Abstract

A tunable rubidium excited state Voigt atomic optical filter working at optical communication wavelength (1.5 μm) is realized. The filter achieves a peak transmittance of 57.6% with a double-peak structure, in which each one has a bandwidth of 600 MHz. Benefiting from the Voigt type structure, the magnetic field of the filter can be tuned from 0 to 1600 gauss, and a peak transmittance tunability of 1.6 GHz can thus be realized. Different from the excited state Faraday type filter, the pump efficiency in the Voigt filter is affected a lot by the pump polarization. Measured absorption results of the pump laser and transmittances of the signal laser both prove that the vertical linear polarization pumping is the most efficient in the Voigt filter.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Faraday anomalous dispersion optical filter at 133Cs weak 459  nm transition

Xiaobo Xue, Duo Pan, Xiaogang Zhang, Bin Luo, Jingbiao Chen, and Hong Guo
Photon. Res. 3(5) 275-278 (2015)

Isotope 87Rb Faraday anomalous dispersion optical filter at 420  nm

Li Ling and Gang Bi
Opt. Lett. 39(11) 3324-3327 (2014)

An atomic optical filter working at 1.5 μm based on internal frequency stabilized laser pumping

Longfei Yin, Bin Luo, Anhong Dang, and Hong Guo
Opt. Express 22(7) 7416-7421 (2014)

References

  • View by:
  • |
  • |
  • |

  1. P. Yeh, “Dispersive magnetooptic filters,” Appl. Opt. 21(11), 2069–2075 (1982).
    [Crossref] [PubMed]
  2. H. Guo, A. H. Dang, Y. Q. Han, S. Gao, Y. Cao, and B. Luo, “Faraday anomalous dispersion optical filter (in Chinese),” Chin. Sci. Bull. 55(7), 527–533 (2010).
    [Crossref]
  3. J. A. Gelbwachs, “Atomic resonance filters,” IEEE J. Quantum Electron. 24(7), 1266–1277 (1988).
    [Crossref]
  4. D. J. Dick and T. M. Shay, “Ultrahigh-noise rejection optical filter,” Opt. Lett. 16(11), 867–869 (1991).
    [Crossref] [PubMed]
  5. J. Menders, K. Benson, S. H. Bloom, C. S. Liu, and E. Korevaar, “Ultranarrow line filtering using a Cs Faraday filter at 852 nm,” Opt. Lett. 16(11), 846–848 (1991).
    [Crossref] [PubMed]
  6. S. K. Gayen, R. I. Billmers, V. M. Contarino, M. F. Squicciarini, W. J. Scharpf, G. Yang, P. R. Herczfeld, and D. M. Allocca, “Induced-dichroism-excited atomic line filter at 532 nm,” Opt. Lett. 20(12), 1427–1429 (1995).
    [Crossref] [PubMed]
  7. L. D. Turner, V. Karaganov, P. J. O. Teubner, and R. E. Scholten, “Sub-Doppler bandwidth atomic optical filter,” Opt. Lett. 27(7), 500–502 (2002).
    [Crossref]
  8. J. Menders, P. Searcy, K. Roff, and E. Korevaar, “Blue cesium Faraday and Voigt magneto-optic atomic line filters,” Opt. Lett. 17(19), 1388–1390 (1992).
    [Crossref] [PubMed]
  9. J. Tang, Q. Wang, Y. Li, L. Zhang, J. Gan, M. Duan, J. Kong, and L. Zheng, “Experimental study of a model digital space optical communication system with new quantum devices,” Appl. Opt. 34(15), 2619–2622 (1995).
    [Crossref]
  10. W. Huang, X. Chu, B. P. Williams, S. D. Harrell, J. Wiig, and C. Y. She, “Na double-edge magneto-optic filter for Na lidar profiling of wind and temperature in the lower atmosphere,” Opt. Lett. 34(2), 199–201 (2009).
    [Crossref] [PubMed]
  11. J. Höffner and C. Fricke-Begemann, “Accurate lidar temperatures with narrowband filters,” Opt. Lett. 30(8), 890–892 (2005).
    [Crossref] [PubMed]
  12. A. Popescu and T. Walther, “On an ESFADOF edge-filter for a range resolved Brillouin-lidar: the high vapor density and high pump intensity regime,” Appl. Phys. B 98(4), 667–675 (2010).
    [Crossref]
  13. X. Miao, L. Yin, W. Zhuang, B. Luo, A. Dang, J. Chen, and H. Guo, “Note: demonstration of an external-cavity diode laser system immune to current and temperature fluctuations,” Rev. Sci. Instrum. 82, 086106 (2011).
    [Crossref] [PubMed]
  14. W. Zhuang and J. Chen, “Active Faraday optical frequency standard,” Opt. Lett. 39(21), 6339–6342 (2014).
    [Crossref] [PubMed]
  15. X. F. Liu, X. H. Chen, X. R. Yao, W. K. Yu, G. J. Zhai, and L. A. Wu, “Lensless ghost imaging with sunlight,” Opt. Lett. 39(8), 2314–2317 (2014).
    [Crossref] [PubMed]
  16. P. Siyushev, G. Stein, J. Wrachtrup, and I. Gerhardt, “Molecular photons interfaced with alkali atoms,” Nature 509(7498), 66–70 (2014).
    [Crossref] [PubMed]
  17. W. Kiefer, R. Löw, J. Wrachtrup, and I. Gerhardt, “Na-Faraday rotation filtering: the optimal point,” Sci. Rep. 4, 6552 (2014).
    [Crossref] [PubMed]
  18. S. H. Bloom, V. J. Chan, and C. S. Liu, “High-elevation terrestrial validation of Ballistic Missile Defense Organization (BMDO) lasercom system at 1.1 Gbit/s,” Proc. SPIE 2381, 113–128 (1995).
    [Crossref]
  19. R. I. Billmers, S. K. Gayen, M. F. Squicciarini, V. M. Contarino, W. J. Scharpf, and D. M. Allocca, “Experimental demonstration of an excited-state Faraday filter operating at 532 nm,” Opt. Lett. 20(1), 106–108 (1995).
    [Crossref] [PubMed]
  20. A. Popescu, D. Walldorf, K. Schorstein, and T. Walther, “On an excited state Faraday anomalous dispersion optical filter at moderate pump powers for a Brillouin-lidar receiver system,” Opt. Commun. 264(2), 475–481 (2006).
    [Crossref]
  21. Q. Sun, Y. Hong, W. Zhuang, Z. Liu, and J. Chen, “Demonstration of an excited-state Faraday anomalous dispersion optical filter at 1529 nm by use of an electrodeless discharge rubidium vapor lamp,” Appl. Phys. Lett. 101, 211102 (2012).
    [Crossref]
  22. L. Yin, B. Luo, A. Dang, and H. Guo, “An atomic optical filter working at 1.5 μm based on internal frequency stabilized laser pumping,” Opt. Express 22(7), 7416–7421 (2014).
    [Crossref] [PubMed]
  23. J. E. Sansonetti, “Wavelengths, transition probabilities, and energy levels for the spectra of rubidium (RbI through RbXXXVII),” J. Phys. Chem. Ref. Data 35(1), 301–421 (2006).
    [Crossref]
  24. L. Weller, T. Dalton, P. Siddons, C. S. Adams, and I. G. Hughes, “Measuring the Stokes parameters for light transmitted by a high-density rubidium vapour in large magnetic fields,” J. Phys. B: At. Mol. Opt. Phys. 45, 055001 (2012).
    [Crossref]
  25. B. P. Williams and S. Tomczyk, “Magneto-optic Doppler analyzer: a new instrument to measure mesopause winds,” Appl. Opt. 35(33), 6494–6503 (1996).
    [Crossref] [PubMed]

2014 (5)

2012 (2)

Q. Sun, Y. Hong, W. Zhuang, Z. Liu, and J. Chen, “Demonstration of an excited-state Faraday anomalous dispersion optical filter at 1529 nm by use of an electrodeless discharge rubidium vapor lamp,” Appl. Phys. Lett. 101, 211102 (2012).
[Crossref]

L. Weller, T. Dalton, P. Siddons, C. S. Adams, and I. G. Hughes, “Measuring the Stokes parameters for light transmitted by a high-density rubidium vapour in large magnetic fields,” J. Phys. B: At. Mol. Opt. Phys. 45, 055001 (2012).
[Crossref]

2011 (1)

X. Miao, L. Yin, W. Zhuang, B. Luo, A. Dang, J. Chen, and H. Guo, “Note: demonstration of an external-cavity diode laser system immune to current and temperature fluctuations,” Rev. Sci. Instrum. 82, 086106 (2011).
[Crossref] [PubMed]

2010 (2)

H. Guo, A. H. Dang, Y. Q. Han, S. Gao, Y. Cao, and B. Luo, “Faraday anomalous dispersion optical filter (in Chinese),” Chin. Sci. Bull. 55(7), 527–533 (2010).
[Crossref]

A. Popescu and T. Walther, “On an ESFADOF edge-filter for a range resolved Brillouin-lidar: the high vapor density and high pump intensity regime,” Appl. Phys. B 98(4), 667–675 (2010).
[Crossref]

2009 (1)

2006 (2)

A. Popescu, D. Walldorf, K. Schorstein, and T. Walther, “On an excited state Faraday anomalous dispersion optical filter at moderate pump powers for a Brillouin-lidar receiver system,” Opt. Commun. 264(2), 475–481 (2006).
[Crossref]

J. E. Sansonetti, “Wavelengths, transition probabilities, and energy levels for the spectra of rubidium (RbI through RbXXXVII),” J. Phys. Chem. Ref. Data 35(1), 301–421 (2006).
[Crossref]

2005 (1)

2002 (1)

1996 (1)

1995 (4)

1992 (1)

1991 (2)

1988 (1)

J. A. Gelbwachs, “Atomic resonance filters,” IEEE J. Quantum Electron. 24(7), 1266–1277 (1988).
[Crossref]

1982 (1)

Adams, C. S.

L. Weller, T. Dalton, P. Siddons, C. S. Adams, and I. G. Hughes, “Measuring the Stokes parameters for light transmitted by a high-density rubidium vapour in large magnetic fields,” J. Phys. B: At. Mol. Opt. Phys. 45, 055001 (2012).
[Crossref]

Allocca, D. M.

Benson, K.

Billmers, R. I.

Bloom, S. H.

S. H. Bloom, V. J. Chan, and C. S. Liu, “High-elevation terrestrial validation of Ballistic Missile Defense Organization (BMDO) lasercom system at 1.1 Gbit/s,” Proc. SPIE 2381, 113–128 (1995).
[Crossref]

J. Menders, K. Benson, S. H. Bloom, C. S. Liu, and E. Korevaar, “Ultranarrow line filtering using a Cs Faraday filter at 852 nm,” Opt. Lett. 16(11), 846–848 (1991).
[Crossref] [PubMed]

Cao, Y.

H. Guo, A. H. Dang, Y. Q. Han, S. Gao, Y. Cao, and B. Luo, “Faraday anomalous dispersion optical filter (in Chinese),” Chin. Sci. Bull. 55(7), 527–533 (2010).
[Crossref]

Chan, V. J.

S. H. Bloom, V. J. Chan, and C. S. Liu, “High-elevation terrestrial validation of Ballistic Missile Defense Organization (BMDO) lasercom system at 1.1 Gbit/s,” Proc. SPIE 2381, 113–128 (1995).
[Crossref]

Chen, J.

W. Zhuang and J. Chen, “Active Faraday optical frequency standard,” Opt. Lett. 39(21), 6339–6342 (2014).
[Crossref] [PubMed]

Q. Sun, Y. Hong, W. Zhuang, Z. Liu, and J. Chen, “Demonstration of an excited-state Faraday anomalous dispersion optical filter at 1529 nm by use of an electrodeless discharge rubidium vapor lamp,” Appl. Phys. Lett. 101, 211102 (2012).
[Crossref]

X. Miao, L. Yin, W. Zhuang, B. Luo, A. Dang, J. Chen, and H. Guo, “Note: demonstration of an external-cavity diode laser system immune to current and temperature fluctuations,” Rev. Sci. Instrum. 82, 086106 (2011).
[Crossref] [PubMed]

Chen, X. H.

Chu, X.

Contarino, V. M.

Dalton, T.

L. Weller, T. Dalton, P. Siddons, C. S. Adams, and I. G. Hughes, “Measuring the Stokes parameters for light transmitted by a high-density rubidium vapour in large magnetic fields,” J. Phys. B: At. Mol. Opt. Phys. 45, 055001 (2012).
[Crossref]

Dang, A.

L. Yin, B. Luo, A. Dang, and H. Guo, “An atomic optical filter working at 1.5 μm based on internal frequency stabilized laser pumping,” Opt. Express 22(7), 7416–7421 (2014).
[Crossref] [PubMed]

X. Miao, L. Yin, W. Zhuang, B. Luo, A. Dang, J. Chen, and H. Guo, “Note: demonstration of an external-cavity diode laser system immune to current and temperature fluctuations,” Rev. Sci. Instrum. 82, 086106 (2011).
[Crossref] [PubMed]

Dang, A. H.

H. Guo, A. H. Dang, Y. Q. Han, S. Gao, Y. Cao, and B. Luo, “Faraday anomalous dispersion optical filter (in Chinese),” Chin. Sci. Bull. 55(7), 527–533 (2010).
[Crossref]

Dick, D. J.

Duan, M.

Fricke-Begemann, C.

Gan, J.

Gao, S.

H. Guo, A. H. Dang, Y. Q. Han, S. Gao, Y. Cao, and B. Luo, “Faraday anomalous dispersion optical filter (in Chinese),” Chin. Sci. Bull. 55(7), 527–533 (2010).
[Crossref]

Gayen, S. K.

Gelbwachs, J. A.

J. A. Gelbwachs, “Atomic resonance filters,” IEEE J. Quantum Electron. 24(7), 1266–1277 (1988).
[Crossref]

Gerhardt, I.

W. Kiefer, R. Löw, J. Wrachtrup, and I. Gerhardt, “Na-Faraday rotation filtering: the optimal point,” Sci. Rep. 4, 6552 (2014).
[Crossref] [PubMed]

P. Siyushev, G. Stein, J. Wrachtrup, and I. Gerhardt, “Molecular photons interfaced with alkali atoms,” Nature 509(7498), 66–70 (2014).
[Crossref] [PubMed]

Guo, H.

L. Yin, B. Luo, A. Dang, and H. Guo, “An atomic optical filter working at 1.5 μm based on internal frequency stabilized laser pumping,” Opt. Express 22(7), 7416–7421 (2014).
[Crossref] [PubMed]

X. Miao, L. Yin, W. Zhuang, B. Luo, A. Dang, J. Chen, and H. Guo, “Note: demonstration of an external-cavity diode laser system immune to current and temperature fluctuations,” Rev. Sci. Instrum. 82, 086106 (2011).
[Crossref] [PubMed]

H. Guo, A. H. Dang, Y. Q. Han, S. Gao, Y. Cao, and B. Luo, “Faraday anomalous dispersion optical filter (in Chinese),” Chin. Sci. Bull. 55(7), 527–533 (2010).
[Crossref]

Han, Y. Q.

H. Guo, A. H. Dang, Y. Q. Han, S. Gao, Y. Cao, and B. Luo, “Faraday anomalous dispersion optical filter (in Chinese),” Chin. Sci. Bull. 55(7), 527–533 (2010).
[Crossref]

Harrell, S. D.

Herczfeld, P. R.

Höffner, J.

Hong, Y.

Q. Sun, Y. Hong, W. Zhuang, Z. Liu, and J. Chen, “Demonstration of an excited-state Faraday anomalous dispersion optical filter at 1529 nm by use of an electrodeless discharge rubidium vapor lamp,” Appl. Phys. Lett. 101, 211102 (2012).
[Crossref]

Huang, W.

Hughes, I. G.

L. Weller, T. Dalton, P. Siddons, C. S. Adams, and I. G. Hughes, “Measuring the Stokes parameters for light transmitted by a high-density rubidium vapour in large magnetic fields,” J. Phys. B: At. Mol. Opt. Phys. 45, 055001 (2012).
[Crossref]

Karaganov, V.

Kiefer, W.

W. Kiefer, R. Löw, J. Wrachtrup, and I. Gerhardt, “Na-Faraday rotation filtering: the optimal point,” Sci. Rep. 4, 6552 (2014).
[Crossref] [PubMed]

Kong, J.

Korevaar, E.

Li, Y.

Liu, C. S.

S. H. Bloom, V. J. Chan, and C. S. Liu, “High-elevation terrestrial validation of Ballistic Missile Defense Organization (BMDO) lasercom system at 1.1 Gbit/s,” Proc. SPIE 2381, 113–128 (1995).
[Crossref]

J. Menders, K. Benson, S. H. Bloom, C. S. Liu, and E. Korevaar, “Ultranarrow line filtering using a Cs Faraday filter at 852 nm,” Opt. Lett. 16(11), 846–848 (1991).
[Crossref] [PubMed]

Liu, X. F.

Liu, Z.

Q. Sun, Y. Hong, W. Zhuang, Z. Liu, and J. Chen, “Demonstration of an excited-state Faraday anomalous dispersion optical filter at 1529 nm by use of an electrodeless discharge rubidium vapor lamp,” Appl. Phys. Lett. 101, 211102 (2012).
[Crossref]

Löw, R.

W. Kiefer, R. Löw, J. Wrachtrup, and I. Gerhardt, “Na-Faraday rotation filtering: the optimal point,” Sci. Rep. 4, 6552 (2014).
[Crossref] [PubMed]

Luo, B.

L. Yin, B. Luo, A. Dang, and H. Guo, “An atomic optical filter working at 1.5 μm based on internal frequency stabilized laser pumping,” Opt. Express 22(7), 7416–7421 (2014).
[Crossref] [PubMed]

X. Miao, L. Yin, W. Zhuang, B. Luo, A. Dang, J. Chen, and H. Guo, “Note: demonstration of an external-cavity diode laser system immune to current and temperature fluctuations,” Rev. Sci. Instrum. 82, 086106 (2011).
[Crossref] [PubMed]

H. Guo, A. H. Dang, Y. Q. Han, S. Gao, Y. Cao, and B. Luo, “Faraday anomalous dispersion optical filter (in Chinese),” Chin. Sci. Bull. 55(7), 527–533 (2010).
[Crossref]

Menders, J.

Miao, X.

X. Miao, L. Yin, W. Zhuang, B. Luo, A. Dang, J. Chen, and H. Guo, “Note: demonstration of an external-cavity diode laser system immune to current and temperature fluctuations,” Rev. Sci. Instrum. 82, 086106 (2011).
[Crossref] [PubMed]

Popescu, A.

A. Popescu and T. Walther, “On an ESFADOF edge-filter for a range resolved Brillouin-lidar: the high vapor density and high pump intensity regime,” Appl. Phys. B 98(4), 667–675 (2010).
[Crossref]

A. Popescu, D. Walldorf, K. Schorstein, and T. Walther, “On an excited state Faraday anomalous dispersion optical filter at moderate pump powers for a Brillouin-lidar receiver system,” Opt. Commun. 264(2), 475–481 (2006).
[Crossref]

Roff, K.

Sansonetti, J. E.

J. E. Sansonetti, “Wavelengths, transition probabilities, and energy levels for the spectra of rubidium (RbI through RbXXXVII),” J. Phys. Chem. Ref. Data 35(1), 301–421 (2006).
[Crossref]

Scharpf, W. J.

Scholten, R. E.

Schorstein, K.

A. Popescu, D. Walldorf, K. Schorstein, and T. Walther, “On an excited state Faraday anomalous dispersion optical filter at moderate pump powers for a Brillouin-lidar receiver system,” Opt. Commun. 264(2), 475–481 (2006).
[Crossref]

Searcy, P.

Shay, T. M.

She, C. Y.

Siddons, P.

L. Weller, T. Dalton, P. Siddons, C. S. Adams, and I. G. Hughes, “Measuring the Stokes parameters for light transmitted by a high-density rubidium vapour in large magnetic fields,” J. Phys. B: At. Mol. Opt. Phys. 45, 055001 (2012).
[Crossref]

Siyushev, P.

P. Siyushev, G. Stein, J. Wrachtrup, and I. Gerhardt, “Molecular photons interfaced with alkali atoms,” Nature 509(7498), 66–70 (2014).
[Crossref] [PubMed]

Squicciarini, M. F.

Stein, G.

P. Siyushev, G. Stein, J. Wrachtrup, and I. Gerhardt, “Molecular photons interfaced with alkali atoms,” Nature 509(7498), 66–70 (2014).
[Crossref] [PubMed]

Sun, Q.

Q. Sun, Y. Hong, W. Zhuang, Z. Liu, and J. Chen, “Demonstration of an excited-state Faraday anomalous dispersion optical filter at 1529 nm by use of an electrodeless discharge rubidium vapor lamp,” Appl. Phys. Lett. 101, 211102 (2012).
[Crossref]

Tang, J.

Teubner, P. J. O.

Tomczyk, S.

Turner, L. D.

Walldorf, D.

A. Popescu, D. Walldorf, K. Schorstein, and T. Walther, “On an excited state Faraday anomalous dispersion optical filter at moderate pump powers for a Brillouin-lidar receiver system,” Opt. Commun. 264(2), 475–481 (2006).
[Crossref]

Walther, T.

A. Popescu and T. Walther, “On an ESFADOF edge-filter for a range resolved Brillouin-lidar: the high vapor density and high pump intensity regime,” Appl. Phys. B 98(4), 667–675 (2010).
[Crossref]

A. Popescu, D. Walldorf, K. Schorstein, and T. Walther, “On an excited state Faraday anomalous dispersion optical filter at moderate pump powers for a Brillouin-lidar receiver system,” Opt. Commun. 264(2), 475–481 (2006).
[Crossref]

Wang, Q.

Weller, L.

L. Weller, T. Dalton, P. Siddons, C. S. Adams, and I. G. Hughes, “Measuring the Stokes parameters for light transmitted by a high-density rubidium vapour in large magnetic fields,” J. Phys. B: At. Mol. Opt. Phys. 45, 055001 (2012).
[Crossref]

Wiig, J.

Williams, B. P.

Wrachtrup, J.

W. Kiefer, R. Löw, J. Wrachtrup, and I. Gerhardt, “Na-Faraday rotation filtering: the optimal point,” Sci. Rep. 4, 6552 (2014).
[Crossref] [PubMed]

P. Siyushev, G. Stein, J. Wrachtrup, and I. Gerhardt, “Molecular photons interfaced with alkali atoms,” Nature 509(7498), 66–70 (2014).
[Crossref] [PubMed]

Wu, L. A.

Yang, G.

Yao, X. R.

Yeh, P.

Yin, L.

L. Yin, B. Luo, A. Dang, and H. Guo, “An atomic optical filter working at 1.5 μm based on internal frequency stabilized laser pumping,” Opt. Express 22(7), 7416–7421 (2014).
[Crossref] [PubMed]

X. Miao, L. Yin, W. Zhuang, B. Luo, A. Dang, J. Chen, and H. Guo, “Note: demonstration of an external-cavity diode laser system immune to current and temperature fluctuations,” Rev. Sci. Instrum. 82, 086106 (2011).
[Crossref] [PubMed]

Yu, W. K.

Zhai, G. J.

Zhang, L.

Zheng, L.

Zhuang, W.

W. Zhuang and J. Chen, “Active Faraday optical frequency standard,” Opt. Lett. 39(21), 6339–6342 (2014).
[Crossref] [PubMed]

Q. Sun, Y. Hong, W. Zhuang, Z. Liu, and J. Chen, “Demonstration of an excited-state Faraday anomalous dispersion optical filter at 1529 nm by use of an electrodeless discharge rubidium vapor lamp,” Appl. Phys. Lett. 101, 211102 (2012).
[Crossref]

X. Miao, L. Yin, W. Zhuang, B. Luo, A. Dang, J. Chen, and H. Guo, “Note: demonstration of an external-cavity diode laser system immune to current and temperature fluctuations,” Rev. Sci. Instrum. 82, 086106 (2011).
[Crossref] [PubMed]

Appl. Opt. (3)

Appl. Phys. B (1)

A. Popescu and T. Walther, “On an ESFADOF edge-filter for a range resolved Brillouin-lidar: the high vapor density and high pump intensity regime,” Appl. Phys. B 98(4), 667–675 (2010).
[Crossref]

Appl. Phys. Lett. (1)

Q. Sun, Y. Hong, W. Zhuang, Z. Liu, and J. Chen, “Demonstration of an excited-state Faraday anomalous dispersion optical filter at 1529 nm by use of an electrodeless discharge rubidium vapor lamp,” Appl. Phys. Lett. 101, 211102 (2012).
[Crossref]

Chin. Sci. Bull. (1)

H. Guo, A. H. Dang, Y. Q. Han, S. Gao, Y. Cao, and B. Luo, “Faraday anomalous dispersion optical filter (in Chinese),” Chin. Sci. Bull. 55(7), 527–533 (2010).
[Crossref]

IEEE J. Quantum Electron. (1)

J. A. Gelbwachs, “Atomic resonance filters,” IEEE J. Quantum Electron. 24(7), 1266–1277 (1988).
[Crossref]

J. Phys. B: At. Mol. Opt. Phys. (1)

L. Weller, T. Dalton, P. Siddons, C. S. Adams, and I. G. Hughes, “Measuring the Stokes parameters for light transmitted by a high-density rubidium vapour in large magnetic fields,” J. Phys. B: At. Mol. Opt. Phys. 45, 055001 (2012).
[Crossref]

J. Phys. Chem. Ref. Data (1)

J. E. Sansonetti, “Wavelengths, transition probabilities, and energy levels for the spectra of rubidium (RbI through RbXXXVII),” J. Phys. Chem. Ref. Data 35(1), 301–421 (2006).
[Crossref]

Nature (1)

P. Siyushev, G. Stein, J. Wrachtrup, and I. Gerhardt, “Molecular photons interfaced with alkali atoms,” Nature 509(7498), 66–70 (2014).
[Crossref] [PubMed]

Opt. Commun. (1)

A. Popescu, D. Walldorf, K. Schorstein, and T. Walther, “On an excited state Faraday anomalous dispersion optical filter at moderate pump powers for a Brillouin-lidar receiver system,” Opt. Commun. 264(2), 475–481 (2006).
[Crossref]

Opt. Express (1)

Opt. Lett. (10)

X. F. Liu, X. H. Chen, X. R. Yao, W. K. Yu, G. J. Zhai, and L. A. Wu, “Lensless ghost imaging with sunlight,” Opt. Lett. 39(8), 2314–2317 (2014).
[Crossref] [PubMed]

W. Zhuang and J. Chen, “Active Faraday optical frequency standard,” Opt. Lett. 39(21), 6339–6342 (2014).
[Crossref] [PubMed]

L. D. Turner, V. Karaganov, P. J. O. Teubner, and R. E. Scholten, “Sub-Doppler bandwidth atomic optical filter,” Opt. Lett. 27(7), 500–502 (2002).
[Crossref]

J. Höffner and C. Fricke-Begemann, “Accurate lidar temperatures with narrowband filters,” Opt. Lett. 30(8), 890–892 (2005).
[Crossref] [PubMed]

W. Huang, X. Chu, B. P. Williams, S. D. Harrell, J. Wiig, and C. Y. She, “Na double-edge magneto-optic filter for Na lidar profiling of wind and temperature in the lower atmosphere,” Opt. Lett. 34(2), 199–201 (2009).
[Crossref] [PubMed]

R. I. Billmers, S. K. Gayen, M. F. Squicciarini, V. M. Contarino, W. J. Scharpf, and D. M. Allocca, “Experimental demonstration of an excited-state Faraday filter operating at 532 nm,” Opt. Lett. 20(1), 106–108 (1995).
[Crossref] [PubMed]

S. K. Gayen, R. I. Billmers, V. M. Contarino, M. F. Squicciarini, W. J. Scharpf, G. Yang, P. R. Herczfeld, and D. M. Allocca, “Induced-dichroism-excited atomic line filter at 532 nm,” Opt. Lett. 20(12), 1427–1429 (1995).
[Crossref] [PubMed]

J. Menders, K. Benson, S. H. Bloom, C. S. Liu, and E. Korevaar, “Ultranarrow line filtering using a Cs Faraday filter at 852 nm,” Opt. Lett. 16(11), 846–848 (1991).
[Crossref] [PubMed]

D. J. Dick and T. M. Shay, “Ultrahigh-noise rejection optical filter,” Opt. Lett. 16(11), 867–869 (1991).
[Crossref] [PubMed]

J. Menders, P. Searcy, K. Roff, and E. Korevaar, “Blue cesium Faraday and Voigt magneto-optic atomic line filters,” Opt. Lett. 17(19), 1388–1390 (1992).
[Crossref] [PubMed]

Proc. SPIE (1)

S. H. Bloom, V. J. Chan, and C. S. Liu, “High-elevation terrestrial validation of Ballistic Missile Defense Organization (BMDO) lasercom system at 1.1 Gbit/s,” Proc. SPIE 2381, 113–128 (1995).
[Crossref]

Rev. Sci. Instrum. (1)

X. Miao, L. Yin, W. Zhuang, B. Luo, A. Dang, J. Chen, and H. Guo, “Note: demonstration of an external-cavity diode laser system immune to current and temperature fluctuations,” Rev. Sci. Instrum. 82, 086106 (2011).
[Crossref] [PubMed]

Sci. Rep. (1)

W. Kiefer, R. Löw, J. Wrachtrup, and I. Gerhardt, “Na-Faraday rotation filtering: the optimal point,” Sci. Rep. 4, 6552 (2014).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Diagram of the Faraday type. (b) Diagram of the Voigt type. (c) The Voigt filter scheme. The pump and signal lights propagate along the x axis and the magnetic field the z axis. The polarization of the signal laser has a 45-degree angle with the y axis.

Fig. 2
Fig. 2

(a) The energy levels of rubidium D2 line [23]. The hyperfine structures of 52P3/2 can not be detected without Doppler-free measurement and are drawn as a band. (b) Schematic experimental setup. The 1529 nm laser and the 780 nm laser are the signal and pump laser, respectively. P1 and P2 are orthogonal polarizers, with antireflection coating from 1050 to 1620 nm. M1 and M2 are mirrors. The rubidium vapor is in a 40 mm long quartz cell. HWP1 is half wave plate on 780 nm, while HWP2 and HWP3 are on 1550 nm. QWP1 is quarter wave plate on 780 nm. PBS is polarized beam splitter on 1550 nm. PD1, PD2 and PD3 are photodiodes. The magnetic field is generated by an electromagnet. PA and PB are probe points in experiments.

Fig. 3
Fig. 3

Measured absorption ratio spectra of rubidium D2 line under a temperature of 90 °C in various magnetic fields from 0 to 1600 gauss. (a–f) are results corresponding to vertical linear, horizontal linear, left circular, right circular, +45 degree linear and −45 degree linear polarizations.

Fig. 4
Fig. 4

(a) Peak transmittances and (b) transmittance spectra of the Voigt filter by different pump polarizations.

Fig. 5
Fig. 5

(a) The density plot of the Voigt filter transmittance for various magnetic fields. (b) Frequency shifts of transmittance peaks for various magnetic fields. (c) Peak transmittances for various magnetic fields. (d) Transmittance spectra of the excited state Voigt filter under 872 gauss and 1369 gauss.

Metrics