Abstract

Acousto-optic deflectors (AODs) arranged in series and driven with linearly chirped frequencies can rapidly focus and tilt optical wavefronts, enabling high-speed 3D random access microscopy. Non-linearly chirped acoustic drive frequencies can also be used to shape the optical wavefront allowing a range of higher-order aberrations to be generated. However, to date, wavefront shaping with AODs has been achieved by using single laser pulses for strobed illumination to ‘freeze’ the moving acoustic wavefront, limiting voxel acquisition rates. Here we show that dynamic wavefront shaping can be achieved by applying non-linear drive frequencies to a pair of AODs with counter-propagating acoustic waves, which comprise a cylindrical acousto-optic lens (AOL). Using a cylindrical AOL we demonstrate high-speed continuous axial line scanning and the first experimental AOL-based correction of a cylindrical lens aberration at 30 kHz, accurate to 1/35th of a wave at 800 nm. Furthermore, we develop a model to show how spherical aberration, which is the major aberration in AOL-based remote-focusing systems, can be partially or fully corrected with AOLs consisting of four or six AODs, respectively.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Development and application of a ray-based model of light propagation through a spherical acousto-optic lens

Geoffrey J. Evans, Paul A. Kirkby, K. M. Naga Srinivas Nadella, Bóris Marin, and R. Angus Silver
Opt. Express 23(18) 23493-23510 (2015)

A compact acousto-optic lens for 2D and 3D femtosecond based 2-photon microscopy

Paul A. Kirkby, K. M. Naga Srinivas Nadella, and R. Angus Silver
Opt. Express 18(13) 13720-13744 (2010)

Fast spatial beam shaping by acousto-optic diffraction for 3D non-linear microscopy

Walther Akemann, Jean-François Léger, Cathie Ventalon, Benjamin Mathieu, Stéphane Dieudonné, and Laurent Bourdieu
Opt. Express 23(22) 28191-28205 (2015)

References

  • View by:
  • |
  • |
  • |

  1. A. Kaplan, N. Friedman, and N. Davidson, “Acousto-optic lens with very fast focus scanning,” Opt. Lett. 26(14), 1078–1080 (2001).
    [Crossref]
  2. P. A. Kirkby, K. M. N. S. Nadella, and R. A. Silver, “A compact acousto-optic lens for 2D and 3D femtosecond based 2-photon microscopy,” Opt. Express 18(13), 13721–13745 (2010).
    [Crossref] [PubMed]
  3. G. Duemani Reddy, K. Kelleher, R. Fink, and P. Saggau, “Three-dimensional random access multiphoton microscopy for functional imaging of neuronal activity,” Nat. Neurosci. 11(6), 713–720 (2008).
    [Crossref] [PubMed]
  4. G. Katona, G. Szalay, P. Maák, A. Kaszás, M. Veress, D. Hillier, B. Chiovini, E. S. Vizi, B. Roska, and B. Rózsa, “Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes,” Nat. Methods 9(2), 201–208 (2012).
    [Crossref] [PubMed]
  5. T. Fernández-Alfonso, K. M. N. S. Nadella, M. F. Iacaruso, B. Pichler, H. Roš, P. A. Kirkby, and R. A. Silver, “Monitoring synaptic and neuronal activity in 3D with synthetic and genetic indicators using a compact acousto-optic lens two-photon microscope,” J. Neurosci. Methods 222, 69–81 (2014).
    [Crossref]
  6. F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
    [Crossref] [PubMed]
  7. N. Friedman, A. Kaplan, and N. Davidson, “Acousto-optic scanning system with very fast nonlinear scans,” Opt. Lett. 25(24), 1762–1764 (2000).
    [Crossref]
  8. P. A. Kirkby, K. M. N. S. Nadella, and R. A. Silver, “Methods and Apparatus to Control Acousto-Optic Deflectors (U.S. patent WO/2012/143702),”.
  9. P. Bechtold, R. Hohenstein, and M. Schmidt, “Beam shaping and high-speed, cylinder-lens-free beam guiding using acousto-optical deflectors without additional compensation optics,” Opt. Express 21(12), 14627–14635 (2013).
    [Crossref] [PubMed]
  10. W. Akemann, J.-F. Léger, C. Ventalon, B. Mathieu, S. Dieudonné, and L. Bourdieu, “Fast spatial beam shaping by acousto-optic diffraction for 3D non-linear microscopy,” Opt. Express 23(22), 28191–28205 (2015).
    [Crossref] [PubMed]
  11. G. Y. Fan, H. Fujisaki, A. Miyawaki, R. K. Tsay, R. Y. Tsien, and M. H. Ellisman, “Video-rate scanning two-photon excitation fluorescence microscopy and ratio imaging with cameleons,” Biophys. J. 76(5), 2412–2420 (1999).
    [Crossref] [PubMed]
  12. X. Chen, U. Leischner, Z. Varga, H. Jia, D. Deca, N. L. Rochefort, and A. Konnerth, “LOTOS-based two-photon calcium imaging of dendritic spines in vivo,” Nat. Protoc. 7(10), 1818–1829 (2012).
    [Crossref] [PubMed]
  13. J. Xu and R. Stroud, Acousto-Optic Devices: Principles, Design, and Applications (Wiley, 1992).
  14. J. W. Goodman, Introduction to Fourier optics (McGraw-Hill, 1996).
  15. E. J. Botcherby, C. W. Smith, M. M. Kohl, D. Débarre, M. J. Booth, R. Juškaitis, O. Paulsen, and T. Wilson, “Aberration-free three-dimensional multiphoton imaging of neuronal activity at kHz rates,” Proc. Natl. Acad. Sci. U. S. A. 109(8), 2919–2924 (2012).
    [Crossref] [PubMed]
  16. N. Collings, T. Davey, J. Christmas, D. Chu, and B. Crossland, “The Applications and Technology of Phase-Only Liquid Crystal on Silicon Devices,” J. Disp. Technol. 7(3), 112–119 (2011).
    [Crossref]
  17. P.-Y. Madec, “Overview of Deformable Mirror Technologies for Adaptive Optics,” in “Imaging Appl. Opt. 2015,” (OSA, Washington, D.C., 2015), AOTh2C.1.
    [Crossref]
  18. “Meadowlark Optics,” http://www.meadowlark.com .
  19. “Boston Micro Machines Kilo S Deformable Mirror,” http://www.bostonmicromachines.com .
  20. T. G. Bifano and J. B. Stewart, “High-speed wavefront control using MEMS micromirrors,” in M. T. Valley and M. A. Vorontsov, eds., “Opt. Photonics 2005,” (International Society for Optics and Photonics, 2005), 58950–58959.
  21. E. Chaigneau, A. J. Wright, S. P. Poland, J. M. Girkin, and R. A. Silver, “Impact of wavefront distortion and scattering on 2-photon microscopy in mammalian brain tissue,” Opt. Express 19(23), 22755–22774 (2011).
    [Crossref] [PubMed]
  22. M. J. Booth, “Adaptive optics in microscopy,” Philos. Trans. A. Math. Phys. Eng. Sci. 365(1861), 2829–2843 (2007).
    [Crossref] [PubMed]
  23. J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, “Recent Advances in Optical Tweezers,” Annu. Rev. Biochem. 77(1), 205–228 (2008).
    [Crossref] [PubMed]
  24. P. S. Salter, A. Jesacher, H. Al-Wakeel, and M. Booth, “Laser microfabrication using adaptive optics: parallelization and aberration correction,” in “Imaging Appl. Opt.”, (OSA, Washington, D.C., 2011), AMC5.
    [Crossref]
  25. Y.-C. Li, L.-C. Cheng, C.-Y. Chang, C.-H. Lien, P. J. Campagnola, and S.-J. Chen, “Fast multiphoton microfabrication of freeform polymer microstructures by spatiotemporal focusing and patterned excitation,” Opt. Express 20(17), 19030–19038 (2012).
    [Crossref] [PubMed]
  26. E. Walker, A. Dvornikov, K. Coblentz, S. Esener, and P. Rentzepis, “Toward terabyte two-photon 3D disk,” Opt. Express 15(19), 12264–12276 (2007).
    [Crossref] [PubMed]
  27. F. K. Fatemi, M. Bashkansky, and Z. Dutton, “Dynamic high-speed spatial manipulation of cold atoms using acousto-optic and spatial light modulation,” Opt. Express 15(6), 3589–3596 (2007).
    [Crossref] [PubMed]
  28. T. Čižmár, H. I. C. Dalgarno, P. C. Ashok, F. J. Gunn-Moore, and K. Dholakia, “Optical aberration compensation in a multiplexed optical trapping system,” J. Opt. 13(4), 44008–44009 (2011).
    [Crossref]
  29. T. J. Gould, D. Burke, J. Bewersdorf, and M. J. Booth, “Adaptive optics enables 3D STED microscopy in aberrating specimens,” Opt. Express 20(19), 20998–21009 (2012).
    [Crossref] [PubMed]
  30. B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, and C. Yang, “Speckle-scale focusing in the diffusive regime with time-reversal of variance-encoded light (TROVE),” Nat. Photonics 7(4), 300–305 (2013).
    [Crossref] [PubMed]

2015 (1)

2014 (1)

T. Fernández-Alfonso, K. M. N. S. Nadella, M. F. Iacaruso, B. Pichler, H. Roš, P. A. Kirkby, and R. A. Silver, “Monitoring synaptic and neuronal activity in 3D with synthetic and genetic indicators using a compact acousto-optic lens two-photon microscope,” J. Neurosci. Methods 222, 69–81 (2014).
[Crossref]

2013 (2)

B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, and C. Yang, “Speckle-scale focusing in the diffusive regime with time-reversal of variance-encoded light (TROVE),” Nat. Photonics 7(4), 300–305 (2013).
[Crossref] [PubMed]

P. Bechtold, R. Hohenstein, and M. Schmidt, “Beam shaping and high-speed, cylinder-lens-free beam guiding using acousto-optical deflectors without additional compensation optics,” Opt. Express 21(12), 14627–14635 (2013).
[Crossref] [PubMed]

2012 (5)

Y.-C. Li, L.-C. Cheng, C.-Y. Chang, C.-H. Lien, P. J. Campagnola, and S.-J. Chen, “Fast multiphoton microfabrication of freeform polymer microstructures by spatiotemporal focusing and patterned excitation,” Opt. Express 20(17), 19030–19038 (2012).
[Crossref] [PubMed]

T. J. Gould, D. Burke, J. Bewersdorf, and M. J. Booth, “Adaptive optics enables 3D STED microscopy in aberrating specimens,” Opt. Express 20(19), 20998–21009 (2012).
[Crossref] [PubMed]

G. Katona, G. Szalay, P. Maák, A. Kaszás, M. Veress, D. Hillier, B. Chiovini, E. S. Vizi, B. Roska, and B. Rózsa, “Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes,” Nat. Methods 9(2), 201–208 (2012).
[Crossref] [PubMed]

X. Chen, U. Leischner, Z. Varga, H. Jia, D. Deca, N. L. Rochefort, and A. Konnerth, “LOTOS-based two-photon calcium imaging of dendritic spines in vivo,” Nat. Protoc. 7(10), 1818–1829 (2012).
[Crossref] [PubMed]

E. J. Botcherby, C. W. Smith, M. M. Kohl, D. Débarre, M. J. Booth, R. Juškaitis, O. Paulsen, and T. Wilson, “Aberration-free three-dimensional multiphoton imaging of neuronal activity at kHz rates,” Proc. Natl. Acad. Sci. U. S. A. 109(8), 2919–2924 (2012).
[Crossref] [PubMed]

2011 (3)

N. Collings, T. Davey, J. Christmas, D. Chu, and B. Crossland, “The Applications and Technology of Phase-Only Liquid Crystal on Silicon Devices,” J. Disp. Technol. 7(3), 112–119 (2011).
[Crossref]

T. Čižmár, H. I. C. Dalgarno, P. C. Ashok, F. J. Gunn-Moore, and K. Dholakia, “Optical aberration compensation in a multiplexed optical trapping system,” J. Opt. 13(4), 44008–44009 (2011).
[Crossref]

E. Chaigneau, A. J. Wright, S. P. Poland, J. M. Girkin, and R. A. Silver, “Impact of wavefront distortion and scattering on 2-photon microscopy in mammalian brain tissue,” Opt. Express 19(23), 22755–22774 (2011).
[Crossref] [PubMed]

2010 (1)

P. A. Kirkby, K. M. N. S. Nadella, and R. A. Silver, “A compact acousto-optic lens for 2D and 3D femtosecond based 2-photon microscopy,” Opt. Express 18(13), 13721–13745 (2010).
[Crossref] [PubMed]

2008 (2)

G. Duemani Reddy, K. Kelleher, R. Fink, and P. Saggau, “Three-dimensional random access multiphoton microscopy for functional imaging of neuronal activity,” Nat. Neurosci. 11(6), 713–720 (2008).
[Crossref] [PubMed]

J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, “Recent Advances in Optical Tweezers,” Annu. Rev. Biochem. 77(1), 205–228 (2008).
[Crossref] [PubMed]

2007 (3)

2005 (1)

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[Crossref] [PubMed]

2001 (1)

2000 (1)

1999 (1)

G. Y. Fan, H. Fujisaki, A. Miyawaki, R. K. Tsay, R. Y. Tsien, and M. H. Ellisman, “Video-rate scanning two-photon excitation fluorescence microscopy and ratio imaging with cameleons,” Biophys. J. 76(5), 2412–2420 (1999).
[Crossref] [PubMed]

Akemann, W.

Al-Wakeel, H.

P. S. Salter, A. Jesacher, H. Al-Wakeel, and M. Booth, “Laser microfabrication using adaptive optics: parallelization and aberration correction,” in “Imaging Appl. Opt.”, (OSA, Washington, D.C., 2011), AMC5.
[Crossref]

Ashok, P. C.

T. Čižmár, H. I. C. Dalgarno, P. C. Ashok, F. J. Gunn-Moore, and K. Dholakia, “Optical aberration compensation in a multiplexed optical trapping system,” J. Opt. 13(4), 44008–44009 (2011).
[Crossref]

Bashkansky, M.

Bechtold, P.

Bewersdorf, J.

Bifano, T. G.

T. G. Bifano and J. B. Stewart, “High-speed wavefront control using MEMS micromirrors,” in M. T. Valley and M. A. Vorontsov, eds., “Opt. Photonics 2005,” (International Society for Optics and Photonics, 2005), 58950–58959.

Booth, M.

P. S. Salter, A. Jesacher, H. Al-Wakeel, and M. Booth, “Laser microfabrication using adaptive optics: parallelization and aberration correction,” in “Imaging Appl. Opt.”, (OSA, Washington, D.C., 2011), AMC5.
[Crossref]

Booth, M. J.

T. J. Gould, D. Burke, J. Bewersdorf, and M. J. Booth, “Adaptive optics enables 3D STED microscopy in aberrating specimens,” Opt. Express 20(19), 20998–21009 (2012).
[Crossref] [PubMed]

E. J. Botcherby, C. W. Smith, M. M. Kohl, D. Débarre, M. J. Booth, R. Juškaitis, O. Paulsen, and T. Wilson, “Aberration-free three-dimensional multiphoton imaging of neuronal activity at kHz rates,” Proc. Natl. Acad. Sci. U. S. A. 109(8), 2919–2924 (2012).
[Crossref] [PubMed]

M. J. Booth, “Adaptive optics in microscopy,” Philos. Trans. A. Math. Phys. Eng. Sci. 365(1861), 2829–2843 (2007).
[Crossref] [PubMed]

Botcherby, E. J.

E. J. Botcherby, C. W. Smith, M. M. Kohl, D. Débarre, M. J. Booth, R. Juškaitis, O. Paulsen, and T. Wilson, “Aberration-free three-dimensional multiphoton imaging of neuronal activity at kHz rates,” Proc. Natl. Acad. Sci. U. S. A. 109(8), 2919–2924 (2012).
[Crossref] [PubMed]

Bourdieu, L.

Burke, D.

Bustamante, C.

J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, “Recent Advances in Optical Tweezers,” Annu. Rev. Biochem. 77(1), 205–228 (2008).
[Crossref] [PubMed]

Campagnola, P. J.

Chaigneau, E.

Chang, C.-Y.

Chemla, Y. R.

J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, “Recent Advances in Optical Tweezers,” Annu. Rev. Biochem. 77(1), 205–228 (2008).
[Crossref] [PubMed]

Chen, S.-J.

Chen, X.

X. Chen, U. Leischner, Z. Varga, H. Jia, D. Deca, N. L. Rochefort, and A. Konnerth, “LOTOS-based two-photon calcium imaging of dendritic spines in vivo,” Nat. Protoc. 7(10), 1818–1829 (2012).
[Crossref] [PubMed]

Cheng, L.-C.

Chiovini, B.

G. Katona, G. Szalay, P. Maák, A. Kaszás, M. Veress, D. Hillier, B. Chiovini, E. S. Vizi, B. Roska, and B. Rózsa, “Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes,” Nat. Methods 9(2), 201–208 (2012).
[Crossref] [PubMed]

Christmas, J.

N. Collings, T. Davey, J. Christmas, D. Chu, and B. Crossland, “The Applications and Technology of Phase-Only Liquid Crystal on Silicon Devices,” J. Disp. Technol. 7(3), 112–119 (2011).
[Crossref]

Chu, D.

N. Collings, T. Davey, J. Christmas, D. Chu, and B. Crossland, “The Applications and Technology of Phase-Only Liquid Crystal on Silicon Devices,” J. Disp. Technol. 7(3), 112–119 (2011).
[Crossref]

Cižmár, T.

T. Čižmár, H. I. C. Dalgarno, P. C. Ashok, F. J. Gunn-Moore, and K. Dholakia, “Optical aberration compensation in a multiplexed optical trapping system,” J. Opt. 13(4), 44008–44009 (2011).
[Crossref]

Coblentz, K.

Collings, N.

N. Collings, T. Davey, J. Christmas, D. Chu, and B. Crossland, “The Applications and Technology of Phase-Only Liquid Crystal on Silicon Devices,” J. Disp. Technol. 7(3), 112–119 (2011).
[Crossref]

Crossland, B.

N. Collings, T. Davey, J. Christmas, D. Chu, and B. Crossland, “The Applications and Technology of Phase-Only Liquid Crystal on Silicon Devices,” J. Disp. Technol. 7(3), 112–119 (2011).
[Crossref]

Dalgarno, H. I. C.

T. Čižmár, H. I. C. Dalgarno, P. C. Ashok, F. J. Gunn-Moore, and K. Dholakia, “Optical aberration compensation in a multiplexed optical trapping system,” J. Opt. 13(4), 44008–44009 (2011).
[Crossref]

Davey, T.

N. Collings, T. Davey, J. Christmas, D. Chu, and B. Crossland, “The Applications and Technology of Phase-Only Liquid Crystal on Silicon Devices,” J. Disp. Technol. 7(3), 112–119 (2011).
[Crossref]

Davidson, N.

Débarre, D.

E. J. Botcherby, C. W. Smith, M. M. Kohl, D. Débarre, M. J. Booth, R. Juškaitis, O. Paulsen, and T. Wilson, “Aberration-free three-dimensional multiphoton imaging of neuronal activity at kHz rates,” Proc. Natl. Acad. Sci. U. S. A. 109(8), 2919–2924 (2012).
[Crossref] [PubMed]

Deca, D.

X. Chen, U. Leischner, Z. Varga, H. Jia, D. Deca, N. L. Rochefort, and A. Konnerth, “LOTOS-based two-photon calcium imaging of dendritic spines in vivo,” Nat. Protoc. 7(10), 1818–1829 (2012).
[Crossref] [PubMed]

Denk, W.

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[Crossref] [PubMed]

Dholakia, K.

T. Čižmár, H. I. C. Dalgarno, P. C. Ashok, F. J. Gunn-Moore, and K. Dholakia, “Optical aberration compensation in a multiplexed optical trapping system,” J. Opt. 13(4), 44008–44009 (2011).
[Crossref]

Dieudonné, S.

Duemani Reddy, G.

G. Duemani Reddy, K. Kelleher, R. Fink, and P. Saggau, “Three-dimensional random access multiphoton microscopy for functional imaging of neuronal activity,” Nat. Neurosci. 11(6), 713–720 (2008).
[Crossref] [PubMed]

Dutton, Z.

Dvornikov, A.

Ellisman, M. H.

G. Y. Fan, H. Fujisaki, A. Miyawaki, R. K. Tsay, R. Y. Tsien, and M. H. Ellisman, “Video-rate scanning two-photon excitation fluorescence microscopy and ratio imaging with cameleons,” Biophys. J. 76(5), 2412–2420 (1999).
[Crossref] [PubMed]

Esener, S.

Fan, G. Y.

G. Y. Fan, H. Fujisaki, A. Miyawaki, R. K. Tsay, R. Y. Tsien, and M. H. Ellisman, “Video-rate scanning two-photon excitation fluorescence microscopy and ratio imaging with cameleons,” Biophys. J. 76(5), 2412–2420 (1999).
[Crossref] [PubMed]

Fatemi, F. K.

Fernández-Alfonso, T.

T. Fernández-Alfonso, K. M. N. S. Nadella, M. F. Iacaruso, B. Pichler, H. Roš, P. A. Kirkby, and R. A. Silver, “Monitoring synaptic and neuronal activity in 3D with synthetic and genetic indicators using a compact acousto-optic lens two-photon microscope,” J. Neurosci. Methods 222, 69–81 (2014).
[Crossref]

Fink, R.

G. Duemani Reddy, K. Kelleher, R. Fink, and P. Saggau, “Three-dimensional random access multiphoton microscopy for functional imaging of neuronal activity,” Nat. Neurosci. 11(6), 713–720 (2008).
[Crossref] [PubMed]

Friedman, N.

Fujisaki, H.

G. Y. Fan, H. Fujisaki, A. Miyawaki, R. K. Tsay, R. Y. Tsien, and M. H. Ellisman, “Video-rate scanning two-photon excitation fluorescence microscopy and ratio imaging with cameleons,” Biophys. J. 76(5), 2412–2420 (1999).
[Crossref] [PubMed]

Girkin, J. M.

Goodman, J. W.

J. W. Goodman, Introduction to Fourier optics (McGraw-Hill, 1996).

Gould, T. J.

Gunn-Moore, F. J.

T. Čižmár, H. I. C. Dalgarno, P. C. Ashok, F. J. Gunn-Moore, and K. Dholakia, “Optical aberration compensation in a multiplexed optical trapping system,” J. Opt. 13(4), 44008–44009 (2011).
[Crossref]

Helmchen, F.

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[Crossref] [PubMed]

Hillier, D.

G. Katona, G. Szalay, P. Maák, A. Kaszás, M. Veress, D. Hillier, B. Chiovini, E. S. Vizi, B. Roska, and B. Rózsa, “Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes,” Nat. Methods 9(2), 201–208 (2012).
[Crossref] [PubMed]

Hohenstein, R.

Horstmeyer, R.

B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, and C. Yang, “Speckle-scale focusing in the diffusive regime with time-reversal of variance-encoded light (TROVE),” Nat. Photonics 7(4), 300–305 (2013).
[Crossref] [PubMed]

Iacaruso, M. F.

T. Fernández-Alfonso, K. M. N. S. Nadella, M. F. Iacaruso, B. Pichler, H. Roš, P. A. Kirkby, and R. A. Silver, “Monitoring synaptic and neuronal activity in 3D with synthetic and genetic indicators using a compact acousto-optic lens two-photon microscope,” J. Neurosci. Methods 222, 69–81 (2014).
[Crossref]

Jesacher, A.

P. S. Salter, A. Jesacher, H. Al-Wakeel, and M. Booth, “Laser microfabrication using adaptive optics: parallelization and aberration correction,” in “Imaging Appl. Opt.”, (OSA, Washington, D.C., 2011), AMC5.
[Crossref]

Jia, H.

X. Chen, U. Leischner, Z. Varga, H. Jia, D. Deca, N. L. Rochefort, and A. Konnerth, “LOTOS-based two-photon calcium imaging of dendritic spines in vivo,” Nat. Protoc. 7(10), 1818–1829 (2012).
[Crossref] [PubMed]

Judkewitz, B.

B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, and C. Yang, “Speckle-scale focusing in the diffusive regime with time-reversal of variance-encoded light (TROVE),” Nat. Photonics 7(4), 300–305 (2013).
[Crossref] [PubMed]

Juškaitis, R.

E. J. Botcherby, C. W. Smith, M. M. Kohl, D. Débarre, M. J. Booth, R. Juškaitis, O. Paulsen, and T. Wilson, “Aberration-free three-dimensional multiphoton imaging of neuronal activity at kHz rates,” Proc. Natl. Acad. Sci. U. S. A. 109(8), 2919–2924 (2012).
[Crossref] [PubMed]

Kaplan, A.

Kaszás, A.

G. Katona, G. Szalay, P. Maák, A. Kaszás, M. Veress, D. Hillier, B. Chiovini, E. S. Vizi, B. Roska, and B. Rózsa, “Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes,” Nat. Methods 9(2), 201–208 (2012).
[Crossref] [PubMed]

Katona, G.

G. Katona, G. Szalay, P. Maák, A. Kaszás, M. Veress, D. Hillier, B. Chiovini, E. S. Vizi, B. Roska, and B. Rózsa, “Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes,” Nat. Methods 9(2), 201–208 (2012).
[Crossref] [PubMed]

Kelleher, K.

G. Duemani Reddy, K. Kelleher, R. Fink, and P. Saggau, “Three-dimensional random access multiphoton microscopy for functional imaging of neuronal activity,” Nat. Neurosci. 11(6), 713–720 (2008).
[Crossref] [PubMed]

Kirkby, P. A.

T. Fernández-Alfonso, K. M. N. S. Nadella, M. F. Iacaruso, B. Pichler, H. Roš, P. A. Kirkby, and R. A. Silver, “Monitoring synaptic and neuronal activity in 3D with synthetic and genetic indicators using a compact acousto-optic lens two-photon microscope,” J. Neurosci. Methods 222, 69–81 (2014).
[Crossref]

P. A. Kirkby, K. M. N. S. Nadella, and R. A. Silver, “A compact acousto-optic lens for 2D and 3D femtosecond based 2-photon microscopy,” Opt. Express 18(13), 13721–13745 (2010).
[Crossref] [PubMed]

P. A. Kirkby, K. M. N. S. Nadella, and R. A. Silver, “Methods and Apparatus to Control Acousto-Optic Deflectors (U.S. patent WO/2012/143702),”.

Kohl, M. M.

E. J. Botcherby, C. W. Smith, M. M. Kohl, D. Débarre, M. J. Booth, R. Juškaitis, O. Paulsen, and T. Wilson, “Aberration-free three-dimensional multiphoton imaging of neuronal activity at kHz rates,” Proc. Natl. Acad. Sci. U. S. A. 109(8), 2919–2924 (2012).
[Crossref] [PubMed]

Konnerth, A.

X. Chen, U. Leischner, Z. Varga, H. Jia, D. Deca, N. L. Rochefort, and A. Konnerth, “LOTOS-based two-photon calcium imaging of dendritic spines in vivo,” Nat. Protoc. 7(10), 1818–1829 (2012).
[Crossref] [PubMed]

Léger, J.-F.

Leischner, U.

X. Chen, U. Leischner, Z. Varga, H. Jia, D. Deca, N. L. Rochefort, and A. Konnerth, “LOTOS-based two-photon calcium imaging of dendritic spines in vivo,” Nat. Protoc. 7(10), 1818–1829 (2012).
[Crossref] [PubMed]

Li, Y.-C.

Lien, C.-H.

Maák, P.

G. Katona, G. Szalay, P. Maák, A. Kaszás, M. Veress, D. Hillier, B. Chiovini, E. S. Vizi, B. Roska, and B. Rózsa, “Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes,” Nat. Methods 9(2), 201–208 (2012).
[Crossref] [PubMed]

Madec, P.-Y.

P.-Y. Madec, “Overview of Deformable Mirror Technologies for Adaptive Optics,” in “Imaging Appl. Opt. 2015,” (OSA, Washington, D.C., 2015), AOTh2C.1.
[Crossref]

Mathieu, B.

Mathy, A.

B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, and C. Yang, “Speckle-scale focusing in the diffusive regime with time-reversal of variance-encoded light (TROVE),” Nat. Photonics 7(4), 300–305 (2013).
[Crossref] [PubMed]

Miyawaki, A.

G. Y. Fan, H. Fujisaki, A. Miyawaki, R. K. Tsay, R. Y. Tsien, and M. H. Ellisman, “Video-rate scanning two-photon excitation fluorescence microscopy and ratio imaging with cameleons,” Biophys. J. 76(5), 2412–2420 (1999).
[Crossref] [PubMed]

Moffitt, J. R.

J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, “Recent Advances in Optical Tweezers,” Annu. Rev. Biochem. 77(1), 205–228 (2008).
[Crossref] [PubMed]

Nadella, K. M. N. S.

T. Fernández-Alfonso, K. M. N. S. Nadella, M. F. Iacaruso, B. Pichler, H. Roš, P. A. Kirkby, and R. A. Silver, “Monitoring synaptic and neuronal activity in 3D with synthetic and genetic indicators using a compact acousto-optic lens two-photon microscope,” J. Neurosci. Methods 222, 69–81 (2014).
[Crossref]

P. A. Kirkby, K. M. N. S. Nadella, and R. A. Silver, “A compact acousto-optic lens for 2D and 3D femtosecond based 2-photon microscopy,” Opt. Express 18(13), 13721–13745 (2010).
[Crossref] [PubMed]

P. A. Kirkby, K. M. N. S. Nadella, and R. A. Silver, “Methods and Apparatus to Control Acousto-Optic Deflectors (U.S. patent WO/2012/143702),”.

Paulsen, O.

E. J. Botcherby, C. W. Smith, M. M. Kohl, D. Débarre, M. J. Booth, R. Juškaitis, O. Paulsen, and T. Wilson, “Aberration-free three-dimensional multiphoton imaging of neuronal activity at kHz rates,” Proc. Natl. Acad. Sci. U. S. A. 109(8), 2919–2924 (2012).
[Crossref] [PubMed]

Pichler, B.

T. Fernández-Alfonso, K. M. N. S. Nadella, M. F. Iacaruso, B. Pichler, H. Roš, P. A. Kirkby, and R. A. Silver, “Monitoring synaptic and neuronal activity in 3D with synthetic and genetic indicators using a compact acousto-optic lens two-photon microscope,” J. Neurosci. Methods 222, 69–81 (2014).
[Crossref]

Poland, S. P.

Rentzepis, P.

Rochefort, N. L.

X. Chen, U. Leischner, Z. Varga, H. Jia, D. Deca, N. L. Rochefort, and A. Konnerth, “LOTOS-based two-photon calcium imaging of dendritic spines in vivo,” Nat. Protoc. 7(10), 1818–1829 (2012).
[Crossref] [PubMed]

Roš, H.

T. Fernández-Alfonso, K. M. N. S. Nadella, M. F. Iacaruso, B. Pichler, H. Roš, P. A. Kirkby, and R. A. Silver, “Monitoring synaptic and neuronal activity in 3D with synthetic and genetic indicators using a compact acousto-optic lens two-photon microscope,” J. Neurosci. Methods 222, 69–81 (2014).
[Crossref]

Roska, B.

G. Katona, G. Szalay, P. Maák, A. Kaszás, M. Veress, D. Hillier, B. Chiovini, E. S. Vizi, B. Roska, and B. Rózsa, “Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes,” Nat. Methods 9(2), 201–208 (2012).
[Crossref] [PubMed]

Rózsa, B.

G. Katona, G. Szalay, P. Maák, A. Kaszás, M. Veress, D. Hillier, B. Chiovini, E. S. Vizi, B. Roska, and B. Rózsa, “Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes,” Nat. Methods 9(2), 201–208 (2012).
[Crossref] [PubMed]

Saggau, P.

G. Duemani Reddy, K. Kelleher, R. Fink, and P. Saggau, “Three-dimensional random access multiphoton microscopy for functional imaging of neuronal activity,” Nat. Neurosci. 11(6), 713–720 (2008).
[Crossref] [PubMed]

Salter, P. S.

P. S. Salter, A. Jesacher, H. Al-Wakeel, and M. Booth, “Laser microfabrication using adaptive optics: parallelization and aberration correction,” in “Imaging Appl. Opt.”, (OSA, Washington, D.C., 2011), AMC5.
[Crossref]

Schmidt, M.

Silver, R. A.

T. Fernández-Alfonso, K. M. N. S. Nadella, M. F. Iacaruso, B. Pichler, H. Roš, P. A. Kirkby, and R. A. Silver, “Monitoring synaptic and neuronal activity in 3D with synthetic and genetic indicators using a compact acousto-optic lens two-photon microscope,” J. Neurosci. Methods 222, 69–81 (2014).
[Crossref]

E. Chaigneau, A. J. Wright, S. P. Poland, J. M. Girkin, and R. A. Silver, “Impact of wavefront distortion and scattering on 2-photon microscopy in mammalian brain tissue,” Opt. Express 19(23), 22755–22774 (2011).
[Crossref] [PubMed]

P. A. Kirkby, K. M. N. S. Nadella, and R. A. Silver, “A compact acousto-optic lens for 2D and 3D femtosecond based 2-photon microscopy,” Opt. Express 18(13), 13721–13745 (2010).
[Crossref] [PubMed]

P. A. Kirkby, K. M. N. S. Nadella, and R. A. Silver, “Methods and Apparatus to Control Acousto-Optic Deflectors (U.S. patent WO/2012/143702),”.

Smith, C. W.

E. J. Botcherby, C. W. Smith, M. M. Kohl, D. Débarre, M. J. Booth, R. Juškaitis, O. Paulsen, and T. Wilson, “Aberration-free three-dimensional multiphoton imaging of neuronal activity at kHz rates,” Proc. Natl. Acad. Sci. U. S. A. 109(8), 2919–2924 (2012).
[Crossref] [PubMed]

Smith, S. B.

J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, “Recent Advances in Optical Tweezers,” Annu. Rev. Biochem. 77(1), 205–228 (2008).
[Crossref] [PubMed]

Stewart, J. B.

T. G. Bifano and J. B. Stewart, “High-speed wavefront control using MEMS micromirrors,” in M. T. Valley and M. A. Vorontsov, eds., “Opt. Photonics 2005,” (International Society for Optics and Photonics, 2005), 58950–58959.

Stroud, R.

J. Xu and R. Stroud, Acousto-Optic Devices: Principles, Design, and Applications (Wiley, 1992).

Szalay, G.

G. Katona, G. Szalay, P. Maák, A. Kaszás, M. Veress, D. Hillier, B. Chiovini, E. S. Vizi, B. Roska, and B. Rózsa, “Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes,” Nat. Methods 9(2), 201–208 (2012).
[Crossref] [PubMed]

Tsay, R. K.

G. Y. Fan, H. Fujisaki, A. Miyawaki, R. K. Tsay, R. Y. Tsien, and M. H. Ellisman, “Video-rate scanning two-photon excitation fluorescence microscopy and ratio imaging with cameleons,” Biophys. J. 76(5), 2412–2420 (1999).
[Crossref] [PubMed]

Tsien, R. Y.

G. Y. Fan, H. Fujisaki, A. Miyawaki, R. K. Tsay, R. Y. Tsien, and M. H. Ellisman, “Video-rate scanning two-photon excitation fluorescence microscopy and ratio imaging with cameleons,” Biophys. J. 76(5), 2412–2420 (1999).
[Crossref] [PubMed]

Varga, Z.

X. Chen, U. Leischner, Z. Varga, H. Jia, D. Deca, N. L. Rochefort, and A. Konnerth, “LOTOS-based two-photon calcium imaging of dendritic spines in vivo,” Nat. Protoc. 7(10), 1818–1829 (2012).
[Crossref] [PubMed]

Ventalon, C.

Veress, M.

G. Katona, G. Szalay, P. Maák, A. Kaszás, M. Veress, D. Hillier, B. Chiovini, E. S. Vizi, B. Roska, and B. Rózsa, “Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes,” Nat. Methods 9(2), 201–208 (2012).
[Crossref] [PubMed]

Vizi, E. S.

G. Katona, G. Szalay, P. Maák, A. Kaszás, M. Veress, D. Hillier, B. Chiovini, E. S. Vizi, B. Roska, and B. Rózsa, “Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes,” Nat. Methods 9(2), 201–208 (2012).
[Crossref] [PubMed]

Walker, E.

Wang, Y. M.

B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, and C. Yang, “Speckle-scale focusing in the diffusive regime with time-reversal of variance-encoded light (TROVE),” Nat. Photonics 7(4), 300–305 (2013).
[Crossref] [PubMed]

Wilson, T.

E. J. Botcherby, C. W. Smith, M. M. Kohl, D. Débarre, M. J. Booth, R. Juškaitis, O. Paulsen, and T. Wilson, “Aberration-free three-dimensional multiphoton imaging of neuronal activity at kHz rates,” Proc. Natl. Acad. Sci. U. S. A. 109(8), 2919–2924 (2012).
[Crossref] [PubMed]

Wright, A. J.

Xu, J.

J. Xu and R. Stroud, Acousto-Optic Devices: Principles, Design, and Applications (Wiley, 1992).

Yang, C.

B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, and C. Yang, “Speckle-scale focusing in the diffusive regime with time-reversal of variance-encoded light (TROVE),” Nat. Photonics 7(4), 300–305 (2013).
[Crossref] [PubMed]

Annu. Rev. Biochem. (1)

J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, “Recent Advances in Optical Tweezers,” Annu. Rev. Biochem. 77(1), 205–228 (2008).
[Crossref] [PubMed]

Biophys. J. (1)

G. Y. Fan, H. Fujisaki, A. Miyawaki, R. K. Tsay, R. Y. Tsien, and M. H. Ellisman, “Video-rate scanning two-photon excitation fluorescence microscopy and ratio imaging with cameleons,” Biophys. J. 76(5), 2412–2420 (1999).
[Crossref] [PubMed]

J. Disp. Technol. (1)

N. Collings, T. Davey, J. Christmas, D. Chu, and B. Crossland, “The Applications and Technology of Phase-Only Liquid Crystal on Silicon Devices,” J. Disp. Technol. 7(3), 112–119 (2011).
[Crossref]

J. Neurosci. Methods (1)

T. Fernández-Alfonso, K. M. N. S. Nadella, M. F. Iacaruso, B. Pichler, H. Roš, P. A. Kirkby, and R. A. Silver, “Monitoring synaptic and neuronal activity in 3D with synthetic and genetic indicators using a compact acousto-optic lens two-photon microscope,” J. Neurosci. Methods 222, 69–81 (2014).
[Crossref]

J. Opt. (1)

T. Čižmár, H. I. C. Dalgarno, P. C. Ashok, F. J. Gunn-Moore, and K. Dholakia, “Optical aberration compensation in a multiplexed optical trapping system,” J. Opt. 13(4), 44008–44009 (2011).
[Crossref]

Nat. Methods (2)

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[Crossref] [PubMed]

G. Katona, G. Szalay, P. Maák, A. Kaszás, M. Veress, D. Hillier, B. Chiovini, E. S. Vizi, B. Roska, and B. Rózsa, “Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes,” Nat. Methods 9(2), 201–208 (2012).
[Crossref] [PubMed]

Nat. Neurosci. (1)

G. Duemani Reddy, K. Kelleher, R. Fink, and P. Saggau, “Three-dimensional random access multiphoton microscopy for functional imaging of neuronal activity,” Nat. Neurosci. 11(6), 713–720 (2008).
[Crossref] [PubMed]

Nat. Photonics (1)

B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, and C. Yang, “Speckle-scale focusing in the diffusive regime with time-reversal of variance-encoded light (TROVE),” Nat. Photonics 7(4), 300–305 (2013).
[Crossref] [PubMed]

Nat. Protoc. (1)

X. Chen, U. Leischner, Z. Varga, H. Jia, D. Deca, N. L. Rochefort, and A. Konnerth, “LOTOS-based two-photon calcium imaging of dendritic spines in vivo,” Nat. Protoc. 7(10), 1818–1829 (2012).
[Crossref] [PubMed]

Opt. Express (8)

P. A. Kirkby, K. M. N. S. Nadella, and R. A. Silver, “A compact acousto-optic lens for 2D and 3D femtosecond based 2-photon microscopy,” Opt. Express 18(13), 13721–13745 (2010).
[Crossref] [PubMed]

F. K. Fatemi, M. Bashkansky, and Z. Dutton, “Dynamic high-speed spatial manipulation of cold atoms using acousto-optic and spatial light modulation,” Opt. Express 15(6), 3589–3596 (2007).
[Crossref] [PubMed]

E. Walker, A. Dvornikov, K. Coblentz, S. Esener, and P. Rentzepis, “Toward terabyte two-photon 3D disk,” Opt. Express 15(19), 12264–12276 (2007).
[Crossref] [PubMed]

E. Chaigneau, A. J. Wright, S. P. Poland, J. M. Girkin, and R. A. Silver, “Impact of wavefront distortion and scattering on 2-photon microscopy in mammalian brain tissue,” Opt. Express 19(23), 22755–22774 (2011).
[Crossref] [PubMed]

Y.-C. Li, L.-C. Cheng, C.-Y. Chang, C.-H. Lien, P. J. Campagnola, and S.-J. Chen, “Fast multiphoton microfabrication of freeform polymer microstructures by spatiotemporal focusing and patterned excitation,” Opt. Express 20(17), 19030–19038 (2012).
[Crossref] [PubMed]

T. J. Gould, D. Burke, J. Bewersdorf, and M. J. Booth, “Adaptive optics enables 3D STED microscopy in aberrating specimens,” Opt. Express 20(19), 20998–21009 (2012).
[Crossref] [PubMed]

P. Bechtold, R. Hohenstein, and M. Schmidt, “Beam shaping and high-speed, cylinder-lens-free beam guiding using acousto-optical deflectors without additional compensation optics,” Opt. Express 21(12), 14627–14635 (2013).
[Crossref] [PubMed]

W. Akemann, J.-F. Léger, C. Ventalon, B. Mathieu, S. Dieudonné, and L. Bourdieu, “Fast spatial beam shaping by acousto-optic diffraction for 3D non-linear microscopy,” Opt. Express 23(22), 28191–28205 (2015).
[Crossref] [PubMed]

Opt. Lett. (2)

Philos. Trans. A. Math. Phys. Eng. Sci. (1)

M. J. Booth, “Adaptive optics in microscopy,” Philos. Trans. A. Math. Phys. Eng. Sci. 365(1861), 2829–2843 (2007).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U. S. A. (1)

E. J. Botcherby, C. W. Smith, M. M. Kohl, D. Débarre, M. J. Booth, R. Juškaitis, O. Paulsen, and T. Wilson, “Aberration-free three-dimensional multiphoton imaging of neuronal activity at kHz rates,” Proc. Natl. Acad. Sci. U. S. A. 109(8), 2919–2924 (2012).
[Crossref] [PubMed]

Other (8)

P. S. Salter, A. Jesacher, H. Al-Wakeel, and M. Booth, “Laser microfabrication using adaptive optics: parallelization and aberration correction,” in “Imaging Appl. Opt.”, (OSA, Washington, D.C., 2011), AMC5.
[Crossref]

P. A. Kirkby, K. M. N. S. Nadella, and R. A. Silver, “Methods and Apparatus to Control Acousto-Optic Deflectors (U.S. patent WO/2012/143702),”.

J. Xu and R. Stroud, Acousto-Optic Devices: Principles, Design, and Applications (Wiley, 1992).

J. W. Goodman, Introduction to Fourier optics (McGraw-Hill, 1996).

P.-Y. Madec, “Overview of Deformable Mirror Technologies for Adaptive Optics,” in “Imaging Appl. Opt. 2015,” (OSA, Washington, D.C., 2015), AOTh2C.1.
[Crossref]

“Meadowlark Optics,” http://www.meadowlark.com .

“Boston Micro Machines Kilo S Deformable Mirror,” http://www.bostonmicromachines.com .

T. G. Bifano and J. B. Stewart, “High-speed wavefront control using MEMS micromirrors,” in M. T. Valley and M. A. Vorontsov, eds., “Opt. Photonics 2005,” (International Society for Optics and Photonics, 2005), 58950–58959.

Supplementary Material (5)

NameDescription
» Visualization 1: MOV (3477 KB)      Experiment with 50 mm focal length cylindrical lens.
» Visualization 2: MOV (4620 KB)      Experiment with 75 mm focal length cylindrical lens.
» Visualization 3: MOV (5075 KB)      Experiment with inverted 75 mm focal length cylindrical lens.
» Visualization 4: MOV (4531 KB)      Experiment with 100 mm focal length cylindrical lens.
» Visualization 5: MOV (4679 KB)      Experiment with inverted 100 mm focal length cylindrical lens.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Operating principle of an acousto-optic lens. (a) Schematic diagram of light propagation through a cylindrical AOL, which comprises two acousto-optic deflectors (AODs) with counter-propagating acoustic waves, together with an aberrated lens. The optical wavefront at each stage is indicated by the red lines and the acoustic waves are indicted by the vertical dark-blue lines within AOD1 and AOD2. (b) Relationship between phase (ϕ = 2πxn) and frequency (f = nVxn−1) shown across the aperture for n ∈ {1, 2, 3, 4}, where the position is denoted by x and the acoustic velocity by V.

Fig. 2
Fig. 2

Schematic diagram of experimental setup. From left to right: the pulsed diode laser, was spatially filtered with a pinhole and projected through the two AODs with counter-propagating acoustic waves, which were generated by the FPGA control system and radio frequency (RF) amplifiers, under the control of the host PC. The light was focused by a fixed cylindrical lens. The microscope objective was used to project an image of a plane in the focal region onto a CCD camera. Both the objective and the camera were mounted on a motorized stage enabling a z-stack of the focal region to be imaged.

Fig. 3
Fig. 3

Continuous axial line scanning. (a–c) Relationships between the phases of the counter-propagating acoustic waves of a cylindrical AOL (AOD1, blue; AOD2, red) at different instants in time (respectively 30, 35, 40 μs after ramp start). The resulting phase imposed on the optical beam is shown in purple. (d–f) Images of 1 μs light pulses at the times corresponding to (a–c) respectively. (g) Trajectory of focus during a purely axial scan produced using the third-order phase components shown in (a–c) made by imaging 14 μs duration laser illumination. (h) Similar to (g) but with second-order phase components which introduce lateral velocity. (i) Similar to (h) but with faster lateral velocity. (j) Relationship between axial displacement and time after the start of drive of the scan, for three different magnitudes of third-order phase components (P3 in Table 1). The solid lines show the measured peak intensity and the circles show the theoretically expected trajectory for each case. Scales (d–i): horizontal scale bar is 50 μm, vertical bar is 1 mm.

Fig. 4
Fig. 4

Correction of 2D-spherical-like aberration. (a) Experimentally measured focus exhibiting spherical-like aberration. (b) Same as (a) but with −3.3 waves of fourth-order phase added per AOD ( P 4 ± = 3.3 in Table 1). (c) Same as (b) but with −6.6 waves per AOD (see Visualization 1 - 50 mm lens, Visualization 2 - 75 mm lens, Visualization 3 - 75 mm lens inverted, Visualization 4 - 100 mm lens, Visualization 5 - 100 mm lens inverted). (d–f) Theoretical focus corresponding to (a–c), calculated with a the model described in Section 2.2. (a–f) Top panels: colour scales normalised to the peak intensity in each panel; scale bars: horizontal 50 μm, vertical 1 mm. Bottom panels: magnified and normalised to the peak intensity across the three scenarios; scale bars: horizontal 10 μm, vertical 0.5 mm. (g,h) Normalised peak intensity and area with an intensity over the half maximum both plotted respectively against the (absolute) sum of the fourth-order phase components of the acoustic waves. Phase aberration discretized in 0.2 wave steps. The arrowheads mark the theoretical prediction of optimal correction for each of three forward-facing plano-convex lenses and two inverted lenses (normal plano-convex lenses used backwards) denoted by (i). (a–h) are all at t = 0, experimentally set to be 32.9 μs after each ramp start. (i) Calculated duration of aberration compensation shown for fourth, sixth and eighth-order phase components as a function of the number of waves being compensated. Logarithmic plot with gradient of −1/2 indicates inverse square-root dependence.

Fig. 5
Fig. 5

Measurement of 2D-spherical-like aberration correction precision. (a) Profile of focus with 2D-spherical-like aberration introduced by driving the AODs of a cylindrical AOL with 4 waves of fourth-order phase ( P 4 ± = 4 in Table 1). Scale bar 0.5 mm. (b) Intensity profile across the horizontal line in (a), for P4 = 4 and P4 = 4.04 waves. (c) Difference in intensity profiles for P4 = 4 and P4 = 4.04 waves with arrow indicating the location of peak sensitivity. (d) Intensity at region of peak sensitivity for P4 = 3.4 and P4 = 3.2 waves measured at 30 kHz using a silicon detector and slit. (e) Differences in intensity between adjacent maxima normalised to the mean difference (green line) and scaled to units of waves of phase by aligning the mean with 0.2 waves. Red lines indicate ±1 standard deviation. (f) Intensity difference profiles [cf. (c)] in steps of 0.002 waves from −0.04 waves of correction to +0.04 waves, integrated vertically over the CCD camera image. (g) Plot of 300 measured intensity differences against waves of fourth-order phase (black circles). Mean at each step shown by the red line.

Fig. 6
Fig. 6

Model comparing effectiveness of 4-AOD and 6-AOD AOLs at correcting spherical aberration. (a–d) Calculated using Fourier model described in Section 3.3, top: xy amplitude profile at location indicated by dashed lines in middle panel, middle: xz amplitude profile, bottom: xz two-photon profile. (a) Focus without spherical aberration. (b) Focus with spherical aberration. (c) Attempted correction of spherical aberration using (standard) 4-AOD AOL. (d) Correction of spherical aberration using 6-AOD AOL. Scale bars from top to bottom: 1 μm, 5 μm, 5 μm. (e) Relationship between FWHM of two-photon excitation in xz plane and axial defocus introduced, for uncorrected (red), 4-AOD AOL-correction (blue) and 6-AOD AOL-correction (black). (f) Top: direction of acoustic waves in 6-AOD AOL; bottom: diagram of 6-AOD AOL and spherical lens controlling an optical beam.

Tables (1)

Tables Icon

Table 1 Summary of theoretical results.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

U ( t , x ) U in ( x ) W + ( t x / V ) W ( t + x / V )
W + ( t x / V ) = W 0 exp ( 2 π i { f ( t x / V ) + n = 1 N P n + ( t x / V τ / 2 ) n } ) W ( t + x / V ) = W 0 exp ( 2 π i { f ( t + x / V ) + n = 1 N P n ( t + x / V τ / 2 ) n } )
ϕ = 4 π f t + 2 π n = 1 N ( P n + [ t x / V τ / 2 ] n + P n [ t + x / V τ / 2 ] n )
F ( t ) = 1 2 π Φ t
W ( x ) = exp ( 2 π i n = 1 N P n [ x L / 2 ] n )
I w = β w + α + N ( 0 , σ 2 )
I 3.4 I 3.2 = 0.2 β + N ( 0 , 2 σ 2 )

Metrics