Abstract

Holographic stereograms produce multiple parallax images that are seen from multiple viewpoints. Because random phase distributions are added to the parallax images to remove areas where images cannot be seen in the viewing area, speckles are generated in the reconstructed images. In this study, virtual viewpoints are inserted between the original viewpoints (real viewpoints) to make the interval of the viewpoints smaller than the pupil diameter of the eyes in order to remove the areas without images. In this case, regular interference patterns appear in the reconstructed images instead of the speckle patterns. The proper phase modulation of the parallax images displayed to the real and virtual viewpoints increases the spatial frequencies of the regular interference patterns on retinas so that the eyes cannot perceive them. The proposed technique was combined with the multiview-based holographic stereogram calculation technique and was experimentally verified.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Simplified calculation method for computer-generated holographic stereograms from multi-view images

Yasuhiro Takaki and Kyohei Ikeda
Opt. Express 21(8) 9652-9663 (2013)

Fully computed holographic stereogram based algorithm for computer-generated holograms with accurate depth cues

Hao Zhang, Yan Zhao, Liangcai Cao, and Guofan Jin
Opt. Express 23(4) 3901-3913 (2015)

Speckle reduction method for image-based coherent stereogram generation

Jani Mäkinen, Erdem Sahin, and Atanas Gotchev
Opt. Express 26(5) 5381-5394 (2018)

References

  • View by:
  • |
  • |
  • |

  1. F. Yaraş, H. Kang, and L. Onural, “State of the art in holographic displays: a survey,” J. Disp. Technol. 6(10), 443–454 (2010).
    [Crossref]
  2. R. V. Pole, “3-D imagery and holograms of objects illuminated in white light,” Appl. Phys. Lett. 10(1), 20–22 (1967).
    [Crossref]
  3. D. J. De Bitetto, “Transmission bandwidth reduction of holographic stereograms recorded in white light,” Appl. Phys. Lett. 12(10), 343–344 (1968).
    [Crossref]
  4. J. T. McCrickerd and N. George, “Holographic stereogram from sequential component photographs,” Appl. Phys. Lett. 12(1), 10–12 (1968).
    [Crossref]
  5. D. J. DeBitetto, “Holographic panoramic stereograms synthesized from white light recordings,” Appl. Opt. 8(8), 1740–1741 (1969).
    [Crossref] [PubMed]
  6. M. C. King, A. M. Noll, and D. H. Berry, “A new approach to computer-generated holography,” Appl. Opt. 9(2), 471–475 (1970).
    [Crossref] [PubMed]
  7. T. Yatagai, “Stereoscopic approach to 3-D display using computer-generated holograms,” Appl. Opt. 15(11), 2722–2729 (1976).
    [Crossref] [PubMed]
  8. H. Kang, T. Yamaguchi, and H. Yoshikawa, “Accurate phase-added stereogram to improve the coherent stereogram,” Appl. Opt. 47(19), D44–D54 (2008).
    [Crossref] [PubMed]
  9. L. I. Goldfischer, “Autocorrelation function and power spectral density of laser-produced speckle patterns,” J. Opt. Soc. Am. 55(3), 247–252 (1965).
    [Crossref]
  10. H. J. Gerritsen, W. J. Hannan, and E. G. Ramberg, “Elimination of speckle noise in holograms with redundancy,” Appl. Opt. 7(11), 2301–2311 (1968).
    [Crossref] [PubMed]
  11. T. S. McKechnie, “Speckle reduction,” in Laser Speckle and Related Phenomena, J.C.Dainty, ed. (Springer-Verlag, 1975).
  12. J. Amako, H. Miura, and T. Sonehara, “Speckle-noise reduction on kinoform reconstruction using a phase-only spatial light modulator,” Appl. Opt. 34(17), 3165–3171 (1995).
    [Crossref] [PubMed]
  13. Y. Kuratomi, K. Sekiya, H. Satoh, T. Tomiyama, T. Kawakami, B. Katagiri, Y. Suzuki, and T. Uchida, “Speckle reduction mechanism in laser rear projection displays using a small moving diffuser,” J. Opt. Soc. Am. A 27(8), 1812–1817 (2010).
    [Crossref] [PubMed]
  14. M. Makowski, I. Ducin, M. Sypek, A. Siemion, A. Siemion, J. Suszek, and A. Kolodziejczyk, “Color image projection based on Fourier holograms,” Opt. Lett. 35(8), 1227–1229 (2010).
    [Crossref] [PubMed]
  15. F. Yaraş, H. Kang, and L. Onural, “Real-time phase-only color holographic video display system using LED illumination,” Appl. Opt. 48(34), H48–H53 (2009).
    [Crossref] [PubMed]
  16. Y. Takaki and M. Yokouchi, “Speckle-free and grayscale hologram reconstruction using time-multiplexing technique,” Opt. Express 19(8), 7567–7579 (2011).
    [Crossref] [PubMed]
  17. T. Kurihara and Y. Takaki, “Speckle-free, shaded 3D images produced by computer-generated holography,” Opt. Express 21(4), 4044–4054 (2013).
    [Crossref] [PubMed]
  18. M. Makowski, “Minimized speckle noise in lens-less holographic projection by pixel separation,” Opt. Express 21(24), 29205–29216 (2013).
    [Crossref] [PubMed]
  19. T. Utsugi and M. Yamaguchi, “Speckle-suppression in hologram calculation using ray-sampling plane,” Opt. Express 22(14), 17193–17206 (2014).
    [Crossref] [PubMed]
  20. M. Matsumura, “Speckle noise reduction by random phase shifters,” Appl. Opt. 14(3), 660–665 (1975).
    [Crossref] [PubMed]
  21. M. Yamaguchi, H. Endoh, T. Honda, and N. Ohyama, “High-quality recording of a full-parallax holographic sterogram with a digital diffuser,” Opt. Lett. 19(2), 135–137 (1994).
    [Crossref] [PubMed]
  22. Y. Takaki and K. Ikeda, “Simplified calculation method for computer-generated holographic stereograms from multi-view images,” Opt. Express 21(8), 9652–9663 (2013).
    [Crossref] [PubMed]
  23. J. Geng, “Three-dimensional display technologies,” Adv. Opt. Photonics 5(4), 456–535 (2013).
    [Crossref] [PubMed]
  24. R. L. De Valois, H. Morgan, and D. M. Snodderly, “Psychophysical studies of monkey vision. 3. Spatial luminance contrast sensitivity tests of macaque and human observers,” Vision Res. 14(1), 75–81 (1974).
    [Crossref] [PubMed]
  25. F. W. Campbell and D. G. Green, “Optical and retinal factors affecting visual resolution,” J. Physiol. 181(3), 576–593 (1965).
    [Crossref] [PubMed]
  26. T. Okoshi, Three-Dimensional Imaging Techniques (Academic, 1976).
  27. O. Bryngdahl and A. Lohmann, “Single-sideband holography,” J. Opt. Soc. Am. 58(5), 620–624 (1968).
    [Crossref]
  28. Y. Takaki and Y. Tanemoto, “Band-limited zone plates for single-sideband holography,” Appl. Opt. 48(34), H64–H70 (2009).
    [Crossref] [PubMed]

2014 (1)

2013 (4)

2011 (1)

2010 (3)

2009 (2)

2008 (1)

1995 (1)

1994 (1)

1976 (1)

1975 (1)

1974 (1)

R. L. De Valois, H. Morgan, and D. M. Snodderly, “Psychophysical studies of monkey vision. 3. Spatial luminance contrast sensitivity tests of macaque and human observers,” Vision Res. 14(1), 75–81 (1974).
[Crossref] [PubMed]

1970 (1)

1969 (1)

1968 (4)

D. J. De Bitetto, “Transmission bandwidth reduction of holographic stereograms recorded in white light,” Appl. Phys. Lett. 12(10), 343–344 (1968).
[Crossref]

J. T. McCrickerd and N. George, “Holographic stereogram from sequential component photographs,” Appl. Phys. Lett. 12(1), 10–12 (1968).
[Crossref]

H. J. Gerritsen, W. J. Hannan, and E. G. Ramberg, “Elimination of speckle noise in holograms with redundancy,” Appl. Opt. 7(11), 2301–2311 (1968).
[Crossref] [PubMed]

O. Bryngdahl and A. Lohmann, “Single-sideband holography,” J. Opt. Soc. Am. 58(5), 620–624 (1968).
[Crossref]

1967 (1)

R. V. Pole, “3-D imagery and holograms of objects illuminated in white light,” Appl. Phys. Lett. 10(1), 20–22 (1967).
[Crossref]

1965 (2)

L. I. Goldfischer, “Autocorrelation function and power spectral density of laser-produced speckle patterns,” J. Opt. Soc. Am. 55(3), 247–252 (1965).
[Crossref]

F. W. Campbell and D. G. Green, “Optical and retinal factors affecting visual resolution,” J. Physiol. 181(3), 576–593 (1965).
[Crossref] [PubMed]

Amako, J.

Berry, D. H.

Bryngdahl, O.

Campbell, F. W.

F. W. Campbell and D. G. Green, “Optical and retinal factors affecting visual resolution,” J. Physiol. 181(3), 576–593 (1965).
[Crossref] [PubMed]

De Bitetto, D. J.

D. J. De Bitetto, “Transmission bandwidth reduction of holographic stereograms recorded in white light,” Appl. Phys. Lett. 12(10), 343–344 (1968).
[Crossref]

De Valois, R. L.

R. L. De Valois, H. Morgan, and D. M. Snodderly, “Psychophysical studies of monkey vision. 3. Spatial luminance contrast sensitivity tests of macaque and human observers,” Vision Res. 14(1), 75–81 (1974).
[Crossref] [PubMed]

DeBitetto, D. J.

Ducin, I.

Endoh, H.

Geng, J.

J. Geng, “Three-dimensional display technologies,” Adv. Opt. Photonics 5(4), 456–535 (2013).
[Crossref] [PubMed]

George, N.

J. T. McCrickerd and N. George, “Holographic stereogram from sequential component photographs,” Appl. Phys. Lett. 12(1), 10–12 (1968).
[Crossref]

Gerritsen, H. J.

Goldfischer, L. I.

Green, D. G.

F. W. Campbell and D. G. Green, “Optical and retinal factors affecting visual resolution,” J. Physiol. 181(3), 576–593 (1965).
[Crossref] [PubMed]

Hannan, W. J.

Honda, T.

Ikeda, K.

Kang, H.

Katagiri, B.

Kawakami, T.

King, M. C.

Kolodziejczyk, A.

Kuratomi, Y.

Kurihara, T.

Lohmann, A.

Makowski, M.

Matsumura, M.

McCrickerd, J. T.

J. T. McCrickerd and N. George, “Holographic stereogram from sequential component photographs,” Appl. Phys. Lett. 12(1), 10–12 (1968).
[Crossref]

Miura, H.

Morgan, H.

R. L. De Valois, H. Morgan, and D. M. Snodderly, “Psychophysical studies of monkey vision. 3. Spatial luminance contrast sensitivity tests of macaque and human observers,” Vision Res. 14(1), 75–81 (1974).
[Crossref] [PubMed]

Noll, A. M.

Ohyama, N.

Onural, L.

F. Yaraş, H. Kang, and L. Onural, “State of the art in holographic displays: a survey,” J. Disp. Technol. 6(10), 443–454 (2010).
[Crossref]

F. Yaraş, H. Kang, and L. Onural, “Real-time phase-only color holographic video display system using LED illumination,” Appl. Opt. 48(34), H48–H53 (2009).
[Crossref] [PubMed]

Pole, R. V.

R. V. Pole, “3-D imagery and holograms of objects illuminated in white light,” Appl. Phys. Lett. 10(1), 20–22 (1967).
[Crossref]

Ramberg, E. G.

Satoh, H.

Sekiya, K.

Siemion, A.

Snodderly, D. M.

R. L. De Valois, H. Morgan, and D. M. Snodderly, “Psychophysical studies of monkey vision. 3. Spatial luminance contrast sensitivity tests of macaque and human observers,” Vision Res. 14(1), 75–81 (1974).
[Crossref] [PubMed]

Sonehara, T.

Suszek, J.

Suzuki, Y.

Sypek, M.

Takaki, Y.

Tanemoto, Y.

Tomiyama, T.

Uchida, T.

Utsugi, T.

Yamaguchi, M.

Yamaguchi, T.

Yaras, F.

F. Yaraş, H. Kang, and L. Onural, “State of the art in holographic displays: a survey,” J. Disp. Technol. 6(10), 443–454 (2010).
[Crossref]

F. Yaraş, H. Kang, and L. Onural, “Real-time phase-only color holographic video display system using LED illumination,” Appl. Opt. 48(34), H48–H53 (2009).
[Crossref] [PubMed]

Yatagai, T.

Yokouchi, M.

Yoshikawa, H.

Adv. Opt. Photonics (1)

J. Geng, “Three-dimensional display technologies,” Adv. Opt. Photonics 5(4), 456–535 (2013).
[Crossref] [PubMed]

Appl. Opt. (9)

Appl. Phys. Lett. (3)

R. V. Pole, “3-D imagery and holograms of objects illuminated in white light,” Appl. Phys. Lett. 10(1), 20–22 (1967).
[Crossref]

D. J. De Bitetto, “Transmission bandwidth reduction of holographic stereograms recorded in white light,” Appl. Phys. Lett. 12(10), 343–344 (1968).
[Crossref]

J. T. McCrickerd and N. George, “Holographic stereogram from sequential component photographs,” Appl. Phys. Lett. 12(1), 10–12 (1968).
[Crossref]

J. Disp. Technol. (1)

F. Yaraş, H. Kang, and L. Onural, “State of the art in holographic displays: a survey,” J. Disp. Technol. 6(10), 443–454 (2010).
[Crossref]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (1)

J. Physiol. (1)

F. W. Campbell and D. G. Green, “Optical and retinal factors affecting visual resolution,” J. Physiol. 181(3), 576–593 (1965).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (2)

Vision Res. (1)

R. L. De Valois, H. Morgan, and D. M. Snodderly, “Psychophysical studies of monkey vision. 3. Spatial luminance contrast sensitivity tests of macaque and human observers,” Vision Res. 14(1), 75–81 (1974).
[Crossref] [PubMed]

Other (2)

T. Okoshi, Three-Dimensional Imaging Techniques (Academic, 1976).

T. S. McKechnie, “Speckle reduction,” in Laser Speckle and Related Phenomena, J.C.Dainty, ed. (Springer-Verlag, 1975).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1 Three-dimensional image generation by (a) holographic stereogram (wavefront reconstruction), and (b) multiview display (ray reconstruction).
Fig. 2
Fig. 2 Multiview-based holographic stereogram.
Fig. 3
Fig. 3 Observation of corrupted image by previous technique.
Fig. 4
Fig. 4 Modified multiview-based holographic stereogram.
Fig. 5
Fig. 5 Viewpoints generated by modified multiview-based holographic stereogram.
Fig. 6
Fig. 6 Arrangement of real and virtual viewpoints in the viewing area to produce continuous viewing area.
Fig. 7
Fig. 7 Phase modulation at real and virtual viewpoints.
Fig. 8
Fig. 8 Calculated retinal images: (a) parallax image, and retinal images (b) without phase modulation, and (c) with phase modulation.
Fig. 9
Fig. 9 Retinal images calculated for several viewpoints contained in the retina: (a) four viewpoints and two viewpoints aligned in (b) horizontal and (c) vertical directions.
Fig. 10
Fig. 10 4f imaging system using spherical lens on its image plane.
Fig. 11
Fig. 11 Reconstructed images at viewpoints (6, 3), (6, 4), and intermediate position; (a) without virtual viewpoints and with uniform phase distribution, (b) without virtual viewpoints and with random phase distribution, (c) with virtual viewpoints and without phase modulation, and (d) with virtual viewpoints and with phase modulation.
Fig. 12
Fig. 12 Magnified images of reconstructed images with virtual viewpoints: (a) without phase modulation (Fig. 11(c)), and (b) with phase modulation (Fig. 11(d)).
Fig. 13
Fig. 13 Reconstructed images captured at several real and virtual viewpoints in the viewing area.
Fig. 14
Fig. 14 Reconstructed images when the ratio of real to virtual viewpoints changes: interval of whole viewpoints was 3.09 mm, and that of real viewpoints was (a) 6.18, (b) 9.27, and (c) 12.4 mm.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

o( x,y )= v=0 V1 I v ( x,y ) exp[ iα( x,y ) ]exp[ ik ( x x v ) 2 + ( y y v ) 2 + l 2 ],
o( x,y )= v=0 V1 I v ( x,y ) exp[ iα( x,y ) ]exp[ ik( x v x+ y v y )/ x v 2 + y v 2 + f 2 ].
I r ( x r , y r ) I p ( x r , y r ){ ( cos 2 θ a + cos 2 θ b + cos 2 θ c + cos 2 θ d ) +2( cos θ a cos θ b +cos θ c cos θ d )cos( πd x r /λs ) +2( cos θ a cos θ c +cos θ b cos θ d )cos( πd y r /λs ) +2cos θ b cos θ c cos[ πd( x r + y r )/λs ] +2cos θ a cos θ d cos[ πd( x r y r )/λs ] },

Metrics