Abstract

The addition of elevated temperature steps (annealing) during the growth of InAs/GaAs quantum dot (QD) structures on Si substrates results in significant improvements in their structural and optical properties and laser device performance. This is shown to result from an increased efficacy of the dislocation filter layers (DFLs); reducing the density of dislocations that arise at the Si/III-V interface which reach the active region. The addition of two annealing steps gives a greater than three reduction in the room temperature threshold current of a 1.3 μm emitting QD laser on Si. The active region of structures grown on Si have a room temperature residual tensile strain of 0.17%, consistent with cool down from the growth temperature and the different Si and GaAs thermal expansion coefficients. This strain limits the amount of III-V material that can be grown before relaxation occurs.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers

Mingchu Tang, Siming Chen, Jiang Wu, Qi Jiang, Vitaliy G. Dorogan, Mourad Benamara, Yuriy I. Mazur, Gregory J. Salamo, Alwyn Seeds, and Huiyun Liu
Opt. Express 22(10) 11528-11535 (2014)

1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates

Ting Wang, Huiyun Liu, Andrew Lee, Francesca Pozzi, and Alwyn Seeds
Opt. Express 19(12) 11381-11386 (2011)

Continuous-wave InAs/GaAs quantum-dot laser diodes monolithically grown on Si substrate with low threshold current densities

Andrew Lee, Qi Jiang, Mingchu Tang, Alwyn Seeds, and Huiyun Liu
Opt. Express 20(20) 22181-22187 (2012)

References

  • View by:
  • |
  • |
  • |

  1. B. Jalali and S. Fathpour, “Silicon Photonics,” J. Lightwave Technol. 24(12), 4600–4615 (2006).
    [Crossref]
  2. D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4(8), 511–517 (2010).
    [Crossref]
  3. X. Chen, C. Li, and H. K. Tsang, “Device engineering for silicon photonics,” NPG Asia Mater. 3(1), 34–40 (2011).
    [Crossref]
  4. H. Liu, “III–V Quantum-Dot Materials and Devices Monolithically Grown on Si Substrates,” in Silicon-based Nanomaterials, H. Li, J. Wu, and Z. M. Wang, eds. (Springer, 2013)., pp. 357–380.
  5. H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode grown on Ge substrate,” Nat. Photonics 5(7), 416–419 (2011).
    [Crossref]
  6. R. Beanland, A. M. Sanchez, D. Childs, K. M. Groom, H. Y. Liu, D. J. Mowbray, and M. Hopkinson, “Structural analysis of life tested 1.3 micron quantum dots lasers,” J. Appl. Phys. 103, 014913 (2008).
    [Crossref]
  7. A. Georgakilas and A. Christou, “Effects of InGaAs/GaAs strained-layer superlattices in optimized molecular-beam-epitaxy GaAs on Si with Si buffer layers,” J. Appl. Phys. 76(11), 7332–7338 (1994).
    [Crossref]
  8. J. Yang, P. Bhattacharya, and Z. Mi, “High-Performance In0.5Ga0.5As/GaAs Quantum-Dot-Lasers on Silicon with Mulitple-Layer Quantum-Dot Dislocation Filters,” IEEE Trans. Electron Dev. 54(11), 2849–2855 (2007).
    [Crossref]
  9. T. Ward, A. M. Sánchez, M. Tang, J. Wu, H. Liu, D. J. Dunstan, and R. Beanland, “Design rules for dislocation filters,” J. Appl. Phys. 116(6), 063508 (2014).
    [Crossref]
  10. M. Tang, S. Chen, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. Seeds, and H. Liu, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers,” Opt. Express 22(10), 11528–11535 (2014).
    [Crossref] [PubMed]
  11. S. M. Chen, M. C. Tang, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. J. Seeds, and H. Liu, “1.3 μm InAs/GaAs quantum-dot laser monolithically grown on Si substrates operating at over 100°C,” Electron. Lett. 50(20), 1467–1468 (2014).
    [Crossref]
  12. A. D. Lee, Qi Jiang, Mingchu Tang, A. J. Yunyan Zhang, Seeds, and H. Liu, “InAs/GaAs quantum-dot lasers monolithically grown on si,ge and ge-on-si substrates,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1901107 (2013).
    [Crossref]
  13. T. Wang, H. Liu, A. Lee, F. Pozzi, and A. Seeds, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” Opt. Express 19(12), 11381–11386 (2011).
    [Crossref] [PubMed]
  14. A. Lee, Q. Jiang, M. Tang, A. Seeds, and H. Liu, “Continuous-wave InAs/GaAs quantum-dot laser diodes monolithically grown on Si substrate with low threshold current densities,” Opt. Express 20(20), 22181–22187 (2012).
    [Crossref] [PubMed]
  15. H. Okamoto, Y. Wantanabe, Y. Kadota, and Y. Ohmachi, “Dislocation Reduction in GaAs on Si by Thermal Cycles and InGaAs/GaAs Strained-Layer Superlattices,” Jpn. J. Appl. Phys. 26(12), 1950–1952 (1987).
    [Crossref]
  16. N. Y. Jin-Phillipp, F. Phillipp, T. Marschner, W. Stolz, and E. O. Göbel, “Transmission electron microscopy study on defect reduction in GaAs on Si heteroepitaxial layers grown by metalorganic vapour phase epitaxy,” J. Cryst. Growth 158(1-2), 28–36 (1996).
    [Crossref]
  17. T. Yodo, M. Tamura, and T. Saitoh, “Relationship between opticaland structural properties in GaAs heteroepitaxial layers grown on Si substrates,” J. Cryst. Growth 141(3-4), 331–342 (1994).
    [Crossref]
  18. Y. Wantanabe, Y. Kadota, H. Okamoto, M. Seki, and Y. Ohmachi, “Structural properties of GaAs-on-Si with InGaAs/GaAs strained-layer superlattice,” J. Cryst. Growth 93(1), 459–465 (2002).
  19. M. Sugo, H. Mori, Y. Sakai, and Y. Itoh, “Stable cw operation at room temperature of a 1.5-μm wavelength multiple quantum well laser on a Si substrate,” J. Appl. Phys. 60(4), 472–473 (1992).
  20. H. Y. Liu, I. R. Sellers, T. J. Badcock, D. J. Mowbray, M. S. Skolnick, K. M. Groom, M. Gutierrez, M. Hopkinson, J. S. Ng, J. P. R. David, and R. Beanland, “Improved performance of 1.3 μm multilayer InAs quantum-dot lasers using a high-growth-temperature GaAs spacer layer,” Appl. Phys. Lett. 85(5), 704 (2004).
    [Crossref]
  21. H. Y. Liu, M. Hopkinson, C. N. Harrison, M. J. Steer, R. Frith, I. R. Sellers, D. J. Mowbray, and M. S. Skolnick, “Optimizing the growth of 1.3μm InAs/InGaAs dots-in-a-well structure,” J. Appl. Phys. 93(5), 2931 (2003).
    [Crossref]
  22. I. George, F. Becagli, H.-Y. Liu, J. Wu, M. Tang, and R. Beanland, “Dislocation filters in GaAs on Si,” Semicond. Sci. Technol. 30(11), 114004 (2015).
    [Crossref]
  23. M. Chandrasekhar and F. H. Pollak, “Effects of uniaxial stress on the electroreflectance spectrum of Ge and GaAs,” Phys. Rev. B 15(4), 2127–2144 (1977).
    [Crossref]
  24. I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III-V compound semiconductors and their alloys,” J. Appl. Phys. 89(11), 5815 (2001).
    [Crossref]

2015 (1)

I. George, F. Becagli, H.-Y. Liu, J. Wu, M. Tang, and R. Beanland, “Dislocation filters in GaAs on Si,” Semicond. Sci. Technol. 30(11), 114004 (2015).
[Crossref]

2014 (3)

T. Ward, A. M. Sánchez, M. Tang, J. Wu, H. Liu, D. J. Dunstan, and R. Beanland, “Design rules for dislocation filters,” J. Appl. Phys. 116(6), 063508 (2014).
[Crossref]

S. M. Chen, M. C. Tang, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. J. Seeds, and H. Liu, “1.3 μm InAs/GaAs quantum-dot laser monolithically grown on Si substrates operating at over 100°C,” Electron. Lett. 50(20), 1467–1468 (2014).
[Crossref]

M. Tang, S. Chen, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. Seeds, and H. Liu, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers,” Opt. Express 22(10), 11528–11535 (2014).
[Crossref] [PubMed]

2013 (1)

A. D. Lee, Qi Jiang, Mingchu Tang, A. J. Yunyan Zhang, Seeds, and H. Liu, “InAs/GaAs quantum-dot lasers monolithically grown on si,ge and ge-on-si substrates,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1901107 (2013).
[Crossref]

2012 (1)

2011 (3)

T. Wang, H. Liu, A. Lee, F. Pozzi, and A. Seeds, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” Opt. Express 19(12), 11381–11386 (2011).
[Crossref] [PubMed]

X. Chen, C. Li, and H. K. Tsang, “Device engineering for silicon photonics,” NPG Asia Mater. 3(1), 34–40 (2011).
[Crossref]

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode grown on Ge substrate,” Nat. Photonics 5(7), 416–419 (2011).
[Crossref]

2010 (1)

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4(8), 511–517 (2010).
[Crossref]

2008 (1)

R. Beanland, A. M. Sanchez, D. Childs, K. M. Groom, H. Y. Liu, D. J. Mowbray, and M. Hopkinson, “Structural analysis of life tested 1.3 micron quantum dots lasers,” J. Appl. Phys. 103, 014913 (2008).
[Crossref]

2007 (1)

J. Yang, P. Bhattacharya, and Z. Mi, “High-Performance In0.5Ga0.5As/GaAs Quantum-Dot-Lasers on Silicon with Mulitple-Layer Quantum-Dot Dislocation Filters,” IEEE Trans. Electron Dev. 54(11), 2849–2855 (2007).
[Crossref]

2006 (1)

2004 (1)

H. Y. Liu, I. R. Sellers, T. J. Badcock, D. J. Mowbray, M. S. Skolnick, K. M. Groom, M. Gutierrez, M. Hopkinson, J. S. Ng, J. P. R. David, and R. Beanland, “Improved performance of 1.3 μm multilayer InAs quantum-dot lasers using a high-growth-temperature GaAs spacer layer,” Appl. Phys. Lett. 85(5), 704 (2004).
[Crossref]

2003 (1)

H. Y. Liu, M. Hopkinson, C. N. Harrison, M. J. Steer, R. Frith, I. R. Sellers, D. J. Mowbray, and M. S. Skolnick, “Optimizing the growth of 1.3μm InAs/InGaAs dots-in-a-well structure,” J. Appl. Phys. 93(5), 2931 (2003).
[Crossref]

2002 (1)

Y. Wantanabe, Y. Kadota, H. Okamoto, M. Seki, and Y. Ohmachi, “Structural properties of GaAs-on-Si with InGaAs/GaAs strained-layer superlattice,” J. Cryst. Growth 93(1), 459–465 (2002).

2001 (1)

I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III-V compound semiconductors and their alloys,” J. Appl. Phys. 89(11), 5815 (2001).
[Crossref]

1996 (1)

N. Y. Jin-Phillipp, F. Phillipp, T. Marschner, W. Stolz, and E. O. Göbel, “Transmission electron microscopy study on defect reduction in GaAs on Si heteroepitaxial layers grown by metalorganic vapour phase epitaxy,” J. Cryst. Growth 158(1-2), 28–36 (1996).
[Crossref]

1994 (2)

T. Yodo, M. Tamura, and T. Saitoh, “Relationship between opticaland structural properties in GaAs heteroepitaxial layers grown on Si substrates,” J. Cryst. Growth 141(3-4), 331–342 (1994).
[Crossref]

A. Georgakilas and A. Christou, “Effects of InGaAs/GaAs strained-layer superlattices in optimized molecular-beam-epitaxy GaAs on Si with Si buffer layers,” J. Appl. Phys. 76(11), 7332–7338 (1994).
[Crossref]

1992 (1)

M. Sugo, H. Mori, Y. Sakai, and Y. Itoh, “Stable cw operation at room temperature of a 1.5-μm wavelength multiple quantum well laser on a Si substrate,” J. Appl. Phys. 60(4), 472–473 (1992).

1987 (1)

H. Okamoto, Y. Wantanabe, Y. Kadota, and Y. Ohmachi, “Dislocation Reduction in GaAs on Si by Thermal Cycles and InGaAs/GaAs Strained-Layer Superlattices,” Jpn. J. Appl. Phys. 26(12), 1950–1952 (1987).
[Crossref]

1977 (1)

M. Chandrasekhar and F. H. Pollak, “Effects of uniaxial stress on the electroreflectance spectrum of Ge and GaAs,” Phys. Rev. B 15(4), 2127–2144 (1977).
[Crossref]

Badcock, T. J.

H. Y. Liu, I. R. Sellers, T. J. Badcock, D. J. Mowbray, M. S. Skolnick, K. M. Groom, M. Gutierrez, M. Hopkinson, J. S. Ng, J. P. R. David, and R. Beanland, “Improved performance of 1.3 μm multilayer InAs quantum-dot lasers using a high-growth-temperature GaAs spacer layer,” Appl. Phys. Lett. 85(5), 704 (2004).
[Crossref]

Beanland, R.

I. George, F. Becagli, H.-Y. Liu, J. Wu, M. Tang, and R. Beanland, “Dislocation filters in GaAs on Si,” Semicond. Sci. Technol. 30(11), 114004 (2015).
[Crossref]

T. Ward, A. M. Sánchez, M. Tang, J. Wu, H. Liu, D. J. Dunstan, and R. Beanland, “Design rules for dislocation filters,” J. Appl. Phys. 116(6), 063508 (2014).
[Crossref]

R. Beanland, A. M. Sanchez, D. Childs, K. M. Groom, H. Y. Liu, D. J. Mowbray, and M. Hopkinson, “Structural analysis of life tested 1.3 micron quantum dots lasers,” J. Appl. Phys. 103, 014913 (2008).
[Crossref]

H. Y. Liu, I. R. Sellers, T. J. Badcock, D. J. Mowbray, M. S. Skolnick, K. M. Groom, M. Gutierrez, M. Hopkinson, J. S. Ng, J. P. R. David, and R. Beanland, “Improved performance of 1.3 μm multilayer InAs quantum-dot lasers using a high-growth-temperature GaAs spacer layer,” Appl. Phys. Lett. 85(5), 704 (2004).
[Crossref]

Becagli, F.

I. George, F. Becagli, H.-Y. Liu, J. Wu, M. Tang, and R. Beanland, “Dislocation filters in GaAs on Si,” Semicond. Sci. Technol. 30(11), 114004 (2015).
[Crossref]

Benamara, M.

S. M. Chen, M. C. Tang, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. J. Seeds, and H. Liu, “1.3 μm InAs/GaAs quantum-dot laser monolithically grown on Si substrates operating at over 100°C,” Electron. Lett. 50(20), 1467–1468 (2014).
[Crossref]

M. Tang, S. Chen, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. Seeds, and H. Liu, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers,” Opt. Express 22(10), 11528–11535 (2014).
[Crossref] [PubMed]

Bhattacharya, P.

J. Yang, P. Bhattacharya, and Z. Mi, “High-Performance In0.5Ga0.5As/GaAs Quantum-Dot-Lasers on Silicon with Mulitple-Layer Quantum-Dot Dislocation Filters,” IEEE Trans. Electron Dev. 54(11), 2849–2855 (2007).
[Crossref]

Bowers, J. E.

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4(8), 511–517 (2010).
[Crossref]

Chandrasekhar, M.

M. Chandrasekhar and F. H. Pollak, “Effects of uniaxial stress on the electroreflectance spectrum of Ge and GaAs,” Phys. Rev. B 15(4), 2127–2144 (1977).
[Crossref]

Chen, S.

Chen, S. M.

S. M. Chen, M. C. Tang, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. J. Seeds, and H. Liu, “1.3 μm InAs/GaAs quantum-dot laser monolithically grown on Si substrates operating at over 100°C,” Electron. Lett. 50(20), 1467–1468 (2014).
[Crossref]

Chen, X.

X. Chen, C. Li, and H. K. Tsang, “Device engineering for silicon photonics,” NPG Asia Mater. 3(1), 34–40 (2011).
[Crossref]

Childs, D.

R. Beanland, A. M. Sanchez, D. Childs, K. M. Groom, H. Y. Liu, D. J. Mowbray, and M. Hopkinson, “Structural analysis of life tested 1.3 micron quantum dots lasers,” J. Appl. Phys. 103, 014913 (2008).
[Crossref]

Christou, A.

A. Georgakilas and A. Christou, “Effects of InGaAs/GaAs strained-layer superlattices in optimized molecular-beam-epitaxy GaAs on Si with Si buffer layers,” J. Appl. Phys. 76(11), 7332–7338 (1994).
[Crossref]

David, J. P. R.

H. Y. Liu, I. R. Sellers, T. J. Badcock, D. J. Mowbray, M. S. Skolnick, K. M. Groom, M. Gutierrez, M. Hopkinson, J. S. Ng, J. P. R. David, and R. Beanland, “Improved performance of 1.3 μm multilayer InAs quantum-dot lasers using a high-growth-temperature GaAs spacer layer,” Appl. Phys. Lett. 85(5), 704 (2004).
[Crossref]

Dorogan, V. G.

S. M. Chen, M. C. Tang, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. J. Seeds, and H. Liu, “1.3 μm InAs/GaAs quantum-dot laser monolithically grown on Si substrates operating at over 100°C,” Electron. Lett. 50(20), 1467–1468 (2014).
[Crossref]

M. Tang, S. Chen, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. Seeds, and H. Liu, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers,” Opt. Express 22(10), 11528–11535 (2014).
[Crossref] [PubMed]

Dunstan, D. J.

T. Ward, A. M. Sánchez, M. Tang, J. Wu, H. Liu, D. J. Dunstan, and R. Beanland, “Design rules for dislocation filters,” J. Appl. Phys. 116(6), 063508 (2014).
[Crossref]

Fathpour, S.

Frith, R.

H. Y. Liu, M. Hopkinson, C. N. Harrison, M. J. Steer, R. Frith, I. R. Sellers, D. J. Mowbray, and M. S. Skolnick, “Optimizing the growth of 1.3μm InAs/InGaAs dots-in-a-well structure,” J. Appl. Phys. 93(5), 2931 (2003).
[Crossref]

Georgakilas, A.

A. Georgakilas and A. Christou, “Effects of InGaAs/GaAs strained-layer superlattices in optimized molecular-beam-epitaxy GaAs on Si with Si buffer layers,” J. Appl. Phys. 76(11), 7332–7338 (1994).
[Crossref]

George, I.

I. George, F. Becagli, H.-Y. Liu, J. Wu, M. Tang, and R. Beanland, “Dislocation filters in GaAs on Si,” Semicond. Sci. Technol. 30(11), 114004 (2015).
[Crossref]

Göbel, E. O.

N. Y. Jin-Phillipp, F. Phillipp, T. Marschner, W. Stolz, and E. O. Göbel, “Transmission electron microscopy study on defect reduction in GaAs on Si heteroepitaxial layers grown by metalorganic vapour phase epitaxy,” J. Cryst. Growth 158(1-2), 28–36 (1996).
[Crossref]

Groom, K. M.

R. Beanland, A. M. Sanchez, D. Childs, K. M. Groom, H. Y. Liu, D. J. Mowbray, and M. Hopkinson, “Structural analysis of life tested 1.3 micron quantum dots lasers,” J. Appl. Phys. 103, 014913 (2008).
[Crossref]

H. Y. Liu, I. R. Sellers, T. J. Badcock, D. J. Mowbray, M. S. Skolnick, K. M. Groom, M. Gutierrez, M. Hopkinson, J. S. Ng, J. P. R. David, and R. Beanland, “Improved performance of 1.3 μm multilayer InAs quantum-dot lasers using a high-growth-temperature GaAs spacer layer,” Appl. Phys. Lett. 85(5), 704 (2004).
[Crossref]

Gutierrez, M.

H. Y. Liu, I. R. Sellers, T. J. Badcock, D. J. Mowbray, M. S. Skolnick, K. M. Groom, M. Gutierrez, M. Hopkinson, J. S. Ng, J. P. R. David, and R. Beanland, “Improved performance of 1.3 μm multilayer InAs quantum-dot lasers using a high-growth-temperature GaAs spacer layer,” Appl. Phys. Lett. 85(5), 704 (2004).
[Crossref]

Harrison, C. N.

H. Y. Liu, M. Hopkinson, C. N. Harrison, M. J. Steer, R. Frith, I. R. Sellers, D. J. Mowbray, and M. S. Skolnick, “Optimizing the growth of 1.3μm InAs/InGaAs dots-in-a-well structure,” J. Appl. Phys. 93(5), 2931 (2003).
[Crossref]

Hogg, R.

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode grown on Ge substrate,” Nat. Photonics 5(7), 416–419 (2011).
[Crossref]

Hopkinson, M.

R. Beanland, A. M. Sanchez, D. Childs, K. M. Groom, H. Y. Liu, D. J. Mowbray, and M. Hopkinson, “Structural analysis of life tested 1.3 micron quantum dots lasers,” J. Appl. Phys. 103, 014913 (2008).
[Crossref]

H. Y. Liu, I. R. Sellers, T. J. Badcock, D. J. Mowbray, M. S. Skolnick, K. M. Groom, M. Gutierrez, M. Hopkinson, J. S. Ng, J. P. R. David, and R. Beanland, “Improved performance of 1.3 μm multilayer InAs quantum-dot lasers using a high-growth-temperature GaAs spacer layer,” Appl. Phys. Lett. 85(5), 704 (2004).
[Crossref]

H. Y. Liu, M. Hopkinson, C. N. Harrison, M. J. Steer, R. Frith, I. R. Sellers, D. J. Mowbray, and M. S. Skolnick, “Optimizing the growth of 1.3μm InAs/InGaAs dots-in-a-well structure,” J. Appl. Phys. 93(5), 2931 (2003).
[Crossref]

Itoh, Y.

M. Sugo, H. Mori, Y. Sakai, and Y. Itoh, “Stable cw operation at room temperature of a 1.5-μm wavelength multiple quantum well laser on a Si substrate,” J. Appl. Phys. 60(4), 472–473 (1992).

Jalali, B.

Jiang, Q.

M. Tang, S. Chen, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. Seeds, and H. Liu, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers,” Opt. Express 22(10), 11528–11535 (2014).
[Crossref] [PubMed]

S. M. Chen, M. C. Tang, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. J. Seeds, and H. Liu, “1.3 μm InAs/GaAs quantum-dot laser monolithically grown on Si substrates operating at over 100°C,” Electron. Lett. 50(20), 1467–1468 (2014).
[Crossref]

A. Lee, Q. Jiang, M. Tang, A. Seeds, and H. Liu, “Continuous-wave InAs/GaAs quantum-dot laser diodes monolithically grown on Si substrate with low threshold current densities,” Opt. Express 20(20), 22181–22187 (2012).
[Crossref] [PubMed]

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode grown on Ge substrate,” Nat. Photonics 5(7), 416–419 (2011).
[Crossref]

Jin-Phillipp, N. Y.

N. Y. Jin-Phillipp, F. Phillipp, T. Marschner, W. Stolz, and E. O. Göbel, “Transmission electron microscopy study on defect reduction in GaAs on Si heteroepitaxial layers grown by metalorganic vapour phase epitaxy,” J. Cryst. Growth 158(1-2), 28–36 (1996).
[Crossref]

Kadota, Y.

Y. Wantanabe, Y. Kadota, H. Okamoto, M. Seki, and Y. Ohmachi, “Structural properties of GaAs-on-Si with InGaAs/GaAs strained-layer superlattice,” J. Cryst. Growth 93(1), 459–465 (2002).

H. Okamoto, Y. Wantanabe, Y. Kadota, and Y. Ohmachi, “Dislocation Reduction in GaAs on Si by Thermal Cycles and InGaAs/GaAs Strained-Layer Superlattices,” Jpn. J. Appl. Phys. 26(12), 1950–1952 (1987).
[Crossref]

Lee, A.

Lee, A. D.

A. D. Lee, Qi Jiang, Mingchu Tang, A. J. Yunyan Zhang, Seeds, and H. Liu, “InAs/GaAs quantum-dot lasers monolithically grown on si,ge and ge-on-si substrates,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1901107 (2013).
[Crossref]

Li, C.

X. Chen, C. Li, and H. K. Tsang, “Device engineering for silicon photonics,” NPG Asia Mater. 3(1), 34–40 (2011).
[Crossref]

Liang, D.

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4(8), 511–517 (2010).
[Crossref]

Liu, H.

M. Tang, S. Chen, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. Seeds, and H. Liu, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers,” Opt. Express 22(10), 11528–11535 (2014).
[Crossref] [PubMed]

S. M. Chen, M. C. Tang, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. J. Seeds, and H. Liu, “1.3 μm InAs/GaAs quantum-dot laser monolithically grown on Si substrates operating at over 100°C,” Electron. Lett. 50(20), 1467–1468 (2014).
[Crossref]

T. Ward, A. M. Sánchez, M. Tang, J. Wu, H. Liu, D. J. Dunstan, and R. Beanland, “Design rules for dislocation filters,” J. Appl. Phys. 116(6), 063508 (2014).
[Crossref]

A. D. Lee, Qi Jiang, Mingchu Tang, A. J. Yunyan Zhang, Seeds, and H. Liu, “InAs/GaAs quantum-dot lasers monolithically grown on si,ge and ge-on-si substrates,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1901107 (2013).
[Crossref]

A. Lee, Q. Jiang, M. Tang, A. Seeds, and H. Liu, “Continuous-wave InAs/GaAs quantum-dot laser diodes monolithically grown on Si substrate with low threshold current densities,” Opt. Express 20(20), 22181–22187 (2012).
[Crossref] [PubMed]

T. Wang, H. Liu, A. Lee, F. Pozzi, and A. Seeds, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” Opt. Express 19(12), 11381–11386 (2011).
[Crossref] [PubMed]

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode grown on Ge substrate,” Nat. Photonics 5(7), 416–419 (2011).
[Crossref]

Liu, H. Y.

R. Beanland, A. M. Sanchez, D. Childs, K. M. Groom, H. Y. Liu, D. J. Mowbray, and M. Hopkinson, “Structural analysis of life tested 1.3 micron quantum dots lasers,” J. Appl. Phys. 103, 014913 (2008).
[Crossref]

H. Y. Liu, I. R. Sellers, T. J. Badcock, D. J. Mowbray, M. S. Skolnick, K. M. Groom, M. Gutierrez, M. Hopkinson, J. S. Ng, J. P. R. David, and R. Beanland, “Improved performance of 1.3 μm multilayer InAs quantum-dot lasers using a high-growth-temperature GaAs spacer layer,” Appl. Phys. Lett. 85(5), 704 (2004).
[Crossref]

H. Y. Liu, M. Hopkinson, C. N. Harrison, M. J. Steer, R. Frith, I. R. Sellers, D. J. Mowbray, and M. S. Skolnick, “Optimizing the growth of 1.3μm InAs/InGaAs dots-in-a-well structure,” J. Appl. Phys. 93(5), 2931 (2003).
[Crossref]

Liu, H.-Y.

I. George, F. Becagli, H.-Y. Liu, J. Wu, M. Tang, and R. Beanland, “Dislocation filters in GaAs on Si,” Semicond. Sci. Technol. 30(11), 114004 (2015).
[Crossref]

Marschner, T.

N. Y. Jin-Phillipp, F. Phillipp, T. Marschner, W. Stolz, and E. O. Göbel, “Transmission electron microscopy study on defect reduction in GaAs on Si heteroepitaxial layers grown by metalorganic vapour phase epitaxy,” J. Cryst. Growth 158(1-2), 28–36 (1996).
[Crossref]

Mazur, Y. I.

M. Tang, S. Chen, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. Seeds, and H. Liu, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers,” Opt. Express 22(10), 11528–11535 (2014).
[Crossref] [PubMed]

S. M. Chen, M. C. Tang, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. J. Seeds, and H. Liu, “1.3 μm InAs/GaAs quantum-dot laser monolithically grown on Si substrates operating at over 100°C,” Electron. Lett. 50(20), 1467–1468 (2014).
[Crossref]

Meyer, J. R.

I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III-V compound semiconductors and their alloys,” J. Appl. Phys. 89(11), 5815 (2001).
[Crossref]

Mi, Z.

J. Yang, P. Bhattacharya, and Z. Mi, “High-Performance In0.5Ga0.5As/GaAs Quantum-Dot-Lasers on Silicon with Mulitple-Layer Quantum-Dot Dislocation Filters,” IEEE Trans. Electron Dev. 54(11), 2849–2855 (2007).
[Crossref]

Mingchu Tang,

A. D. Lee, Qi Jiang, Mingchu Tang, A. J. Yunyan Zhang, Seeds, and H. Liu, “InAs/GaAs quantum-dot lasers monolithically grown on si,ge and ge-on-si substrates,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1901107 (2013).
[Crossref]

Mori, H.

M. Sugo, H. Mori, Y. Sakai, and Y. Itoh, “Stable cw operation at room temperature of a 1.5-μm wavelength multiple quantum well laser on a Si substrate,” J. Appl. Phys. 60(4), 472–473 (1992).

Mowbray, D. J.

R. Beanland, A. M. Sanchez, D. Childs, K. M. Groom, H. Y. Liu, D. J. Mowbray, and M. Hopkinson, “Structural analysis of life tested 1.3 micron quantum dots lasers,” J. Appl. Phys. 103, 014913 (2008).
[Crossref]

H. Y. Liu, I. R. Sellers, T. J. Badcock, D. J. Mowbray, M. S. Skolnick, K. M. Groom, M. Gutierrez, M. Hopkinson, J. S. Ng, J. P. R. David, and R. Beanland, “Improved performance of 1.3 μm multilayer InAs quantum-dot lasers using a high-growth-temperature GaAs spacer layer,” Appl. Phys. Lett. 85(5), 704 (2004).
[Crossref]

H. Y. Liu, M. Hopkinson, C. N. Harrison, M. J. Steer, R. Frith, I. R. Sellers, D. J. Mowbray, and M. S. Skolnick, “Optimizing the growth of 1.3μm InAs/InGaAs dots-in-a-well structure,” J. Appl. Phys. 93(5), 2931 (2003).
[Crossref]

Ng, J. S.

H. Y. Liu, I. R. Sellers, T. J. Badcock, D. J. Mowbray, M. S. Skolnick, K. M. Groom, M. Gutierrez, M. Hopkinson, J. S. Ng, J. P. R. David, and R. Beanland, “Improved performance of 1.3 μm multilayer InAs quantum-dot lasers using a high-growth-temperature GaAs spacer layer,” Appl. Phys. Lett. 85(5), 704 (2004).
[Crossref]

Ohmachi, Y.

Y. Wantanabe, Y. Kadota, H. Okamoto, M. Seki, and Y. Ohmachi, “Structural properties of GaAs-on-Si with InGaAs/GaAs strained-layer superlattice,” J. Cryst. Growth 93(1), 459–465 (2002).

H. Okamoto, Y. Wantanabe, Y. Kadota, and Y. Ohmachi, “Dislocation Reduction in GaAs on Si by Thermal Cycles and InGaAs/GaAs Strained-Layer Superlattices,” Jpn. J. Appl. Phys. 26(12), 1950–1952 (1987).
[Crossref]

Okamoto, H.

Y. Wantanabe, Y. Kadota, H. Okamoto, M. Seki, and Y. Ohmachi, “Structural properties of GaAs-on-Si with InGaAs/GaAs strained-layer superlattice,” J. Cryst. Growth 93(1), 459–465 (2002).

H. Okamoto, Y. Wantanabe, Y. Kadota, and Y. Ohmachi, “Dislocation Reduction in GaAs on Si by Thermal Cycles and InGaAs/GaAs Strained-Layer Superlattices,” Jpn. J. Appl. Phys. 26(12), 1950–1952 (1987).
[Crossref]

Phillipp, F.

N. Y. Jin-Phillipp, F. Phillipp, T. Marschner, W. Stolz, and E. O. Göbel, “Transmission electron microscopy study on defect reduction in GaAs on Si heteroepitaxial layers grown by metalorganic vapour phase epitaxy,” J. Cryst. Growth 158(1-2), 28–36 (1996).
[Crossref]

Pollak, F. H.

M. Chandrasekhar and F. H. Pollak, “Effects of uniaxial stress on the electroreflectance spectrum of Ge and GaAs,” Phys. Rev. B 15(4), 2127–2144 (1977).
[Crossref]

Pozzi, F.

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode grown on Ge substrate,” Nat. Photonics 5(7), 416–419 (2011).
[Crossref]

T. Wang, H. Liu, A. Lee, F. Pozzi, and A. Seeds, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” Opt. Express 19(12), 11381–11386 (2011).
[Crossref] [PubMed]

Qi Jiang,

A. D. Lee, Qi Jiang, Mingchu Tang, A. J. Yunyan Zhang, Seeds, and H. Liu, “InAs/GaAs quantum-dot lasers monolithically grown on si,ge and ge-on-si substrates,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1901107 (2013).
[Crossref]

Ram-Mohan, L. R.

I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III-V compound semiconductors and their alloys,” J. Appl. Phys. 89(11), 5815 (2001).
[Crossref]

Saitoh, T.

T. Yodo, M. Tamura, and T. Saitoh, “Relationship between opticaland structural properties in GaAs heteroepitaxial layers grown on Si substrates,” J. Cryst. Growth 141(3-4), 331–342 (1994).
[Crossref]

Sakai, Y.

M. Sugo, H. Mori, Y. Sakai, and Y. Itoh, “Stable cw operation at room temperature of a 1.5-μm wavelength multiple quantum well laser on a Si substrate,” J. Appl. Phys. 60(4), 472–473 (1992).

Salamo, G. J.

M. Tang, S. Chen, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. Seeds, and H. Liu, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers,” Opt. Express 22(10), 11528–11535 (2014).
[Crossref] [PubMed]

S. M. Chen, M. C. Tang, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. J. Seeds, and H. Liu, “1.3 μm InAs/GaAs quantum-dot laser monolithically grown on Si substrates operating at over 100°C,” Electron. Lett. 50(20), 1467–1468 (2014).
[Crossref]

Sanchez, A. M.

R. Beanland, A. M. Sanchez, D. Childs, K. M. Groom, H. Y. Liu, D. J. Mowbray, and M. Hopkinson, “Structural analysis of life tested 1.3 micron quantum dots lasers,” J. Appl. Phys. 103, 014913 (2008).
[Crossref]

Sánchez, A. M.

T. Ward, A. M. Sánchez, M. Tang, J. Wu, H. Liu, D. J. Dunstan, and R. Beanland, “Design rules for dislocation filters,” J. Appl. Phys. 116(6), 063508 (2014).
[Crossref]

Seeds,

A. D. Lee, Qi Jiang, Mingchu Tang, A. J. Yunyan Zhang, Seeds, and H. Liu, “InAs/GaAs quantum-dot lasers monolithically grown on si,ge and ge-on-si substrates,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1901107 (2013).
[Crossref]

Seeds, A.

Seeds, A. J.

S. M. Chen, M. C. Tang, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. J. Seeds, and H. Liu, “1.3 μm InAs/GaAs quantum-dot laser monolithically grown on Si substrates operating at over 100°C,” Electron. Lett. 50(20), 1467–1468 (2014).
[Crossref]

Seki, M.

Y. Wantanabe, Y. Kadota, H. Okamoto, M. Seki, and Y. Ohmachi, “Structural properties of GaAs-on-Si with InGaAs/GaAs strained-layer superlattice,” J. Cryst. Growth 93(1), 459–465 (2002).

Sellers, I. R.

H. Y. Liu, I. R. Sellers, T. J. Badcock, D. J. Mowbray, M. S. Skolnick, K. M. Groom, M. Gutierrez, M. Hopkinson, J. S. Ng, J. P. R. David, and R. Beanland, “Improved performance of 1.3 μm multilayer InAs quantum-dot lasers using a high-growth-temperature GaAs spacer layer,” Appl. Phys. Lett. 85(5), 704 (2004).
[Crossref]

H. Y. Liu, M. Hopkinson, C. N. Harrison, M. J. Steer, R. Frith, I. R. Sellers, D. J. Mowbray, and M. S. Skolnick, “Optimizing the growth of 1.3μm InAs/InGaAs dots-in-a-well structure,” J. Appl. Phys. 93(5), 2931 (2003).
[Crossref]

Skolnick, M. S.

H. Y. Liu, I. R. Sellers, T. J. Badcock, D. J. Mowbray, M. S. Skolnick, K. M. Groom, M. Gutierrez, M. Hopkinson, J. S. Ng, J. P. R. David, and R. Beanland, “Improved performance of 1.3 μm multilayer InAs quantum-dot lasers using a high-growth-temperature GaAs spacer layer,” Appl. Phys. Lett. 85(5), 704 (2004).
[Crossref]

H. Y. Liu, M. Hopkinson, C. N. Harrison, M. J. Steer, R. Frith, I. R. Sellers, D. J. Mowbray, and M. S. Skolnick, “Optimizing the growth of 1.3μm InAs/InGaAs dots-in-a-well structure,” J. Appl. Phys. 93(5), 2931 (2003).
[Crossref]

Steer, M. J.

H. Y. Liu, M. Hopkinson, C. N. Harrison, M. J. Steer, R. Frith, I. R. Sellers, D. J. Mowbray, and M. S. Skolnick, “Optimizing the growth of 1.3μm InAs/InGaAs dots-in-a-well structure,” J. Appl. Phys. 93(5), 2931 (2003).
[Crossref]

Stolz, W.

N. Y. Jin-Phillipp, F. Phillipp, T. Marschner, W. Stolz, and E. O. Göbel, “Transmission electron microscopy study on defect reduction in GaAs on Si heteroepitaxial layers grown by metalorganic vapour phase epitaxy,” J. Cryst. Growth 158(1-2), 28–36 (1996).
[Crossref]

Sugo, M.

M. Sugo, H. Mori, Y. Sakai, and Y. Itoh, “Stable cw operation at room temperature of a 1.5-μm wavelength multiple quantum well laser on a Si substrate,” J. Appl. Phys. 60(4), 472–473 (1992).

Tamura, M.

T. Yodo, M. Tamura, and T. Saitoh, “Relationship between opticaland structural properties in GaAs heteroepitaxial layers grown on Si substrates,” J. Cryst. Growth 141(3-4), 331–342 (1994).
[Crossref]

Tang, M.

Tang, M. C.

S. M. Chen, M. C. Tang, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. J. Seeds, and H. Liu, “1.3 μm InAs/GaAs quantum-dot laser monolithically grown on Si substrates operating at over 100°C,” Electron. Lett. 50(20), 1467–1468 (2014).
[Crossref]

Tsang, H. K.

X. Chen, C. Li, and H. K. Tsang, “Device engineering for silicon photonics,” NPG Asia Mater. 3(1), 34–40 (2011).
[Crossref]

Tutu, F.

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode grown on Ge substrate,” Nat. Photonics 5(7), 416–419 (2011).
[Crossref]

Vurgaftman, I.

I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III-V compound semiconductors and their alloys,” J. Appl. Phys. 89(11), 5815 (2001).
[Crossref]

Wang, T.

T. Wang, H. Liu, A. Lee, F. Pozzi, and A. Seeds, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” Opt. Express 19(12), 11381–11386 (2011).
[Crossref] [PubMed]

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode grown on Ge substrate,” Nat. Photonics 5(7), 416–419 (2011).
[Crossref]

Wantanabe, Y.

Y. Wantanabe, Y. Kadota, H. Okamoto, M. Seki, and Y. Ohmachi, “Structural properties of GaAs-on-Si with InGaAs/GaAs strained-layer superlattice,” J. Cryst. Growth 93(1), 459–465 (2002).

H. Okamoto, Y. Wantanabe, Y. Kadota, and Y. Ohmachi, “Dislocation Reduction in GaAs on Si by Thermal Cycles and InGaAs/GaAs Strained-Layer Superlattices,” Jpn. J. Appl. Phys. 26(12), 1950–1952 (1987).
[Crossref]

Ward, T.

T. Ward, A. M. Sánchez, M. Tang, J. Wu, H. Liu, D. J. Dunstan, and R. Beanland, “Design rules for dislocation filters,” J. Appl. Phys. 116(6), 063508 (2014).
[Crossref]

Wu, J.

I. George, F. Becagli, H.-Y. Liu, J. Wu, M. Tang, and R. Beanland, “Dislocation filters in GaAs on Si,” Semicond. Sci. Technol. 30(11), 114004 (2015).
[Crossref]

S. M. Chen, M. C. Tang, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. J. Seeds, and H. Liu, “1.3 μm InAs/GaAs quantum-dot laser monolithically grown on Si substrates operating at over 100°C,” Electron. Lett. 50(20), 1467–1468 (2014).
[Crossref]

T. Ward, A. M. Sánchez, M. Tang, J. Wu, H. Liu, D. J. Dunstan, and R. Beanland, “Design rules for dislocation filters,” J. Appl. Phys. 116(6), 063508 (2014).
[Crossref]

M. Tang, S. Chen, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. Seeds, and H. Liu, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers,” Opt. Express 22(10), 11528–11535 (2014).
[Crossref] [PubMed]

Yang, J.

J. Yang, P. Bhattacharya, and Z. Mi, “High-Performance In0.5Ga0.5As/GaAs Quantum-Dot-Lasers on Silicon with Mulitple-Layer Quantum-Dot Dislocation Filters,” IEEE Trans. Electron Dev. 54(11), 2849–2855 (2007).
[Crossref]

Yodo, T.

T. Yodo, M. Tamura, and T. Saitoh, “Relationship between opticaland structural properties in GaAs heteroepitaxial layers grown on Si substrates,” J. Cryst. Growth 141(3-4), 331–342 (1994).
[Crossref]

Yunyan Zhang, A. J.

A. D. Lee, Qi Jiang, Mingchu Tang, A. J. Yunyan Zhang, Seeds, and H. Liu, “InAs/GaAs quantum-dot lasers monolithically grown on si,ge and ge-on-si substrates,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1901107 (2013).
[Crossref]

Appl. Phys. Lett. (1)

H. Y. Liu, I. R. Sellers, T. J. Badcock, D. J. Mowbray, M. S. Skolnick, K. M. Groom, M. Gutierrez, M. Hopkinson, J. S. Ng, J. P. R. David, and R. Beanland, “Improved performance of 1.3 μm multilayer InAs quantum-dot lasers using a high-growth-temperature GaAs spacer layer,” Appl. Phys. Lett. 85(5), 704 (2004).
[Crossref]

Electron. Lett. (1)

S. M. Chen, M. C. Tang, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. J. Seeds, and H. Liu, “1.3 μm InAs/GaAs quantum-dot laser monolithically grown on Si substrates operating at over 100°C,” Electron. Lett. 50(20), 1467–1468 (2014).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

A. D. Lee, Qi Jiang, Mingchu Tang, A. J. Yunyan Zhang, Seeds, and H. Liu, “InAs/GaAs quantum-dot lasers monolithically grown on si,ge and ge-on-si substrates,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1901107 (2013).
[Crossref]

IEEE Trans. Electron Dev. (1)

J. Yang, P. Bhattacharya, and Z. Mi, “High-Performance In0.5Ga0.5As/GaAs Quantum-Dot-Lasers on Silicon with Mulitple-Layer Quantum-Dot Dislocation Filters,” IEEE Trans. Electron Dev. 54(11), 2849–2855 (2007).
[Crossref]

J. Appl. Phys. (6)

T. Ward, A. M. Sánchez, M. Tang, J. Wu, H. Liu, D. J. Dunstan, and R. Beanland, “Design rules for dislocation filters,” J. Appl. Phys. 116(6), 063508 (2014).
[Crossref]

R. Beanland, A. M. Sanchez, D. Childs, K. M. Groom, H. Y. Liu, D. J. Mowbray, and M. Hopkinson, “Structural analysis of life tested 1.3 micron quantum dots lasers,” J. Appl. Phys. 103, 014913 (2008).
[Crossref]

A. Georgakilas and A. Christou, “Effects of InGaAs/GaAs strained-layer superlattices in optimized molecular-beam-epitaxy GaAs on Si with Si buffer layers,” J. Appl. Phys. 76(11), 7332–7338 (1994).
[Crossref]

H. Y. Liu, M. Hopkinson, C. N. Harrison, M. J. Steer, R. Frith, I. R. Sellers, D. J. Mowbray, and M. S. Skolnick, “Optimizing the growth of 1.3μm InAs/InGaAs dots-in-a-well structure,” J. Appl. Phys. 93(5), 2931 (2003).
[Crossref]

M. Sugo, H. Mori, Y. Sakai, and Y. Itoh, “Stable cw operation at room temperature of a 1.5-μm wavelength multiple quantum well laser on a Si substrate,” J. Appl. Phys. 60(4), 472–473 (1992).

I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III-V compound semiconductors and their alloys,” J. Appl. Phys. 89(11), 5815 (2001).
[Crossref]

J. Cryst. Growth (3)

N. Y. Jin-Phillipp, F. Phillipp, T. Marschner, W. Stolz, and E. O. Göbel, “Transmission electron microscopy study on defect reduction in GaAs on Si heteroepitaxial layers grown by metalorganic vapour phase epitaxy,” J. Cryst. Growth 158(1-2), 28–36 (1996).
[Crossref]

T. Yodo, M. Tamura, and T. Saitoh, “Relationship between opticaland structural properties in GaAs heteroepitaxial layers grown on Si substrates,” J. Cryst. Growth 141(3-4), 331–342 (1994).
[Crossref]

Y. Wantanabe, Y. Kadota, H. Okamoto, M. Seki, and Y. Ohmachi, “Structural properties of GaAs-on-Si with InGaAs/GaAs strained-layer superlattice,” J. Cryst. Growth 93(1), 459–465 (2002).

J. Lightwave Technol. (1)

Jpn. J. Appl. Phys. (1)

H. Okamoto, Y. Wantanabe, Y. Kadota, and Y. Ohmachi, “Dislocation Reduction in GaAs on Si by Thermal Cycles and InGaAs/GaAs Strained-Layer Superlattices,” Jpn. J. Appl. Phys. 26(12), 1950–1952 (1987).
[Crossref]

Nat. Photonics (2)

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4(8), 511–517 (2010).
[Crossref]

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode grown on Ge substrate,” Nat. Photonics 5(7), 416–419 (2011).
[Crossref]

NPG Asia Mater. (1)

X. Chen, C. Li, and H. K. Tsang, “Device engineering for silicon photonics,” NPG Asia Mater. 3(1), 34–40 (2011).
[Crossref]

Opt. Express (3)

Phys. Rev. B (1)

M. Chandrasekhar and F. H. Pollak, “Effects of uniaxial stress on the electroreflectance spectrum of Ge and GaAs,” Phys. Rev. B 15(4), 2127–2144 (1977).
[Crossref]

Semicond. Sci. Technol. (1)

I. George, F. Becagli, H.-Y. Liu, J. Wu, M. Tang, and R. Beanland, “Dislocation filters in GaAs on Si,” Semicond. Sci. Technol. 30(11), 114004 (2015).
[Crossref]

Other (1)

H. Liu, “III–V Quantum-Dot Materials and Devices Monolithically Grown on Si Substrates,” in Silicon-based Nanomaterials, H. Li, J. Wu, and Z. M. Wang, eds. (Springer, 2013)., pp. 357–380.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Cross sectional TEM image of a PL sample, with a GaAs buffer layer grown on Si followed by 3 DFLs and an active region containg 5 DWELL QD layers. The dislocations can be seen originating at the Si-GaAs interface and progating up through the structure. The dashed lines indicate the positions at which the in situ annealing was performed.
Fig. 2
Fig. 2 Room temperature PL spectra for the three structures grown on Si substrates and the control structure grown on a GaAs substrate.
Fig. 3
Fig. 3 77K PLE spectra for 5 layer InGaAs DWELL QD samples grown on Si and GaAs substrates. The spectra have been normalised and shifted vertically for clarity
Fig. 4
Fig. 4 Pulsed light vs current characteristics for 3 mm long ridge lasers fabricated from wafers grown with different in situ annealing steps. Sample A – no annealing, Sample B – one annealing step and Sample C – two annealing steps. The inset shows the corresponding lasing wavelengths.

Metrics