett. 43(15), 830–832 (2007).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

A. K. Mairaj, A. M. Chardon, D. P. Shepherd, and D. W. Hewak, “Laser performance and spectroscopic analysis of optically written channel waveguides in neodymium-doped gallium lanthanum sulphide glass,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1381–1388 (2002).
[Crossref]

IEEE J. Sel. Top. Quantum. Electron (2)

M. D. Pelusi, V. G. Ta’eed, F. Libin, E. Magi, M. R. E. Lamont, S. Madden, C. Duk-Yong, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Applications of Highly-Nonlinear Chalcogenide Glass Devices Tailored for High-Speed All-Optical Signal Processing,” IEEE J. Sel. Top. Quantum. Electron.  14(3), 529–539 (2008).
[Crossref]

R. Mary, D. Choudhury, and A. K. Kar, “Applications of Fiber Lasers for the Development of Compact Photonic Devices,” IEEE J. Sel. Top. Quantum. Electron 20(5), 72–84 (2014).
[Crossref]

IEEE Photonics Technol. Lett. (2)

H. T. Bookey, R. R. Thomson, N. D. Psaila, A. K. Kar, N. Chiodo, R. Osellame, and G. Cerullo, “Femtosecond Laser Inscription of Low Insertion Loss Waveguides in Z-Cut Lithium Niobate,” IEEE Photonics Technol. Lett. 19(12), 892–894 (2007).
[Crossref]

M. Asobe, T. Kanamori, and K. Kubodera, “Ultrafast all-optical switching using highly nonlinear chalcogenide glass fiber,” IEEE Photonics Technol. Lett. 4(4), 362–365 (1992).
[Crossref]

J. Appl. Phys. (1)

C. W. Ponader, J. F. Schroeder, and A. M. Streltsov, “Origin of the refractive-index increase in laser-written waveguides in glasses,” J. Appl. Phys. 103(6), 063516 (2008).
[Crossref]

Laser Photonics Rev. (1)

D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photonics Rev. 8(6), 827–846 (2014).
[Crossref]

Meas. Sci. Technol. (2)

J. Hodgkinson and R. P. Tatam, “Optical gas sensing: a review,” Meas. Sci. Technol. 24(1), 012004 (2013).
[Crossref]

P. Hlubina, D. Ciprian, and M. Kadulová, “Measurement of chromatic dispersion of polarization modes in optical fibres using white-light spectral interferometry,” Meas. Sci. Technol. 21(4), 045302 (2010).
[Crossref]

Nat. Photonics (2)

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).

Opt. Express (9)

T. Schweizer, D. Brady, and D. W. Hewak, “Fabrication and spectroscopy of erbium doped gallium lanthanum sulphide glass fibres for mid-infrared laser applications,” Opt. Express 1(4), 102–107 (1997).
[Crossref] [PubMed]

J. A. Frantz, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Waveguide amplifiers in sputtered films of Er3+-doped gallium lanthanum sulfide glass,” Opt. Express 14(5), 1797–1803 (2006).
[Crossref] [PubMed]

J. Hu, V. Tarasov, A. Agarwal, L. Kimerling, N. Carlie, L. Petit, and K. Richardson, “Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor,” Opt. Express 15(5), 2307–2314 (2007).
[Crossref] [PubMed]

R. R. Thomson, H. T. Bookey, N. D. Psaila, A. Fender, S. Campbell, W. N. Macpherson, J. S. Barton, D. T. Reid, and A. K. Kar, “Ultrafast-laser inscription of a three dimensional fan-out device for multicore fiber coupling applications,” Opt. Express 15(18), 11691–11697 (2007).
[Crossref] [PubMed]

N. D. Psaila, R. R. Thomson, H. T. Bookey, S. Shen, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and A. K. Kar, “Supercontinuum generation in an ultrafast laser inscribed chalcogenide glass waveguide,” Opt. Express 15(24), 15776–15781 (2007).
[Crossref] [PubMed]

C. C. Huang, D. Hewak, and J. Badding, “Deposition and characterization of germanium sulphide glass planar waveguides,” Opt. Express 12(11), 2501–2506 (2004).
[Crossref] [PubMed]

T. D. Vo, H. Hu, M. Galili, E. Palushani, J. Xu, L. K. Oxenløwe, S. J. Madden, D. Y. Choi, D. A. P. Bulla, M. D. Pelusi, J. Schröder, B. Luther-Davies, and B. J. Eggleton, “Photonic chip based transmitter optimization and receiver demultiplexing of a 1.28 Tbit/s OTDM signal,” Opt. Express 18(16), 17252–17261 (2010).
[Crossref] [PubMed]

R. R. Thomson, T. A. Birks, S. G. Leon-Saval, A. K. Kar, and J. Bland-Hawthorn, “Ultrafast laser inscription of an integrated photonic lantern,” Opt. Express 19(6), 5698–5705 (2011).
[Crossref] [PubMed]

J. E. McCarthy, H. T. Bookey, N. D. Psaila, R. R. Thomson, and A. K. Kar, “Mid-infrared spectral broadening in an ultrafast laser inscribed gallium lanthanum sulphide waveguide,” Opt. Express 20(2), 1545–1551 (2012).
[Crossref] [PubMed]

Opt. Lett. (7)

A. Ródenas, G. Martin, B. Arezki, N. Psaila, G. Jose, A. Jha, L. Labadie, P. Kern, A. Kar, and R. Thomson, “Three-dimensional mid-infrared photonic circuits in chalcogenide glass,” Opt. Lett. 37(3), 392–394 (2012).
[Crossref] [PubMed]

J. R. Macdonald, R. R. Thomson, S. J. Beecher, N. D. Psaila, H. T. Bookey, and A. K. Kar, “Ultrafast laser inscription of near-infrared waveguides in polycrystalline ZnSe,” Opt. Lett. 35(23), 4036–4038 (2010).
[Crossref] [PubMed]

V. R. Bhardwaj, P. B. Corkum, D. M. Rayner, C. Hnatovsky, E. Simova, and R. S. Taylor, “Stress in femtosecond-laser-written waveguides in fused silica,” Opt. Lett. 29(12), 1312–1314 (2004).
[Crossref] [PubMed]

Y. Nasu, M. Kohtoku, and Y. Hibino, “Low-loss waveguides written with a femtosecond laser for flexible interconnection in a planar light-wave circuit,” Opt. Lett. 30(7), 723–725 (2005).
[Crossref] [PubMed]

Z. G. Lian, W. Pan, D. Furniss, T. M. Benson, A. B. Seddon, T. Kohoutek, J. Orava, and T. Wagner, “Embossing of chalcogenide glasses: monomode rib optical waveguides in evaporated thin films,” Opt. Lett. 34(8), 1234–1236 (2009).
[Crossref] [PubMed]

A. Roberts, E. Ampem-Lassen, A. Barty, K. A. Nugent, G. W. Baxter, N. M. Dragomir, and S. T. Huntington, “Refractive-index profiling of optical fibers with axial symmetry by use of quantitative phase microscopy,” Opt. Lett. 27(23), 2061–2063 (2002).
[Crossref] [PubMed]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
[Crossref] [PubMed]

Sens. Actuators B Chem. (1)

P. Lucas, M. A. Solis, D. L. Coq, C. Juncker, M. R. Riley, J. Collier, D. E. Boesewetter, C. Boussard-Plédel, and B. Bureau, “Infrared biosensors using hydrophobic chalcogenide fibers sensitized with live cells,” Sens. Actuators B Chem. 119(2), 355–362 (2006).
[Crossref]

Other (2)

P. Bastock, C. Craig, K. Khan, E. Weatherby, J. Yao, and D. W. Hewak, “Properties of Gallium Lanthanum Sulphide Glass,” in CLEO:2015, OSA 2015), STh1G.1.

G. Demetriou, F. Thorburn, A. Lancaster, C. Craig, E. Weatherby, D. W. Hewak, and A. Kar, “Fluorescence in Erbium Doped Gallium Lanthanum Sulphide: Potential for mid-IR Waveguide Laser,” in CLEO:2015, OSA 2015), STh1G.2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Refractive index profiles along the line L1 shown in (c) of 5 waveguides of different widths inscribed with pulse energy 72nJ and translation speed 12mm/s using a 0.6 NA aspheric lens. (b) Maximum Refractive index increase of two sets of waveguides (red and black) inscribed with different translation speeds using again a 0.6 NA aspheric lens and a pulse energy of 94 nJ. (c) Top view of a GLS waveguide with the line L1 along which the refractive index profile Δn(x) is measured.

Fig. 2
Fig. 2

(a) Measured refractive index profile along the x-axis of waveguide 3 imported in Comsol, inset shows the modelled x,y refractive index distribution at 1.55 μm (b) Calculated mode profile of the fundamental mode at 1.55 μm for the imported waveguide geometry generated with Comsol.

Fig. 3
Fig. 3

(a) End facet image of waveguide 3 taken in transmission mode, (b) corresponding mode profile image for waveguide 3 pumped at 1.55 μm, and (c) the associated mode cross-sections at 1.55 μm in the vertical and horizontal directions.

Fig. 4
Fig. 4

(a) Experimental setup for measuring waveguide dispersion using a mid-IR supercontinuum source and a balanced Mach-Zehnder interferometer (LFP: Linear film polarizer, PBS: Plate beam splitter, AL: Aspheric lens, SM: Silver mirror, SM-ZCF: Single-mode ZBLAN collecting fiber). (b) Example interference spectrum with clearly resolved interference fringes. The gap at 1.85 μm marks the phase equalization wavelength (λeq) of the test and reference beams. (c) Short-time Fourier transform analysis of the interference spectrum displaying the differential delay of the test and reference beams, showing only a single guided mode.

Fig. 5
Fig. 5

(a) Comparison of the measured dispersion of the bulk glass and two waveguides of identical dimensions but fabricated using different focusing lens NA and different pulse energy. (b) Zoomed-in view of the dispersion around the ZDW of the bulk glass and seven waveguides inscribed with the same parameters but having increasing cross-sections with waveguide 1 having the smallest cross section and waveguide 7 having the largest one.

Metrics