Abstract

We consider a class of fields generated by passing an isotropic Gaussian Schell-model beam through a wavefront-folding interferometer. The output field has various intensity profiles for different phase differences, including the central peak and doughnut shapes. The radiation force on a Rayleigh dielectric particle produced by the highly focused fields is investigated. Numerical results demonstrate that the new fields can be used to trap high-index particles at the focus for the specular case and nearby the focus for the anti-specular case. It is further revealed that the position, the range of particle sizes and the low limit of correlation length for stable trapping could be modulated by adjusting the phase difference.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dynamic radiation force of a pulsed Gaussian beam acting on a Rayleigh dielectric sphere

Li-Gang Wang and Cheng-Liang Zhao
Opt. Express 15(17) 10615-10621 (2007)

Influence of atmospheric turbulence on the properties of specular and antispecular beams

Zhaotao Zhou, Mengwen Guo, and Daomu Zhao
Appl. Opt. 55(24) 6757-6762 (2016)

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
    [Crossref]
  2. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
    [Crossref] [PubMed]
  3. Y. Liu, G. J. Sonek, M. W. Berns, and B. J. Tromberg, “Physiological monitoring of optically trapped cells: assessing the effects of confinement by 1064-nm laser tweezers using microfluorometry,” Biophys. J. 71(4), 2158–2167 (1996).
    [Crossref] [PubMed]
  4. A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987).
    [Crossref] [PubMed]
  5. A. Ashkin, “Trapping of atoms by resonance radiation pressure,” Phys. Rev. Lett. 40(12), 729–732 (1978).
    [Crossref]
  6. S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable, “Experimental observation of optically trapped atoms,” Phys. Rev. Lett. 57(3), 314–317 (1986).
    [Crossref] [PubMed]
  7. C. H. Chen, P. T. Tai, and W. F. Hsieh, “Bottle beam from a bare laser for single-beam trapping,” Appl. Opt. 43(32), 6001–6006 (2004).
    [Crossref] [PubMed]
  8. V. Garcés-Chávez, D. Roskey, M. D. Summers, H. Melville, D. McGloin, E. M. Wright, and K. Dholakia, “Optical levitation in a Bessel light beam,” Appl. Phys. Lett. 85(18), 4001–4003 (2004).
    [Crossref]
  9. J. Y. Ye, G. Chang, T. B. Norris, C. Tse, M. J. Zohdy, K. W. Hollman, M. O’Donnell, and J. R. Baker., “Trapping cavitation bubbles with a self-focused laser beam,” Opt. Lett. 29(18), 2136–2138 (2004).
    [Crossref] [PubMed]
  10. Z. Liu and D. Zhao, “Radiation forces acting on a Rayleigh dielectric sphere produced by highly focused elegant Hermite-cosine-Gaussian beams,” Opt. Express 20(3), 2895–2904 (2012).
    [Crossref] [PubMed]
  11. C. Zhao, L. Wang, and X. Lu, “Radiation forces on a dielectric sphere produced by highly focused hollow Gaussian beams,” Phys. Lett. A 363(5-6), 502–506 (2007).
    [Crossref]
  12. X. Liu and D. Zhao, “Trapping two types of particles with a focused generalized Multi-Gaussian Schell model beam,” Opt. Commun. 354, 250–255 (2015).
    [Crossref]
  13. M. Luo and D. Zhao, “Simultaneous trapping of two types of particles by using a focused partially coherent cosine-Gaussian-correlated Schell-model beam,” Laser Phys. 24(8), 086001 (2014).
    [Crossref]
  14. X. Liu and D. Zhao, “Optical trapping Rayleigh particles by using focused multi-Gaussian Schell-model beams,” Appl. Opt. 53(18), 3976–3981 (2014).
    [Crossref] [PubMed]
  15. X. Peng, C. Chen, B. Chen, Y. Peng, M. Zhou, X. Yang, and D. Deng, “Optically trapping Rayleigh particles by using focused partially coherent multi-rotating elliptical Gaussian beams,” Chin. Opt. Lett. 14(1), 011405 (2016).
    [Crossref]
  16. F. Gori, G. Guattari, C. Palma, and C. Padovani, “Specular cross-spectral density functions,” Opt. Commun. 68(4), 239–243 (1988).
    [Crossref]
  17. S. A. Ponomarenko and G. P. Agrawal, “Asymmetric incoherent vector solitons,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(3), 036604 (2004).
    [Crossref] [PubMed]
  18. H. Partanen, N. Sharmin, J. Tervo, and J. Turunen, “Specular and antispecular light beams,” Opt. Express 23(22), 28718–28727 (2015).
    [Crossref] [PubMed]
  19. Q. He, J. Turunen, and A. T. Friberg, “Propagation and imaging experiments with Gausian Schell-model sources,” Opt. Commun. 67(4), 245–250 (1988).
    [Crossref]
  20. P. DeSantis, F. Gori, G. Guattari, and C. Palma, “Anisotropic Gaussian Schell-model sources,” Opt. Acta (Lond.) 33(3), 315–326 (1986).
    [Crossref]
  21. K. Okamoto and S. Kawata, “Radiation force exerted on subwavelength particles near a nanoaperture,” Phys. Rev. Lett. 83(22), 4534–4537 (1999).
    [Crossref]
  22. L. G. Wang, C. L. Zhao, L. Q. Wang, X. H. Lu, and S. Y. Zhu, “Effect of spatial coherence on radiation forces acting on a Rayleigh dielectric sphere,” Opt. Lett. 32(11), 1393–1395 (2007).
    [Crossref] [PubMed]

2016 (1)

2015 (2)

H. Partanen, N. Sharmin, J. Tervo, and J. Turunen, “Specular and antispecular light beams,” Opt. Express 23(22), 28718–28727 (2015).
[Crossref] [PubMed]

X. Liu and D. Zhao, “Trapping two types of particles with a focused generalized Multi-Gaussian Schell model beam,” Opt. Commun. 354, 250–255 (2015).
[Crossref]

2014 (2)

M. Luo and D. Zhao, “Simultaneous trapping of two types of particles by using a focused partially coherent cosine-Gaussian-correlated Schell-model beam,” Laser Phys. 24(8), 086001 (2014).
[Crossref]

X. Liu and D. Zhao, “Optical trapping Rayleigh particles by using focused multi-Gaussian Schell-model beams,” Appl. Opt. 53(18), 3976–3981 (2014).
[Crossref] [PubMed]

2012 (1)

2007 (2)

L. G. Wang, C. L. Zhao, L. Q. Wang, X. H. Lu, and S. Y. Zhu, “Effect of spatial coherence on radiation forces acting on a Rayleigh dielectric sphere,” Opt. Lett. 32(11), 1393–1395 (2007).
[Crossref] [PubMed]

C. Zhao, L. Wang, and X. Lu, “Radiation forces on a dielectric sphere produced by highly focused hollow Gaussian beams,” Phys. Lett. A 363(5-6), 502–506 (2007).
[Crossref]

2004 (4)

V. Garcés-Chávez, D. Roskey, M. D. Summers, H. Melville, D. McGloin, E. M. Wright, and K. Dholakia, “Optical levitation in a Bessel light beam,” Appl. Phys. Lett. 85(18), 4001–4003 (2004).
[Crossref]

S. A. Ponomarenko and G. P. Agrawal, “Asymmetric incoherent vector solitons,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(3), 036604 (2004).
[Crossref] [PubMed]

J. Y. Ye, G. Chang, T. B. Norris, C. Tse, M. J. Zohdy, K. W. Hollman, M. O’Donnell, and J. R. Baker., “Trapping cavitation bubbles with a self-focused laser beam,” Opt. Lett. 29(18), 2136–2138 (2004).
[Crossref] [PubMed]

C. H. Chen, P. T. Tai, and W. F. Hsieh, “Bottle beam from a bare laser for single-beam trapping,” Appl. Opt. 43(32), 6001–6006 (2004).
[Crossref] [PubMed]

1999 (1)

K. Okamoto and S. Kawata, “Radiation force exerted on subwavelength particles near a nanoaperture,” Phys. Rev. Lett. 83(22), 4534–4537 (1999).
[Crossref]

1996 (1)

Y. Liu, G. J. Sonek, M. W. Berns, and B. J. Tromberg, “Physiological monitoring of optically trapped cells: assessing the effects of confinement by 1064-nm laser tweezers using microfluorometry,” Biophys. J. 71(4), 2158–2167 (1996).
[Crossref] [PubMed]

1988 (2)

Q. He, J. Turunen, and A. T. Friberg, “Propagation and imaging experiments with Gausian Schell-model sources,” Opt. Commun. 67(4), 245–250 (1988).
[Crossref]

F. Gori, G. Guattari, C. Palma, and C. Padovani, “Specular cross-spectral density functions,” Opt. Commun. 68(4), 239–243 (1988).
[Crossref]

1987 (1)

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987).
[Crossref] [PubMed]

1986 (3)

S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable, “Experimental observation of optically trapped atoms,” Phys. Rev. Lett. 57(3), 314–317 (1986).
[Crossref] [PubMed]

P. DeSantis, F. Gori, G. Guattari, and C. Palma, “Anisotropic Gaussian Schell-model sources,” Opt. Acta (Lond.) 33(3), 315–326 (1986).
[Crossref]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
[Crossref] [PubMed]

1978 (1)

A. Ashkin, “Trapping of atoms by resonance radiation pressure,” Phys. Rev. Lett. 40(12), 729–732 (1978).
[Crossref]

1970 (1)

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[Crossref]

Agrawal, G. P.

S. A. Ponomarenko and G. P. Agrawal, “Asymmetric incoherent vector solitons,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(3), 036604 (2004).
[Crossref] [PubMed]

Ashkin, A.

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987).
[Crossref] [PubMed]

S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable, “Experimental observation of optically trapped atoms,” Phys. Rev. Lett. 57(3), 314–317 (1986).
[Crossref] [PubMed]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
[Crossref] [PubMed]

A. Ashkin, “Trapping of atoms by resonance radiation pressure,” Phys. Rev. Lett. 40(12), 729–732 (1978).
[Crossref]

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[Crossref]

Baker, J. R.

Berns, M. W.

Y. Liu, G. J. Sonek, M. W. Berns, and B. J. Tromberg, “Physiological monitoring of optically trapped cells: assessing the effects of confinement by 1064-nm laser tweezers using microfluorometry,” Biophys. J. 71(4), 2158–2167 (1996).
[Crossref] [PubMed]

Bjorkholm, J. E.

S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable, “Experimental observation of optically trapped atoms,” Phys. Rev. Lett. 57(3), 314–317 (1986).
[Crossref] [PubMed]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
[Crossref] [PubMed]

Cable, A.

S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable, “Experimental observation of optically trapped atoms,” Phys. Rev. Lett. 57(3), 314–317 (1986).
[Crossref] [PubMed]

Chang, G.

Chen, B.

Chen, C.

Chen, C. H.

Chu, S.

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
[Crossref] [PubMed]

S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable, “Experimental observation of optically trapped atoms,” Phys. Rev. Lett. 57(3), 314–317 (1986).
[Crossref] [PubMed]

Deng, D.

DeSantis, P.

P. DeSantis, F. Gori, G. Guattari, and C. Palma, “Anisotropic Gaussian Schell-model sources,” Opt. Acta (Lond.) 33(3), 315–326 (1986).
[Crossref]

Dholakia, K.

V. Garcés-Chávez, D. Roskey, M. D. Summers, H. Melville, D. McGloin, E. M. Wright, and K. Dholakia, “Optical levitation in a Bessel light beam,” Appl. Phys. Lett. 85(18), 4001–4003 (2004).
[Crossref]

Dziedzic, J. M.

Friberg, A. T.

Q. He, J. Turunen, and A. T. Friberg, “Propagation and imaging experiments with Gausian Schell-model sources,” Opt. Commun. 67(4), 245–250 (1988).
[Crossref]

Garcés-Chávez, V.

V. Garcés-Chávez, D. Roskey, M. D. Summers, H. Melville, D. McGloin, E. M. Wright, and K. Dholakia, “Optical levitation in a Bessel light beam,” Appl. Phys. Lett. 85(18), 4001–4003 (2004).
[Crossref]

Gori, F.

F. Gori, G. Guattari, C. Palma, and C. Padovani, “Specular cross-spectral density functions,” Opt. Commun. 68(4), 239–243 (1988).
[Crossref]

P. DeSantis, F. Gori, G. Guattari, and C. Palma, “Anisotropic Gaussian Schell-model sources,” Opt. Acta (Lond.) 33(3), 315–326 (1986).
[Crossref]

Guattari, G.

F. Gori, G. Guattari, C. Palma, and C. Padovani, “Specular cross-spectral density functions,” Opt. Commun. 68(4), 239–243 (1988).
[Crossref]

P. DeSantis, F. Gori, G. Guattari, and C. Palma, “Anisotropic Gaussian Schell-model sources,” Opt. Acta (Lond.) 33(3), 315–326 (1986).
[Crossref]

He, Q.

Q. He, J. Turunen, and A. T. Friberg, “Propagation and imaging experiments with Gausian Schell-model sources,” Opt. Commun. 67(4), 245–250 (1988).
[Crossref]

Hollman, K. W.

Hsieh, W. F.

Kawata, S.

K. Okamoto and S. Kawata, “Radiation force exerted on subwavelength particles near a nanoaperture,” Phys. Rev. Lett. 83(22), 4534–4537 (1999).
[Crossref]

Liu, X.

X. Liu and D. Zhao, “Trapping two types of particles with a focused generalized Multi-Gaussian Schell model beam,” Opt. Commun. 354, 250–255 (2015).
[Crossref]

X. Liu and D. Zhao, “Optical trapping Rayleigh particles by using focused multi-Gaussian Schell-model beams,” Appl. Opt. 53(18), 3976–3981 (2014).
[Crossref] [PubMed]

Liu, Y.

Y. Liu, G. J. Sonek, M. W. Berns, and B. J. Tromberg, “Physiological monitoring of optically trapped cells: assessing the effects of confinement by 1064-nm laser tweezers using microfluorometry,” Biophys. J. 71(4), 2158–2167 (1996).
[Crossref] [PubMed]

Liu, Z.

Lu, X.

C. Zhao, L. Wang, and X. Lu, “Radiation forces on a dielectric sphere produced by highly focused hollow Gaussian beams,” Phys. Lett. A 363(5-6), 502–506 (2007).
[Crossref]

Lu, X. H.

Luo, M.

M. Luo and D. Zhao, “Simultaneous trapping of two types of particles by using a focused partially coherent cosine-Gaussian-correlated Schell-model beam,” Laser Phys. 24(8), 086001 (2014).
[Crossref]

McGloin, D.

V. Garcés-Chávez, D. Roskey, M. D. Summers, H. Melville, D. McGloin, E. M. Wright, and K. Dholakia, “Optical levitation in a Bessel light beam,” Appl. Phys. Lett. 85(18), 4001–4003 (2004).
[Crossref]

Melville, H.

V. Garcés-Chávez, D. Roskey, M. D. Summers, H. Melville, D. McGloin, E. M. Wright, and K. Dholakia, “Optical levitation in a Bessel light beam,” Appl. Phys. Lett. 85(18), 4001–4003 (2004).
[Crossref]

Norris, T. B.

O’Donnell, M.

Okamoto, K.

K. Okamoto and S. Kawata, “Radiation force exerted on subwavelength particles near a nanoaperture,” Phys. Rev. Lett. 83(22), 4534–4537 (1999).
[Crossref]

Padovani, C.

F. Gori, G. Guattari, C. Palma, and C. Padovani, “Specular cross-spectral density functions,” Opt. Commun. 68(4), 239–243 (1988).
[Crossref]

Palma, C.

F. Gori, G. Guattari, C. Palma, and C. Padovani, “Specular cross-spectral density functions,” Opt. Commun. 68(4), 239–243 (1988).
[Crossref]

P. DeSantis, F. Gori, G. Guattari, and C. Palma, “Anisotropic Gaussian Schell-model sources,” Opt. Acta (Lond.) 33(3), 315–326 (1986).
[Crossref]

Partanen, H.

Peng, X.

Peng, Y.

Ponomarenko, S. A.

S. A. Ponomarenko and G. P. Agrawal, “Asymmetric incoherent vector solitons,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(3), 036604 (2004).
[Crossref] [PubMed]

Roskey, D.

V. Garcés-Chávez, D. Roskey, M. D. Summers, H. Melville, D. McGloin, E. M. Wright, and K. Dholakia, “Optical levitation in a Bessel light beam,” Appl. Phys. Lett. 85(18), 4001–4003 (2004).
[Crossref]

Sharmin, N.

Sonek, G. J.

Y. Liu, G. J. Sonek, M. W. Berns, and B. J. Tromberg, “Physiological monitoring of optically trapped cells: assessing the effects of confinement by 1064-nm laser tweezers using microfluorometry,” Biophys. J. 71(4), 2158–2167 (1996).
[Crossref] [PubMed]

Summers, M. D.

V. Garcés-Chávez, D. Roskey, M. D. Summers, H. Melville, D. McGloin, E. M. Wright, and K. Dholakia, “Optical levitation in a Bessel light beam,” Appl. Phys. Lett. 85(18), 4001–4003 (2004).
[Crossref]

Tai, P. T.

Tervo, J.

Tromberg, B. J.

Y. Liu, G. J. Sonek, M. W. Berns, and B. J. Tromberg, “Physiological monitoring of optically trapped cells: assessing the effects of confinement by 1064-nm laser tweezers using microfluorometry,” Biophys. J. 71(4), 2158–2167 (1996).
[Crossref] [PubMed]

Tse, C.

Turunen, J.

H. Partanen, N. Sharmin, J. Tervo, and J. Turunen, “Specular and antispecular light beams,” Opt. Express 23(22), 28718–28727 (2015).
[Crossref] [PubMed]

Q. He, J. Turunen, and A. T. Friberg, “Propagation and imaging experiments with Gausian Schell-model sources,” Opt. Commun. 67(4), 245–250 (1988).
[Crossref]

Wang, L.

C. Zhao, L. Wang, and X. Lu, “Radiation forces on a dielectric sphere produced by highly focused hollow Gaussian beams,” Phys. Lett. A 363(5-6), 502–506 (2007).
[Crossref]

Wang, L. G.

Wang, L. Q.

Wright, E. M.

V. Garcés-Chávez, D. Roskey, M. D. Summers, H. Melville, D. McGloin, E. M. Wright, and K. Dholakia, “Optical levitation in a Bessel light beam,” Appl. Phys. Lett. 85(18), 4001–4003 (2004).
[Crossref]

Yang, X.

Ye, J. Y.

Zhao, C.

C. Zhao, L. Wang, and X. Lu, “Radiation forces on a dielectric sphere produced by highly focused hollow Gaussian beams,” Phys. Lett. A 363(5-6), 502–506 (2007).
[Crossref]

Zhao, C. L.

Zhao, D.

X. Liu and D. Zhao, “Trapping two types of particles with a focused generalized Multi-Gaussian Schell model beam,” Opt. Commun. 354, 250–255 (2015).
[Crossref]

M. Luo and D. Zhao, “Simultaneous trapping of two types of particles by using a focused partially coherent cosine-Gaussian-correlated Schell-model beam,” Laser Phys. 24(8), 086001 (2014).
[Crossref]

X. Liu and D. Zhao, “Optical trapping Rayleigh particles by using focused multi-Gaussian Schell-model beams,” Appl. Opt. 53(18), 3976–3981 (2014).
[Crossref] [PubMed]

Z. Liu and D. Zhao, “Radiation forces acting on a Rayleigh dielectric sphere produced by highly focused elegant Hermite-cosine-Gaussian beams,” Opt. Express 20(3), 2895–2904 (2012).
[Crossref] [PubMed]

Zhou, M.

Zhu, S. Y.

Zohdy, M. J.

Appl. Opt. (2)

Appl. Phys. Lett. (1)

V. Garcés-Chávez, D. Roskey, M. D. Summers, H. Melville, D. McGloin, E. M. Wright, and K. Dholakia, “Optical levitation in a Bessel light beam,” Appl. Phys. Lett. 85(18), 4001–4003 (2004).
[Crossref]

Biophys. J. (1)

Y. Liu, G. J. Sonek, M. W. Berns, and B. J. Tromberg, “Physiological monitoring of optically trapped cells: assessing the effects of confinement by 1064-nm laser tweezers using microfluorometry,” Biophys. J. 71(4), 2158–2167 (1996).
[Crossref] [PubMed]

Chin. Opt. Lett. (1)

Laser Phys. (1)

M. Luo and D. Zhao, “Simultaneous trapping of two types of particles by using a focused partially coherent cosine-Gaussian-correlated Schell-model beam,” Laser Phys. 24(8), 086001 (2014).
[Crossref]

Opt. Acta (Lond.) (1)

P. DeSantis, F. Gori, G. Guattari, and C. Palma, “Anisotropic Gaussian Schell-model sources,” Opt. Acta (Lond.) 33(3), 315–326 (1986).
[Crossref]

Opt. Commun. (3)

Q. He, J. Turunen, and A. T. Friberg, “Propagation and imaging experiments with Gausian Schell-model sources,” Opt. Commun. 67(4), 245–250 (1988).
[Crossref]

X. Liu and D. Zhao, “Trapping two types of particles with a focused generalized Multi-Gaussian Schell model beam,” Opt. Commun. 354, 250–255 (2015).
[Crossref]

F. Gori, G. Guattari, C. Palma, and C. Padovani, “Specular cross-spectral density functions,” Opt. Commun. 68(4), 239–243 (1988).
[Crossref]

Opt. Express (2)

Opt. Lett. (3)

Phys. Lett. A (1)

C. Zhao, L. Wang, and X. Lu, “Radiation forces on a dielectric sphere produced by highly focused hollow Gaussian beams,” Phys. Lett. A 363(5-6), 502–506 (2007).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

S. A. Ponomarenko and G. P. Agrawal, “Asymmetric incoherent vector solitons,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(3), 036604 (2004).
[Crossref] [PubMed]

Phys. Rev. Lett. (4)

A. Ashkin, “Trapping of atoms by resonance radiation pressure,” Phys. Rev. Lett. 40(12), 729–732 (1978).
[Crossref]

S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable, “Experimental observation of optically trapped atoms,” Phys. Rev. Lett. 57(3), 314–317 (1986).
[Crossref] [PubMed]

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[Crossref]

K. Okamoto and S. Kawata, “Radiation force exerted on subwavelength particles near a nanoaperture,” Phys. Rev. Lett. 83(22), 4534–4537 (1999).
[Crossref]

Science (1)

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 The wavefront-folding interferometer. S is the source, BS is a non-polarizing beam splitter, PRx and PRy are right-angle prisms.
Fig. 2
Fig. 2 Schematics of the output field of a WFI focused onto a particle. F is the geometrical focus.
Fig. 3
Fig. 3 Intensity distributions of the GSM, specular and anti-specular fields at the (a), (c)-(e) input plane and (b) focal plane. Figures (c)-(e) correspond to ϕ=0 , ϕ=π/2 and ϕ=π for different values of σ 0 , respectively. (c)-(e) black solid curve, σ 0 / ω 0 =0.5 ; red short dashed curve, σ 0 / ω 0 =1 ; blue short dashed-dotted curve, σ 0 / ω 0 =2 .
Fig. 4
Fig. 4 Radiation forces produced by highly focused specular ( ϕ=0 ) and GSM ( ϕ=π/2 ) beams on high-index particles ( n p =1.592 ). Black solid curve, the specular beam; red dashed curve, the GSM beam.
Fig. 5
Fig. 5 Radiation forces produced by highly focused anti-specular beams ( ϕ=π ) on high-index particles ( m>1 ) and low-index particles ( m<1 ). Black solid curve for the particles with n p =1.592 , red dashed curve for the particles with n p =1 .
Fig. 6
Fig. 6 Radiation forces exerted on the particles with m>1 for different values of ϕ. (a), (d), ϕ= 2π /3 ; (b), (e), ϕ= 3π /4 ; (c), (f), ϕ= 5π /6 .
Fig. 7
Fig. 7 Dependence of | F Grad,x | A,B max (black solid curve), | F Grad,z | C,D max (red dashed curve), | F Scat | C,D (blue dotted-dashed curve), and | F b | (green dotted curve) on the radius a for different ϕ. (a) ϕ=0 ; (b) ϕ=π/2 ; (c) ϕ= 2π /3 ; (c) ϕ=π .
Fig. 8
Fig. 8 Dependence of | F Grad,x | A,B max (black solid curve), | F Grad,z | C,D max (red dashed curve), and | F Scat | C,D (green dotted-dashed curve) on σ 0 for different ϕ; the horizontal dotted lines denote | F b | . (a) ϕ=0 ; (b) ϕ=π/2 .

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

E( x , y )= 1 2 [ E 0 ( x , y )+ E 0 ( x , y )exp( iϕ ) ],
W( x 1 , y 1 , x 2 , y 2 )= 1 2 [ W 0 ( x 1 , y 1 , x 2 , y 2 )+ W 0 ( x 1 , y 1 , x 2 , y 2 ) ] + 1 2 [ W 0 ( x 1 , y 1 , x 2 , y 2 )exp(iϕ)+ W 0 ( x 1 , y 1 , x 2 , y 2 )exp(iϕ) ].
[ A B C D ]=[ 1 z 0 1 ][ 1 0 1/f 1 ]=[ 1z/f z 1/f 1 ].
W 0 ( x 1 , y 1 , x 2 , y 2 )= I 0 exp( x 1 2 + x 2 2 w 0 2 )exp( y 1 2 + y 2 2 w 0 2 )exp[ ( x 1 x 2 ) 2 2 σ 0 2 ]exp[ ( y 1 y 2 ) 2 2 σ 0 2 ].
W( x 1 , y 1 , x 1 , y 2 )= I 0 exp( x 1 2 + x 2 2 w 0 2 )exp( y 1 2 + y 1 2 w 0 2 ){ exp[ ( x 1 x 2 ) 2 2 σ 0 2 ] exp[ ( y 1 y 1 ) 2 σ 0 2 2 ] +cosϕexp[ ( x 1 x 2 ) 2 2 σ 0 2 ]exp [ ( y 1 y 1 ) 2 σ 0 2 2 ] }.
S( x , y )= I 0 exp( 2 x 2 w 0 2 )exp( 2 y 2 w 0 2 )[ 1+cosϕexp( 2 x 2 σ 0 2 )exp( 2 y 2 σ 0 2 ) ].
W( x 1 , y 1 , x 2 , y 2 ;z)= 4P π n m ε 0 c w 2 ( z ) ×exp( x 1 2 + x 2 2 w 2 ( z ) )exp( y 1 2 + y 2 2 w 2 ( z ) )exp[ ik 2R(z) ( x 1 2 x 2 2 ) ]exp[ ik 2R(z) ( y 1 2 y 2 2 ) ] ×{ exp[ ( x 1 x 2 ) 2 2 σ 2 ( z ) ]exp[ ( y 1 y 2 ) 2 2 σ 2 ( z ) ] +cosϕexp[ ( x 1 + x 2 ) 2 2 σ 2 ( z ) ]exp[ ( y 1 + y 2 ) 2 2 σ 2 ( z ) ] },
S(r)= 4P π n m ε 0 c w 2 ( z ) exp( 2 x 2 w 2 ( z ) )exp( 2 y 2 w 2 ( z ) ){ 1+cosϕexp[ 2 x 2 σ 2 ( z ) ]exp[ 2 y 2 σ 2 ( z ) ] }.
w( z )= w 0 ( 1z/f ) 2 + z 2 / z R 2 ,
σ( z )= σ 0 ( 1z/f ) 2 + z 2 / z R 2 ,
R( z )=z+ [ z z R 2 ( 1z/f ) 1 f ] 1 ,
F Scat ( r )= n m c C pr I ( r ).
C pr = C scat = 8 3 π ( ka ) 4 a 2 ( m 2 1 m 2 +2 ) 2 ,
I ( r )= e z n m ε 0 c 2 S( r )= e z I(r),
F Grad ( r )= 2π n m a 3 c ( m 2 1 m 2 +2 )I( r ).
F Grad,x ( r )= 4P n m a 3 c ( m 2 1 m 2 +2 ) ( 4x ) w 2 ( z ) exp[ 2( x 2 + y 2 ) w 2 ( z ) ] ×{ 1 w 2 ( z ) +cosϕ[ 1 w 2 ( z ) + 1 σ 2 ( z ) ]exp[ 2( x 2 + y 2 ) σ 2 ( z ) ] },
F Grad,z ( r )= 4P n m a 3 c ( m 2 1 m 2 +2 ) 1 w 2 ( z ) exp[ 2( x 2 + y 2 ) w 2 ( z ) ]{ 2 w 0 2 α( z ) w 2 ( z ) [ 2( x 2 + y 2 ) w 2 ( z ) 1 ] +2cosϕ[ 2( x 2 + y 2 )α( z )( σ 0 2 σ 4 ( z ) + w 0 2 w 4 ( z ) ) w 0 2 α( z ) w 2 ( z ) ] exp[ 2( x 2 + y 2 ) σ 2 ( z ) ] },
R thermal =exp[ U max / ( k B T ) ]1,
U max =π ε 0 n m 2 a 3 | m 2 1 m 2 +2 | S max .

Metrics