Abstract

Sensors based on whispering gallery modes have been extensively investigated with respect to their possible application as physical or biological sensors. Instead of using a single resonator, we use an all polymer resonator array as sensing element. A tunable narrowband laser is coupled into a PMMA plate serving as an optical wave guide. PMMA spheres are placed in the evanescent field on the surface of the plate. Due to small size variations, some spheres are in resonance at a given wavelength while others are not. We show that this device is well suited for the determination of an unknown wavelength or for temperature measurements. Moreover, we discuss several general aspects of the sensor concept such as the number and size of sensing elements which are necessary for a correct measurement result, or the maximum acceptable linewidth of the laser.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Micro-optical force sensor concept based on whispering gallery mode resonators

Tindaro Ioppolo, Michael Kozhevnikov, Vadim Stepaniuk, M. Volkan Ötügen, and Valery Sheverev
Appl. Opt. 47(16) 3009-3014 (2008)

Whispering gallery mode sensors

Matthew R. Foreman, Jon D. Swaim, and Frank Vollmer
Adv. Opt. Photon. 7(2) 168-240 (2015)

Ultrasensitive thermal sensors based on whispering gallery modes in a polymer core optical ring resonator

Nai Lin, Lan Jiang, Sumei Wang, Hai Xiao, Yongfeng Lu, and Hailung Tsai
Appl. Opt. 50(33) 6254-6260 (2011)

References

  • View by:
  • |
  • |
  • |

  1. F. Vollmer and L. Yang, “Review label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophot. 1, 267–291 (2012).
    [Crossref]
  2. S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in micro-spheres by protein adsorption,” Opt. Lett. 28, 272–274 (2003).
    [Crossref] [PubMed]
  3. M.R. Foreman, J.D. Swaim, and F. Vollmer, “Whispering gallery mode sensors,” Adv. Opt. Photon. 7, 267–291 (2015).
  4. J. Zhu, S.K. Ozdemir, Y.F. Xiao, L. Li, L. He, D.R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Phot. 4, 46–49 (2010).
    [Crossref]
  5. F. Sedlmeir, R. Zeltner, G. Leuchs, and H.G. Schwefel, “High-Q MgF 2 whispering gallery mode resonators for refractometric sensing in aqueous environment,” Opt. Express 22, 30934–30942 (2014).
    [Crossref]
  6. W. Yoshiki, A. Chen-Jinnai, T. Tetsumoto, and T. Tanabe, “Observation of energy oscillation between strongly-coupled counter-propagating ultra-high Q whispering gallery modes,” Opt. Express 23, 30851–30860 (2015).
    [Crossref] [PubMed]
  7. G. Lin, S. Diallo, R. Henriet, M. Jacquot, and Y.K. Chembo, “Barium fluoride whispering-gallery-mode disk-resonator with one billion quality-factor,” Opt. Lett. 39, 6009–6012 (2014).
    [Crossref] [PubMed]
  8. L. Shao, X.F. Jiang, X.C. Yu, B.B. Li, W.R. Clements, F. Vollmer, W. Wang, Y.F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mat. 25, 5616–5620 (2013).
    [Crossref]
  9. Z.P. Liu, Y. Li, Y.F. Xiao, B.B. Li, X.F. Jiang, Y. Qin, X.B. Feng, H. Yang, and Q. Gong, “Direct laser writing of whispering gallery microcavities by two-photon polymerization,” Appl. Phys. Lett. 97, 211105 (2010).
    [Crossref]
  10. S.H. Nam and S. Yin, “High-temperature sensing using whispering gallery mode resonance in bent optical fibers,” Photonics Technology Letters, IEEE 17, 2391–2393 (2005).
    [Crossref]
  11. T. Ioppola, M.I. Kozhevnikov, V. Stepaniuk, M.V. Otugen, and V. Sheverev, “Micro-optical force sensor concept based on whispering gallery mode resonators,” Appl. Opt. 47, 3009–3014 (2008).
    [Crossref]
  12. F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nature Methods 5, 591–596 (2008).
    [Crossref] [PubMed]
  13. G. Schweiger, R. Nett, and T. Weigel, “Microresonator array for high-resolution spectroscopy,” Opt. Lett. 32, 2644–2646 (2007).
    [Crossref] [PubMed]
  14. A. Banerjee, U. Rapol, A. Wasan, and V. Natarajan, “High-accuracy wavemeter based on a stabilized diode laser,” Appl. Phys. Lett. 79, 2139–2141 (2001).
    [Crossref]
  15. T. Weigel, R. Nett, and G. Schweiger, “Microresonator array sensor,” Proc. SPIE 73660, 73660H (2009).
    [Crossref]
  16. A. Weller, F.C. Liu, R. Dahint, and M. Himmelhaus, “Whispering gallery mode biosensors in the low-Q limit,” Appl. Phys. B 90, 561–567 (2008).
    [Crossref]
  17. A. Francois and M. Himmelhaus, “Whispering gallery mode biosensor operated in the stimulated emission regime,” Appl. Phys. Lett. 94, 031101 (2009).
    [Crossref]
  18. A. Francois and M. Himmelhaus, “Optical biosensor based on whispering gallery mode excitations in clusters of microparticles,” Appl. Phys. Lett. 92, 141107 (2008).
    [Crossref]
  19. S.P. Ashili, V.N. Astratov, and E.C.H. Sykes, “The effects of inter-cavity separation on optical coupling in dielectric bispheres,” Opt. Express 14, 9460–9466 (2006).
    [Crossref] [PubMed]
  20. T. Weigel, R. Nett, G. Schweiger, and A. Ostendorf, “High resolution spectroscopy with a microparticle array sensor,” Proc. SPIE 77260, 77260C (2010).
    [Crossref]
  21. T. Weigel, H. Dobbelstein, C. Esen, G. Schweiger, and A. Ostendorf, “Sperical optical microresonator array as a multi-purpose measuring device,” Proc. SPIE 89600, 89600H (2014).
  22. D.V. Strekalov, R.J. Thompson, L.M. Baumgartel, I.S. Grudinin, and N. Yu, “Temperature measurement and stabilization in a birefringent whispering gallery mode resonator,” Opt. Express 19, 14495–14501 (2011).
    [Crossref] [PubMed]
  23. B.B. Li, Q.Y. Wang, Y.F. Xiao, X.F. Jiang, Y. Li, L. Xiao, and Q. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96, 251109 (2010).
    [Crossref]

2015 (2)

2014 (3)

2013 (1)

L. Shao, X.F. Jiang, X.C. Yu, B.B. Li, W.R. Clements, F. Vollmer, W. Wang, Y.F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mat. 25, 5616–5620 (2013).
[Crossref]

2012 (1)

F. Vollmer and L. Yang, “Review label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophot. 1, 267–291 (2012).
[Crossref]

2011 (1)

2010 (4)

B.B. Li, Q.Y. Wang, Y.F. Xiao, X.F. Jiang, Y. Li, L. Xiao, and Q. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96, 251109 (2010).
[Crossref]

T. Weigel, R. Nett, G. Schweiger, and A. Ostendorf, “High resolution spectroscopy with a microparticle array sensor,” Proc. SPIE 77260, 77260C (2010).
[Crossref]

J. Zhu, S.K. Ozdemir, Y.F. Xiao, L. Li, L. He, D.R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Phot. 4, 46–49 (2010).
[Crossref]

Z.P. Liu, Y. Li, Y.F. Xiao, B.B. Li, X.F. Jiang, Y. Qin, X.B. Feng, H. Yang, and Q. Gong, “Direct laser writing of whispering gallery microcavities by two-photon polymerization,” Appl. Phys. Lett. 97, 211105 (2010).
[Crossref]

2009 (2)

T. Weigel, R. Nett, and G. Schweiger, “Microresonator array sensor,” Proc. SPIE 73660, 73660H (2009).
[Crossref]

A. Francois and M. Himmelhaus, “Whispering gallery mode biosensor operated in the stimulated emission regime,” Appl. Phys. Lett. 94, 031101 (2009).
[Crossref]

2008 (4)

A. Francois and M. Himmelhaus, “Optical biosensor based on whispering gallery mode excitations in clusters of microparticles,” Appl. Phys. Lett. 92, 141107 (2008).
[Crossref]

A. Weller, F.C. Liu, R. Dahint, and M. Himmelhaus, “Whispering gallery mode biosensors in the low-Q limit,” Appl. Phys. B 90, 561–567 (2008).
[Crossref]

T. Ioppola, M.I. Kozhevnikov, V. Stepaniuk, M.V. Otugen, and V. Sheverev, “Micro-optical force sensor concept based on whispering gallery mode resonators,” Appl. Opt. 47, 3009–3014 (2008).
[Crossref]

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nature Methods 5, 591–596 (2008).
[Crossref] [PubMed]

2007 (1)

2006 (1)

2005 (1)

S.H. Nam and S. Yin, “High-temperature sensing using whispering gallery mode resonance in bent optical fibers,” Photonics Technology Letters, IEEE 17, 2391–2393 (2005).
[Crossref]

2003 (1)

2001 (1)

A. Banerjee, U. Rapol, A. Wasan, and V. Natarajan, “High-accuracy wavemeter based on a stabilized diode laser,” Appl. Phys. Lett. 79, 2139–2141 (2001).
[Crossref]

Arnold, S.

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nature Methods 5, 591–596 (2008).
[Crossref] [PubMed]

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in micro-spheres by protein adsorption,” Opt. Lett. 28, 272–274 (2003).
[Crossref] [PubMed]

Ashili, S.P.

Astratov, V.N.

Banerjee, A.

A. Banerjee, U. Rapol, A. Wasan, and V. Natarajan, “High-accuracy wavemeter based on a stabilized diode laser,” Appl. Phys. Lett. 79, 2139–2141 (2001).
[Crossref]

Baumgartel, L.M.

Chembo, Y.K.

Chen, D.R.

J. Zhu, S.K. Ozdemir, Y.F. Xiao, L. Li, L. He, D.R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Phot. 4, 46–49 (2010).
[Crossref]

Chen-Jinnai, A.

Clements, W.R.

L. Shao, X.F. Jiang, X.C. Yu, B.B. Li, W.R. Clements, F. Vollmer, W. Wang, Y.F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mat. 25, 5616–5620 (2013).
[Crossref]

Dahint, R.

A. Weller, F.C. Liu, R. Dahint, and M. Himmelhaus, “Whispering gallery mode biosensors in the low-Q limit,” Appl. Phys. B 90, 561–567 (2008).
[Crossref]

Diallo, S.

Dobbelstein, H.

T. Weigel, H. Dobbelstein, C. Esen, G. Schweiger, and A. Ostendorf, “Sperical optical microresonator array as a multi-purpose measuring device,” Proc. SPIE 89600, 89600H (2014).

Esen, C.

T. Weigel, H. Dobbelstein, C. Esen, G. Schweiger, and A. Ostendorf, “Sperical optical microresonator array as a multi-purpose measuring device,” Proc. SPIE 89600, 89600H (2014).

Feng, X.B.

Z.P. Liu, Y. Li, Y.F. Xiao, B.B. Li, X.F. Jiang, Y. Qin, X.B. Feng, H. Yang, and Q. Gong, “Direct laser writing of whispering gallery microcavities by two-photon polymerization,” Appl. Phys. Lett. 97, 211105 (2010).
[Crossref]

Foreman, M.R.

M.R. Foreman, J.D. Swaim, and F. Vollmer, “Whispering gallery mode sensors,” Adv. Opt. Photon. 7, 267–291 (2015).

Francois, A.

A. Francois and M. Himmelhaus, “Whispering gallery mode biosensor operated in the stimulated emission regime,” Appl. Phys. Lett. 94, 031101 (2009).
[Crossref]

A. Francois and M. Himmelhaus, “Optical biosensor based on whispering gallery mode excitations in clusters of microparticles,” Appl. Phys. Lett. 92, 141107 (2008).
[Crossref]

Gong, Q.

L. Shao, X.F. Jiang, X.C. Yu, B.B. Li, W.R. Clements, F. Vollmer, W. Wang, Y.F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mat. 25, 5616–5620 (2013).
[Crossref]

Z.P. Liu, Y. Li, Y.F. Xiao, B.B. Li, X.F. Jiang, Y. Qin, X.B. Feng, H. Yang, and Q. Gong, “Direct laser writing of whispering gallery microcavities by two-photon polymerization,” Appl. Phys. Lett. 97, 211105 (2010).
[Crossref]

B.B. Li, Q.Y. Wang, Y.F. Xiao, X.F. Jiang, Y. Li, L. Xiao, and Q. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96, 251109 (2010).
[Crossref]

Grudinin, I.S.

He, L.

J. Zhu, S.K. Ozdemir, Y.F. Xiao, L. Li, L. He, D.R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Phot. 4, 46–49 (2010).
[Crossref]

Henriet, R.

Himmelhaus, M.

A. Francois and M. Himmelhaus, “Whispering gallery mode biosensor operated in the stimulated emission regime,” Appl. Phys. Lett. 94, 031101 (2009).
[Crossref]

A. Weller, F.C. Liu, R. Dahint, and M. Himmelhaus, “Whispering gallery mode biosensors in the low-Q limit,” Appl. Phys. B 90, 561–567 (2008).
[Crossref]

A. Francois and M. Himmelhaus, “Optical biosensor based on whispering gallery mode excitations in clusters of microparticles,” Appl. Phys. Lett. 92, 141107 (2008).
[Crossref]

Holler, S.

Ioppola, T.

Jacquot, M.

Jiang, X.F.

L. Shao, X.F. Jiang, X.C. Yu, B.B. Li, W.R. Clements, F. Vollmer, W. Wang, Y.F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mat. 25, 5616–5620 (2013).
[Crossref]

Z.P. Liu, Y. Li, Y.F. Xiao, B.B. Li, X.F. Jiang, Y. Qin, X.B. Feng, H. Yang, and Q. Gong, “Direct laser writing of whispering gallery microcavities by two-photon polymerization,” Appl. Phys. Lett. 97, 211105 (2010).
[Crossref]

B.B. Li, Q.Y. Wang, Y.F. Xiao, X.F. Jiang, Y. Li, L. Xiao, and Q. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96, 251109 (2010).
[Crossref]

Khoshsima, M.

Kozhevnikov, M.I.

Leuchs, G.

Li, B.B.

L. Shao, X.F. Jiang, X.C. Yu, B.B. Li, W.R. Clements, F. Vollmer, W. Wang, Y.F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mat. 25, 5616–5620 (2013).
[Crossref]

B.B. Li, Q.Y. Wang, Y.F. Xiao, X.F. Jiang, Y. Li, L. Xiao, and Q. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96, 251109 (2010).
[Crossref]

Z.P. Liu, Y. Li, Y.F. Xiao, B.B. Li, X.F. Jiang, Y. Qin, X.B. Feng, H. Yang, and Q. Gong, “Direct laser writing of whispering gallery microcavities by two-photon polymerization,” Appl. Phys. Lett. 97, 211105 (2010).
[Crossref]

Li, L.

J. Zhu, S.K. Ozdemir, Y.F. Xiao, L. Li, L. He, D.R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Phot. 4, 46–49 (2010).
[Crossref]

Li, Y.

Z.P. Liu, Y. Li, Y.F. Xiao, B.B. Li, X.F. Jiang, Y. Qin, X.B. Feng, H. Yang, and Q. Gong, “Direct laser writing of whispering gallery microcavities by two-photon polymerization,” Appl. Phys. Lett. 97, 211105 (2010).
[Crossref]

B.B. Li, Q.Y. Wang, Y.F. Xiao, X.F. Jiang, Y. Li, L. Xiao, and Q. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96, 251109 (2010).
[Crossref]

Lin, G.

Liu, F.C.

A. Weller, F.C. Liu, R. Dahint, and M. Himmelhaus, “Whispering gallery mode biosensors in the low-Q limit,” Appl. Phys. B 90, 561–567 (2008).
[Crossref]

Liu, Z.P.

Z.P. Liu, Y. Li, Y.F. Xiao, B.B. Li, X.F. Jiang, Y. Qin, X.B. Feng, H. Yang, and Q. Gong, “Direct laser writing of whispering gallery microcavities by two-photon polymerization,” Appl. Phys. Lett. 97, 211105 (2010).
[Crossref]

Nam, S.H.

S.H. Nam and S. Yin, “High-temperature sensing using whispering gallery mode resonance in bent optical fibers,” Photonics Technology Letters, IEEE 17, 2391–2393 (2005).
[Crossref]

Natarajan, V.

A. Banerjee, U. Rapol, A. Wasan, and V. Natarajan, “High-accuracy wavemeter based on a stabilized diode laser,” Appl. Phys. Lett. 79, 2139–2141 (2001).
[Crossref]

Nett, R.

T. Weigel, R. Nett, G. Schweiger, and A. Ostendorf, “High resolution spectroscopy with a microparticle array sensor,” Proc. SPIE 77260, 77260C (2010).
[Crossref]

T. Weigel, R. Nett, and G. Schweiger, “Microresonator array sensor,” Proc. SPIE 73660, 73660H (2009).
[Crossref]

G. Schweiger, R. Nett, and T. Weigel, “Microresonator array for high-resolution spectroscopy,” Opt. Lett. 32, 2644–2646 (2007).
[Crossref] [PubMed]

Ostendorf, A.

T. Weigel, H. Dobbelstein, C. Esen, G. Schweiger, and A. Ostendorf, “Sperical optical microresonator array as a multi-purpose measuring device,” Proc. SPIE 89600, 89600H (2014).

T. Weigel, R. Nett, G. Schweiger, and A. Ostendorf, “High resolution spectroscopy with a microparticle array sensor,” Proc. SPIE 77260, 77260C (2010).
[Crossref]

Otugen, M.V.

Ozdemir, S.K.

J. Zhu, S.K. Ozdemir, Y.F. Xiao, L. Li, L. He, D.R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Phot. 4, 46–49 (2010).
[Crossref]

Qin, Y.

Z.P. Liu, Y. Li, Y.F. Xiao, B.B. Li, X.F. Jiang, Y. Qin, X.B. Feng, H. Yang, and Q. Gong, “Direct laser writing of whispering gallery microcavities by two-photon polymerization,” Appl. Phys. Lett. 97, 211105 (2010).
[Crossref]

Rapol, U.

A. Banerjee, U. Rapol, A. Wasan, and V. Natarajan, “High-accuracy wavemeter based on a stabilized diode laser,” Appl. Phys. Lett. 79, 2139–2141 (2001).
[Crossref]

Schwefel, H.G.

Schweiger, G.

T. Weigel, H. Dobbelstein, C. Esen, G. Schweiger, and A. Ostendorf, “Sperical optical microresonator array as a multi-purpose measuring device,” Proc. SPIE 89600, 89600H (2014).

T. Weigel, R. Nett, G. Schweiger, and A. Ostendorf, “High resolution spectroscopy with a microparticle array sensor,” Proc. SPIE 77260, 77260C (2010).
[Crossref]

T. Weigel, R. Nett, and G. Schweiger, “Microresonator array sensor,” Proc. SPIE 73660, 73660H (2009).
[Crossref]

G. Schweiger, R. Nett, and T. Weigel, “Microresonator array for high-resolution spectroscopy,” Opt. Lett. 32, 2644–2646 (2007).
[Crossref] [PubMed]

Sedlmeir, F.

Shao, L.

L. Shao, X.F. Jiang, X.C. Yu, B.B. Li, W.R. Clements, F. Vollmer, W. Wang, Y.F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mat. 25, 5616–5620 (2013).
[Crossref]

Sheverev, V.

Stepaniuk, V.

Strekalov, D.V.

Swaim, J.D.

M.R. Foreman, J.D. Swaim, and F. Vollmer, “Whispering gallery mode sensors,” Adv. Opt. Photon. 7, 267–291 (2015).

Sykes, E.C.H.

Tanabe, T.

Teraoka, I.

Tetsumoto, T.

Thompson, R.J.

Vollmer, F.

M.R. Foreman, J.D. Swaim, and F. Vollmer, “Whispering gallery mode sensors,” Adv. Opt. Photon. 7, 267–291 (2015).

L. Shao, X.F. Jiang, X.C. Yu, B.B. Li, W.R. Clements, F. Vollmer, W. Wang, Y.F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mat. 25, 5616–5620 (2013).
[Crossref]

F. Vollmer and L. Yang, “Review label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophot. 1, 267–291 (2012).
[Crossref]

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nature Methods 5, 591–596 (2008).
[Crossref] [PubMed]

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in micro-spheres by protein adsorption,” Opt. Lett. 28, 272–274 (2003).
[Crossref] [PubMed]

Wang, Q.Y.

B.B. Li, Q.Y. Wang, Y.F. Xiao, X.F. Jiang, Y. Li, L. Xiao, and Q. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96, 251109 (2010).
[Crossref]

Wang, W.

L. Shao, X.F. Jiang, X.C. Yu, B.B. Li, W.R. Clements, F. Vollmer, W. Wang, Y.F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mat. 25, 5616–5620 (2013).
[Crossref]

Wasan, A.

A. Banerjee, U. Rapol, A. Wasan, and V. Natarajan, “High-accuracy wavemeter based on a stabilized diode laser,” Appl. Phys. Lett. 79, 2139–2141 (2001).
[Crossref]

Weigel, T.

T. Weigel, H. Dobbelstein, C. Esen, G. Schweiger, and A. Ostendorf, “Sperical optical microresonator array as a multi-purpose measuring device,” Proc. SPIE 89600, 89600H (2014).

T. Weigel, R. Nett, G. Schweiger, and A. Ostendorf, “High resolution spectroscopy with a microparticle array sensor,” Proc. SPIE 77260, 77260C (2010).
[Crossref]

T. Weigel, R. Nett, and G. Schweiger, “Microresonator array sensor,” Proc. SPIE 73660, 73660H (2009).
[Crossref]

G. Schweiger, R. Nett, and T. Weigel, “Microresonator array for high-resolution spectroscopy,” Opt. Lett. 32, 2644–2646 (2007).
[Crossref] [PubMed]

Weller, A.

A. Weller, F.C. Liu, R. Dahint, and M. Himmelhaus, “Whispering gallery mode biosensors in the low-Q limit,” Appl. Phys. B 90, 561–567 (2008).
[Crossref]

Xiao, L.

B.B. Li, Q.Y. Wang, Y.F. Xiao, X.F. Jiang, Y. Li, L. Xiao, and Q. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96, 251109 (2010).
[Crossref]

Xiao, Y.F.

L. Shao, X.F. Jiang, X.C. Yu, B.B. Li, W.R. Clements, F. Vollmer, W. Wang, Y.F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mat. 25, 5616–5620 (2013).
[Crossref]

J. Zhu, S.K. Ozdemir, Y.F. Xiao, L. Li, L. He, D.R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Phot. 4, 46–49 (2010).
[Crossref]

Z.P. Liu, Y. Li, Y.F. Xiao, B.B. Li, X.F. Jiang, Y. Qin, X.B. Feng, H. Yang, and Q. Gong, “Direct laser writing of whispering gallery microcavities by two-photon polymerization,” Appl. Phys. Lett. 97, 211105 (2010).
[Crossref]

B.B. Li, Q.Y. Wang, Y.F. Xiao, X.F. Jiang, Y. Li, L. Xiao, and Q. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96, 251109 (2010).
[Crossref]

Yang, H.

Z.P. Liu, Y. Li, Y.F. Xiao, B.B. Li, X.F. Jiang, Y. Qin, X.B. Feng, H. Yang, and Q. Gong, “Direct laser writing of whispering gallery microcavities by two-photon polymerization,” Appl. Phys. Lett. 97, 211105 (2010).
[Crossref]

Yang, L.

F. Vollmer and L. Yang, “Review label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophot. 1, 267–291 (2012).
[Crossref]

J. Zhu, S.K. Ozdemir, Y.F. Xiao, L. Li, L. He, D.R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Phot. 4, 46–49 (2010).
[Crossref]

Yin, S.

S.H. Nam and S. Yin, “High-temperature sensing using whispering gallery mode resonance in bent optical fibers,” Photonics Technology Letters, IEEE 17, 2391–2393 (2005).
[Crossref]

Yoshiki, W.

Yu, N.

Yu, X.C.

L. Shao, X.F. Jiang, X.C. Yu, B.B. Li, W.R. Clements, F. Vollmer, W. Wang, Y.F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mat. 25, 5616–5620 (2013).
[Crossref]

Zeltner, R.

Zhu, J.

J. Zhu, S.K. Ozdemir, Y.F. Xiao, L. Li, L. He, D.R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Phot. 4, 46–49 (2010).
[Crossref]

Adv. Mat. (1)

L. Shao, X.F. Jiang, X.C. Yu, B.B. Li, W.R. Clements, F. Vollmer, W. Wang, Y.F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mat. 25, 5616–5620 (2013).
[Crossref]

Adv. Opt. Photon. (1)

M.R. Foreman, J.D. Swaim, and F. Vollmer, “Whispering gallery mode sensors,” Adv. Opt. Photon. 7, 267–291 (2015).

Appl. Opt. (1)

Appl. Phys. B (1)

A. Weller, F.C. Liu, R. Dahint, and M. Himmelhaus, “Whispering gallery mode biosensors in the low-Q limit,” Appl. Phys. B 90, 561–567 (2008).
[Crossref]

Appl. Phys. Lett. (5)

A. Francois and M. Himmelhaus, “Whispering gallery mode biosensor operated in the stimulated emission regime,” Appl. Phys. Lett. 94, 031101 (2009).
[Crossref]

A. Francois and M. Himmelhaus, “Optical biosensor based on whispering gallery mode excitations in clusters of microparticles,” Appl. Phys. Lett. 92, 141107 (2008).
[Crossref]

B.B. Li, Q.Y. Wang, Y.F. Xiao, X.F. Jiang, Y. Li, L. Xiao, and Q. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96, 251109 (2010).
[Crossref]

Z.P. Liu, Y. Li, Y.F. Xiao, B.B. Li, X.F. Jiang, Y. Qin, X.B. Feng, H. Yang, and Q. Gong, “Direct laser writing of whispering gallery microcavities by two-photon polymerization,” Appl. Phys. Lett. 97, 211105 (2010).
[Crossref]

A. Banerjee, U. Rapol, A. Wasan, and V. Natarajan, “High-accuracy wavemeter based on a stabilized diode laser,” Appl. Phys. Lett. 79, 2139–2141 (2001).
[Crossref]

Nanophot. (1)

F. Vollmer and L. Yang, “Review label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophot. 1, 267–291 (2012).
[Crossref]

Nat. Phot. (1)

J. Zhu, S.K. Ozdemir, Y.F. Xiao, L. Li, L. He, D.R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Phot. 4, 46–49 (2010).
[Crossref]

Nature Methods (1)

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nature Methods 5, 591–596 (2008).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (3)

Photonics Technology Letters, IEEE (1)

S.H. Nam and S. Yin, “High-temperature sensing using whispering gallery mode resonance in bent optical fibers,” Photonics Technology Letters, IEEE 17, 2391–2393 (2005).
[Crossref]

Proc. SPIE (3)

T. Weigel, R. Nett, and G. Schweiger, “Microresonator array sensor,” Proc. SPIE 73660, 73660H (2009).
[Crossref]

T. Weigel, R. Nett, G. Schweiger, and A. Ostendorf, “High resolution spectroscopy with a microparticle array sensor,” Proc. SPIE 77260, 77260C (2010).
[Crossref]

T. Weigel, H. Dobbelstein, C. Esen, G. Schweiger, and A. Ostendorf, “Sperical optical microresonator array as a multi-purpose measuring device,” Proc. SPIE 89600, 89600H (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Experimental setup: The intensity of the tunable laser is split with a ratio of 90 : 10 (C: coupler, OF: optical fiber). Ten percent of the laser intensity is either detected with an optical spectrum analyzer (OSA) or with a photodiode for calibration purposes. The remaining ninety percent of the laser intensity is collimated (CO: collimation optic) and coupled under 45° in a PMMA plate and guided based on total internal reflection. The WGMs are placed in the evanscent field present at the plate surface. The light distribution is captured by a CMOS camera equipped with a microscope objective.
Fig. 2
Fig. 2 Images of the three different arrays used in this work. The spheres lying in the evanescent field generated by a red laser with a wavelength of 635 nm are excited. Additionally the arrays are illuminated from above for better visibility. The magnification of the optical imaging system is 10X. Mean diameter: Left: 14.74 μm. Middle: 74.44 μm. Right: 165 μm.
Fig. 3
Fig. 3 (a) Resonance spectrum for one exemplary sphere (mean diameter 74.44 μm), (b) intensities of all spheres (here: 18 spheres with a mean diameter of 74.44 μm), as stored in the database.
Fig. 4
Fig. 4 Wavelength calibration with the optical spectrum analyzer: (a) wavelength measured with the OSA compared to the values displayed by the laser unit. (b) Enlargement of the graph in (a) for the range between 635.5 nm–635.8 nm shows that the laser is in fact not scanned continuously but in small discrete steps with minimal size determined by the digitizer card of the scanning unit.
Fig. 5
Fig. 5 Correlation function r(λ) for 18 spheres with a mean diameter of 74.44 μm. At the true wavelength of 636 nm the correlation function has a pronounced minimum.
Fig. 6
Fig. 6 Dependence of the wavelength measurement on the number of spheres for different sphere diameters: (a)–(c) 14.74 μm, (d)–(f) 74.44 μm and (g)–(i) 165 μm.
Fig. 7
Fig. 7 Correlation function r(λ) around the true wavelength λ0 = 636nm for different linewidths. Sphere diameter: (a) 14.74 μm and (b) 165 μm.
Fig. 8
Fig. 8 Correlation function r(λ) around the true wavelength λ0 = 636nm for different linewidths. Sphere diameter 74.44 μm
Fig. 9
Fig. 9 Wavelength dependence of one single sphere from the array with spheres of a mean diameter of 74.44 μm at different temperatures.

Tables (1)

Tables Icon

Table 1 Standard deviation of the wavelength determination [nm].

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

r ( λ ) = j = 1 N | I j DB ( λ ) I j | .
g ( λ ) = g 0 e ( λ λ 0 ) 2 / b 2
b = Δ λ 2 ln 2
I j new ( λ 0 ) = λ g ( λ ) I j DB ( λ )
Δ λ λ = ( α + β ) Δ T

Metrics