Abstract

A high efficiency method for the generation of correlated photon pairs accompanied by reliable means to characterize the efficiency of that process is needed in the study of entangled states, which have important potential applications in quantum information and quantum communication. In this study, we report the first characterization of the efficiency of generation of correlated photon pairs emitted from a CuCl single crystal using the biexciton-resonance hyper-parametric scattering (RHPS) method which is the highly efficient method of generation of correlated photon pairs. In order to characterize the generation efficiency and signal-to-noise ratio of correlated photon pairs using this method, we investigated the pump power dependence on the photon counting rate and coincidence counting rate under resonant excitation. The pump power dependence shows that the power characteristic of the photon counting rates changes from linear to quadratic dependence of the pump power. This behavior represents a superposition of contributions from correlated photon pairs and non-correlated photons. The analysis of the pump power dependence shows that one photon-pair is produced by a pump pulse with 2 x 106 photons. Moreover, the generation efficiency of this method obtained by calculating the number of generated photon pairs per pump power is comparable to that of several methods based on the χ(3) parametric process.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Generation of polarization entangled photon pairs at telecommunication wavelength using cascaded χ(2) processes in a periodically poled LiNbO3 ridge waveguide

Shin Arahira, Naoto Namekata, Tadashi Kishimoto, Hiroki Yaegashi, and Shuichiro Inoue
Opt. Express 19(17) 16032-16043 (2011)

All-fiber photon-pair source for quantum communications: Improved generation of correlated photons

Xiaoying Li, Jun Chen, Paul Voss, Jay Sharping, and Prem Kumar
Opt. Express 12(16) 3737-3744 (2004)

References

  • View by:
  • |
  • |
  • |

  1. D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390(6660), 575–579 (1997).
    [Crossref]
  2. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
    [Crossref]
  3. A. Aspuru-Guzik and P. Walther, “Photonic quantum simulators,” Nat. Phys. 8(4), 285–291 (2012).
    [Crossref]
  4. A. Peruzzo, M. Lobino, J. C. F. Matthews, N. Matsuda, A. Politi, K. Poulios, X.-Q. Zhou, Y. Lahini, N. Ismail, K. Wörhoff, Y. Bromberg, Y. Silberberg, M. G. Thompson, and J. L. OBrien, “Quantum walks of correlated photons,” Science 329(5998), 1500–1503 (2010).
    [Crossref] [PubMed]
  5. L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Two-particle bosonic-fermionic quantum walk via integrated photonics,” Phys. Rev. Lett. 108(1), 010502 (2012).
    [Crossref] [PubMed]
  6. M. D’Angelo, M. V. Chekhova, and Y. Shih, “Two-photon diffraction and quantum lithography,” Phys. Rev. Lett. 87(1), 013602 (2001).
    [Crossref] [PubMed]
  7. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409(6816), 46–52 (2001).
    [Crossref] [PubMed]
  8. P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, and A. Zeilinger, “Experimental one-way quantum computing,” Nature 434(7030), 169–176 (2005).
    [Crossref] [PubMed]
  9. P. Kok, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79(1), 135–174 (2007).
    [Crossref]
  10. A. Zeilinger, M. Horne, H. Weinfurter, and M. Żukowski, “Three-particle entanglements from two entangled pairs,” Phys. Rev. Lett. 78(16), 3031–3034 (1997).
    [Crossref]
  11. H. S. Eisenberg, G. Khoury, G. A. Durkin, C. Simon, and D. Bouwmeester, “Quantum entanglement of a large number of photons,” Phys. Rev. Lett. 93(19), 193901 (2004).
    [Crossref] [PubMed]
  12. K. Edamatsu, G. Oohata, R. Shimizu, and T. Itoh, “Generation of ultraviolet entangled photons in a semiconductor,” Nature 431(7005), 167–170 (2004).
    [Crossref] [PubMed]
  13. G. Oohata, R. Shimizu, and K. Edamatsu, “Photon polarization entanglement induced by Biexciton: experimental evidence for violation of Bell’s inequality,” Phys. Rev. Lett. 98(14), 140503 (2007).
    [Crossref] [PubMed]
  14. H. Takesue and K. Shimizu, “Effects of multiple pairs on visibility measurements of entangled photons generated by spontaneous parametric processes,” Opt. Commun. 283(2), 276–287 (2010).
    [Crossref]
  15. S. Arahira, N. Namekata, T. Kishimoto, H. Yaegashi, and S. Inoue, “Generation of polarization entangled photon pairs at telecommunication wavelength using cascaded χ2 processes in a periodically poled LiNbO3 ridge waveguide,” Opt. Express 19(17), 16032–16043 (2011).
    [Crossref] [PubMed]
  16. H. Takesue and K. Inoue, “1.5-mm band quantum-correlated photon pair generation in dispersion-shifted fiber: suppression of noise photons by cooling fiber,” Opt. Express 13(20), 7832–7839 (2005).
    [Crossref] [PubMed]
  17. X. Li, J. Chen, P. Voss, J. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications: Improved generation of correlated photons,” Opt. Express 12(16), 3737–3744 (2004).
    [Crossref] [PubMed]
  18. S. D. Dyer, M. J. Stevens, B. Baek, and S. W. Nam, “High-efficiency, ultra low-noise all-fiber photon-pair source,” Opt. Express 16(13), 9966–9977 (2008).
    [Crossref] [PubMed]
  19. N. Matsuda, H. Le Jeannic, H. Fukuda, T. Tsuchizawa, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, and H. Takesue, “A monolithically integrated polarization entangled photon pair source on a silicon chip,” Sci. Rep. 2, 817 (2012).
    [Crossref] [PubMed]
  20. F. Steinlechner, P. Trojek, M. Jofre, H. Weier, D. Perez, T. Jennewein, R. Ursin, J. Rarity, M. W. Mitchell, J. P. Torres, H. Weinfurter, and V. Pruneri, “A high-brightness source of polarization-entangled photons optimized for applications in free space,” Opt. Express 20(9), 9640–9649 (2012).
    [Crossref] [PubMed]

2012 (4)

A. Aspuru-Guzik and P. Walther, “Photonic quantum simulators,” Nat. Phys. 8(4), 285–291 (2012).
[Crossref]

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Two-particle bosonic-fermionic quantum walk via integrated photonics,” Phys. Rev. Lett. 108(1), 010502 (2012).
[Crossref] [PubMed]

N. Matsuda, H. Le Jeannic, H. Fukuda, T. Tsuchizawa, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, and H. Takesue, “A monolithically integrated polarization entangled photon pair source on a silicon chip,” Sci. Rep. 2, 817 (2012).
[Crossref] [PubMed]

F. Steinlechner, P. Trojek, M. Jofre, H. Weier, D. Perez, T. Jennewein, R. Ursin, J. Rarity, M. W. Mitchell, J. P. Torres, H. Weinfurter, and V. Pruneri, “A high-brightness source of polarization-entangled photons optimized for applications in free space,” Opt. Express 20(9), 9640–9649 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (2)

H. Takesue and K. Shimizu, “Effects of multiple pairs on visibility measurements of entangled photons generated by spontaneous parametric processes,” Opt. Commun. 283(2), 276–287 (2010).
[Crossref]

A. Peruzzo, M. Lobino, J. C. F. Matthews, N. Matsuda, A. Politi, K. Poulios, X.-Q. Zhou, Y. Lahini, N. Ismail, K. Wörhoff, Y. Bromberg, Y. Silberberg, M. G. Thompson, and J. L. OBrien, “Quantum walks of correlated photons,” Science 329(5998), 1500–1503 (2010).
[Crossref] [PubMed]

2008 (1)

2007 (2)

G. Oohata, R. Shimizu, and K. Edamatsu, “Photon polarization entanglement induced by Biexciton: experimental evidence for violation of Bell’s inequality,” Phys. Rev. Lett. 98(14), 140503 (2007).
[Crossref] [PubMed]

P. Kok, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79(1), 135–174 (2007).
[Crossref]

2005 (2)

P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, and A. Zeilinger, “Experimental one-way quantum computing,” Nature 434(7030), 169–176 (2005).
[Crossref] [PubMed]

H. Takesue and K. Inoue, “1.5-mm band quantum-correlated photon pair generation in dispersion-shifted fiber: suppression of noise photons by cooling fiber,” Opt. Express 13(20), 7832–7839 (2005).
[Crossref] [PubMed]

2004 (3)

X. Li, J. Chen, P. Voss, J. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications: Improved generation of correlated photons,” Opt. Express 12(16), 3737–3744 (2004).
[Crossref] [PubMed]

H. S. Eisenberg, G. Khoury, G. A. Durkin, C. Simon, and D. Bouwmeester, “Quantum entanglement of a large number of photons,” Phys. Rev. Lett. 93(19), 193901 (2004).
[Crossref] [PubMed]

K. Edamatsu, G. Oohata, R. Shimizu, and T. Itoh, “Generation of ultraviolet entangled photons in a semiconductor,” Nature 431(7005), 167–170 (2004).
[Crossref] [PubMed]

2002 (1)

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[Crossref]

2001 (2)

M. D’Angelo, M. V. Chekhova, and Y. Shih, “Two-photon diffraction and quantum lithography,” Phys. Rev. Lett. 87(1), 013602 (2001).
[Crossref] [PubMed]

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409(6816), 46–52 (2001).
[Crossref] [PubMed]

1997 (2)

A. Zeilinger, M. Horne, H. Weinfurter, and M. Żukowski, “Three-particle entanglements from two entangled pairs,” Phys. Rev. Lett. 78(16), 3031–3034 (1997).
[Crossref]

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390(6660), 575–579 (1997).
[Crossref]

Arahira, S.

Aspelmeyer, M.

P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, and A. Zeilinger, “Experimental one-way quantum computing,” Nature 434(7030), 169–176 (2005).
[Crossref] [PubMed]

Aspuru-Guzik, A.

A. Aspuru-Guzik and P. Walther, “Photonic quantum simulators,” Nat. Phys. 8(4), 285–291 (2012).
[Crossref]

Baek, B.

Bouwmeester, D.

H. S. Eisenberg, G. Khoury, G. A. Durkin, C. Simon, and D. Bouwmeester, “Quantum entanglement of a large number of photons,” Phys. Rev. Lett. 93(19), 193901 (2004).
[Crossref] [PubMed]

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390(6660), 575–579 (1997).
[Crossref]

Bromberg, Y.

A. Peruzzo, M. Lobino, J. C. F. Matthews, N. Matsuda, A. Politi, K. Poulios, X.-Q. Zhou, Y. Lahini, N. Ismail, K. Wörhoff, Y. Bromberg, Y. Silberberg, M. G. Thompson, and J. L. OBrien, “Quantum walks of correlated photons,” Science 329(5998), 1500–1503 (2010).
[Crossref] [PubMed]

Chekhova, M. V.

M. D’Angelo, M. V. Chekhova, and Y. Shih, “Two-photon diffraction and quantum lithography,” Phys. Rev. Lett. 87(1), 013602 (2001).
[Crossref] [PubMed]

Chen, J.

Crespi, A.

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Two-particle bosonic-fermionic quantum walk via integrated photonics,” Phys. Rev. Lett. 108(1), 010502 (2012).
[Crossref] [PubMed]

D’Angelo, M.

M. D’Angelo, M. V. Chekhova, and Y. Shih, “Two-photon diffraction and quantum lithography,” Phys. Rev. Lett. 87(1), 013602 (2001).
[Crossref] [PubMed]

Dowling, J. P.

P. Kok, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79(1), 135–174 (2007).
[Crossref]

Durkin, G. A.

H. S. Eisenberg, G. Khoury, G. A. Durkin, C. Simon, and D. Bouwmeester, “Quantum entanglement of a large number of photons,” Phys. Rev. Lett. 93(19), 193901 (2004).
[Crossref] [PubMed]

Dyer, S. D.

Edamatsu, K.

G. Oohata, R. Shimizu, and K. Edamatsu, “Photon polarization entanglement induced by Biexciton: experimental evidence for violation of Bell’s inequality,” Phys. Rev. Lett. 98(14), 140503 (2007).
[Crossref] [PubMed]

K. Edamatsu, G. Oohata, R. Shimizu, and T. Itoh, “Generation of ultraviolet entangled photons in a semiconductor,” Nature 431(7005), 167–170 (2004).
[Crossref] [PubMed]

Eibl, M.

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390(6660), 575–579 (1997).
[Crossref]

Eisenberg, H. S.

H. S. Eisenberg, G. Khoury, G. A. Durkin, C. Simon, and D. Bouwmeester, “Quantum entanglement of a large number of photons,” Phys. Rev. Lett. 93(19), 193901 (2004).
[Crossref] [PubMed]

Fukuda, H.

N. Matsuda, H. Le Jeannic, H. Fukuda, T. Tsuchizawa, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, and H. Takesue, “A monolithically integrated polarization entangled photon pair source on a silicon chip,” Sci. Rep. 2, 817 (2012).
[Crossref] [PubMed]

Gisin, N.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[Crossref]

Horne, M.

A. Zeilinger, M. Horne, H. Weinfurter, and M. Żukowski, “Three-particle entanglements from two entangled pairs,” Phys. Rev. Lett. 78(16), 3031–3034 (1997).
[Crossref]

Inoue, K.

Inoue, S.

Ismail, N.

A. Peruzzo, M. Lobino, J. C. F. Matthews, N. Matsuda, A. Politi, K. Poulios, X.-Q. Zhou, Y. Lahini, N. Ismail, K. Wörhoff, Y. Bromberg, Y. Silberberg, M. G. Thompson, and J. L. OBrien, “Quantum walks of correlated photons,” Science 329(5998), 1500–1503 (2010).
[Crossref] [PubMed]

Itoh, T.

K. Edamatsu, G. Oohata, R. Shimizu, and T. Itoh, “Generation of ultraviolet entangled photons in a semiconductor,” Nature 431(7005), 167–170 (2004).
[Crossref] [PubMed]

Jennewein, T.

Jofre, M.

Khoury, G.

H. S. Eisenberg, G. Khoury, G. A. Durkin, C. Simon, and D. Bouwmeester, “Quantum entanglement of a large number of photons,” Phys. Rev. Lett. 93(19), 193901 (2004).
[Crossref] [PubMed]

Kishimoto, T.

Knill, E.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409(6816), 46–52 (2001).
[Crossref] [PubMed]

Kok, P.

P. Kok, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79(1), 135–174 (2007).
[Crossref]

Kumar, P.

Laflamme, R.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409(6816), 46–52 (2001).
[Crossref] [PubMed]

Lahini, Y.

A. Peruzzo, M. Lobino, J. C. F. Matthews, N. Matsuda, A. Politi, K. Poulios, X.-Q. Zhou, Y. Lahini, N. Ismail, K. Wörhoff, Y. Bromberg, Y. Silberberg, M. G. Thompson, and J. L. OBrien, “Quantum walks of correlated photons,” Science 329(5998), 1500–1503 (2010).
[Crossref] [PubMed]

Le Jeannic, H.

N. Matsuda, H. Le Jeannic, H. Fukuda, T. Tsuchizawa, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, and H. Takesue, “A monolithically integrated polarization entangled photon pair source on a silicon chip,” Sci. Rep. 2, 817 (2012).
[Crossref] [PubMed]

Li, X.

Lobino, M.

A. Peruzzo, M. Lobino, J. C. F. Matthews, N. Matsuda, A. Politi, K. Poulios, X.-Q. Zhou, Y. Lahini, N. Ismail, K. Wörhoff, Y. Bromberg, Y. Silberberg, M. G. Thompson, and J. L. OBrien, “Quantum walks of correlated photons,” Science 329(5998), 1500–1503 (2010).
[Crossref] [PubMed]

Mataloni, P.

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Two-particle bosonic-fermionic quantum walk via integrated photonics,” Phys. Rev. Lett. 108(1), 010502 (2012).
[Crossref] [PubMed]

Matsuda, N.

N. Matsuda, H. Le Jeannic, H. Fukuda, T. Tsuchizawa, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, and H. Takesue, “A monolithically integrated polarization entangled photon pair source on a silicon chip,” Sci. Rep. 2, 817 (2012).
[Crossref] [PubMed]

A. Peruzzo, M. Lobino, J. C. F. Matthews, N. Matsuda, A. Politi, K. Poulios, X.-Q. Zhou, Y. Lahini, N. Ismail, K. Wörhoff, Y. Bromberg, Y. Silberberg, M. G. Thompson, and J. L. OBrien, “Quantum walks of correlated photons,” Science 329(5998), 1500–1503 (2010).
[Crossref] [PubMed]

Matthews, J. C. F.

A. Peruzzo, M. Lobino, J. C. F. Matthews, N. Matsuda, A. Politi, K. Poulios, X.-Q. Zhou, Y. Lahini, N. Ismail, K. Wörhoff, Y. Bromberg, Y. Silberberg, M. G. Thompson, and J. L. OBrien, “Quantum walks of correlated photons,” Science 329(5998), 1500–1503 (2010).
[Crossref] [PubMed]

Mattle, K.

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390(6660), 575–579 (1997).
[Crossref]

Milburn, G. J.

P. Kok, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79(1), 135–174 (2007).
[Crossref]

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409(6816), 46–52 (2001).
[Crossref] [PubMed]

Mitchell, M. W.

Munro, W. J.

N. Matsuda, H. Le Jeannic, H. Fukuda, T. Tsuchizawa, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, and H. Takesue, “A monolithically integrated polarization entangled photon pair source on a silicon chip,” Sci. Rep. 2, 817 (2012).
[Crossref] [PubMed]

Nam, S. W.

Namekata, N.

Nemoto, K.

P. Kok, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79(1), 135–174 (2007).
[Crossref]

OBrien, J. L.

A. Peruzzo, M. Lobino, J. C. F. Matthews, N. Matsuda, A. Politi, K. Poulios, X.-Q. Zhou, Y. Lahini, N. Ismail, K. Wörhoff, Y. Bromberg, Y. Silberberg, M. G. Thompson, and J. L. OBrien, “Quantum walks of correlated photons,” Science 329(5998), 1500–1503 (2010).
[Crossref] [PubMed]

Oohata, G.

G. Oohata, R. Shimizu, and K. Edamatsu, “Photon polarization entanglement induced by Biexciton: experimental evidence for violation of Bell’s inequality,” Phys. Rev. Lett. 98(14), 140503 (2007).
[Crossref] [PubMed]

K. Edamatsu, G. Oohata, R. Shimizu, and T. Itoh, “Generation of ultraviolet entangled photons in a semiconductor,” Nature 431(7005), 167–170 (2004).
[Crossref] [PubMed]

Osellame, R.

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Two-particle bosonic-fermionic quantum walk via integrated photonics,” Phys. Rev. Lett. 108(1), 010502 (2012).
[Crossref] [PubMed]

Pan, J.-W.

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390(6660), 575–579 (1997).
[Crossref]

Perez, D.

Peruzzo, A.

A. Peruzzo, M. Lobino, J. C. F. Matthews, N. Matsuda, A. Politi, K. Poulios, X.-Q. Zhou, Y. Lahini, N. Ismail, K. Wörhoff, Y. Bromberg, Y. Silberberg, M. G. Thompson, and J. L. OBrien, “Quantum walks of correlated photons,” Science 329(5998), 1500–1503 (2010).
[Crossref] [PubMed]

Politi, A.

A. Peruzzo, M. Lobino, J. C. F. Matthews, N. Matsuda, A. Politi, K. Poulios, X.-Q. Zhou, Y. Lahini, N. Ismail, K. Wörhoff, Y. Bromberg, Y. Silberberg, M. G. Thompson, and J. L. OBrien, “Quantum walks of correlated photons,” Science 329(5998), 1500–1503 (2010).
[Crossref] [PubMed]

Poulios, K.

A. Peruzzo, M. Lobino, J. C. F. Matthews, N. Matsuda, A. Politi, K. Poulios, X.-Q. Zhou, Y. Lahini, N. Ismail, K. Wörhoff, Y. Bromberg, Y. Silberberg, M. G. Thompson, and J. L. OBrien, “Quantum walks of correlated photons,” Science 329(5998), 1500–1503 (2010).
[Crossref] [PubMed]

Pruneri, V.

Ralph, T. C.

P. Kok, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79(1), 135–174 (2007).
[Crossref]

Ramponi, R.

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Two-particle bosonic-fermionic quantum walk via integrated photonics,” Phys. Rev. Lett. 108(1), 010502 (2012).
[Crossref] [PubMed]

Rarity, J.

Resch, K. J.

P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, and A. Zeilinger, “Experimental one-way quantum computing,” Nature 434(7030), 169–176 (2005).
[Crossref] [PubMed]

Ribordy, G.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[Crossref]

Rudolph, T.

P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, and A. Zeilinger, “Experimental one-way quantum computing,” Nature 434(7030), 169–176 (2005).
[Crossref] [PubMed]

Sansoni, L.

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Two-particle bosonic-fermionic quantum walk via integrated photonics,” Phys. Rev. Lett. 108(1), 010502 (2012).
[Crossref] [PubMed]

Schenck, E.

P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, and A. Zeilinger, “Experimental one-way quantum computing,” Nature 434(7030), 169–176 (2005).
[Crossref] [PubMed]

Sciarrino, F.

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Two-particle bosonic-fermionic quantum walk via integrated photonics,” Phys. Rev. Lett. 108(1), 010502 (2012).
[Crossref] [PubMed]

Sharping, J.

Shih, Y.

M. D’Angelo, M. V. Chekhova, and Y. Shih, “Two-photon diffraction and quantum lithography,” Phys. Rev. Lett. 87(1), 013602 (2001).
[Crossref] [PubMed]

Shimizu, K.

N. Matsuda, H. Le Jeannic, H. Fukuda, T. Tsuchizawa, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, and H. Takesue, “A monolithically integrated polarization entangled photon pair source on a silicon chip,” Sci. Rep. 2, 817 (2012).
[Crossref] [PubMed]

H. Takesue and K. Shimizu, “Effects of multiple pairs on visibility measurements of entangled photons generated by spontaneous parametric processes,” Opt. Commun. 283(2), 276–287 (2010).
[Crossref]

Shimizu, R.

G. Oohata, R. Shimizu, and K. Edamatsu, “Photon polarization entanglement induced by Biexciton: experimental evidence for violation of Bell’s inequality,” Phys. Rev. Lett. 98(14), 140503 (2007).
[Crossref] [PubMed]

K. Edamatsu, G. Oohata, R. Shimizu, and T. Itoh, “Generation of ultraviolet entangled photons in a semiconductor,” Nature 431(7005), 167–170 (2004).
[Crossref] [PubMed]

Silberberg, Y.

A. Peruzzo, M. Lobino, J. C. F. Matthews, N. Matsuda, A. Politi, K. Poulios, X.-Q. Zhou, Y. Lahini, N. Ismail, K. Wörhoff, Y. Bromberg, Y. Silberberg, M. G. Thompson, and J. L. OBrien, “Quantum walks of correlated photons,” Science 329(5998), 1500–1503 (2010).
[Crossref] [PubMed]

Simon, C.

H. S. Eisenberg, G. Khoury, G. A. Durkin, C. Simon, and D. Bouwmeester, “Quantum entanglement of a large number of photons,” Phys. Rev. Lett. 93(19), 193901 (2004).
[Crossref] [PubMed]

Steinlechner, F.

Stevens, M. J.

Takesue, H.

N. Matsuda, H. Le Jeannic, H. Fukuda, T. Tsuchizawa, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, and H. Takesue, “A monolithically integrated polarization entangled photon pair source on a silicon chip,” Sci. Rep. 2, 817 (2012).
[Crossref] [PubMed]

H. Takesue and K. Shimizu, “Effects of multiple pairs on visibility measurements of entangled photons generated by spontaneous parametric processes,” Opt. Commun. 283(2), 276–287 (2010).
[Crossref]

H. Takesue and K. Inoue, “1.5-mm band quantum-correlated photon pair generation in dispersion-shifted fiber: suppression of noise photons by cooling fiber,” Opt. Express 13(20), 7832–7839 (2005).
[Crossref] [PubMed]

Thompson, M. G.

A. Peruzzo, M. Lobino, J. C. F. Matthews, N. Matsuda, A. Politi, K. Poulios, X.-Q. Zhou, Y. Lahini, N. Ismail, K. Wörhoff, Y. Bromberg, Y. Silberberg, M. G. Thompson, and J. L. OBrien, “Quantum walks of correlated photons,” Science 329(5998), 1500–1503 (2010).
[Crossref] [PubMed]

Tittel, W.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[Crossref]

Tokura, Y.

N. Matsuda, H. Le Jeannic, H. Fukuda, T. Tsuchizawa, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, and H. Takesue, “A monolithically integrated polarization entangled photon pair source on a silicon chip,” Sci. Rep. 2, 817 (2012).
[Crossref] [PubMed]

Torres, J. P.

Trojek, P.

Tsuchizawa, T.

N. Matsuda, H. Le Jeannic, H. Fukuda, T. Tsuchizawa, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, and H. Takesue, “A monolithically integrated polarization entangled photon pair source on a silicon chip,” Sci. Rep. 2, 817 (2012).
[Crossref] [PubMed]

Ursin, R.

Vallone, G.

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Two-particle bosonic-fermionic quantum walk via integrated photonics,” Phys. Rev. Lett. 108(1), 010502 (2012).
[Crossref] [PubMed]

Vedral, V.

P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, and A. Zeilinger, “Experimental one-way quantum computing,” Nature 434(7030), 169–176 (2005).
[Crossref] [PubMed]

Voss, P.

Walther, P.

A. Aspuru-Guzik and P. Walther, “Photonic quantum simulators,” Nat. Phys. 8(4), 285–291 (2012).
[Crossref]

P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, and A. Zeilinger, “Experimental one-way quantum computing,” Nature 434(7030), 169–176 (2005).
[Crossref] [PubMed]

Weier, H.

Weinfurter, H.

F. Steinlechner, P. Trojek, M. Jofre, H. Weier, D. Perez, T. Jennewein, R. Ursin, J. Rarity, M. W. Mitchell, J. P. Torres, H. Weinfurter, and V. Pruneri, “A high-brightness source of polarization-entangled photons optimized for applications in free space,” Opt. Express 20(9), 9640–9649 (2012).
[Crossref] [PubMed]

P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, and A. Zeilinger, “Experimental one-way quantum computing,” Nature 434(7030), 169–176 (2005).
[Crossref] [PubMed]

A. Zeilinger, M. Horne, H. Weinfurter, and M. Żukowski, “Three-particle entanglements from two entangled pairs,” Phys. Rev. Lett. 78(16), 3031–3034 (1997).
[Crossref]

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390(6660), 575–579 (1997).
[Crossref]

Wörhoff, K.

A. Peruzzo, M. Lobino, J. C. F. Matthews, N. Matsuda, A. Politi, K. Poulios, X.-Q. Zhou, Y. Lahini, N. Ismail, K. Wörhoff, Y. Bromberg, Y. Silberberg, M. G. Thompson, and J. L. OBrien, “Quantum walks of correlated photons,” Science 329(5998), 1500–1503 (2010).
[Crossref] [PubMed]

Yaegashi, H.

Yamada, K.

N. Matsuda, H. Le Jeannic, H. Fukuda, T. Tsuchizawa, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, and H. Takesue, “A monolithically integrated polarization entangled photon pair source on a silicon chip,” Sci. Rep. 2, 817 (2012).
[Crossref] [PubMed]

Zbinden, H.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[Crossref]

Zeilinger, A.

P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, and A. Zeilinger, “Experimental one-way quantum computing,” Nature 434(7030), 169–176 (2005).
[Crossref] [PubMed]

A. Zeilinger, M. Horne, H. Weinfurter, and M. Żukowski, “Three-particle entanglements from two entangled pairs,” Phys. Rev. Lett. 78(16), 3031–3034 (1997).
[Crossref]

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390(6660), 575–579 (1997).
[Crossref]

Zhou, X.-Q.

A. Peruzzo, M. Lobino, J. C. F. Matthews, N. Matsuda, A. Politi, K. Poulios, X.-Q. Zhou, Y. Lahini, N. Ismail, K. Wörhoff, Y. Bromberg, Y. Silberberg, M. G. Thompson, and J. L. OBrien, “Quantum walks of correlated photons,” Science 329(5998), 1500–1503 (2010).
[Crossref] [PubMed]

Zukowski, M.

A. Zeilinger, M. Horne, H. Weinfurter, and M. Żukowski, “Three-particle entanglements from two entangled pairs,” Phys. Rev. Lett. 78(16), 3031–3034 (1997).
[Crossref]

Nat. Phys. (1)

A. Aspuru-Guzik and P. Walther, “Photonic quantum simulators,” Nat. Phys. 8(4), 285–291 (2012).
[Crossref]

Nature (4)

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390(6660), 575–579 (1997).
[Crossref]

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409(6816), 46–52 (2001).
[Crossref] [PubMed]

P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, and A. Zeilinger, “Experimental one-way quantum computing,” Nature 434(7030), 169–176 (2005).
[Crossref] [PubMed]

K. Edamatsu, G. Oohata, R. Shimizu, and T. Itoh, “Generation of ultraviolet entangled photons in a semiconductor,” Nature 431(7005), 167–170 (2004).
[Crossref] [PubMed]

Opt. Commun. (1)

H. Takesue and K. Shimizu, “Effects of multiple pairs on visibility measurements of entangled photons generated by spontaneous parametric processes,” Opt. Commun. 283(2), 276–287 (2010).
[Crossref]

Opt. Express (5)

Phys. Rev. Lett. (5)

G. Oohata, R. Shimizu, and K. Edamatsu, “Photon polarization entanglement induced by Biexciton: experimental evidence for violation of Bell’s inequality,” Phys. Rev. Lett. 98(14), 140503 (2007).
[Crossref] [PubMed]

A. Zeilinger, M. Horne, H. Weinfurter, and M. Żukowski, “Three-particle entanglements from two entangled pairs,” Phys. Rev. Lett. 78(16), 3031–3034 (1997).
[Crossref]

H. S. Eisenberg, G. Khoury, G. A. Durkin, C. Simon, and D. Bouwmeester, “Quantum entanglement of a large number of photons,” Phys. Rev. Lett. 93(19), 193901 (2004).
[Crossref] [PubMed]

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Two-particle bosonic-fermionic quantum walk via integrated photonics,” Phys. Rev. Lett. 108(1), 010502 (2012).
[Crossref] [PubMed]

M. D’Angelo, M. V. Chekhova, and Y. Shih, “Two-photon diffraction and quantum lithography,” Phys. Rev. Lett. 87(1), 013602 (2001).
[Crossref] [PubMed]

Rev. Mod. Phys. (2)

P. Kok, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79(1), 135–174 (2007).
[Crossref]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[Crossref]

Sci. Rep. (1)

N. Matsuda, H. Le Jeannic, H. Fukuda, T. Tsuchizawa, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, and H. Takesue, “A monolithically integrated polarization entangled photon pair source on a silicon chip,” Sci. Rep. 2, 817 (2012).
[Crossref] [PubMed]

Science (1)

A. Peruzzo, M. Lobino, J. C. F. Matthews, N. Matsuda, A. Politi, K. Poulios, X.-Q. Zhou, Y. Lahini, N. Ismail, K. Wörhoff, Y. Bromberg, Y. Silberberg, M. G. Thompson, and J. L. OBrien, “Quantum walks of correlated photons,” Science 329(5998), 1500–1503 (2010).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 (a) Schematic of the experimental setup for the resonant hyper-parametric scattering (RHPS) method. ND: neutral density filter, OF: optical multimode fiber, MA and MB: monochromators, det-A and det-B: photon counting detectors (photo-multiplier tube). (b) RHPS spectrum for a CuCl single crystal. The central peak indicates the scattered light of the pump pulse (389.0 nm). The two side peaks around the pump pulse are the RHPS signals of the high-energy polariton (HEP; 388.1 nm) and the low-energy polariton (LEP; 389.9 nm). The peaks MT and HEP' are other RHPS signals that propagate in counter directions. The peak ML is the emission from the biexciton leaving the longitudinal excitons.
Fig. 2
Fig. 2 Time-correlation histograms of the observed photon pairs at various peak pump powers. The dashed line indicates the mean count rate of τ ≠ 0 and arrows indicate the value of CS and CR.
Fig. 3
Fig. 3 (a) Pump power dependence of photon counting rates CA and CB. The solid lines show the fitted results obtained using Eq. (2). The dotted and dashed lines show the linear and quadratic functions, respectively. (b) Pump power dependence of coincidence counting rates CS, CR, and CAR. The blue solid line is the fitted result. The red and green solid lines are the calculated results using Eq. (5) and (6).

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

g pair =α I 2 , g bg;A = β A I, g bg;B = β B I,
C A = η S;A ( α I 2 + β A I ), C B = η S;B ( α I 2 + β B I ).
G (2) (τ)= C A (t) C B (t+τ).
C S (I)= G (2) (0) G (2) ()= η X η S 2 α I 2 ,
C R (I) = G (2) ()= η S 2 ( α I 2 + β A I )( α I 2 + β B I ),
CAR(I) = C S (I) C R (I) = η X α I 2 ( α I 2 + β A I )( α I 2 + β B I ) ,
CA R max = η X α β A β B .
CA R max = α β A β B .

Metrics